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Abstract——Accurate load profile data are essential for optimiz‐
ing energy systems. However, real-world datasets often suffer 
from low resolution and significant missing values. To address 
these challenges, this paper introduces physics-informed loss 
generative adversarial network (PIL-GAN), a model that com‐
bines generative adversarial networks (GANs) with physics-in‐
formed losses (PILs) derived from physics-informed neural net‐
works (PINNs) that are integrated directly into the generator. 
High-resolution load profiles are generated that not only fill in 
missing data but also ensure that the generated profiles adhere 
to physical laws governing the energy systems, such as energy 
conservation and load fluctuations. By embedding domain-spe‐
cific physics into the generation process, the proposed model sig‐
nificantly enhances data quality and resolution for low-quality 
datasets. The experimental results demonstrate notable gains in 
data accuracy, resolution, and consistency, making PIL-GAN an 
effective tool for energy management systems. The PIL-GAN al‐
so has broader applicability in other fields such as generating 
and inpainting high-resolution datasets for energy systems, in‐
dustrial processes, and any domain in which data must comply 
with real-world physical laws or operational requirements.

Index Terms——Data inpainting, energy system, generative ad‐
versarial network (GAN), physics-informed loss (PIL), load pro‐
file, energy management system, neural network.

I. INTRODUCTION 

THE rapid evolution of power systems hinges on the effi‐
cient sharing and application of data, ranging from edu‐

cational initiatives to advanced artificial intelligence (AI) al‐
gorithms. Modeling, forecasting, and optimization for power 
systems require high-quality load profile data. Unfortunately, 
such data are sparse with low resolution, and contain miss‐
ing entries owing to sensor or communication issues [1].

As most utility sectors are concerned about privacy, open-
source data for load profile studies are rarely available. The 
available data also suffer from low resolution and significant 
missing values. Therefore, it is crucial to have high-quality 
data that facilitate more advanced research and analysis. 
However, utilities are reluctant to release high-resolution da‐
tasets, which may result in leakage of grid parameters, hacks 
on the information of customers, or the discovery of grid 
vulnerabilities [2], [3]. This has motivated the use of AI-
based methods to tackle these challenges, compensate for da‐
ta limitations, and preserve data privacy and security.

Unfortunately, traditional models for load profile genera‐
tion face challenges in achieving adequate solutions. Owing 
to their capability to learn complex data distributions, genera‐
tive adversarial networks (GANs) have become prominent 
tools for data generation and imputation [4]. Although 
GANs alone do not necessarily capture the physical laws 
that underly the power system, the data generated by GANs 
may violate basic rules such as energy conservation, peak 
load information, and load fluctuation owing to temperature. 
By explicitly incorporating physical constraints embedded in 
the learning process, physics-informed neural networks 
(PINNs) boost the capacity of physical learning and produce 
consistent results [5].

Combining GANs with physics-informed losses (PILs) of‐
fers a promising avenue for generating synthetic load profiles 
that are both realistic and physically plausible. This hybrid 
model addresses the issues of data sparsity and missing en‐
tries. In this paper, we propose the PIL-GAN model that com‐
bines GANs with PILs for high-resolution load profile genera‐
tion and inpainting, ensuring physical consistency. The key 
contributions of this paper are summarized as follows.

PIL-GAN synergistically combines the generation power 
of GANs with the physics-informed constraints of PINNs to 
impute missing segments into load profiles. PIL-GAN can 
be utilized for super-resolution tasks, i.e., converting low-res‐
olution load profiles into high-resolution load profiles. It can 
also be used to generate complete synthetic datasets using a 
temperature-profile reference.

We validate the PIL-GAN using a comprehensive experi‐
mental setup and demonstrate its effectiveness compared 
with baseline models.

The remainder of this paper is organized as follows. Sec‐
tion II conducts a literature review on the deep learning 
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based models for load profile imputation and forecasting, 
GANs, and PINNs. Section III details the methodology of 
the PIL-GAN for generating GAN-based load profiles with 
an attached PIL function, and describes the experimental set‐
up. Section IV presents the results and discussion, and Sec‐
tion V concludes this paper.

II. LITERATURE REVIEW 

Smart and advanced metering infrastructures have resulted 
in an exponential growth of load data available in applica‐
tions such as demand response, grid optimization, and ener‐
gy forecasting. Nevertheless, owing to privacy issues and the 
limited availability of accessible data, it is essential to devel‐
op functions for creating synthetic load profiles that are as 
accurate as possible. A Lagrange interpolating polynomial 
method for addressing data loss in synchrophasor applica‐
tions, which can also be applied to load profile imputation 
while balancing the accuracy and efficiency, is proposed in 
[6]. With increasing computational power, deep learning 
based models are increasingly replacing traditional methods 
such as k-nearest neighbors (KNNs) and k-means.

A. Deep Learning Based Models for Load Data Imputation 
and Forecasting

Previous studies have investigated the application of ma‐
chine learning models in load data imputation and forecast‐
ing tasks, with a focus on long short-term memory (LSTM) 
models owing to their superior performance in handling long-
term dependencies in temporal data sequences. For instance, 
[7] studies convolutional neural network (CNN), recurrent 
neural network (RNN), and hybrid CNN-RNN models to 
forecast load demand. Local patterns are learned effectively 
from the Korea Power Exchange dataset, and the CNN mod‐
el excels particularly in short-term forecasting.

Reference [8] proposes a context encoder model using 
deep CNNs, optimized with reconstruction and adversarial 
losses to impute missing wind farm data by capturing spatio‐
temporal patterns. On the other hand, in [9], the hybrid 
CNN-LSTM model is utilized to handle the missing data of 
electricity consumption in smart homes. The hybrid model 
uses CNN for local pattern detection and LSTM to capture 
long-term dependencies to reduce errors with the minimum 
computational cost compared with the traditional model.

Studies have also demonstrated that LSTM models are ef‐
fective in energy forecasting tasks. Reference [10] compares 
the CNN and LSTM models for short-term load forecasting 
in photovoltaic plants based on data from a plant in Moroc‐
co. CNN models perform better in simpler setups, whereas 
LSTM models perform better in deeper architectures over lon‐
ger time horizons. A multivariate time-series data imputation 
model using a two-step LSTM is presented in [11], which si‐
multaneously exploits temporal and cross-dimensional correla‐
tions to achieve superior performance across different datasets.

Models with more advanced implementations that inte‐
grate multiple architectures have been shown to improve the 
results. For example, the attention-based bidirectional LSTM 
(BiLSTM) with convolution layer model suggested in [12] 
combines a CNN, BiLSTM, and attention mechanisms for 

short-term load forecasting. When applied to short-term load 
forecasting, the model outperforms the CNN, BiLSTM, and 
XGBoost. The attention mechanism allows the model to fo‐
cus on relevant historical data. LSTM-based models have al‐
so been successfully applied in other domains. For example, 
in [13], missing data from medical records are imputed us‐
ing a BiLSTM model mixed with random forest and princi‐
pal component analysis, which outperforms cubic spline in‐
terpolation and KNN on hypertensive disorder records with 
improved accuracy.

B. GANs

With the increasing demand of creating completely new 
and realistic data, particularly in areas such as synthetic data 
generation while preserving privacy, LSTMs alone may not 
be sufficient. Reference [14] introduces the GAN, which has 
become a powerful technique for generating realistic synthet‐
ic data by learning the underlying data distributions in an un‐
supervised manner. Two neural networks, a generator (G) 
and a discriminator (D), play a min-max game in a GAN. G 
seeks to generate data identical to the real data, whereas D 
seeks to distinguish between synthetic and real samples. The 
architecture of GAN is illustrated in Fig. 1.

The optimization problem is formulated as:

min
G

max
D

Ex  pdata( )x [ ln D ( x ) ] +Ez  pz( )z [ ln (1 -D (G (z ) ) ) ]  (1)

where x is the actual data drawn from the true distribution 
pdata( x ); E is the expected value (average) over the corre‐
sponding distribution; and z is a latent vector sampled from 
the prior distribution pz(z ) [15]. G (z ) generates data in the 
data space by mapping from z to minimize the difference 
with respect to the real data distribution, whereas D ( x ) is 
designed to output the probability that a given sample is real.

Reference [16] introduces a GAN-based imputation meth‐
od with a modified gated recurrent unit to capture the tempo‐
ral dependencies in a multivariate time-series, validated on 
medical and environmental datasets. GANs have also been 
applied extensively in the energy sector to generate synthetic 
load profiles that preserve the statistical properties of real da‐
ta without exposing sensitive information [17]. For instance, 
[18] employs a conditional GAN to generate synthetic time-
series load data conditioned on factors such as season and 
load type, effectively capturing complex patterns in transmis‐
sion-level load data. Reference [19] proposes a multi-load 
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Fig. 1.　Architecture of GAN.
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GAN-based method that considers spatiotemporal correla‐
tions to generate synthetic data for groups of electricity con‐
sumers, thereby enhancing the resolution of the generated da‐
ta for microgrid and distribution system studies. Further‐
more, to address class imbalances and the need for data with 
blended characteristics, [20] introduces the blender GAN, 
which is a multi-target conditional GAN capable of generat‐
ing synthetic data by blending multiple classes in user-de‐
fined proportions.

In comparative studies, [21] evaluates various GAN archi‐
tectures to generate synthetic datasets of power systems. 
This study highlights the importance of model selection and 
hyperparameter tuning for generating high-quality synthetic 
data. The models are validated using statistical methods and 
machine learning classifiers to ensure that the synthetic data 
are indistinguishable from real data. GANs have also been 
applied to generate other types of power system data. Refer‐
ence [22] utilizes a Wasserstein GAN to generate synthetic 
time-series data for dynamic thermal line ratings (ampacity) 
and electricity pool prices, addressing the limited availability 
of such data for training deep learning models in smart 
grids. In the realm of phasor measurement unit (PMU) data, 
[23] uses GANs to generate synthetic dynamic PMU data, 
providing a model-free method to produce realistic time-se‐
ries data crucial for monitoring power systems while over‐
coming privacy constraints.

Similarly, [24] introduces the profile super-resolution 
GAN, which is a two-stage GAN model for upsampling low-
resolution load profiles into high-resolution profiles. The 
model restores high-frequency components in the first stage 
and eliminates unrealistic fluctuations in the second stage, 
outperforming other models in terms of shape-based metrics 
and non-intrusive load monitoring. SparseGAN, as described 
in [25], addresses time-series generation challenges by incor‐
porating sparse self-attention within the GAN architecture, 
allowing the model to capture long-range dependencies more 
effectively. Its performance is validated using both synthetic 
and real-world datasets.

A privacy-preserving method for generating customer load 
profiles using an information maximizing GAN and multivar‐
iate kernel density estimation is presented in [26]. This meth‐
od maintains privacy while generating realistic data that cap‐
ture uncertainties in electricity consumption. In [27], a com‐
parative analysis of energy load forecasting techniques high‐
lights the superiority of hybrid models, particularly those 
combining LSTM and CNN. GAN-based data augmentation 
further enhances the performance, particularly with limited 
training data, which is proven to be effective for load fore‐
casting. Finally, [28] proposes the load profile inpainting net‐
work, which is a GAN-based model to restore missing seg‐
ments of load data during demand response events. It fea‐
tures a two-stage generator: a coarse network for initial esti‐
mates, and a fine-tuning network using self-attention and gat‐
ed convolution layers for refinement. The innovative loss 
functions improve the precision, yielding a 15%-30% im‐
provement over existing models. A recent study in [29] has 
classified deep learning based multivariate imputation meth‐
ods into predictive, generative, and large-model-based cate‐

gories, providing a detailed comparison of their advantages 
and disadvantages. This study focuses on enhancing GAN-
based imputation with PIL and comparing it with some pre‐
dictive models, but a broader analysis remains outside of its 
scope. Time-series GAN (TimeGAN), which is introduced in 
[30] and shown in Fig. 2, combines unsupervised adversarial 
loss with supervised learning signals, and preserves time-
based correlations to address the gap in capturing temporal 
dependencies across sequential steps. Instead of depending 
only on adversarial feedback, TimeGAN improves the tempo‐
ral fidelity in generated sequences by incorporating a step‐
wise supervised loss, which encourages the model to learn 
transition dynamics. Furthermore, time-series data can be 
mapped into a lower-dimensional latent space using an em‐
bedding network, thereby increasing the training efficiency 
and stability. Evaluations on synthetic and real-world datas‐
ets have shown that TimeGAN consistently outperforms ex‐
isting benchmark models in terms of fidelity and forecasting 
quality.

C. PINNs

Although GANs have been successful in generating syn‐
thetic data, there is a significant challenge in generating syn‐
thetic data that follow the physical constraints of a power 
system. PINNs, as described in [31], combine machine learn‐
ing with physical constraints represented by a set of partial 
differential equations, as shown in Fig. 3. In Fig. 3, x and t 
represent different independent variables fed into the neural 
network. The hidden layers with σ denote activation func‐
tions, while u v p and ϕ are the predicted physical quanti‐
ties of interest. Automatic differentiation (AutoDiff) com‐
putes their derivatives, which are incorporated into the loss 
function L for optimization. Rather than relying solely on da‐
ta-driven training, PINNs use the governing equations as reg‐
ularizers in the loss function L:

L =Ldata + λLphysics (2)

where Ldata is the conventional data loss; Lphysics is the physi‐
cal loss that enforces compliance with physical laws; and λ 
is a weighting parameter.

PINNs have been applied in power systems for parameter 
estimation and predictive maintenance. For instance, [32] 
proposes a physics-informed machine learning method for 
parameter estimation of DC-DC converters, combining ma‐
chine learning with physical models to estimate parameters 
such as capacitance and inductance with high accuracy. As 

Reconstruction
loss

Supervised
loss

Unsupervised
loss

Reconstruction

Latent code
Autoencoder

network

Real 
sequences

Recovery

Embedder

Discriminator

Generator

Classification

GAN

Random 
vectors

Fig. 2.　Architecture of TimeGAN.

336



SHARMA et al.: GENERATIVE ADVERSARIAL NETWORKS WITH PHYSICS-INFORMED LOSSES FOR HIGH-RESOLUTION...

highlighted in a comprehensive review [33], the integration 
of machine learning with physical models holds significant 
potential for improving the generalizability and performance 
of predictive maintenance strategies for power converters, 
concurrently reducing their data requirements.

D. Research Gap and PIL-GAN

The combination of GANs and physics-informed con‐
straints for creating synthetic load profiles has not been ex‐
plored extensively. Previous studies have either focused on the 
production of realistic data without imposing strict physical 
constraints, or introduced physical laws that do not fully ex‐
plore the data generation capabilities of GANs. This research 
gap leads to the development of a unique method that incorpo‐
rates the best aspect of GANs in working with complicated da‐
ta distributions while ensuring physical plausibility from phys‐
ics-informed constraints similar to PINNs. In this paper, the 
PIL-GAN ensures that the synthetic data possess statistical 
characteristics that closely resemble the real load profile data, 
while also satisfying physics-based constraints, thus improv‐
ing the usefulness of synthetic data in power systems.

III. METHODOLOGY 

A. Overview

To address both high-resolution load profile generation 
and inpainting tasks, the PIL-GAN is introduced in this pa‐
per. This involves adopting the generative properties of 
GANs to generate load profiles while imposing physical con‐
straints that enforce physical accuracy and conformity with 
known physical laws and operating rules.

B. Data Description and Preprocessing

The data used in this paper consist of electricity consump‐
tion data with 15 min interval from 25 residential houses col‐
lected in 2018 in Austin, USA, obtained from the Pecan 
Street dataset [34]. The two main columns of interest are the 
net electricity consumed by the grid and solar generation.

For the inpainting task, the total energy consumption is 
calculated by combining the net electricity consumed by the 
grid and solar generation. A positive value in the consump‐
tion indicates that the house consumes electricity from the 
grid, whereas a negative value indicates that surplus solar en‐
ergy is being injected back into the grid. Using this informa‐
tion, the total consumption of each house in each 15 min in‐
terval is computed.

Subsequently, the energy consumption of all 25 houses is 
summed to generate a smooth aggregate curve. This results 
in an annual energy consumption profile with 15 min inter‐
vals, which is used for both training and validation purposes. 
The typical load profile of the combined datasets illustrates 
the aggregate load fluctuations of all houses over a 24 hour 
period, as shown in Fig. 4.

Before training, the load profiles are normalized using 
min-max normalization as:

xnorm(t ) = x ( )t -min ( )x
max ( )x -min ( )x

(3)

where x (t ) is the load value at time t; and xnorm(t ) is the nor‐
malized load at time t.

C. Architecture of PIL-GAN

1)　Generator
The generator is designed to complete the missing pieces 

from the load profiles without violating the physics-based 
constraints. The masked load profile is generated through an 
element-wise product of the load profile and a randomly gen‐
erated mask of the same size, where 1 indicates the presence 
of data and 0 represents the missing data. The inputs to the 
generator include the masked load profiles, the temperature 
profiles of the day, and the mask. The generator includes 
several fully connected layers with rectified linear unit (Re‐
LU) as the activation for all the hidden layers. The final out‐
put is passed through ReLU, which is appropriate because 
the target load profiles are non-negative. This simple archi‐
tecture sufficiently proves the applicability of the proposed 
model and can be considered a starting point for further stud‐
ies on additional and more complex constructions.
2)　Discriminator

The discriminator obtains a complete load profile, which 
is both real and generated, along with the temperature pro‐
file. It provides a measure of the probability that the load 
profile is authentic. Similar to the generator, the discrimina‐
tor also contains fully connected layers that use ReLU for 
the hidden layers and a sigmoid function in the output layer, 
as the discriminator predicts the probability of real and fake 
data between 0 and 1. Thus, by maintaining a simple and 
uniform architecture, we aim to convey the essence of apply‐
ing the PIL-GAN without further complications.
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For both the generator and discriminator, ReLU is chosen 
as the activation function in all the hidden layers to ensure 
that the outputs remain positive, aligning with the nature of 

the load profile data. The overall architecture of PIL-GAN is 
illustrated in Fig. 5, demonstrating the inclusion of tempera‐
ture profiles.

D. PIL Functions

We incorporate a series of PIL functions to ensure that the 
generated load profiles satisfy the real-world physical con‐
straints. These PIL functions enforce realistic behaviors such 
as energy conservation, limited load fluctuations, peak load 
constraints, and smooth temporal transitions. The parameters 
governing these constraints are extracted from historical data 
including temperature and load profiles, which are prior to 
training and remain fixed during the process. For training, 
the temperature profiles are analyzed using historical data 
with similar temperature patterns.
1)　Energy Conservation Loss

The total energy consumed in a day must not exceed the 
maximum allowable energy Emax, which is obtained from his‐
torical data. The energy conservation loss Lenergy penalizes 
load profiles that exceed this limit.

Lenergy =
1
N∑i = 1

N

max ( )0∑
t = 1

T

x̂ it -Emax (4)

where N is the batch size; T is the total number of time 
steps per day; and x̂ it is the generated load at time t for sam‐
ple i.
2)　Load Fluctuation Loss

To avoid unrealistic spikes or drops in load between con‐
secutive time steps, we introduce a maximum allowable 
change Dmax based on historical data. The load fluctuation 
loss Lfluctuation penalizes the load profiles when the change be‐
tween consecutive time steps exceeds this threshold.

Lfluctuation =
1

N ( )T - 1
∑
i = 1

N∑
t = 1

T - 1

max ( )0 || x̂ it + 1 - x̂ it -Dmax (5)

3)　Peak Load Constraint
The load at any given time should not exceed the historical 

maximum peak load Pmax. The peak load loss Lpeak penalizes 
the generated load profiles violating the following constraint:

Lpeak =
1

NT∑i = 1

N∑
t = 1

T

max ( )0x̂ it -Pmax (6)

4)　Temporal Smoothness Loss
To reflect the gradual changes observed in the real load 

profiles, large swings should not occur within a given time 
window. The temporal smoothness loss Lsmoothness penalizes 
the maximum deviation inside each sliding window of 
length w:

Lsmoothness =
1

N ( )T -w
∑
i = 1

N ∑
t = 1

T -w

max
τ = 12w

|| x̂ it + τ - x̂ it (7)

By considering the maximum absolute difference over the 
window, we capture large deviations that could occur any‐
where within that window, thereby enforcing smoother transi‐
tions over short timespans.
5)　Total Loss

The total loss LPINN during training is the weighted sum of 
the individual PIL functions. These functions ensure that the 
generated load profiles are realistic and adhere to the physi‐
cal constraints derived from the historical data.

LPINN = λenergyLenergy + λfluctuationLfluctuation + λpeakLpeak +
         λsmoothnessLsmoothness

(8)

where λenergy, λfluctuation, λpeak, and λsmoothness are the hyperparame‐
ters that balance the contribution of each loss term. For sim‐
plicity, they are initially set to be 1 as the starting point, 
with future tuning planned for optimization.

Although the physical constraints in this paper remain sim‐
ple, they significantly improve the quality of the imputed 
load profiles by ensuring realistic energy consumption pat‐
terns, smooth transitions, and adherence to the observed lim‐
its. Moreover, the application of the PIL-GAN is not limited 
to load profile imputation. It can be extended to more com‐
plex tasks where physical loss functions or constraints are 
derived from complex differential equations governing sys‐
tem dynamics. This makes the PIL-GAN highly adaptable to 
a wide range of applications that require synthetic data gen‐
eration, while maintaining fidelity to physical laws.

E. Training Procedure

1)　Adversarial Training
Adversarial training is employed to optimize the generator 
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Fig. 5.　Overall architecture of PIL-GAN.
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and discriminator. The discriminator is trained to maximize 
the probability of correctly identifying real and generated 
load profiles, whereas the generator aims to generate load 
profiles that the discriminator cannot distinguish from the re‐
al ones.

The discriminator loss LD is given by:

LD =-
1
N∑i = 1

N ( )ln D ( )x i + ln ( )1 -D ( )x̂ i (9)

where x i is the real load profile; and x̂ i is the generated load 
profile.
2)　Generator Loss with Physics-informed Constraints

The generator loss consists of two components, i.e., adver‐
sarial loss Ladv and total loss LPINN.

LG =Ladv +LPINN (10)

Ladv =-
1
N∑i = 1

N

ln D ( )x̂ i (11)

3)　Optimization
We use the Adam optimizer for the generator and discrimi‐

nator, with the learning rates αG and αD, respectively. The 
training procedure is shown in Algorithm 1 by iteratively up‐
dating the discriminator and generator.

F. Inpainting Procedure

Once the PIL-GAN is trained, a generator is used to in‐
paint the missing segments in the new load profiles.

Given a masked load profile vector x, mask m, and tem‐
perature t, the generator produces an inpainted profile x̂. The 
observed and generated data are combined to form a com‐
pletely inpainted profile x inpainted:

x inpainted =mx + (1 -m)x̂ (12)

where  denotes element-wise multiplication; and 1 is a vec‐
tor of ones.

G. Denormalization and Post-processing

After inpainting, the load profiles are denormalized to re‐
turn to the original scale:

xdenorm = x̂ ( xmax - xmin ) + xmin (13)

where xdenorm is the denormalized load profile vector; x̂ is the 
normalized (predicted) load profile vector; and xmax and xmin 
are the scalar maximum and minimum values of the original 
load profile, respectively. The operations are applied element‐
wise, with scalars broadcast across the vector dimension.

H. Visualization and Evaluation

To assess the performance of the PIL-GAN, we evaluate it 
for two main tasks: high-resolution load profile generation 
and inpainting. The inpainting tasks include both peak in‐
painting and valley inpainting, as well as inpainting in miss‐
ing segments. These tasks are illustrated in Fig. 6.

The original, masked, and inpainted load profiles are visu‐
alized to qualitatively assess the performance of the PIL-
GAN. Quantitative evaluation metrics are computed between 

the inpainted segments and the ground truth to evaluate the 
accuracy. These metrics include the mean absolute percent‐
age error (MAPE), root mean square error (RMSE) (as a per‐

Algorithm 1: training procedure for PIL-GAN

1: Discriminator update:

2:    Sample real profiles { }xi

N

i = 1

3:    Generate inpainted profiles { }x̂i

N

i = 1

4:    Compute LD and update discriminator
5: Generator update:

6:    Generate inpainted profiles { }x̂i

N

i = 1

7:    Compute LG =Ladv +LPINN

8:    Update generator

Missing segment
Load

Time Time

Peak
inpainting

Valley
inpainting

(a)
Load

Load

Load

Time Time
(b)

Low-resolution
load profile

High-resolution
load profile

Fig. 6.　Illustration of inpainting tasks. (a) Peak and valley inpainting. (b) High-resolution load profile generation.
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centage), peak discrepancy error (PDE), trough discrepancy 
error (TDE), energy deviation percentage (EDP), and spec‐
tral distortion percentage (SDP).
1)　MAPE

The MAPE is calculated as:

MAPE =
1

||M ∑
tÎM

|

|

|
||
|
|
||

|

|
||
|
|
| x inpainted( )t - x true( )t

x true( )t + ε
´ 100% (14)

where M is the set of time steps corresponding to the miss‐
ing segments; x true(t ) is the original load value at time 
tÎM; and ε is a small constant to prevent division by zero.
2)　RMSE

The RMSE is calculated as:

RMSE =
1

||M ∑
tÎM

( )x inpainted( )t - x true( )t
2

(15)

And RMSE as a percentage is given by:

RMSE =
RMSE

1
||M ∑

tÎM
|| x true( )t
´ 100%

(16)

3)　PDE
The PDE is calculated as:

PDE =

|
|
|||||

|
|||| max

tÎP
x inpainted( )t - max

tÎP
x true( )t

|
|
|||||

|
|||| max

tÎP
x true( )t

´ 100% (17)

where P is the peak period within M.
4)　TDE

Similarly, the TDE is calculated as:

TDE =

|
|
|||||

|
|||| min

tÎ T
x inpainted( )t - min

tÎ T
x true( )t

|
|
|||||

|
|||| min

tÎ T
x true( )t

´ 100% (18)

where T is the trough period within M.
5)　EDP

The EDP is calculated as:

EDP =

|

|

|
||
||

|

|
||
|∑

tÎM
x inpainted ( )t - ∑

tÎM
x true( )t

|

|

|
||
||

|

|
||
|∑

tÎM
x true( )t

´ 100% (19)

6)　SDP
The SDP is calculated as:

SDP =

1
Nf
∑
k = 1

N ( )|| x inpainted( )k - || x true( )k
2

1
Nf
∑
k = 1

N

|| x true( )k
´ 100% (20)

where x inpainted(k ) and x true(k ) are the discrete Fourier trans‐

forms of the inpainted and true signals over M, respective‐
ly; and Nf is the number of frequency components in load 
curve.

I. Model Complexity and Training Efficiency

In addition to GAN and PIL-GAN, the LSTM, RNN, and 
variational autoencoder (VAE) are also employed for compar‐

ative analysis. The structures of the LSTM, RNN, and VAE 
are shown in Figs. 7-9, respectively. The baseline benchmark 
model also maintains a cubic spline interpolation. Note that 
in Fig. 7, Ct is the cell state; ft is the forget gate activation; it 
is the input gate activation; Ot is the output gate activation; 
ht is the hidden state; sigmoid is the sigmoid function; and 
tanh is the hyperbolic tangent function. In Fig. 8, L is the out‐
put; X is the input; and U, V, and W are the input-to-hidden, 
hidden-to-hidden, and hidden-to-output weights, respectively. 
In Fig. 9, X is the input to the encoder; C is the latent space 
representation; and X̂ is the output produced by the decoder.

As the original data of the load profile are in 15 min inter‐
vals and are discrete, only sampled data from the cubic 
spline interpolation are used for inpainting instead of the 
whole continuous load profile, as shown in Fig. 10.

A grid search is conducted over multiple learning rates, 
and the hyperparameters listed in Table I represent the opti‐
mal settings at which all the models achieve their best per‐
formances.

The PIL-GAN has been compared with TimeGAN, the 
state-of-the-art (SOTA) model for time-series inpainting. As 
the task involves inpainting, and there are no explicitly de‐
fined physical differential equations, the PIL-GAN slightly 
underperforms TimeGAN. However, owing to its simpler ar‐
chitecture and shorter training time, the PIL-GAN still 
achieves results close to those of TimeGAN. Using the same 
training conditions, the generator of the PIL-GAN contains 
significantly fewer trainable parameters than traditional 
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Input image Reconstructed image
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Latent space

Fig. 9.　Structure of VAE.
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RNNs such as LSTM, RNN, and VAE. The reduction in 
complexity not only accelerates the training process, but also 
enables higher accuracy in the generated load profiles.

Table II presents the number of trainable parameters and 
training time per epoch for each model. The GAN (both PIL-
GAN and GAN (no physics) has approximately 391089 train‐
able parameters, which are less than half of those in the 
LSTM and RNN. Specifically, the LSTM has 901168, VAE 
has approximately 680000, and the RNN model has 862256 
trainable parameters. Similarly, TimeGAN, with 400158 
trainable parameters, is used for the comparison.

The training of GAN is faster than sequential recurrent 
networks owing to fewer parameters, lower computational 
costs, and its inherently parallelizable architecture. The train‐
ing of GAN is even faster than that of TimeGAN, because 
the use of RNNs in TimeGAN cannot be efficiently parallel‐
ized. Furthermore, in the quantitative analysis, it is shown 
that the simpler architecture of PIL-GAN does not compro‐
mise the accuracy compared with LSTM, RNN, and VAE 
that have more complex structures. Even with a shorter train‐
ing time, its output is almost comparable to that of Time‐

GAN.
By incorporating PIL functions into the training proce‐

dure, the generator learns to simultaneously output data that 
comply with energy conservation laws, operational con‐
straints, and temporal dynamics, which are as realistic as 
possible. The PIL-GAN is therefore a powerful tool for high-
resolution load profile generation and inpainting.

IV. RESULTS AND DISCUSSION 

A. Results of Inpainting

The inpainting performance of the PIL-GAN is evaluated 
against various baseline models such as GAN (no physics), 
LSTM, RNN, VAE, and cubic spline interpolation. Figure 11 
shows the results of peak and valley inpainting of missing 
data. In both cases, 10 out of the 96 data points of the origi‐
nal load profile are removed around these regions (pink ar‐
eas in Fig. 11), and the performances of all the models are 
compared.

The closest approximation to the original load profile is 
provided by TimeGAN, which effectively fills in the missing 
segments while maintaining physical consistency, followed 
by the PIL-GAN. Meanwhile, models such as LSTM, RNN, 
VAE, and cubic spline interpolation struggle to maintain 
load fluctuations and exhibit noticeable deviations in key re‐

15 min
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Cubic spline interpolation

Missing segment

t

Load

Fig. 10.　Cubic spline interpolation for inpainting.

TABLE I
HYPERPARAMETERS

Hyperparameter

Number of epochs

Batch size

Learning rate

Value
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Fig. 11.　Results of peak and valley inpainting of missing data. (a) Peak in‐
painting. (b) Valley inpainting.

TABLE II
NUMBER OF TRAINABLE PARAMETERS AND TRAINING TIME PER EPOCH

Model

GAN

TimeGAN

LSTM

RNN

VAE

Number of trainable parameters

391089

400158

901168

862256

680000

Time per epoch (s)

0.42

1.20

0.68

0.64

0.50
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gions. The PIL-GAN performs similar to TimeGAN, while 
outperforming VAE and cubic spline interpolation.

B. Results of High-resolution Load Profile Generation

The PIL-GAN is evaluated for a task in which low-resolu‐
tion time-series data with few measurements are converted 
into high-resolution data. The results for conversion of a 
20% sampled load profile to high-resolution load profile are 
shown in Fig. 12, which shows that PIL-GAN, compared 

with other models such as LSTM, RNN, VAE, and GAN (no 
physics), generates a much smoother high-resolution profile 
that closely tracks the original measurements. The smooth 
and realistic profiles generated by the PIL-GAN are due to 
physical constraints such as energy conservation. As the sam‐
pling rate decreases, the performance of the cubic spline in‐
terpolation deteriorates, as sparse data limit the ability of 
capturing signal variations, which is illustrated in Fig. 13.

C. Full Synthetic Load Profile Generation

This is an application of the PIL-GAN to generate full 
synthetic load profiles with temperature profiles as input. As 
illustrated in Fig. 14, the results generated by PIL-GAN are 
nearly indistinguishable from the original load profile, which 
effectively captures the temporal patterns, peak load periods, 
and overall trends. However, models such as the LSTM and 

RNN show notable deviations, mainly during peak load peri‐
ods. A cubic spline could not be used, because the load pro‐
files are generated by feeding the temperature profiles. This 
demonstrates that the PIL-GAN can be applied to generate 
realistic load profiles that preserve key characteristics such 
as peak values and fluctuations based on temperature inputs.
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Fig. 12.　Results for conversion of a 20% sampled load profile to high-resolution load profile. (a) PIL-GAN. (b) GAN (no physics). (c) LSTM. (d) RNN. 
(e) TimeGAN. (f) VAE. (g) Cubic spline interpolation.
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D. Quantitative Analysis

Tables III and IV present the quantitative evaluations of 
the peak and valley inpainting task and high-resolution load 
profile generation task of different models, respectively. We 
use the mean percentage error (MPE), RMSE, EDP, and 
SDP to comprehensively assess the performances of different 
models.

Table III shows that the PIL-GAN consistently outper‐
forms the other models across all metrics in the peak and 
valley inpainting tasks. The PIL-GAN reduces the RMSE 
and MPE significantly compared with GAN (no physics). 
Similarly, Table V shows the comparison of inpainting per‐
formances for different missing ratios, where the error metric 

is the sum of absolute errors of all error metrics presented.
The ablation study on the PILs in Table VI combining 

peak and valley regions further confirms that the inclusion 
of PILs significantly improves the accuracy. Removing any 
of these components results in substantial performance degra‐
dation, as indicated by the increased values of MAE and 
RMSE.

In Table IV, a similar trend can be observed for high-reso‐
lution load profile generation task. The PIL-GAN outper‐
forms traditional models such as LSTM, RNN, VAE, and cu‐
bic spline interpolation. In addition, PIL-GAN achieves a 
performance comparable to that of TimeGAN. Thus, the PIL-
GAN is more effective for generating accurate high-resolu‐
tion load profiles, particularly in complex nonlinear scenarios.

Additionally, the error distributions of the peak and valley 
inpainting tasks for different models are illustrated in Fig. 
15. The TimeGAN maintains the lowest error distribution, 
followed by the PIL-GAN, for both profiles, further demon‐
strating the robustness of incorporating physics-based con‐
straints into the model. Similarly, the probability distribu‐
tions of the predicted and true values for the different mod‐
els are shown in Fig. 16. It can be observed that the PIL-

GAN model produces distributions that are closer to the orig‐
inal load profile compared with the other models.

E. Discussion

Comprehensive qualitative and quantitative analyses illus‐
trate that the PIL-GAN significantly outperforms traditional 
GAN models, VAE, LSTM, and RNN, in high-resolution 
load profile generation and inpainting.

TABLE III
QUANTITATIVE EVALUATION OF PEAK AND VALLEY INPAINTING TASK OF DIFFERENT MODELS

Region

Peak

Valley

Model

TimeGAN (SOTA)

PIL-GAN

GAN (no physics)

LSTM

RNN

VAE

Cubic spline interpolation

Error reduction (excluding SOTA)

TimeGAN (SOTA)

PIL-GAN

GAN (no physics)

LSTM

RNN

VAE

Cubic spline interpolation

Error reduction (excluding SOTA)

MAPE

0.6219

0.8702

2.5143

2.6189

2.9972

1.9458

3.9911

1.0756

0.4939

0.6653

1.6247

1.7123

2.1334

1.4531

3.8099

0.7878

RMSE (%)

1.9696

2.8483

8.5123

8.9874

9.8341

6.8834

12.4421

4.0351

1.8059

2.3769

5.1312

5.7654

6.6232

4.3898

10.7343

2.0129

PDE

0.5297

0.4683

2.7695

2.9781

3.3124

2.2542

4.0199

1.7859

TDE

8.8329

8.9834

14.8732

15.4987

17.2168

11.3813

23.4924

2.3979

EDP

0.1735

0.2694

1.9512

2.0817

2.3184

1.5832

3.4429

1.3138

0.0629

0.1157

1.4867

1.6143

1.9222

1.1512

2.9732

1.0355

SDP

5.813

8.0778

22.4167

23.6238

25.9993

18.2997

36.2078

10.2219

5.1011

6.5968

14.2425

15.5312

17.3014

11.6893

30.5987

5.0925

TABLE IV
QUANTITATIVE EVALUATION OF HIGH-RESOLUTION LOAD PROFILE GENERATION TASK OF DIFFERENT MODELS

Model

TimeGAN (SOTA)

PIL-GAN

GAN (no physics)

LSTM

RNN

VAE

Cubic spline interpolation

Error reduction (excluding SOTA)

MAPE

5.210

6.012

12.876

15.991

18.574

9.341

8.212

2.200

RMSE (%)

6.813

7.421

17.238

20.659

23.877

12.928

9.113

1.692

PDE

4.970

4.881

6.122

6.289

6.931

5.211

5.612

0.330

TDE

9.505

8.928

14.902

16.372

18.562

11.885

9.905

0.977

EDP

3.080

3.411

7.112

5.212

6.104

4.408

4.802

0.997

SDP

22.890

24.110

63.542

57.487

71.209

32.584

34.879

8.474
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In addition, the PIL-GAN is compared with TimeGAN. Al‐
though PIL-GAN slightly underperforms TimeGAN, its re‐
sults are still comparable, demonstrating a competitive per‐
formance in the inpainting task. The inclusion of PIL en‐
ables the model to generate more physically consistent load 
profiles. Furthermore, ablation studies on the PILs focus on 
the critical role of these physics-based constraints in improv‐
ing the performance of PIL-GAN.

PIL-GAN demonstrates the potential to deal with complex 
scenarios. Despite the inclusion of relatively simple physics-
informed components, promising results can be obtained. 
The physics-informed features of the PIL-GAN are not fully 
utilized, because the current inpainting problem lacks pre‐
cisely defined physical differential equations. This suggests 
that incorporating the physics-informed aspect into Time‐
GAN can lead to the development of a new SOTA model 
with versatile applications.

Furthermore, the PIL-GAN can be applied to other prob‐
lems such as optimal power flow analysis, in which highly 
complex differential equations such as the swing equation, 
and several other power system intricacies can be incorporat‐
ed into the PIL-GAN architecture.
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Fig. 15.　Error distributions of peak and valley inpainting tasks for differ‐
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Fig. 16.　Probability distributions of predicted and true values for different 
models. (a) Peak load value. (b) Valley load value.

TABLE VI
ABLATION STUDY ON PILS

Model

PIL-GAN

Without energy conservation

Without load fluctuation

Without peak load constraint

GAN (no physics)

MAPE

1.5355

2.8443

2.0201

2.2272

4.1390

RMSE (%)

5.2250

7.8811

6.5387

6.9510

13.6435

PDE

0.4683

1.2134

0.8539

0.9296

2.7695

TDE

8.9834

11.1976

10.5292

10.8323

14.8732

EDP

0.3851

1.8647

1.0223

1.2437

3.4379

SDP

14.6746

21.4532

17.7854

18.6957

36.6592

Total error

31.2719

46.4540

38.7496

40.8793

75.5223

TABLE V
COMPARISON OF INPAINTING PERFORMANCES FOR DIFFERENT MISSING RATIOS

Missing ratio (%)

20

30

40

50

60

Error

TimeGAN

29.2668

33.1337

37.0005

40.8674

44.7342

PIL-GAN

34.6278

37.9836

41.3395

44.6954

48.0513

GAN (no physics)

82.1323

88.7422

95.3522

101.9621

108.5721

LSTM

86.3215

92.9864

98.7986

104.0560

110.2509

RNN

97.0367

105.0734

113.1101

121.1469

129.1836

VAE

63.3958

65.5560

67.7162

69.8764

72.0366

Cubic spline interpolation

78.3634

83.3611

88.3589

105.3567

124.3545
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Although the applicability and effectiveness of the PIL-
GAN for solving real-world problems can be significantly in‐
creased by integrating sophisticated physical laws, their inte‐
gration creates technical challenges.

Overall, the PIL-GAN provides a promising path for ener‐
gy management systems, particularly when dealing with 
missing or sparse data, where it is critical to maintain physi‐
cal consistency. In future studies, this model will be scaled 
to larger datasets and extended to incorporate additional 
physical laws, particularly distinct energy domains, to im‐
prove its robustness and utility for more complex applica‐
tions.

V. CONCLUSION 

To generate high-resolution load profiles and perform the 
inpainting, PIL-GAN is introduced, which is a novel model 
that integrates GANs with physical constraints, allowing the 
system to learn from both the data and the underlying physi‐
cal laws. The results of this paper show that the PIL-GAN 
outperforms traditional GAN, LSTM, RNN, VAE, and cubic 
spline interpolation in high-resolution load profile generation 
and inpainting tasks. The addition of PIL improves accuracy 
and physical consistency, which is confirmed in the ablation 
study. PIL is derived from PINN and incorporated into the 
loss optimization of GAN to improve the results as compara‐
ble to those of the TimeGAN. Hence, the incorporation of Ti‐
meGAN with physical constraints can yield a hybrid model 
with superior results.

PIL-GAN can also be applied in other areas of power sys‐
tems such as optimal power flow analysis and PMU dataset 
generation. By integrating additional physical equations 
(e.g., the swing equation), PIL-GAN can comply with com‐
plex power system dynamics and generate high-resolution da‐
tasets using fewer PMUs.

Overall, the PIL-GAN offers a practical solution for high-
resolution load profile generation and inpainting. It improves 
the accuracy of generated data while preserving physical con‐
sistency by fusing data-driven techniques with an awareness 
of the physical system. This bridges the gap between ma‐
chine learning and practical applications by enabling more 
reliable and effective energy system analyses.

REFERENCES

[1] J. Wang, F. Gao, Y. Zhou et al., “Data sharing in energy systems,” Ad‐
vances in Applied Energy, vol. 10, p. 100132, Jun. 2023.

[2] G. Kalogridis, R. Cepeda, S. Z. Denic et al., “ElecPrivacy: evaluating 
the privacy protection of electricity management algorithms,” IEEE 
Transactions on Smart Grid, vol. 2, no. 4, pp. 750-758, Dec. 2011.

[3] T. Bailey, A. Maruyama, and D. Wallance. (2024, Oct.). The ener‐
gy-sector threat: how to address cybersecurity vulnerabilities. [On‐
line]. Available: https://www. mckinsey. com/capabilities/risk-and-resil‐
ience/our-insights/the-energy-sector-threat-how-to-address-cybersecurity 
-vulnerabilities

[4] J. Pei, “A survey on data pricing: from economics to data science,” 
IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 
10, pp. 4586-4608, Oct. 2022.

[5] S. Misyris, A. Venzke, and S. Chatzivasileiadis. (2020, Jan.). Physics-
informed neural networks for power systems. [Online]. Available: 
https://arxiv.org/abs/1911.03737

[6] C. Huang, F. Li, L. Zhan et al., “Data quality issues for synchrophasor 
applications, part II: problem formulation and potential solutions,” 
Journal of Modern Power Systems and Clean Energy, vol. 4, no. 3, 

pp. 353-361, May 2016.
[7] T. Kang, D. Y. Lim, H. Tayara et al., “Forecasting of power demands 

using deep learning,” Applied Sciences, vol. 10, no. 20, p. 7241, Oct. 
2020.

[8] W. Liao, B. Bak-Jensen, J. R. Pillai et al., “Data-driven missing data 
imputation for wind farms using context encoder,” Journal of Modern 
Power Systems and Clean Energy, vol. 10, no. 4, pp. 964-976, Jul. 
2022.

[9] S. N. Hussain, “A novel framework based on CNN-LSTM neural net‐
work for prediction of missing values in electricity consumption time-
series datasets,” Journal of Information Processing Systems, vol. 18, 
no. 1, pp. 115-129, Feb. 2022.

[10] F. Ali Agga, S. A. Abbou, Y. E. Houm et al., “Short-term load fore‐
casting based on CNN and LSTM deep neural networks,” IFAC-Paper‐
sOnLine, vol. 55, no. 12, pp. 777-781, Jul. 2022.

[11] C. Bülte, M. Kleinebrahm, H. Ü. Yilmaz et al., “Multivariate time se‐
ries imputation for energy data using neural networks,” Energy and 
AI, vol. 13, p. 100239, Jul. 2023.

[12] F. Liu and C. Liang, “Short-term power load forecasting based on AC-
BiLSTM model,” Energy Reports, vol. 11, pp. 1570-1579, Jun. 2024.

[13] X. Lu, L. Yuan, R. Li et al., “An improved Bi-LSTM-based missing 
value imputation approach for pregnancy examination data,” Algo‐
rithms, vol. 16, no. 1, p. 12, Jan. 2023.

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza et al., “Generative adver‐
sarial nets,” in Advances in Neural Information Processing Systems, 
Cambridge: MIT Press, 2014, pp. 2672-2680.

[15] I. Goodfellow. (2016, Dec.). NIPS 2016 tutorial: generative adversarial 
networks. [Online]. Available: https://arxiv.org/abs/1701.00160

[16] Y. Luo, X. Cai, Y. Zhang et al. (2018, Dec.). Multivariate time series 
imputation with generative adversarial networks. [Online]. Available: 
http://papers. nips. cc/paper/7432-multivariate-time-series-imputation-wit 
h-generative-adversarial-networks.pdf

[17] W. Wang, X. Liu, and H. He, “Synthetic load profiles for privacy-pre‐
serving energy data sharing using GANS,” IEEE Transactions on 
Smart Grid, vol. 12, no. 3, pp. 2331-2342, May 2021.

[18] A. Pinceti, L. Sankar, and O. Kosut, “Synthetic time-series load data 
via conditional generative adversarial networks,” in Proceedings of 
2021 IEEE PES General Meeting, Washington DC, USA, Jul. 2021, 
pp. 1-5.

[19] Y. Hu, Y. Li, L. Song et al., “MultiLoad-GAN: a GAN-based synthet‐
ic load group generation method considering spatial-temporal correla‐
tions,” IEEE Transactions on Smart Grid, vol. 15, no. 2, pp. 2309-
2320, Mar. 2024.

[20] A. Madhubalan, A. Gautam, and P. Tiwary, “Blender-GAN: multi-tar‐
get conditional generative adversarial network for novel class synthetic 
data generation,” in Proceedings of 2024 International Conference on 
Smart Applications, Communications and Networking, Harrisonburg, 
USA, May 2024, pp. 1-7.

[21] D. Upadhyay, Q. Luo, J. Manero et al., “Comparative analysis of tabu‐
lar generative adversarial network (GAN) models for generation and 
validation of power grid synthetic datasets,” in Proceedings of IEEE 
20th International Conference on Smart Technologies, Torino, Italy, 
Jul. 2023, pp. 677-682.

[22] V. Avkhimenia, T. Weis, and P. Musilek, “Generation of synthetic am‐
pacity and electricity pool prices using generative adversarial net‐
works,” in Proceedings of 2021 IEEE Electrical Power and Energy 
Conference, Toronto, Canada, Oct. 2021, pp. 225-230.

[23] X. Zheng, B. Wang, and L. Xie, “Synthetic dynamic PMU data gener‐
ation: a generative adversarial network approach,” in Proceedings of 
2019 International Conference on Smart Grid Synchronized Measure‐
ments and Analytics, College Station, USA, May 2019, pp. 1-6.

[24] L. Song, Y. Li, and N. Lu, “ProfileSR-GAN: a GAN based super-reso‐
lution method for generating high-resolution load profiles,” IEEE 
Transactions on Smart Grid, vol. 13, no. 4, pp. 3278-3289, Jul. 2022.

[25] N. Ahmed and L. Schmidt-Thieme, “Sparse self-attention guided gen‐
erative adversarial networks for time-series generation,” in Proceed‐
ings of 2023 IEEE 10th International Conference on Data Science and 
Advanced Analytics, Thessaloniki, Greece, Oct. 2023, pp. 1-2.

[26] J. Lan, Y. Zhou, Q. Guo et al., “A data-driven approach for generating 
load profiles based on InfoGAN and MKDE,” Frontiers in Energy Re‐
search, vol. 11, p. 1339543, Dec. 2023.

[27] R. Hachache, M. Labrahmi, A. Grilo et al., “Energy load forecasting 
techniques in smart grids: a cross-country comparative analysis,” Ener‐
gies, vol. 17, no. 10, p. 2251, May 2024.

[28] Y. Li, L. Song, Y. Hu et al., “Load profile inpainting for missing load 
data restoration and baseline estimation,” IEEE Transactions on Smart 
Grid, vol. 15, no. 2, pp. 2251-2260, Mar. 2024.

345



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 14, NO. 1, January 2026

[29] J. Wang, W. Du, W. Cao et al. (2025, May). Deep learning for multi‐
variate time series imputation: a survey. [Online]. Available: https://arx‐
iv.org/abs/2402.04059

[30] J. Yoon, D. Jarrett, and M. van der Schaar. (2019, Dec.). Time-series 
generative adversarial networks. [Online]. Available: https://www.dam‐
tp.cam.ac.uk/user/dkj25/pdf/yoon2019time.pdf

[31] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed 
neural networks: a deep learning framework for solving forward and 
inverse problems involving nonlinear partial differential equations,” 
Journal of Computational Physics, vol. 378, pp. 686-707, Feb. 2019.

[32] S. Zhao, Y. Peng, Y. Zhang et al., “Physics-informed machine learning 
for parameter estimation of DC-DC converter,” in Proceedings of 
2022 IEEE Applied Power Electronics Conference and Exposition, 
Houston, USA, Mar. 2022, pp. 324-329.

[33] Y. Fassi, V. Heiries, J. Boutet et al., “Toward physics-informed ma‐
chine-learning-based predictive maintenance for power converters: a re‐
view,” IEEE Transactions on Power Electronics, vol. 39, no. 2, pp. 
2692-2720, Feb. 2024.

[34] Pecan Street Inc. (2018, Dec.). Dataport 2018. [Online]. Available: 
https://www.pecanstreet.org/dataport/

Swodesh Sharma received the B.Eng. degree in electrical engineering from 
Tribhuvan University, Institute of Engineering, Pulchowk, Nepal, in 2024, 
and is currently pursuing the Ph.D. degree in electrical and computer engi‐
neering at Florida International University, Miami, USA. His research inter‐
ests include cyber-physical system, electromagnetic transient simulation, and 

application of artificial intelligence in power systems.

Apeksha Ghimire received the B.Eng. degree in electrical engineering from 
Tribhuvan University, Institute of Engineering, Pulchowk, Nepal, in 2024. 
She is working as an Associate Electrical Engineer in the Power System 
Studies and Planning Department at K&A Engineering Consulting, P.C., a U.
S. -based company, where she serves at its Nepal branch in Balkhu, Kath‐
mandu, Nepal. Her research interests include renewable energy, grid integra‐
tion, power system operation, and energy policy for system reliability and 
sustainability.

Shashwot Shrestha received the B. Eng. degree of electrical engineering 
from Tribhuvan University, Institute of Engineering, Pulchowk, Nepal, in 
2024. His research interests include power system, power electronics, smart 
grid, microgrid, power system optimization, cybersecurity, artificial intelli‐
gence, and electric vehicle.

Rachana Subedi received the Bachelor’s degree in electrical engineering 
from Tribhuvan University, Institute of Engineering, Pulchowk, Nepal, in 
2024. Her research interests include power system, grid integration of re‐
newable energy, power electronic converter, power system protection, elec‐
tric vehicle, and artificial intelligence.

Sushil Phuyal received the B.E. degree in electrical engineering from Trib‐
huvan University, Institute of Engineering, Pulchowk, Nepal, in 2024. His 
research interests include converter topology, resonant converter, optimiza‐
tion and control, power circuit miniaturization, and electronic circuit design.

346


