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Generative Adversarial Networks with
Physics-informed Losses for High-resolution
Load Profile Generation and Inpainting
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Abstract—Accurate load profile data are essential for optimiz-
ing energy systems. However, real-world datasets often suffer
from low resolution and significant missing values. To address
these challenges, this paper introduces physics-informed loss
generative adversarial network (PIL-GAN), a model that com-
bines generative adversarial networks (GANs) with physics-in-
formed losses (PILs) derived from physics-informed neural net-
works (PINNs) that are integrated directly into the generator.
High-resolution load profiles are generated that not only fill in
missing data but also ensure that the generated profiles adhere
to physical laws governing the energy systems, such as energy
conservation and load fluctuations. By embedding domain-spe-
cific physics into the generation process, the proposed model sig-
nificantly enhances data quality and resolution for low-quality
datasets. The experimental results demonstrate notable gains in
data accuracy, resolution, and consistency, making PIL-GAN an
effective tool for energy management systems. The PIL-GAN al-
so has broader applicability in other fields such as generating
and inpainting high-resolution datasets for energy systems, in-
dustrial processes, and any domain in which data must comply
with real-world physical laws or operational requirements.

Index Terms—Data inpainting, energy system, generative ad-
versarial network (GAN), physics-informed loss (PIL), load pro-
file, energy management system, neural network.

1. INTRODUCTION

THE rapid evolution of power systems hinges on the effi-
cient sharing and application of data, ranging from edu-
cational initiatives to advanced artificial intelligence (Al) al-
gorithms. Modeling, forecasting, and optimization for power
systems require high-quality load profile data. Unfortunately,
such data are sparse with low resolution, and contain miss-
ing entries owing to sensor or communication issues [1].
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As most utility sectors are concerned about privacy, open-
source data for load profile studies are rarely available. The
available data also suffer from low resolution and significant
missing values. Therefore, it is crucial to have high-quality
data that facilitate more advanced research and analysis.
However, utilities are reluctant to release high-resolution da-
tasets, which may result in leakage of grid parameters, hacks
on the information of customers, or the discovery of grid
vulnerabilities [2], [3]. This has motivated the use of Al-
based methods to tackle these challenges, compensate for da-
ta limitations, and preserve data privacy and security.

Unfortunately, traditional models for load profile genera-
tion face challenges in achieving adequate solutions. Owing
to their capability to learn complex data distributions, genera-
tive adversarial networks (GANs) have become prominent
tools for data generation and imputation [4]. Although
GANSs alone do not necessarily capture the physical laws
that underly the power system, the data generated by GANs
may violate basic rules such as energy conservation, peak
load information, and load fluctuation owing to temperature.
By explicitly incorporating physical constraints embedded in
the learning process, physics-informed neural networks
(PINNS) boost the capacity of physical learning and produce
consistent results [5].

Combining GANs with physics-informed losses (PILs) of-
fers a promising avenue for generating synthetic load profiles
that are both realistic and physically plausible. This hybrid
model addresses the issues of data sparsity and missing en-
tries. In this paper, we propose the PIL-GAN model that com-
bines GANs with PILs for high-resolution load profile genera-
tion and inpainting, ensuring physical consistency. The key
contributions of this paper are summarized as follows.

PIL-GAN synergistically combines the generation power
of GANs with the physics-informed constraints of PINNs to
impute missing segments into load profiles. PIL-GAN can
be utilized for super-resolution tasks, i.e., converting low-res-
olution load profiles into high-resolution load profiles. It can
also be used to generate complete synthetic datasets using a
temperature-profile reference.

We validate the PIL-GAN using a comprehensive experi-
mental setup and demonstrate its effectiveness compared
with baseline models.

The remainder of this paper is organized as follows. Sec-
tion II conducts a literature review on the deep learning
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based models for load profile imputation and forecasting,
GANs, and PINNs. Section III details the methodology of
the PIL-GAN for generating GAN-based load profiles with
an attached PIL function, and describes the experimental set-
up. Section IV presents the results and discussion, and Sec-
tion V concludes this paper.

II. LITERATURE REVIEW

Smart and advanced metering infrastructures have resulted
in an exponential growth of load data available in applica-
tions such as demand response, grid optimization, and ener-
gy forecasting. Nevertheless, owing to privacy issues and the
limited availability of accessible data, it is essential to devel-
op functions for creating synthetic load profiles that are as
accurate as possible. A Lagrange interpolating polynomial
method for addressing data loss in synchrophasor applica-
tions, which can also be applied to load profile imputation
while balancing the accuracy and efficiency, is proposed in
[6]. With increasing computational power, deep learning
based models are increasingly replacing traditional methods
such as k-nearest neighbors (KNNs) and k-means.

A. Deep Learning Based Models for Load Data Imputation
and Forecasting

Previous studies have investigated the application of ma-
chine learning models in load data imputation and forecast-
ing tasks, with a focus on long short-term memory (LSTM)
models owing to their superior performance in handling long-
term dependencies in temporal data sequences. For instance,
[7] studies convolutional neural network (CNN), recurrent
neural network (RNN), and hybrid CNN-RNN models to
forecast load demand. Local patterns are learned effectively
from the Korea Power Exchange dataset, and the CNN mod-
el excels particularly in short-term forecasting.

Reference [8] proposes a context encoder model using
deep CNNs, optimized with reconstruction and adversarial
losses to impute missing wind farm data by capturing spatio-
temporal patterns. On the other hand, in [9], the hybrid
CNN-LSTM model is utilized to handle the missing data of
electricity consumption in smart homes. The hybrid model
uses CNN for local pattern detection and LSTM to capture
long-term dependencies to reduce errors with the minimum
computational cost compared with the traditional model.

Studies have also demonstrated that LSTM models are ef-
fective in energy forecasting tasks. Reference [10] compares
the CNN and LSTM models for short-term load forecasting
in photovoltaic plants based on data from a plant in Moroc-
co. CNN models perform better in simpler setups, whereas
LSTM models perform better in deeper architectures over lon-
ger time horizons. A multivariate time-series data imputation
model using a two-step LSTM is presented in [11], which si-
multaneously exploits temporal and cross-dimensional correla-
tions to achieve superior performance across different datasets.

Models with more advanced implementations that inte-
grate multiple architectures have been shown to improve the
results. For example, the attention-based bidirectional LSTM
(BiILSTM) with convolution layer model suggested in [12]
combines a CNN, BiLSTM, and attention mechanisms for
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short-term load forecasting. When applied to short-term load
forecasting, the model outperforms the CNN, BiLSTM, and
XGBoost. The attention mechanism allows the model to fo-
cus on relevant historical data. LSTM-based models have al-
so been successfully applied in other domains. For example,
in [13], missing data from medical records are imputed us-
ing a BILSTM model mixed with random forest and princi-
pal component analysis, which outperforms cubic spline in-
terpolation and KNN on hypertensive disorder records with
improved accuracy.

B. GANs

With the increasing demand of creating completely new
and realistic data, particularly in areas such as synthetic data
generation while preserving privacy, LSTMs alone may not
be sufficient. Reference [14] introduces the GAN, which has
become a powerful technique for generating realistic synthet-
ic data by learning the underlying data distributions in an un-
supervised manner. Two neural networks, a generator (G)
and a discriminator (D), play a min-max game in a GAN. G
seeks to generate data identical to the real data, whereas D
seeks to distinguish between synthetic and real samples. The
architecture of GAN is illustrated in Fig. 1.
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Fig. 1. Architecture of GAN.

The optimization problem is formulated as:
mGin max Ex%m(x)[lnD(x) ] +Ez~p:(z)[ln(l —D(G(z) ) ) ] (1)

where x is the actual data drawn from the true distribution
Pua(X); B is the expected value (average) over the corre-
sponding distribution; and z is a latent vector sampled from
the prior distribution p.(z) [15]. G(z) generates data in the
data space by mapping from z to minimize the difference
with respect to the real data distribution, whereas D(x) is
designed to output the probability that a given sample is real.

Reference [16] introduces a GAN-based imputation meth-
od with a modified gated recurrent unit to capture the tempo-
ral dependencies in a multivariate time-series, validated on
medical and environmental datasets. GANs have also been
applied extensively in the energy sector to generate synthetic
load profiles that preserve the statistical properties of real da-
ta without exposing sensitive information [17]. For instance,
[18] employs a conditional GAN to generate synthetic time-
series load data conditioned on factors such as season and
load type, effectively capturing complex patterns in transmis-
sion-level load data. Reference [19] proposes a multi-load



336 JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 14, NO. 1, January 2026

GAN-based method that considers spatiotemporal correla-
tions to generate synthetic data for groups of electricity con-
sumers, thereby enhancing the resolution of the generated da-
ta for microgrid and distribution system studies. Further-
more, to address class imbalances and the need for data with
blended characteristics, [20] introduces the blender GAN,
which is a multi-target conditional GAN capable of generat-
ing synthetic data by blending multiple classes in user-de-
fined proportions.

In comparative studies, [21] evaluates various GAN archi-
tectures to generate synthetic datasets of power systems.
This study highlights the importance of model selection and
hyperparameter tuning for generating high-quality synthetic
data. The models are validated using statistical methods and
machine learning classifiers to ensure that the synthetic data
are indistinguishable from real data. GANs have also been
applied to generate other types of power system data. Refer-
ence [22] utilizes a Wasserstein GAN to generate synthetic
time-series data for dynamic thermal line ratings (ampacity)
and electricity pool prices, addressing the limited availability
of such data for training deep learning models in smart
grids. In the realm of phasor measurement unit (PMU) data,
[23] uses GANs to generate synthetic dynamic PMU data,
providing a model-free method to produce realistic time-se-
ries data crucial for monitoring power systems while over-
coming privacy constraints.

Similarly, [24] introduces the profile super-resolution
GAN, which is a two-stage GAN model for upsampling low-
resolution load profiles into high-resolution profiles. The
model restores high-frequency components in the first stage
and eliminates unrealistic fluctuations in the second stage,
outperforming other models in terms of shape-based metrics
and non-intrusive load monitoring. SparseGAN, as described
in [25], addresses time-series generation challenges by incor-
porating sparse self-attention within the GAN architecture,
allowing the model to capture long-range dependencies more
effectively. Its performance is validated using both synthetic
and real-world datasets.

A privacy-preserving method for generating customer load
profiles using an information maximizing GAN and multivar-
iate kernel density estimation is presented in [26]. This meth-
od maintains privacy while generating realistic data that cap-
ture uncertainties in electricity consumption. In [27], a com-
parative analysis of energy load forecasting techniques high-
lights the superiority of hybrid models, particularly those
combining LSTM and CNN. GAN-based data augmentation
further enhances the performance, particularly with limited
training data, which is proven to be effective for load fore-
casting. Finally, [28] proposes the load profile inpainting net-
work, which is a GAN-based model to restore missing seg-
ments of load data during demand response events. It fea-
tures a two-stage generator: a coarse network for initial esti-
mates, and a fine-tuning network using self-attention and gat-
ed convolution layers for refinement. The innovative loss
functions improve the precision, yielding a 15%-30% im-
provement over existing models. A recent study in [29] has
classified deep learning based multivariate imputation meth-
ods into predictive, generative, and large-model-based cate-

gories, providing a detailed comparison of their advantages
and disadvantages. This study focuses on enhancing GAN-
based imputation with PIL and comparing it with some pre-
dictive models, but a broader analysis remains outside of its
scope. Time-series GAN (TimeGAN), which is introduced in
[30] and shown in Fig. 2, combines unsupervised adversarial
loss with supervised learning signals, and preserves time-
based correlations to address the gap in capturing temporal
dependencies across sequential steps. Instead of depending
only on adversarial feedback, TimeGAN improves the tempo-
ral fidelity in generated sequences by incorporating a step-
wise supervised loss, which encourages the model to learn
transition dynamics. Furthermore, time-series data can be
mapped into a lower-dimensional latent space using an em-
bedding network, thereby increasing the training efficiency
and stability. Evaluations on synthetic and real-world datas-
ets have shown that TimeGAN consistently outperforms ex-
isting benchmark models in terms of fidelity and forecasting
quality.
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Fig. 2. Architecture of TimeGAN.

C. PINNs

Although GANs have been successful in generating syn-
thetic data, there is a significant challenge in generating syn-
thetic data that follow the physical constraints of a power
system. PINNSs, as described in [31], combine machine learn-
ing with physical constraints represented by a set of partial
differential equations, as shown in Fig. 3. In Fig. 3, x and ¢
represent different independent variables fed into the neural
network. The hidden layers with o denote activation func-
tions, while u, v, p, and ¢ are the predicted physical quanti-
ties of interest. Automatic differentiation (AutoDiff) com-
putes their derivatives, which are incorporated into the loss
function £ for optimization. Rather than relying solely on da-
ta-driven training, PINNs use the governing equations as reg-
ularizers in the loss function £:

L=L4.+AL 2)
where L, is the conventional data loss; £ ., is the physi-
cal loss that enforces compliance with physical laws; and A
is a weighting parameter.

PINNs have been applied in power systems for parameter
estimation and predictive maintenance. For instance, [32]
proposes a physics-informed machine learning method for
parameter estimation of DC-DC converters, combining ma-
chine learning with physical models to estimate parameters
such as capacitance and inductance with high accuracy. As

physics
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highlighted in a comprehensive review [33], the integration
of machine learning with physical models holds significant
potential for improving the generalizability and performance
of predictive maintenance strategies for power converters,
concurrently reducing their data requirements.

AutoDiff

Neural network

Optimization

Fig. 3. Architecture of PINN.

D. Research Gap and PIL-GAN

The combination of GANs and physics-informed con-
straints for creating synthetic load profiles has not been ex-
plored extensively. Previous studies have either focused on the
production of realistic data without imposing strict physical
constraints, or introduced physical laws that do not fully ex-
plore the data generation capabilities of GANs. This research
gap leads to the development of a unique method that incorpo-
rates the best aspect of GANs in working with complicated da-
ta distributions while ensuring physical plausibility from phys-
ics-informed constraints similar to PINNs. In this paper, the
PIL-GAN ensures that the synthetic data possess statistical
characteristics that closely resemble the real load profile data,
while also satisfying physics-based constraints, thus improv-
ing the usefulness of synthetic data in power systems.

III. METHODOLOGY

A. Overview

To address both high-resolution load profile generation
and inpainting tasks, the PIL-GAN is introduced in this pa-
per. This involves adopting the generative properties of
GANSs to generate load profiles while imposing physical con-
straints that enforce physical accuracy and conformity with
known physical laws and operating rules.

B. Data Description and Preprocessing

The data used in this paper consist of electricity consump-
tion data with 15 min interval from 25 residential houses col-
lected in 2018 in Austin, USA, obtained from the Pecan
Street dataset [34]. The two main columns of interest are the
net electricity consumed by the grid and solar generation.

For the inpainting task, the total energy consumption is
calculated by combining the net electricity consumed by the
grid and solar generation. A positive value in the consump-
tion indicates that the house consumes electricity from the
grid, whereas a negative value indicates that surplus solar en-
ergy is being injected back into the grid. Using this informa-
tion, the total consumption of each house in each 15 min in-
terval is computed.
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Subsequently, the energy consumption of all 25 houses is
summed to generate a smooth aggregate curve. This results
in an annual energy consumption profile with 15 min inter-
vals, which is used for both training and validation purposes.
The typical load profile of the combined datasets illustrates
the aggregate load fluctuations of all houses over a 24 hour
period, as shown in Fig. 4.
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Fig. 4. Typical load profile of combined datasets.

Before training, the load profiles are normalized using
min-max normalization as:

x(¢) —min(x)
max (x) —min(x)

Xnom(1) = 3)
where x(¢) is the load value at time ¢, and x,,,(¢) is the nor-
malized load at time ¢.

C. Architecture of PIL-GAN

1) Generator

The generator is designed to complete the missing pieces
from the load profiles without violating the physics-based
constraints. The masked load profile is generated through an
element-wise product of the load profile and a randomly gen-
erated mask of the same size, where 1 indicates the presence
of data and O represents the missing data. The inputs to the
generator include the masked load profiles, the temperature
profiles of the day, and the mask. The generator includes
several fully connected layers with rectified linear unit (Re-
LU) as the activation for all the hidden layers. The final out-
put is passed through ReLU, which is appropriate because
the target load profiles are non-negative. This simple archi-
tecture sufficiently proves the applicability of the proposed
model and can be considered a starting point for further stud-
ies on additional and more complex constructions.
2) Discriminator

The discriminator obtains a complete load profile, which
is both real and generated, along with the temperature pro-
file. It provides a measure of the probability that the load
profile is authentic. Similar to the generator, the discrimina-
tor also contains fully connected layers that use ReLU for
the hidden layers and a sigmoid function in the output layer,
as the discriminator predicts the probability of real and fake
data between 0 and 1. Thus, by maintaining a simple and
uniform architecture, we aim to convey the essence of apply-
ing the PIL-GAN without further complications.
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For both the generator and discriminator, ReLU is chosen
as the activation function in all the hidden layers to ensure
that the outputs remain positive, aligning with the nature of

Latent noise ‘
Normalized ﬁ ﬁ e T
load data - 2=l
) ] ]
Mask - My
+

‘ Temperature profiles |

Fig. 5. Overall architecture of PIL-GAN.

D. PIL Functions

We incorporate a series of PIL functions to ensure that the
generated load profiles satisfy the real-world physical con-
straints. These PIL functions enforce realistic behaviors such
as energy conservation, limited load fluctuations, peak load
constraints, and smooth temporal transitions. The parameters
governing these constraints are extracted from historical data
including temperature and load profiles, which are prior to
training and remain fixed during the process. For training,
the temperature profiles are analyzed using historical data
with similar temperature patterns.

1) Energy Conservation Loss

The total energy consumed in a day must not exceed the
maximum allowable energy £, ., which is obtained from his-
torical data. The energy conservation loss L., penalizes
load profiles that exceed this limit.

zmax(o Sk, )

where N is the batch size; T is the total number of time
steps per day; and x;, is the generated load at time ¢ for sam-
ple i.
2) Load Fluctuation Loss

To avoid unrealistic spikes or drops in load between con-
secutive time steps, we introduce a maximum allowable
change A, based on historical data. The load fluctuation
loss L g,.uaion PENalizes the load profiles when the change be-
tween consecutive time steps exceeds this threshold.

N(T- l)zgmax( Amax) 5

3) Peak Load Constraint

The load at any given time should not exceed the historical
maximum peak load P,,,. The peak load loss L, penalizes
the generated load profiles violating the following constraint:

TEEmax( Po) ©6)

i=1t=

“)

fluctuation — l t+17

pedk

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 14, NO. 1, January 2026

the load profile data. The overall architecture of PIL-GAN is
illustrated in Fig. 5, demonstrating the inclusion of tempera-
ture profiles.

i Generated
i fake samples

N Check correctness
of discriminator

Dlscrlmmator

Real
i U7 fsamples

Fine tumng

4) Temporal Smoothness Loss
To reflect the gradual changes observed in the real load
profiles, large swings should not occur within a given time
window. The temporal smoothness loss L, e PENalizes
the maximum deviation inside each sliding window of

length w:
1 N T-w

N(T—w) Q)

By considering the maximum absolute difference over the
window, we capture large deviations that could occur any-
where within that window, thereby enforcing smoother transi-
tions over short timespans.

5) Total Loss

The total loss L, during training is the weighted sum of
the individual PIL functions. These functions ensure that the
generated load profiles are realistic and adhere to the physi-
cal constraints derived from the historical data.

Lopn =4 L +A L +A Epeak+

energy “~ energy peak
smoothness

L ‘)2 _xAi.t‘
W '

smoothness — it+t

i=11t=1

fluctuation ~ fluctuation

smoothness (8)
Where Agpergys Aftuctuations Apears N4 Aoomness are the hyperparame-
ters that balance the contribution of each loss term. For sim-
plicity, they are initially set to be 1 as the starting point,
with future tuning planned for optimization.

Although the physical constraints in this paper remain sim-
ple, they significantly improve the quality of the imputed
load profiles by ensuring realistic energy consumption pat-
terns, smooth transitions, and adherence to the observed lim-
its. Moreover, the application of the PIL-GAN is not limited
to load profile imputation. It can be extended to more com-
plex tasks where physical loss functions or constraints are
derived from complex differential equations governing sys-
tem dynamics. This makes the PIL-GAN highly adaptable to
a wide range of applications that require synthetic data gen-
eration, while maintaining fidelity to physical laws.

E. Training Procedure

1) Adversarial Training
Adversarial training is employed to optimize the generator
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and discriminator. The discriminator is trained to maximize
the probability of correctly identifying real and generated
load profiles, whereas the generator aims to generate load
profiles that the discriminator cannot distinguish from the re-
al ones.

The discriminator loss £, is given by:

gD:_}Vﬁ(lnD(x,.) +In(1-D(%,))) ©)

where x; is the real load profile; and %, is the generated load
profile.
2) Generator Loss with Physics-informed Constraints

The generator loss consists of two components, i.e., adver-
sarial loss L, and total loss L.

L6=Log+ Lonn

1 & -
Eadv=—ﬁ21nD(xi)
iz

(10)
(11)

3) Optimization

We use the Adam optimizer for the generator and discrimi-
nator, with the learning rates o, and «,, respectively. The
training procedure is shown in Algorithm 1 by iteratively up-
dating the discriminator and generator.

F. Inpainting Procedure

Once the PIL-GAN is trained, a generator is used to in-
paint the missing segments in the new load profiles.

Given a masked load profile vector x, mask m, and tem-
perature #, the generator produces an inpainted profile x. The
observed and generated data are combined to form a com-
pletely inpainted profile x

Algorithm 1: training procedure for PIL-GAN

1: Discriminator update:
N
2:  Sample real profiles {xi} -

AN
Generate inpainted profiles {x,},il

Compute £, and update discriminator
: Generator update:

. N
Generate inpainted profiles {x,} .
Compute L;=L 4+ Lonn
Update generator

AN AR

x =mOx+ (1-m)0Ox

(12)
where © denotes element-wise multiplication; and 1 is a vec-
tor of ones.

inpainted

G. Denormalization and Post-processing

After inpainting, the load profiles are denormalized to re-
turn to the original scale:

xdenorm:'i\j(xmax_xmin) +xmin (13)
where X, 18 the denormalized load profile vector; x is the
normalized (predicted) load profile vector; and x,, and x,,,
are the scalar maximum and minimum values of the original

load profile, respectively. The operations are applied element-
wise, with scalars broadcast across the vector dimension.

H. Visualization and Evaluation

To assess the performance of the PIL-GAN, we evaluate it
for two main tasks: high-resolution load profile generation
and inpainting. The inpainting tasks include both peak in-
painting and valley inpainting, as well as inpainting in miss-
ing segments. These tasks are illustrated in Fig. 6.

inpaimed:
Peak Valley
inpainting  inpainting
Load Load
Missing segment
Time Time
Load Load
Low-resolution High-resolution
/ load profile —_— load profile
Time Time

Fig. 6.

The original, masked, and inpainted load profiles are visu-
alized to qualitatively assess the performance of the PIL-
GAN. Quantitative evaluation metrics are computed between

Illustration of inpainting tasks. (a) Peak and valley inpainting. (b) High-resolution load profile generation.

the inpainted segments and the ground truth to evaluate the
accuracy. These metrics include the mean absolute percent-
age error (MAPE), root mean square error (RMSE) (as a per-
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centage), peak discrepancy error (PDE), trough discrepancy
error (TDE), energy deviation percentage (EDP), and spec-
tral distortion percentage (SDP).
1) MAPE

The MAPE is calculated as:

1 xinpaimed(t) _xtrue(t)
‘M|tEM xtruc(t)-‘rg
where M is the set of time steps corresponding to the miss-

ing segments; x,.(#) is the original load value at time

t e M; and ¢ is a small constant to prevent division by zero.
2) RMSE
The RMSE is calculated as:

1
RMSE: \/W|t§/\‘4<xinpaintcd(t) _xtruc(t))2

MAPE = x 100%

(14

(15)

And RMSE as a percentage is given by:
RMSE

|M|,Z|x"“° |

RMSE = x 100%

(16)

3) PDE
The PDE is calculated as:

r}leag( xmpamted( t ) - rtnga;( xtrue( t )

PDE= x 100%

(17)

max X,..(7)

where P is the peak period within M.
4) TDE
Similarly, the TDE is calculated as:

we(?)

I}E? xmpamted( t )

mlnx
teT

TDE = x 100%

(18)

min X,.,.()

where 7 is the trough period within M.
5) EDP
The EDP is calculated as:

z mpamted

te M

= D Xt

te M

z xtrue(t)

te M

EDP= x 100%

(19)

6) SDP
The SDP is calculated as:

et o]
M;\xtm(m

where X;, (k) and x, (k) are the discrete Fourier trans-

SDP= x100% (20)

forms of the inpainted and true signals over M, respective-
ly; and N; is the number of frequency components in load
curve.

1. Model Complexity and Training Efficiency

In addition to GAN and PIL-GAN, the LSTM, RNN, and
variational autoencoder (VAE) are also employed for compar-

ative analysis. The structures of the LSTM, RNN, and VAE
are shown in Figs. 7-9, respectively. The baseline benchmark
model also maintains a cubic spline interpolation. Note that
in Fig. 7, C, is the cell state; f, is the forget gate activation; i,
is the input gate activation; O, is the output gate activation;
h, is the hidden state; sigmoid is the sigmoid function; and
tanh is the hyperbolic tangent function. In Fig. 8, L is the out-
put; X is the input; and U, V, and W are the input-to-hidden,
hidden-to-hidden, and hidden-to-output weights, respectively.
In Fig. 9, X is the input to the encoder; C is the latent space
representation; and X is the output produced by the decoder.

Forget
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Fig. 7. Structure of LSTM.

Fig. 8. Structure of RNN.
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Fig. 9. Structure of VAE.

As the original data of the load profile are in 15 min inter-
vals and are discrete, only sampled data from the cubic
spline interpolation are used for inpainting instead of the
whole continuous load profile, as shown in Fig. 10.

A grid search is conducted over multiple learning rates,
and the hyperparameters listed in Table I represent the opti-
mal settings at which all the models achieve their best per-
formances.

The PIL-GAN has been compared with TimeGAN, the
state-of-the-art (SOTA) model for time-series inpainting. As
the task involves inpainting, and there are no explicitly de-
fined physical differential equations, the PIL-GAN slightly
underperforms TimeGAN. However, owing to its simpler ar-
chitecture and shorter training time, the PIL-GAN still
achieves results close to those of TimeGAN. Using the same
training conditions, the generator of the PIL-GAN contains
significantly fewer trainable parameters than traditional
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RNNs such as LSTM, RNN, and VAE. The reduction in
complexity not only accelerates the training process, but also
enables higher accuracy in the generated load profiles.

Load Missing segment
"-E\Cubic spline interpolation
15 min !
interval
Fig. 10. Cubic spline interpolation for inpainting.
TABLE I
HYPERPARAMETERS
Hyperparameter Value
Number of epochs 20000
Batch size 128
Learning rate 0.0001

Table II presents the number of trainable parameters and
training time per epoch for each model. The GAN (both PIL-
GAN and GAN (no physics) has approximately 391089 train-
able parameters, which are less than half of those in the
LSTM and RNN. Specifically, the LSTM has 901168, VAE
has approximately 680000, and the RNN model has 862256
trainable parameters. Similarly, TimeGAN, with 400158
trainable parameters, is used for the comparison.

TABLE 1T
NUMBER OF TRAINABLE PARAMETERS AND TRAINING TIME PER EPOCH

Model Number of trainable parameters  Time per epoch (s)

GAN 391089 0.42
TimeGAN 400158 1.20

LSTM 901168 0.68

RNN 862256 0.64

VAE 680000 0.50

The training of GAN is faster than sequential recurrent
networks owing to fewer parameters, lower computational
costs, and its inherently parallelizable architecture. The train-
ing of GAN is even faster than that of TimeGAN, because
the use of RNNs in TimeGAN cannot be efficiently parallel-
ized. Furthermore, in the quantitative analysis, it is shown
that the simpler architecture of PIL-GAN does not compro-
mise the accuracy compared with LSTM, RNN, and VAE
that have more complex structures. Even with a shorter train-
ing time, its output is almost comparable to that of Time-

GAN.

By incorporating PIL functions into the training proce-
dure, the generator learns to simultaneously output data that
comply with energy conservation laws, operational con-
straints, and temporal dynamics, which are as realistic as
possible. The PIL-GAN is therefore a powerful tool for high-
resolution load profile generation and inpainting.

IV. RESULTS AND DISCUSSION

A. Results of Inpainting

The inpainting performance of the PIL-GAN is evaluated
against various baseline models such as GAN (no physics),
LSTM, RNN, VAE, and cubic spline interpolation. Figure 11
shows the results of peak and valley inpainting of missing
data. In both cases, 10 out of the 96 data points of the origi-
nal load profile are removed around these regions (pink ar-
eas in Fig. 11), and the performances of all the models are
compared.

50,
45}
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Load (kW)

0 5 10 15 20 25
Time (hour)

(a)

Load (kW)
W
S

25+
20+
155
10 . . . . .
0 5 10 15 20 25
Time (hour)
(b
——Original profile;——PIL-GAN;——GAN (no physics)
——LSTM; - RNN;—TimeGAN
VAE;——Cubic spline interpolation

Fig. 11. Results of peak and valley inpainting of missing data. (a) Peak in-
painting. (b) Valley inpainting.

The closest approximation to the original load profile is
provided by TimeGAN, which effectively fills in the missing
segments while maintaining physical consistency, followed
by the PIL-GAN. Meanwhile, models such as LSTM, RNN,
VAE, and cubic spline interpolation struggle to maintain
load fluctuations and exhibit noticeable deviations in key re-
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gions. The PIL-GAN performs similar to TimeGAN, while
outperforming VAE and cubic spline interpolation.

B. Results of High-resolution Load Profile Generation

The PIL-GAN is evaluated for a task in which low-resolu-
tion time-series data with few measurements are converted
into high-resolution data. The results for conversion of a
20% sampled load profile to high-resolution load profile are
shown in Fig. 12, which shows that PIL-GAN, compared
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with other models such as LSTM, RNN, VAE, and GAN (no
physics), generates a much smoother high-resolution profile
that closely tracks the original measurements. The smooth
and realistic profiles generated by the PIL-GAN are due to
physical constraints such as energy conservation. As the sam-
pling rate decreases, the performance of the cubic spline in-
terpolation deteriorates, as sparse data limit the ability of
capturing signal variations, which is illustrated in Fig. 13.
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Fig. 12.
(e) TimeGAN. (f) VAE. (g) Cubic spline interpolation.
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Fig. 13. Performance of cubic spline interpolation at low sampling rates.

C. Full Synthetic Load Profile Generation

This is an application of the PIL-GAN to generate full
synthetic load profiles with temperature profiles as input. As
illustrated in Fig. 14, the results generated by PIL-GAN are
nearly indistinguishable from the original load profile, which
effectively captures the temporal patterns, peak load periods,
and overall trends. However, models such as the LSTM and

Results for conversion of a 20% sampled load profile to high-resolution load profile. (a) PIL-GAN. (b) GAN (no physics). (c) LSTM. (d) RNN.

RNN show notable deviations, mainly during peak load peri-
ods. A cubic spline could not be used, because the load pro-
files are generated by feeding the temperature profiles. This
demonstrates that the PIL-GAN can be applied to generate
realistic load profiles that preserve key characteristics such
as peak values and fluctuations based on temperature inputs.

50

0 5 10 15 20 25
Time (hour)
——Original profile;——PIL-GAN; ——GAN (no physics)
——LSTM;----- RNN;—TimeGAN; - VAE

Fig. 14. Comparison of full synthetic profile generation.
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D. Quantitative Analysis

Tables III and IV present the quantitative evaluations of
the peak and valley inpainting task and high-resolution load
profile generation task of different models, respectively. We
use the mean percentage error (MPE), RMSE, EDP, and
SDP to comprehensively assess the performances of different
models.

Table III shows that the PIL-GAN consistently outper-
forms the other models across all metrics in the peak and
valley inpainting tasks. The PIL-GAN reduces the RMSE
and MPE significantly compared with GAN (no physics).
Similarly, Table V shows the comparison of inpainting per-
formances for different missing ratios, where the error metric
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is the sum of absolute errors of all error metrics presented.

The ablation study on the PILs in Table VI combining
peak and valley regions further confirms that the inclusion
of PILs significantly improves the accuracy. Removing any
of these components results in substantial performance degra-
dation, as indicated by the increased values of MAE and
RMSE.

In Table IV, a similar trend can be observed for high-reso-
lution load profile generation task. The PIL-GAN outper-
forms traditional models such as LSTM, RNN, VAE, and cu-
bic spline interpolation. In addition, PIL-GAN achieves a
performance comparable to that of TimeGAN. Thus, the PIL-
GAN is more effective for generating accurate high-resolu-
tion load profiles, particularly in complex nonlinear scenarios.

TABLE III
QUANTITATIVE EVALUATION OF PEAK AND VALLEY INPAINTING TASK OF DIFFERENT MODELS

Region Model MAPE RMSE (%) PDE TDE EDP SDP
TimeGAN (SOTA) 0.6219 1.9696 0.5297 0.1735 5.813
PIL-GAN 0.8702 2.8483 0.4683 0.2694 8.0778
GAN (no physics) 2.5143 8.5123 2.7695 1.9512 22.4167
Peak LSTM 2.6189 8.9874 2.9781 2.0817 23.6238
RNN 2.9972 9.8341 3.3124 2.3184 25.9993
VAE 1.9458 6.8834 2.2542 1.5832 18.2997
Cubic spline interpolation 3.9911 12.4421 4.0199 3.4429 36.2078
Error reduction (excluding SOTA) 1.0756 4.0351 1.7859 1.3138 10.2219
TimeGAN (SOTA) 0.4939 1.8059 8.8329 0.0629 5.1011
PIL-GAN 0.6653 2.3769 8.9834 0.1157 6.5968
GAN (no physics) 1.6247 5.1312 14.8732 1.4867 14.2425
LSTM 1.7123 5.7654 15.4987 1.6143 15.5312
Valley RNN 2.1334 6.6232 17.2168 1.9222 17.3014
VAE 1.4531 4.3898 11.3813 1.1512 11.6893
Cubic spline interpolation 3.8099 10.7343 23.4924 2.9732 30.5987
Error reduction (excluding SOTA) 0.7878 2.0129 2.3979 1.0355 5.0925
TABLE IV
QUANTITATIVE EVALUATION OF HIGH-RESOLUTION LOAD PROFILE GENERATION TASK OF DIFFERENT MODELS
Model MAPE RMSE (%) PDE TDE EDP SDP
TimeGAN (SOTA) 5.210 6.813 4.970 9.505 3.080 22.890
PIL-GAN 6.012 7.421 4.881 8.928 3.411 24.110
GAN (no physics) 12.876 17.238 6.122 14.902 7.112 63.542
LSTM 15.991 20.659 6.289 16.372 5.212 57.487
RNN 18.574 23.877 6.931 18.562 6.104 71.209
VAE 9.341 12.928 5.211 11.885 4.408 32.584
Cubic spline interpolation 8.212 9.113 5.612 9.905 4.802 34.879
Error reduction (excluding SOTA) 2.200 1.692 0.330 0.977 0.997 8.474

Additionally, the error distributions of the peak and valley
inpainting tasks for different models are illustrated in Fig.
15. The TimeGAN maintains the lowest error distribution,
followed by the PIL-GAN, for both profiles, further demon-
strating the robustness of incorporating physics-based con-
straints into the model. Similarly, the probability distribu-
tions of the predicted and true values for the different mod-
els are shown in Fig. 16. It can be observed that the PIL-

GAN model produces distributions that are closer to the orig-
inal load profile compared with the other models.

E. Discussion

Comprehensive qualitative and quantitative analyses illus-
trate that the PIL-GAN significantly outperforms traditional
GAN models, VAE, LSTM, and RNN, in high-resolution
load profile generation and inpainting.
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TABLE V
COMPARISON OF INPAINTING PERFORMANCES FOR DIFFERENT MISSING RATIOS

Error
Missing ratio (%) - - ; N -
TimeGAN PIL-GAN GAN (no physics) LSTM RNN VAE Cubic spline interpolation
20 29.2668 34.6278 82.1323 86.3215 97.0367 63.3958 78.3634
30 33.1337 37.9836 88.7422 92.9864 105.0734 65.5560 83.3611
40 37.0005 41.3395 95.3522 98.7986 113.1101 67.7162 88.3589
50 40.8674 44.6954 101.9621 104.0560 121.1469 69.8764 105.3567
60 44,7342 48.0513 108.5721 110.2509 129.1836 72.0366 124.3545
TABLE VI
ABLATION STUDY ON PILS
Model MAPE RMSE (%) PDE TDE EDP SDp Total error
PIL-GAN 1.5355 5.2250 0.4683 8.9834 0.3851 14.6746 31.2719
Without energy conservation 2.8443 7.8811 1.2134 11.1976 1.8647 21.4532 46.4540
Without load fluctuation 2.0201 6.5387 0.8539 10.5292 1.0223 17.7854 38.7496
Without peak load constraint 2.2272 6.9510 0.9296 10.8323 1.2437 18.6957 40.8793
GAN (no physics) 4.1390 13.6435 2.7695 14.8732 3.4379 36.6592 75.5223
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Although the applicability and effectiveness of the PIL-
GAN for solving real-world problems can be significantly in-
creased by integrating sophisticated physical laws, their inte-
gration creates technical challenges.

Overall, the PIL-GAN provides a promising path for ener-
gy management systems, particularly when dealing with
missing or sparse data, where it is critical to maintain physi-
cal consistency. In future studies, this model will be scaled
to larger datasets and extended to incorporate additional
physical laws, particularly distinct energy domains, to im-
prove its robustness and utility for more complex applica-
tions.

V. CONCLUSION

To generate high-resolution load profiles and perform the
inpainting, PIL-GAN is introduced, which is a novel model
that integrates GANs with physical constraints, allowing the
system to learn from both the data and the underlying physi-
cal laws. The results of this paper show that the PIL-GAN
outperforms traditional GAN, LSTM, RNN, VAE, and cubic
spline interpolation in high-resolution load profile generation
and inpainting tasks. The addition of PIL improves accuracy
and physical consistency, which is confirmed in the ablation
study. PIL is derived from PINN and incorporated into the
loss optimization of GAN to improve the results as compara-
ble to those of the TimeGAN. Hence, the incorporation of Ti-
meGAN with physical constraints can yield a hybrid model
with superior results.

PIL-GAN can also be applied in other areas of power sys-
tems such as optimal power flow analysis and PMU dataset
generation. By integrating additional physical equations
(e.g., the swing equation), PIL-GAN can comply with com-
plex power system dynamics and generate high-resolution da-
tasets using fewer PMUs.

Overall, the PIL-GAN offers a practical solution for high-
resolution load profile generation and inpainting. It improves
the accuracy of generated data while preserving physical con-
sistency by fusing data-driven techniques with an awareness
of the physical system. This bridges the gap between ma-
chine learning and practical applications by enabling more
reliable and effective energy system analyses.
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