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Expected long-term reward under current policy
Mean square error in training process

Active power output setting value of bus g
Upper historical active power generated by bus g
Rated active power of PV m at bus g

Active power from bus i to bus j

Active power from bus j to bus k£

Benchmark active power consumption value of
bus j
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Reactive power output obligation of PV m at
bus g

Reactive power capacity awarded at bus g

Available capacity that does not affect active
power output at bus g

Reactive power capacity awarded to PV m at
bus g

Available capacity that does not affect active
power output of PV m at bus g

Rated reactive power of PV m at bus g
Reactive power requirement at bus g
Reactive power from bus i to bus j
Reactive power from bus j to bus k
Reactive power consumption at bus j
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Normalized punishment at bus n

State in DDPG algorithm at time step ¢
Rated apparent power of PV m at bus g
Data replay buffer in DDPG training
Voltage magnitude at bus i

Voltage magnitude at bus j

Benchmark voltage magnitude at bus j
Voltage magnitude of critical bus n
Lower limit of voltage magnitude
Upper limit of voltage magnitude

Profit of awarded bus g

Reactance from bus 7 to bus j

Value estimated from target critic network at
time step ¢

Y, . Remaining service life of PV m at bus g

1. INTRODUCTION

IGH penetration of distributed renewable energy leads

to significant over-voltage issues caused by reverse
power flow in distribution networks. To enhance voltage
safety, the distribution system operator (DSO) has the ability
to regulate the reactive power output of inverter-based devic-
es, especially distributed photovoltaic (PV) entities [1].

Existing research primarily focuses on the effectiveness of
voltage control methods by forcibly regulating the reactive
power output of distributed PV entities. Analytical methods
[2]-[4] derive reactive power optimization plans by obtaining
global information on the parameters of PV resources and
the states of distribution networks. In recent years, data-driv-
en methods have been widely applied to reactive power opti-
mization. These methods typically leverage machine learning
algorithms to enable real-time adjustment of reactive power
output from PV and other distributed energy resources
(DERs) under incomplete information [5], [6]. Reference [7]
proposed a reactive power optimization framework for Ener-
gy Internet during voltage sags based on multiagent deep re-
inforcement learning. Reference [8] proposed a real-time
two-time-scale voltage regulation method with a soft open
point to solve the reactive power optimization problem. Ref-
erence [9] developed a multi-agent deep reinforcement learn-
ing algorithm to address autonomous voltage control issues.
However, these methods primarily focused on mandatorily
regulation without offering incentives for individual PV enti-
ty. As a result, PV entities have little motivation to actively
participate in such programs.

To incentivize PV entities to provide reactive power, reac-
tive power pricing on the power distribution side is gradual-
ly carried out [10]. Reference [11] explored the possibility
of wind turbines providing reactive power and proposed a
pricing method for reactive power capacity when their behav-
ior is uncertain. Reference [12] explored the possibility of
PV and energy storage systems providing reactive power and
clarified a pricing method for distributed PV systems in grid-
connected microgrids to provide reactive power. Reference
[13] proposed a reactive power pricing mechanism based on
the Vickery-Clarke-Groves auction for DERs. Reference [14]
proposed a reactive power pricing model based on the loca-
tion marginal price of distribution network. These methods
introduced pricing principles that incentivized DERs to par-
ticipate in reactive power optimization. However, existing re-
search often focuses on nodal reactive power pricing, which
struggles to account for the diverse characteristics and varia-
tions among numerous PV entities.

To sum up, the existing methods struggle to bridge the
gap between the financial interests of distributed PV entities
and the global voltage regulation targets of the DSO. To fill
this gap, this paper proposes a two-stage multi-layer reactive
power regulation method. The main contributions are as fol-
lows.

1) A long-term multi-layer reactive power capacity market
is designed to incentivize PV entities to provide the reactive
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power capacity. By aggregating bids and decomposing mar-
ket results, the financial interests of distributed PV entities
are guaranteed, even with multiple participants involved.

2) A real-time multi-layer reactive power dispatch mecha-
nism is designed to allocate reactive power for voltage regu-
lation at the lowest cost. Using the deep deterministic policy
gradient (DDPG) algorithm, reactive power generation re-
sponsibilities are quickly assigned to each bus, and then re-
distributed to the low-cost PV entities through linear rules to
enhance efficiency.

The remainder of this paper is organized as follows. Sec-
tion II is the preview of proposed two-stage multi-layer regu-
lation method. Section III details the long-term multi-layer
reactive power capacity market. Section IV explains the real-
time multi-layer reactive power dispatch mechanism. A case
study is performed in Section V. Section VI concludes the

paper.

II. PREVIEW OF PROPOSED TWO-STAGE MULTI-LAYER
REGULATION METHOD

A. Framework of Multi-layer Interaction

The framework of the multi-layer interaction is depicted
in Fig. 1.

1 (connect to main grid)

O Bus

(a)
Local
computation
Central server Edge server
Global
l T coordination i T
DSO PV data

(b)

Fig. 1. Framework of multi-layer interaction. (a) Typical radial power dis-
tribution system with PV entities. (b) Data interaction between central and
edge servers in reactive power regulation.

Figure 1(a) shows a typical radial power distribution sys-
tem containing massive PV entities. Figure 1(b) shows the
data interaction between central and edge servers in reactive
power regulation. The number of edge servers corresponds
to the number of buses, and they are responsible for process-
ing local PV data. A single central server is responsible for
communication and data exchange with the edge servers.
This central server is typically neutral, which helps protect
PV data from being directly exposed to the DSO.
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B. Overview of Two-stage Mechanism

There are two stages: long-term reactive power capacity
configuration and real-time reactive power dispatch. The rela-
tionship of the two stages is shown in Fig. 2.

Long-term

(D Reactive power
capacity configuration

Real-time

‘ @) Reactive power dispatch ‘

__________________________________________

Fig. 2. Relationship of proposed two stages.

1) Stage 1: Long-term Reactive Power Capacity Configura-
tion

In this stage, different PV entities are assumed to submit
their bids for reactive power capacity to the central server
through edge servers. The central server then executes the
market clearing algorithm to determine the reactive power
capacity price and allocate the awarded capacity to each bus
as well as the corresponding PV entities. PV entities will
earn revenues in this configuration while the DSO obtains
sufficient regulation capability. Compared with conventional
reactive power pricing methods, our method accounts for the
differences among the numerous distributed PV entities, en-
suring the economic benefits of individual participants.

2) Stage 2: Real-time Reactive Power Dispatch

In this stage, the DSO aims to prevent system voltage vio-
lations by regulating the reactive power output of the PV en-
tities involved at stage 1. The central and edge servers imple-
ment a DDPG algorithm and linear rules to achieve real-
time reactive power dispatch. The awarded capacity of lower-
cost PV entities from stage 1 will serve as the reactive pow-
er dispatch limits at stage 2. Compared with traditional reac-
tive power dispatch methods, our method explicitly defines
the dispatch costs of different PV entities. By prioritizing dis-
patch based on cost from lowest to highest, this method en-
hances the economic efficiency of global reactive power opti-
mization.

Note that we focus on the optimization of light assets like
PV entities at the above two stages under specific condi-
tions, i.e., the distribution network topology is fixed, and the
discrete operational statuses of heavy assets like switched ca-
pacitor banks, step voltage regulators, and transformers with
on-load tap changers (OLTCs) are predefined.

III. LONG-TERM MULTI-LAYER REACTIVE POWER CAPACITY
MARKET

The interaction of different servers and participants in the
long-term multi-layer reactive power capacity market is
shown in Fig. 3, which consists of six steps.

Step 1: PV entity submits the bid of reactive power capaci-
ty to the local edge servers in the nearest bus.

Step 2: after all data from PV entities are collected, the
edge servers aggregate the bids and submit them to the cen-
tral server.
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Step 3: DSO submits the network parameters to the cen-
tral server.

Step 4: central server solves the market clearing problem
according to the aggregated bids and the network parameters.

Step 5: central server releases the market clearing results
to the DSO and edge servers.

Step 6: edge servers decompose the market clearing re-
sults to the PV entities.

cRmray)

=
DSO
Simplified network Market clearing
parameters results

Central server
(market organization)

Bid aggregation Market clearing results

Edge server Edge server
. Market clearing
l =+ Bids l result decomposition
PV entity PV entity

Fig. 3. Interaction of different servers and participants in long-term multi-
layer reactive power capacity market.

The details of the critical points, e.g., bid aggregation,
market clearing result decomposition, and market organiza-
tion are analyzed in the following parts.

A. Bid Aggregation and Market Clearing Result Decomposi-
tion

The annualized cost to be recovered is as follows:

Egn=Con/Yom (D

Given the expected annual revenue from selling active
pOWCI' Egmz,active: o . . . .

1) If E,,, wive2E,,, it indicates that distributed PV entity

m can recover the investment costs solely through selling ac-
tive power, so the annual cost of reactive power capacity is
ZEero.

2) If E,,, sive <E, ,» it indicates that distributed PV entity
m cannot recover the investment costs solely through selling
active power, so the annual cost of reactive power capacity
can be expressed as:

E 2
As shown in Fig. 4, the rated active, reactive, and appar-

ent power of PV m at bus g satisfies the following relation-
ship.

E

gm

E

g m,reactive — g.m,active

2 Q2 2
Qg, m,PV,rated — S g m, PV, rated - P g.m, PV, rated (3 )

Assume that the available reactive power capacity that
does not affect the active power output is as follows:

*
0 < Qg, m,PV, cap < ‘ Qg, m, PV, rated

Calculate the unit annualized cost =, ,
capacity as:

“)

of reactive power

*
n-g.,m = Eg. m, reactive/Qg. m, PV, cap

®)
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EEE ng,m.PV,rated’ Pg,m,PV,rmed)

Fig. 4. Relationship of active, reactive, and apparent power.

1) Original Bids
As shown in Fig. 5, PV entities calculates the available re-
active power capacity amount-price pairs.

Cost Cost ng:ng;,PV,cap Cost (ngw.cap, ig)
jj
Amount Amount Amount
Original bids Bid aggregation Bid decomposition
Fig. 5. Tllustration of original bids, bid aggregation, and bid decomposition
processes.

The original bids of PV entities at bus g are listed as fol-
lows:

* * *

*
{Qge 1.PV,cap> Qg,Z,PV.cap’ hhid Qg,m. PV,cap? ***» Qg.M, PV,cap}

(6)
(7

{ﬂg_l,ﬂ'g‘z, ces T s e ng,M}

2) Bid Aggregation

To simplify the market clearing problem, a line based on
the regression methods is taken to replace the amount-price
pairs in the stepwise bidding curve.

”g:ng;,PV,cap+yg (8)

Note that the line will pass through the origin if PV enti-
ties are diverse enough.

7,=0 )

Then, the slope of the curve and the available capacity of
all PV entities at bus g will be submitted for market clearing.
3) Market Clearing Result Decomposition

As shown in Fig. 5, within a particular bus g, PV entities
whose bids are lower than the market clearing price are
awarded the reactive power capacity until the total awarded
amount of bus g is reached. The awarded reactive power ca-
pacities of all PV entities at bus g are cleared at price 4,.
Since the reactive power value varies at each bus, the pay-as-
bid theory [15] better reflects the differences among nodes
compared with the uniform clearing mechanism based on
marginal pricing.

ig:nggvPV-cap (10)

B. Market Organization

This subsection aims to determine the awarded capacities
of different buses. The market is cleared to minimize the to-
tal cost of purchasing reactive power capacity from all buses
with PV entities.
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G
min
Qg pv.cap a=

(11)

2
ngg,PV, cap
1

To reduce the complexity of the market clearing problem,
the simplified power flow model [16] is used in the optimi-
zation constraints.

P,=> P,-P

Y Keo, grvupper (12)
Qij= k;)erk_ Qg,PV.require . (13)

Since high penetration of DERs often leads to over-volt-
age issues due to reverse power flow, the extreme situation
is considered, i.c., each bus with PV entities generates an up-
per value of active power, and the power consumption of
each bus is zero. Note that the upper historical active power
value is a boundary condition, it could be calculated based
on information such as historical solar irradiance.

The following constraints are set since the value of reac-
tive power capacity is positive.

(14)

15)

Similarly, we use the simplified voltage drop equations in
[16] to describe the relationship between the power flow and
voltage magnitudes at different buses.

VisVi=Pyry—
The awarded reactive power capacity Q
with PV entities should not exceed Q; py.cyp-
Qg. PV, cap < Q; PV, cap (17)
The voltage magnitudes of critical buses should be restrict-
ed to a predefined safe range.
Viin< VSV o (18)
The profit of awarded bus g with PV entities can be calcu-
lated after the market clearing process.
W,=0.5p gQZ

&PV, cap

Q g, PV, require < Q g PV, cap

_Qg, PV, require < Qg, PV, cap

(16)
of bus g

i

g.PV,cap

(19)

IV. REAL-TIME MULTI-LAYER REACTIVE POWER DISPATCH
MECHANISM

The interaction of the edge servers and the central server
in the real-time multi-layer reactive power dispatch mecha-
nism is shown in Fig. 6.

The reactive power dispatch limits are bounded by award-
ed reactive power capacities at stage 1. The reactive power
dispatch process consists of four steps, which are given as
follows.

Step 1: DSO trains the DDPG network and sends the pa-
rameters of the trained actor network to the central server.

Step 2: edge servers measure the voltage magnitude and
sends it to the central server.

Step 3: the central server sets the reactive power output
plan of each bus according to voltage magnitudes by actor
network, then sends it to the edge servers.

Step 4: edge servers set the reactive power dispatch plan
to each PV entity according to their proportions of awarded
reactive power capacities.
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BEE DDPG
training
DSO = Central server
Reactive
Bus vqltage power output
magnitude setting of bus
——0 o)
E——10 0
——0 —0
Edge server Edge server
‘ Reactive power output
J setting of PV entity
v
PV entity PV entity
Fig. 6. Interaction of different servers and participants in real-time multi-

layer reactive power dispatch mechanism.

The DDPG training, reactive power output setting of bus,
and reactive power output setting of PV entity are analyzed
in detail as follows.

A. DDPG Training

The reactive power dispatch mechanism aims to maintain
voltage deviations at critical buses within a predefined safe
range. The power flow and voltage drop equations are given
as follows, which cannot be simplified any further because
of accuracy.

Py= 3 PytP = Pg,PV‘ gy (20)
ked; 8g8=J
0,= 2 Ot O 1oaa— Qg.PV‘ A xl 1)
kE(D, g8=J
v 2
Pj,load:Pj.load,ini(Vlj_') (22)
J.ini
v 2
Q', oa :Q'. oa Aini(/’) (23)
J. load J-load V;_ini
ij: ViQ—ZPU.rij—ZQijxij+ (rij2.+x§.)lij (24)
LV =Pj+0Q; (25)

The DDPG algorithm is trained in a simulated environ-
ment, as illustrated in Fig. 7.

‘ Bus voltage magnitude }-L
l B Reward -

‘ DDPG algorithm }-—{ Environment ‘

‘ Bus reactive power output }%

Illustration of DDPG algorithm.

Fig. 7.

The objective of the DDPG algorithm is to generate opti-
mal dispatch plans at the bus level. The key characteristics
of the DDPG algorithm are state, action, and reward.
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State s: the voltage magnitude values of N critical buses,
consisting of N-dimension variables.

5=V VooV Vo (26)

Action a: the reactive power output of G buses with PV
entities, consisting of G-dimension variables.

vag) ay€ [~ Oy Qv | 27)

Reward r,,,: if the voltage magnitude of a critical bus n
is out of the predefined safe zone, a normalized punishment
in [-1,0] is given. Thus, the total reward of N critical buses
is as follows.

a= {al,az,...,ag,..

0 V, e [0.95,1.05]p.u

rreward: 1 ul (28)
Nan,pumsh Vv, & [0.951.05]p.u.

n=1
The learning principles of the DDPG algorithm are based
on the theory in [17]. It contains a critic network, a target
critic network, an actor network, and a target actor network.
1) The critic network is set to estimate the value function.
2) The actor network determines the actions based on the
current states.
The rule for updating the critic network is to minimize the
mean square error L.

L(#°) = 5 0= 0(s.aj6°))

7= Frowants 00,1t (5,.,107)107) (30)

The rule for updating the actor network is based on the
chain rule.

1
V,J~ FZV“O(S’“WO)

(29)

(€L

The updated rules of the target critic network and the tar-
get actor network are as follows.

0% —10°+(1 -1)0 (32)

0" 10" +(1 - 1)0" (33)

The training process of the DDPG algorithm is shown in
Algorithm 1. In each episode, the DDPG algorithm gener-
ates an action based on the current state and receives a re-
ward. This process is called a Markov decision process.

Note that the exploration rate in the training process is de-
creasing.

)Vﬂ“lu(s‘eﬂ) ’S

s=s.a=u(s,

XE: & 2 €
&

(34

417
g &<eg

B. Reactive Power Output Setting of Bus

The well-trained DDPG algorithm is sent to the central
server for implementation in the target environment. The im-
plementation of the DDPG algorithm is shown in Algo-
rithm 2.

C. Reactive Power Output Setting of PV Entity

Edge servers allocate the reactive power output to PV enti-
ties based on linear rules, i.c., the proportion of awarded re-
active power capacity of different PV entities at each bus.
The awarded PV entity will be responsible for the reactive
power output obligation as follows:
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Algorithm 1

. Input: critical bus voltage level
. Output: reactive power output of the buses with PV entities

. Initialize critic and actor networks

1

2

3

4. Initialize target networks

5. Initialize data replay buffer U
6. for episode=1:Z do

7

Initialize the power flow solver and calculate the voltage magnitude
of critical buses

8. Receive the initial observation state s,
9.  for time step t=1:T do
10. Select actions g, according to the current policy and state

11. Execute the action a, receive reward r,, and turn to new state s

t+1

12. Store transition (S,, a,r S ) in data replay buffer U

t2 ' reward, 2
13. Sample a random minibatch of F transitions from U
14. Update critic and actor networks

15. Update target networks

16. if the voltage magnitudes at all critical buses are in a tolerance
range, break

17. end if

18.  end for

19. end for

Algorithm 2

1. Input: voltage magnitudes of all critical buses

2. Output: reactive power output of the buses with PV entities
3. Utilize the trained networks
4. Receive the observed state

5. Select actions according to the state

Q ,m, PV,
g.m,PV, cap Qg_pv

Qg‘ m,PV = (35)

Qg,PV,cap

By scheduling the reactive power output responsibility to
awarded low-cost PV resources, the overall reactive power
optimization cost is minimized.

V. CASE STUDY

The case studies are simulated by a server with an Intel
Core 19 CPU. The topology of a real Finnish radial distribu-
tion system is shown in Fig. 8 [18]. Buses 5, 9, 12, 17, 22,
27, 30, 33, and 38 are designated as critical buses. Buses 5,
7, 20, 24, 31, 36, 38, and 39 host PV entities (assuming
each bus hosts 24 PV entities, totaling 192 PV entities). The
predefined safe zone of voltage magnitude is set to be [0.95,
1.05]p.u. (the base value of active/reactive power is 10 MW/
Mvar, and the base value of voltage magnitude is 20 kV).
The resistance and reactance of each transmission line are
both set to be 0.01 p.u..

A. Clearing Results of Reactive Power Capacity Market

The simulation is performed based on MATLAB R2022b.
We use the Gurobi solver and YALMIP compiler. The time
to solve this analytical market clearing problem is about 1.6 s,
mainly depending on the performance of the hardware and
the optimization solvers.
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(*) External system

Load
~ Feederl

Fig. 8. Topology of a real Finnish radial distribution system.

A typical bus consisting of 24 PV entities is initially con-
figured, with unit annualized costs and available capacities
generated randomly. Then, it is expanded to other buses by
multiplying slopes and quantities by random coefficients.
The bids from a typical bus with PV entities are illustrated
in Fig. 9, where each discrete point represents the midpoint
value of the corresponding amount-price pair. The slope is
2.693 $/Mvar’, and the total available capacity of this bus is
8.794 Mvar. The random multipliers for buses with PV enti-
ties are shown in Table I.

2507 Discrete point
~ 200 — Fitted line
<
< 150
3
b 100
/A

50

0 1 2 3 4 5 6
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Table II provides the market clearing results of each bus
with PV entities (the voltage magnitude of reference bus A
is regulated to 1.00 p.u. by OLTC). Assume that the upper
active power generated by each bus with PV entities is set
to be the same value of 10 MW.

TABLE 11
MARKET CLEARING RESULTS OF BUSES WITH PV ENTITIES

BusNo. Gl ey (e s PrORCO)
5 3.657 30.30 11.944 8.284 125.50
7 7.153 42.42 23.358 5.930 125.77
20 7.027 64.59 22.947 9.192 296.85
24 7.502 39.66 24.499 5.287 104.83
31 5916 43,73 19.319 7.392 161.64
36 4.847 44.56 15.830 9.192 204.78
38 7.514 69.07 24.538 9.192 317.43
39 9.303 84.15 30.379 9.045 380.57

Bus 39 has the highest slope, while bus 5 has the lowest
slope. Buses 20, 36, and 38 are awarded the largest reactive
power capacity, while bus 24 is awarded the smallest reac-
tive power capacity. The slopes and positions of a bus deter-
mine the market clearing results. A lower slope and a more
critical position lead to a larger awarded reactive power ca-
pacity. Buses with PV entities gain considerable profits: bus
39 achieves the highest profit of $380.57, whereas bus 24
achieves the lowest profit of $104.83. The total profit of all
buses with PV entities is $1717.37 through the reactive pow-
er capacity market.

In market clearing result decomposition, all PV entities at
the same bus will be settled at the market clearing price of
that bus (30.30 to 84.15 $/Mvar). All PV entities in the bus
with bids lower than this price will be awarded until the to-
tal reactive power capacity (5.29 to 9.19 Mvar) is met.

For example, only 6 PV entities are awarded reactive pow-
er capacities at bus 24, as shown in Table III. Besides, the
PV entities with lower costs will achieve higher profits in
this process. The market mechanism guarantees the econom-
ic interests of each PV entity and improves the utilization of
PV equipment. The situation is similar for PV entities at oth-
er buses, so further details are omitted.

TABLE III
DATA OF AWARDED PV ENTITIES AT BUS 24

Awarded PV entity  Reactive power capacity (Mvar) Revenue ($)
Quantity (Mvar) 1 1.06 013
Fig. 9. Bids of a typical bus containing PV entities. 2 0.90 35.76
3 0.91 35.94
TABLE I
RANDOM MULTIPLIERS FOR BUSES WITH PV ENTITIES 4 1.21 4187
5 0.86 33.92
Bus No. Multiplier Bus No. Multiplier 6 0.35 14.07
5 1.36 31 2.20
7 2.66 36 1.80 To demonstrate the influence of OLTC at reference bus A,
20 2.61 38 2.79 the voltage magnitude of reference bus A V, is changed by
24 2.79 39 3.45 OLTC to different values. The simulation results in Fig. 10
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show that a lower voltage magnitude of reference bus A leads
to a lower purchasing amount of reactive power capacity.
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Fig. 10. Market clearing results under different voltage magnitudes of ref-
erence bus A.

B. Real-time Reactive Power Dispatch Results

The simulation is performed based on Python 3.8.3. We
use the Anaconda environment with the PyTorch structure.
We assume that each bus with PV entities randomly gener-
ates active power within 10 MW, while each bus with loads
randomly generates active and reactive power consumptions
within 0.2 MW and 0.1 Mvar at the benchmark voltage of
1.0 p.u.. The voltage magnitude of reference bus A is set to
be 1.0 p.u.. Note that the neural networks should be re-
trained if the voltage magnitude of reference bus A is
changed by OLTC.

In the DDPG networks, the number of neurons in a hid-
den layer is 32. The initial exploration rate is 0.6, and the
lower limit ¢, is 0.05. The memory limit of the replay buffer
is 500, and the minibatch size is 32. The decreasing rate is
0.99995. The learning rate of actor and critic networks is
0.001. The DDPG algorithm is trained using 2000 randomly
generated episodes, each with a limitation of 20 iterations.
The number of total training iterations is 40000. The conver-
gence criterion in the training process is that the total reward
is larger than 0.8. As illustrated in Fig. 11, the average total
normalized reward increases during the training process.

0
0.2
0.4
0.6
0.8

-1

Average total normalized reward

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of episodes

Fig. 11.  Training process of DDPG algorithm.

The statistical characteristics of voltage magnitudes at crit-
ical buses during 50 tests are depicted in Fig. 12. It can be
observed that the proposed method reduces the voltage mag-
nitude at critical buses and restricts the voltage fluctuation
into the predefined safe range.

Figure 13 shows the statistical characteristics of reactive
power dispatch results of each bus with PV entities using
the violin plot.
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Fig. 12. Statistical characteristics of voltage magnitudes at critical buses
during tests. (a) Results without regulation (scenario 1). (b) Results when
dispatch amounts are randomly selected within awarded reactive power ca-
pacities of each bus as baseline (scenario 2). (¢) Results under proposed
method (scenario 3).
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Fig. 13. Statistical characteristics of reactive power dispatch results of
each bus with PV entities.

Figure 13 combines the features of a box plot and a densi-
ty plot to visualize the distribution shape of reactive power
output of each bus. Table IV shows the average reactive
power dispatch results of each bus with PV entities. Buses
5, 7, and 39 are dispatched to generate positive reactive pow-
er, while buses 20, 24, 31, 36, and 38 are dispatched to gen-
erate negative reactive power. They are coordinated to main-
tain voltage safety in the distribution system.

To show the reactive power dispatch results of PV entities
at a bus during the testing process, bus 24 is analyzed in de-
tail, as shown in Fig. 14. The 6 PV entities awarded in the
reactive power capacity market share the dispatch obligation
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in proportion to their awarded capacity.

TABLE IV
AVERAGE REACTIVE POWER DISPATCH RESULTS OF BUSES WITH PV
ENTITIES
Bus No.  Reactive power (Mvar) | Bus No.  Reactive power (Mvar)
5 5.092 31 -2.102
7 1.461 36 —4.693
20 -9.176 38 —9.168
24 —0.850 39 4.434
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Fig. 14. Reactive power dispatch results of PV entities at bus 24. (a) Reac-
tive power dispatch result of bus 24. (b) Average value of reactive power
dispatch result sharing at bus 24.

The voltage magnitude samples out of the predefined safe
range are summarized in Table V. The voltage magnitude of
reference bus A is changed by OLTC to different values.
Through the proposed method, the samples out of the pre-
defined safe zone are all within 5% in different scenarios.
When the voltage magnitude of reference bus A is 1.00 p.u.,
the samples out of the predefined safe zone are only 15 in
scenario 3, accounting for 3.33% of the total 450 (50x9)
samples.

TABLE V
VOLTAGE MAGNITUDE SAMPLES OUT OF PREDEFINED SAFE RANGE

Number of samples Percentage (%)

Scenario
0.98 pu. 1.00 pu. 1.02 pu. 098 pu. 1.00 p.u. 1.02 p.u.
1 257 354 409 57.11 78.67 90.89
2 2901 299 317 64.67 66.44 70.44
3 18 15 20 4.00 3.33 4.44

The time consumption of optimization and communication
[19], [20] for the reactive power dispatch process is ana-
lyzed as follows. The communication latency between the
central server and the local server is nearly zero in the 5G
communication network. The reactive power dispatch for
each bus by the DDPG network is calculated within 5.1 ms,
while the time required for dispatching reactive power to
each PV entity via linear affine is negligible. Therefore, the
total time consumption for a dispatch signal from the central
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server to the PV entities is about 5 ms. Note that the infer-
ence time of the DDPG algorithm heavily depends on the
computing platform. If a more powerful CPU or general pro-
cessing unit (GPU) is utilized, the inference time could be
further reduced to 1 ms or less, making the system even
more suitable for fast-response applications.

VI. CONCLUSION

This paper proposes a market-oriented two-stage reactive
power regulation method to coordinate the DSO and distrib-
uted PV entities. Firstly, the long-term multi-layer reactive
power capacity market configures reactive power capacity
while ensuring the benefits of each PV entity. Case studies
show that through the long-term multi-layer reactive power
capacity market, all buses with PV entities achieve a profit
of $1717.37. Secondly, the real-time multi-layer reactive
power dispatch mechanism ensures the rapid allocation of re-
active power obligations from the DSO to the distributed PV
entities in the most cost-effective manner. Case studies dem-
onstrate that in a 450-sample voltage magnitude simulation,
the proposed method achieves a reliability rate exceeding
95% by optimally dispatching lower-cost PV entities. The
benefits of each PV entity and the DSO are guaranteed.

In the future, distribution network reconfiguration can be
considered to coordinate PV entities to realize more effective
voltage regulation. Meanwhile, some advanced reinforce-
ment learning algorithms, e.g., soft actor-critic and twin de-
layed DDPG, can be adopted in reactive power dispatch. Be-
sides, distributed dispatch schemes can improve privacy pro-
tection in the regulation process.
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