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Market-oriented Two-stage Reactive Power 
Regulation for Large-scale Distributed 

Photovoltaic Entities
Qiangang Jia, Wenshu Jiao, Sijie Chen, Jian Ping, Zheng Yan, and Haitao Sun

Abstract——Distributed photovoltaic (PV) entities can be coor‐
dinated to provide reactive power for voltage regulation in dis‐
tribution networks. However, integrating large-scale distributed 
PV entities into reactive power optimization makes it difficult 
to balance the individual benefit of each PV entity with the 
overall economic efficiency of the system. To address this chal‐
lenge, we propose a market-oriented two-stage reactive power 
regulation method. At the first stage, a long-term multi-layer re‐
active power capacity market is created to incentivize each PV 
entity to provide reactive power capacity, while ensuring their 
financial interests are guaranteed. At the second stage, a real-
time multi-layer reactive power dispatch mechanism is intro‐
duced to manage the reactive power generation of distributed 
PV entities, prioritizing the dispatch of lower-cost PV entities to 
maximize system-wide economic efficiency. Simulation results 
based on a real Finnish radial distribution network demon‐
strate the effectiveness of the proposed method in optimizing re‐
active power for large-scale distributed PV entities.

Index Terms——Distribution network, market, distributed pho‐
tovoltaic (PV), voltage regulation, reactive power regulation.
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Total number of buses with PV entities

Indexes of bus

Index of PV entity

Total number of PV entities

Index of critical bus

Total number of critical buses

Index of time step

Limit of time steps in an episode

Limit of training episode

Intercept of aggregated bidding curve at bus g

Discount factor

Lower limit of exploration rate

Exploration rate

Parameter in critic network O

Parameter in target critic network O'

Parameter in actor network μ

Parameter in target actor network μ'

Market clearing price at bus g

Unit annualized cost of reactive power capacity 
at bus g

Unit annualized cost of reactive power capacity 
of PV m at bus g

Cost changing rate of aggregated cost curve at 
bus g

Learning speed of network parameters

Child bus set of bus j

Decreasing rate of exploration rate

Action in deep deterministic policy gradient 
(DDPG) algorithm at time step t

Investment cost to be recovered of PV m at 
bus g

Annualized cost to be recovered of PV m at 
bus g

Expected annual revenue from selling active 
power of PV m at bus g
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Annual cost of reactive power capacity of PV 
m at bus g

Minibatch size

Current from bus i to bus j

Expected long-term reward under current policy

Mean square error in training process

Active power output setting value of bus g

Upper historical active power generated by bus g

Rated active power of PV m at bus g

Active power from bus i to bus j

Active power from bus j to bus k

Benchmark active power consumption value of 
bus j

Active power consumption at bus j

Reactive power output obligation of bus g

Reactive power output obligation of PV m at 
bus g

Reactive power capacity awarded at bus g

Available capacity that does not affect active 
power output at bus g

Reactive power capacity awarded to PV m at 
bus g

Available capacity that does not affect active 
power output of PV m at bus g

Rated reactive power of PV m at bus g

Reactive power requirement at bus g

Reactive power from bus i to bus j

Reactive power from bus j to bus k

Reactive power consumption at bus j

Benchmark reactive power consumption value 
of bus j

Resistance from bus i to bus j

Reward in DDPG algorithm at time step t

Normalized punishment at bus n

State in DDPG algorithm at time step t

Rated apparent power of PV m at bus g

Data replay buffer in DDPG training

Voltage magnitude at bus i

Voltage magnitude at bus j

Benchmark voltage magnitude at bus j

Voltage magnitude of critical bus n

Lower limit of voltage magnitude

Upper limit of voltage magnitude

Profit of awarded bus g

Reactance from bus i to bus j

Value estimated from target critic network at 
time step t

Ygm Remaining service life of PV m at bus g

I. INTRODUCTION 

HIGH penetration of distributed renewable energy leads 
to significant over-voltage issues caused by reverse 

power flow in distribution networks. To enhance voltage 
safety, the distribution system operator (DSO) has the ability 
to regulate the reactive power output of inverter-based devic‐
es, especially distributed photovoltaic (PV) entities [1].

Existing research primarily focuses on the effectiveness of 
voltage control methods by forcibly regulating the reactive 
power output of distributed PV entities. Analytical methods 
[2]-[4] derive reactive power optimization plans by obtaining 
global information on the parameters of PV resources and 
the states of distribution networks. In recent years, data-driv‐
en methods have been widely applied to reactive power opti‐
mization. These methods typically leverage machine learning 
algorithms to enable real-time adjustment of reactive power 
output from PV and other distributed energy resources 
(DERs) under incomplete information [5], [6]. Reference [7] 
proposed a reactive power optimization framework for Ener‐
gy Internet during voltage sags based on multiagent deep re‐
inforcement learning. Reference [8] proposed a real-time 
two-time-scale voltage regulation method with a soft open 
point to solve the reactive power optimization problem. Ref‐
erence [9] developed a multi-agent deep reinforcement learn‐
ing algorithm to address autonomous voltage control issues. 
However, these methods primarily focused on mandatorily 
regulation without offering incentives for individual PV enti‐
ty. As a result, PV entities have little motivation to actively 
participate in such programs.

To incentivize PV entities to provide reactive power, reac‐
tive power pricing on the power distribution side is gradual‐
ly carried out [10]. Reference [11] explored the possibility 
of wind turbines providing reactive power and proposed a 
pricing method for reactive power capacity when their behav‐
ior is uncertain. Reference [12] explored the possibility of 
PV and energy storage systems providing reactive power and 
clarified a pricing method for distributed PV systems in grid-
connected microgrids to provide reactive power. Reference 
[13] proposed a reactive power pricing mechanism based on 
the Vickery-Clarke-Groves auction for DERs. Reference [14] 
proposed a reactive power pricing model based on the loca‐
tion marginal price of distribution network. These methods 
introduced pricing principles that incentivized DERs to par‐
ticipate in reactive power optimization. However, existing re‐
search often focuses on nodal reactive power pricing, which 
struggles to account for the diverse characteristics and varia‐
tions among numerous PV entities.

To sum up, the existing methods struggle to bridge the 
gap between the financial interests of distributed PV entities 
and the global voltage regulation targets of the DSO. To fill 
this gap, this paper proposes a two-stage multi-layer reactive 
power regulation method. The main contributions are as fol‐
lows.

1) A long-term multi-layer reactive power capacity market 
is designed to incentivize PV entities to provide the reactive 
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power capacity. By aggregating bids and decomposing mar‐
ket results, the financial interests of distributed PV entities 
are guaranteed, even with multiple participants involved.

2) A real-time multi-layer reactive power dispatch mecha‐
nism is designed to allocate reactive power for voltage regu‐
lation at the lowest cost. Using the deep deterministic policy 
gradient (DDPG) algorithm, reactive power generation re‐
sponsibilities are quickly assigned to each bus, and then re‐
distributed to the low-cost PV entities through linear rules to 
enhance efficiency.

The remainder of this paper is organized as follows. Sec‐
tion II is the preview of proposed two-stage multi-layer regu‐
lation method. Section III details the long-term multi-layer 
reactive power capacity market. Section IV explains the real-
time multi-layer reactive power dispatch mechanism. A case 
study is performed in Section V. Section VI concludes the 
paper.

II. PREVIEW OF PROPOSED TWO-STAGE MULTI-LAYER 
REGULATION METHOD 

A. Framework of Multi-layer Interaction

The framework of the multi-layer interaction is depicted 
in Fig. 1.

Figure 1(a) shows a typical radial power distribution sys‐
tem containing massive PV entities. Figure 1(b) shows the 
data interaction between central and edge servers in reactive 
power regulation. The number of edge servers corresponds 
to the number of buses, and they are responsible for process‐
ing local PV data. A single central server is responsible for 
communication and data exchange with the edge servers. 
This central server is typically neutral, which helps protect 
PV data from being directly exposed to the DSO.

B. Overview of Two-stage Mechanism

There are two stages: long-term reactive power capacity 
configuration and real-time reactive power dispatch. The rela‐
tionship of the two stages is shown in Fig. 2.

1)　Stage 1: Long-term Reactive Power Capacity Configura‐
tion

In this stage, different PV entities are assumed to submit 
their bids for reactive power capacity to the central server 
through edge servers. The central server then executes the 
market clearing algorithm to determine the reactive power 
capacity price and allocate the awarded capacity to each bus 
as well as the corresponding PV entities. PV entities will 
earn revenues in this configuration while the DSO obtains 
sufficient regulation capability. Compared with conventional 
reactive power pricing methods, our method accounts for the 
differences among the numerous distributed PV entities, en‐
suring the economic benefits of individual participants.
2)　Stage 2: Real-time Reactive Power Dispatch

In this stage, the DSO aims to prevent system voltage vio‐
lations by regulating the reactive power output of the PV en‐
tities involved at stage 1. The central and edge servers imple‐
ment a DDPG algorithm and linear rules to achieve real-
time reactive power dispatch. The awarded capacity of lower-
cost PV entities from stage 1 will serve as the reactive pow‐
er dispatch limits at stage 2. Compared with traditional reac‐
tive power dispatch methods, our method explicitly defines 
the dispatch costs of different PV entities. By prioritizing dis‐
patch based on cost from lowest to highest, this method en‐
hances the economic efficiency of global reactive power opti‐
mization.

Note that we focus on the optimization of light assets like 
PV entities at the above two stages under specific condi‐
tions, i.e., the distribution network topology is fixed, and the 
discrete operational statuses of heavy assets like switched ca‐
pacitor banks, step voltage regulators, and transformers with 
on-load tap changers (OLTCs) are predefined.

III. LONG-TERM MULTI-LAYER REACTIVE POWER CAPACITY 
MARKET 

The interaction of different servers and participants in the 
long-term multi-layer reactive power capacity market is 
shown in Fig. 3, which consists of six steps.

Step 1: PV entity submits the bid of reactive power capaci‐
ty to the local edge servers in the nearest bus.

Step 2: after all data from PV entities are collected, the 
edge servers aggregate the bids and submit them to the cen‐
tral server.

 

2
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PV
Bus

DSO PV data

(a)

(b)

1 (connect to main grid)

Local
computation

Central server Edge server
Global
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Fig. 1.　Framework of multi-layer interaction. (a) Typical radial power dis‐
tribution system with PV entities. (b) Data interaction between central and 
edge servers in reactive power regulation.
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Fig. 2.　Relationship of proposed two stages.
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Step 3: DSO submits the network parameters to the cen‐
tral server.

Step 4: central server solves the market clearing problem 
according to the aggregated bids and the network parameters.

Step 5: central server releases the market clearing results 
to the DSO and edge servers.

Step 6: edge servers decompose the market clearing re‐
sults to the PV entities.

The details of the critical points, e. g., bid aggregation, 
market clearing result decomposition, and market organiza‐
tion are analyzed in the following parts.

A. Bid Aggregation and Market Clearing Result Decomposi‐
tion

The annualized cost to be recovered is as follows:
Egm = Cgm Ygm (1) 

Given the expected annual revenue from selling active 
power Egmactive:

1) If Egmactive ³Egm, it indicates that distributed PV entity 
m can recover the investment costs solely through selling ac‐
tive power, so the annual cost of reactive power capacity is 
zero.

2) If Egmactive <Egm, it indicates that distributed PV entity 
m cannot recover the investment costs solely through selling 
active power, so the annual cost of reactive power capacity 
can be expressed as:

Egmreactive =Egm -Egmactive (2)

As shown in Fig. 4, the rated active, reactive, and appar‐
ent power of PV m at bus g satisfies the following relation‐
ship.

Q2
gmPVrated = S 2

gmPVrated -P 2
gmPVrated (3)

Assume that the available reactive power capacity that 
does not affect the active power output is as follows:

0 £Q*
gmPVcap £ |QgmPVrated | (4)

Calculate the unit annualized cost πgm of reactive power 
capacity as:

πgm = Egmreactive Q*
gmPVcap (5)

1)　Original Bids
As shown in Fig. 5, PV entities calculates the available re‐

active power capacity amount-price pairs.

The original bids of PV entities at bus g are listed as fol‐
lows:

{Q*
g1PVcapQ

*
g2PVcap...Q

*
gmPVcap...Q

*
gMPVcap} (6)

{πg1πg2...πgm...πgM} (7)

2)　Bid Aggregation
To simplify the market clearing problem, a line based on 

the regression methods is taken to replace the amount-price 
pairs in the stepwise bidding curve.

πg = ρgQ*
gPVcap + γg (8)

Note that the line will pass through the origin if PV enti‐
ties are diverse enough.

γg = 0 (9)

Then, the slope of the curve and the available capacity of 
all PV entities at bus g will be submitted for market clearing.
3)　Market Clearing Result Decomposition

As shown in Fig. 5, within a particular bus g, PV entities 
whose bids are lower than the market clearing price are 
awarded the reactive power capacity until the total awarded 
amount of bus g is reached. The awarded reactive power ca‐
pacities of all PV entities at bus g are cleared at price λg. 
Since the reactive power value varies at each bus, the pay-as-
bid theory [15] better reflects the differences among nodes 
compared with the uniform clearing mechanism based on 
marginal pricing.

λg = ρgQgPVcap (10)

B. Market Organization

This subsection aims to determine the awarded capacities 
of different buses. The market is cleared to minimize the to‐
tal cost of purchasing reactive power capacity from all buses 
with PV entities.

DSODSO

Bids

PV entity PV entity

Edge server Edge server

Simplified network
parameters

Market clearing
results

Central server
(market organization)

Bid aggregation Market clearing results

Market clearing
result decomposition�

Fig. 3.　Interaction of different servers and participants in long-term multi-
layer reactive power capacity market.

P

Q

(Qg,m,PV,rated, Pg,m,PV,rated)

Fig. 4.　Relationship of active, reactive, and apparent power.

Cost Cost

Amount Amount

Cost

Amount
Bid decomposition Bid aggregation

πg=ρgQg,PV,cap

Original bids

* (Qg,PV,cap, λg)

Fig. 5.　Illustration of original bids, bid aggregation, and bid decomposition 
processes.
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min
QgPVcap

∑
g = 1

G

ρgQ2
gPVcap (11)

To reduce the complexity of the market clearing problem, 
the simplified power flow model [16] is used in the optimi‐
zation constraints.

Pij = ∑
kÎΦj

Pjk - |PgPVupper
g = j (12)

Qij = ∑
kÎΦj

Qjk - |QgPVrequire
g = j (13)

Since high penetration of DERs often leads to over-volt‐
age issues due to reverse power flow, the extreme situation 
is considered, i.e., each bus with PV entities generates an up‐
per value of active power, and the power consumption of 
each bus is zero. Note that the upper historical active power 
value is a boundary condition, it could be calculated based 
on information such as historical solar irradiance.

The following constraints are set since the value of reac‐
tive power capacity is positive.

QgPVrequire £QgPVcap (14)

-QgPVrequire £QgPVcap (15)

Similarly, we use the simplified voltage drop equations in 
[16] to describe the relationship between the power flow and 
voltage magnitudes at different buses.

Vj =Vi -Pijrij -Qij xij (16)

The awarded reactive power capacity QgPVcap of bus g 
with PV entities should not exceed Q*

gPVcap.

QgPVcap £Q*
gPVcap (17)

The voltage magnitudes of critical buses should be restrict‐
ed to a predefined safe range.

Vmin £Vn £Vmax (18)

The profit of awarded bus g with PV entities can be calcu‐
lated after the market clearing process.

Wg = 0.5ρgQ2
gPVcap (19)

IV. REAL-TIME MULTI-LAYER REACTIVE POWER DISPATCH 
MECHANISM 

The interaction of the edge servers and the central server 
in the real-time multi-layer reactive power dispatch mecha‐
nism is shown in Fig. 6.

The reactive power dispatch limits are bounded by award‐
ed reactive power capacities at stage 1. The reactive power 
dispatch process consists of four steps, which are given as 
follows.

Step 1: DSO trains the DDPG network and sends the pa‐
rameters of the trained actor network to the central server.

Step 2: edge servers measure the voltage magnitude and 
sends it to the central server.

Step 3: the central server sets the reactive power output 
plan of each bus according to voltage magnitudes by actor 
network, then sends it to the edge servers.

Step 4: edge servers set the reactive power dispatch plan 
to each PV entity according to their proportions of awarded 
reactive power capacities.

The DDPG training, reactive power output setting of bus, 
and reactive power output setting of PV entity are analyzed 
in detail as follows.

A. DDPG Training

The reactive power dispatch mechanism aims to maintain 
voltage deviations at critical buses within a predefined safe 
range. The power flow and voltage drop equations are given 
as follows, which cannot be simplified any further because 
of accuracy.

Pij = ∑
kÎΦj

Pjk +Pjload - |PgPV
g = j

+ rij Iij (20)

Qij = ∑
kÎΦj

Qjk +Qjload - |QgPV
g = j

+ xij Iij (21)

Pjload =Pjloadini( Vj

Vjini ) 2

(22)

Qjload =Qjload.ini( Vj

Vjini ) 2

(23)

V 2
j =V 2

i - 2Pijrij - 2Qij xij + (r 2
ij + x2

ij ) Iij (24)

IijV
2

i =P 2
ij +Q2

ij (25)

The DDPG algorithm is trained in a simulated environ‐
ment, as illustrated in Fig. 7.

The objective of the DDPG algorithm is to generate opti‐
mal dispatch plans at the bus level. The key characteristics 
of the DDPG algorithm are state, action, and reward.

PV entity PV entity

Edge serverEdge server

Central server 

DDPG
training

Reactive
power output
setting of bus

Bus voltage
magnitude

Reactive power output
setting of PV entity

�

DSODSO

Fig. 6.　 Interaction of different servers and participants in real-time multi-
layer reactive power dispatch mechanism.

 

Bus voltage magnitude

DDPG algorithm

Bus reactive power output 

Environment

State

Action

Reward

 

Fig. 7.　Illustration of DDPG algorithm.
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State s: the voltage magnitude values of N critical buses, 
consisting of N-dimension variables.

s = {V1V2VnVN} (26)

Action a: the reactive power output of G buses with PV 
entities, consisting of G-dimension variables.

a = {a1a2agaG}     agÎ [ -QgPVcapQgPVcap ] (27)

Reward rreward: if the voltage magnitude of a critical bus n 
is out of the predefined safe zone, a normalized punishment 
in [-10] is given. Thus, the total reward of N critical buses 
is as follows.

rreward =
ì

í

î

ïïïï

ïïïï

0                          VnÎ [ ]0.951.05 p.u.

1
N∑n = 1

N

Rnpunish     VnÏ [ ]0.951.05 p.u.
(28)

The learning principles of the DDPG algorithm are based 
on the theory in [17]. It contains a critic network, a target 
critic network, an actor network, and a target actor network.

1) The critic network is set to estimate the value function.
2) The actor network determines the actions based on the 

current states.
The rule for updating the critic network is to minimize the 

mean square error L.

L (θO ) = 1
F∑t

( yt -O (stat|θ
O ) ) 2

(29)

yt = rrewardt + δO′(st + 1μ′(st + 1|θ
μ′) |θO′) (30)

The rule for updating the actor network is based on the 
chain rule.

Ñθμ J »
1
F∑t

|ÑaO ( )sa|θO

s = sta = μ ( )st

|Ñθμ μ ( )s|θμ
st

(31)

The updated rules of the target critic network and the tar‐
get actor network are as follows.

θO′¬ τθO + (1 - τ)θO′ (32)

θμ′¬ τθμ + (1 - τ)θμ′ (33)

The training process of the DDPG algorithm is shown in 
Algorithm 1. In each episode, the DDPG algorithm gener‐
ates an action based on the current state and receives a re‐
ward. This process is called a Markov decision process. 
Note that the exploration rate in the training process is de‐
creasing.

εt + 1 = {χεt    εt ³ εl

εl      εt < εl

(34)

B. Reactive Power Output Setting of Bus

The well-trained DDPG algorithm is sent to the central 
server for implementation in the target environment. The im‐
plementation of the DDPG algorithm is shown in Algo‐
rithm 2.

C. Reactive Power Output Setting of PV Entity

Edge servers allocate the reactive power output to PV enti‐
ties based on linear rules, i.e., the proportion of awarded re‐
active power capacity of different PV entities at each bus. 
The awarded PV entity will be responsible for the reactive 
power output obligation as follows:

QgmPV =
QgmPVсар 

QgPVсар 

QgPV (35)

By scheduling the reactive power output responsibility to 
awarded low-cost PV resources, the overall reactive power 
optimization cost is minimized.

V. CASE STUDY 

The case studies are simulated by a server with an Intel 
Core i9 CPU. The topology of a real Finnish radial distribu‐
tion system is shown in Fig. 8 [18]. Buses 5, 9, 12, 17, 22, 
27, 30, 33, and 38 are designated as critical buses. Buses 5, 
7, 20, 24, 31, 36, 38, and 39 host PV entities (assuming 
each bus hosts 24 PV entities, totaling 192 PV entities). The 
predefined safe zone of voltage magnitude is set to be [0.95, 
1.05]p.u. (the base value of active/reactive power is 10 MW/
Mvar, and the base value of voltage magnitude is 20 kV). 
The resistance and reactance of each transmission line are 
both set to be 0.01 p.u..

A. Clearing Results of Reactive Power Capacity Market

The simulation is performed based on MATLAB R2022b. 
We use the Gurobi solver and YALMIP compiler. The time 
to solve this analytical market clearing problem is about 1.6 s, 
mainly depending on the performance of the hardware and 
the optimization solvers.

Algorithm 2

1. Input: voltage magnitudes of all critical buses

2. Output: reactive power output of the buses with PV entities

3. Utilize the trained networks

4. Receive the observed state

5. Select actions according to the state

Algorithm 1

1. Input: critical bus voltage level

2. Output: reactive power output of the buses with PV entities

3. Initialize critic and actor networks

4. Initialize target networks

5. Initialize data replay buffer U

6. for episode = 1:Z do

7.   Initialize the power flow solver and calculate the voltage magnitude 
of critical buses

8.   Receive the initial observation state s0

9.     for time step t = 1:T do

10.      Select actions at according to the current policy and state

11.      Execute the action at, receive reward rt , and turn to new state st + 1

12.      Store transition ( )statrrewardtst + 1  in data replay buffer U

13.      Sample a random minibatch of F transitions from U

14.      Update critic and actor networks

15.      Update target networks

16.      if the voltage magnitudes at all critical buses are in a tolerance 
range, break

17.      end if

18.    end for

19. end for
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A typical bus consisting of 24 PV entities is initially con‐
figured, with unit annualized costs and available capacities 
generated randomly. Then, it is expanded to other buses by 
multiplying slopes and quantities by random coefficients. 
The bids from a typical bus with PV entities are illustrated 
in Fig. 9, where each discrete point represents the midpoint 
value of the corresponding amount-price pair. The slope is 
2.693 $/Mvar2, and the total available capacity of this bus is 
8.794 Mvar. The random multipliers for buses with PV enti‐
ties are shown in Table I.

Table II provides the market clearing results of each bus 
with PV entities (the voltage magnitude of reference bus A 
is regulated to 1.00 p. u. by OLTC). Assume that the upper 
active power generated by each bus with PV entities is set 
to be the same value of 10 MW.

Bus 39 has the highest slope, while bus 5 has the lowest 
slope. Buses 20, 36, and 38 are awarded the largest reactive 
power capacity, while bus 24 is awarded the smallest reac‐
tive power capacity. The slopes and positions of a bus deter‐
mine the market clearing results. A lower slope and a more 
critical position lead to a larger awarded reactive power ca‐
pacity. Buses with PV entities gain considerable profits: bus 
39 achieves the highest profit of $380.57, whereas bus 24 
achieves the lowest profit of $104.83. The total profit of all 
buses with PV entities is $1717.37 through the reactive pow‐
er capacity market.

In market clearing result decomposition, all PV entities at 
the same bus will be settled at the market clearing price of 
that bus (30.30 to 84.15 $/Mvar). All PV entities in the bus 
with bids lower than this price will be awarded until the to‐
tal reactive power capacity (5.29 to 9.19 Mvar) is met.

For example, only 6 PV entities are awarded reactive pow‐
er capacities at bus 24, as shown in Table III. Besides, the 
PV entities with lower costs will achieve higher profits in 
this process. The market mechanism guarantees the econom‐
ic interests of each PV entity and improves the utilization of 
PV equipment. The situation is similar for PV entities at oth‐
er buses, so further details are omitted.

To demonstrate the influence of OLTC at reference bus A, 
the voltage magnitude of reference bus A VA is changed by 
OLTC to different values. The simulation results in Fig. 10 

TABLE I
RANDOM MULTIPLIERS FOR BUSES WITH PV ENTITIES

Bus No.

5

7

20

24

Multiplier

1.36

2.66

2.61

2.79

Bus No.

31

36

38

39

Multiplier

2.20

1.80

2.79

3.45
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Fig. 9.　Bids of a typical bus containing PV entities.
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Fig. 8.　Topology of a real Finnish radial distribution system.

TABLE II
MARKET CLEARING RESULTS OF BUSES WITH PV ENTITIES

Bus No.

5

7

20

24

31

36

38

39

Slope 
($/Mvar2)

3.657

7.153

7.027

7.502

5.916

4.847

7.514

9.303

Price 
($/Mvar)

30.30

42.42

64.59

39.66

43.73

44.56

69.07

84.15

Q*
gPVcap 

(Mvar)

11.944

23.358

22.947

24.499

19.319

15.830

24.538

30.379

QgPVcap 
(Mvar)

8.284

5.930

9.192

5.287

7.392

9.192

9.192

9.045

Profit ($)

125.50

125.77

296.85

104.83

161.64

204.78

317.43

380.57

TABLE III
DATA OF AWARDED PV ENTITIES AT BUS 24

Awarded PV entity

1

2

3

4

5

6

Reactive power capacity (Mvar)

1.06

0.90

0.91

1.21

0.86

0.35

Revenue ($)

42.13

35.76

35.94

47.87

33.92

14.07
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show that a lower voltage magnitude of reference bus A leads 
to a lower purchasing amount of reactive power capacity.

B. Real-time Reactive Power Dispatch Results

The simulation is performed based on Python 3.8.3. We 
use the Anaconda environment with the PyTorch structure. 
We assume that each bus with PV entities randomly gener‐
ates active power within 10 MW, while each bus with loads 
randomly generates active and reactive power consumptions 
within 0.2 MW and 0.1 Mvar at the benchmark voltage of 
1.0 p.u.. The voltage magnitude of reference bus A is set to 
be 1.0 p. u.. Note that the neural networks should be re‐
trained if the voltage magnitude of reference bus A is 
changed by OLTC.

In the DDPG networks, the number of neurons in a hid‐
den layer is 32. The initial exploration rate is 0.6, and the 
lower limit εl is 0.05. The memory limit of the replay buffer 
is 500, and the minibatch size is 32. The decreasing rate is 
0.99995. The learning rate of actor and critic networks is 
0.001. The DDPG algorithm is trained using 2000 randomly 
generated episodes, each with a limitation of 20 iterations. 
The number of total training iterations is 40000. The conver‐
gence criterion in the training process is that the total reward 
is larger than 0.8. As illustrated in Fig. 11, the average total 
normalized reward increases during the training process.

The statistical characteristics of voltage magnitudes at crit‐
ical buses during 50 tests are depicted in Fig. 12. It can be 
observed that the proposed method reduces the voltage mag‐
nitude at critical buses and restricts the voltage fluctuation 
into the predefined safe range.

Figure 13 shows the statistical characteristics of reactive 
power dispatch results of each bus with PV entities using 
the violin plot.

Figure 13 combines the features of a box plot and a densi‐
ty plot to visualize the distribution shape of reactive power 
output of each bus. Table IV shows the average reactive 
power dispatch results of each bus with PV entities. Buses 
5, 7, and 39 are dispatched to generate positive reactive pow‐
er, while buses 20, 24, 31, 36, and 38 are dispatched to gen‐
erate negative reactive power. They are coordinated to main‐
tain voltage safety in the distribution system.

To show the reactive power dispatch results of PV entities 
at a bus during the testing process, bus 24 is analyzed in de‐
tail, as shown in Fig. 14. The 6 PV entities awarded in the 
reactive power capacity market share the dispatch obligation 
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Fig. 10.　Market clearing results under different voltage magnitudes of ref‐
erence bus A.
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Fig. 11.　Training process of DDPG algorithm.
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Fig. 12.　Statistical characteristics of voltage magnitudes at critical buses 
during tests. (a) Results without regulation (scenario 1). (b) Results when 
dispatch amounts are randomly selected within awarded reactive power ca‐
pacities of each bus as baseline (scenario 2). (c) Results under proposed 
method (scenario 3).
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Fig. 13.　 Statistical characteristics of reactive power dispatch results of 
each bus with PV entities.
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in proportion to their awarded capacity.

The voltage magnitude samples out of the predefined safe 
range are summarized in Table V. The voltage magnitude of 
reference bus A is changed by OLTC to different values. 
Through the proposed method, the samples out of the pre‐
defined safe zone are all within 5% in different scenarios. 
When the voltage magnitude of reference bus A is 1.00 p.u., 
the samples out of the predefined safe zone are only 15 in 
scenario 3, accounting for 3.33% of the total 450 (50 ´ 9) 
samples.

The time consumption of optimization and communication 
[19], [20] for the reactive power dispatch process is ana‐
lyzed as follows. The communication latency between the 
central server and the local server is nearly zero in the 5G 
communication network. The reactive power dispatch for 
each bus by the DDPG network is calculated within 5.1 ms, 
while the time required for dispatching reactive power to 
each PV entity via linear affine is negligible. Therefore, the 
total time consumption for a dispatch signal from the central 

server to the PV entities is about 5 ms. Note that the infer‐
ence time of the DDPG algorithm heavily depends on the 
computing platform. If a more powerful CPU or general pro‐
cessing unit (GPU) is utilized, the inference time could be 
further reduced to 1 ms or less, making the system even 
more suitable for fast-response applications.

VI. CONCLUSION 

This paper proposes a market-oriented two-stage reactive 
power regulation method to coordinate the DSO and distrib‐
uted PV entities. Firstly, the long-term multi-layer reactive 
power capacity market configures reactive power capacity 
while ensuring the benefits of each PV entity. Case studies 
show that through the long-term multi-layer reactive power 
capacity market, all buses with PV entities achieve a profit 
of $1717.37. Secondly, the real-time multi-layer reactive 
power dispatch mechanism ensures the rapid allocation of re‐
active power obligations from the DSO to the distributed PV 
entities in the most cost-effective manner. Case studies dem‐
onstrate that in a 450-sample voltage magnitude simulation, 
the proposed method achieves a reliability rate exceeding 
95% by optimally dispatching lower-cost PV entities. The 
benefits of each PV entity and the DSO are guaranteed.

In the future, distribution network reconfiguration can be 
considered to coordinate PV entities to realize more effective 
voltage regulation. Meanwhile, some advanced reinforce‐
ment learning algorithms, e.g., soft actor-critic and twin de‐
layed DDPG, can be adopted in reactive power dispatch. Be‐
sides, distributed dispatch schemes can improve privacy pro‐
tection in the regulation process.
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