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Abstract——The growing electricity demand, combined with the 
increasing integration of photovoltaic (PV) generation into the 
distribution system, requires higher flexibility from the demand 
side. This paper proposes a customized scheduling approach for 
demand response (DR) of customers with dispatchable inverters 
in distribution-level PV facilities. Based on the Chilean context, 
the proposed approach enables these energy resources to pro‐
vide flexibility in the technical and economic management of 
the distribution system operator (DSO). Specifically, a bi-level 
optimization model is introduced. At the upper level, the DSO 
minimizes distribution system costs by determining daily price 
signals for customers based on their response profile classes 
(RPCs) and active and reactive power set points for PV facili‐
ties. At the lower level, customers aim to reduce their electricity 
bills. In addition, the proposed approach ensures the reliable op‐
eration of the distribution system with high probability by ad‐
dressing uncertainty through chance constraints (CCs). Incorpo‐
rated CCs in the distribution system modeling include the 
squared magnitude of nodal voltage, complex power flow in 
lines, and apparent power of inverters. Finally, two case studies 
are presented, involving 420 residential and commercial Chilean 
customers with two distribution-level PV facilities using real-
world market prices and daily consumption profiles on the 
IEEE 37-node test feeder. Results demonstrate how the pro‐
posed model enables the customized scheduling of customers 
and PV facilities, highlighting its effectiveness over the uniform 
price scheme.

Index Terms——Scheduling, demand response (DR), inverter, 
distribution system, photovoltaic (PV), response profile class 
(RPC), uncertainty.

I. INTRODUCTION 

THE marked growth in electricity demand, driven mainly 
by emerging technologies such as electric vehicles and 

heat pumps, poses a significant challenge to the distribution 
system concerning electrification. In Chile, for example, the 
electricity consumption among residential and commercial 
customers and services in 2023 increased by 5.9% compared 
with 2022 and 10.2% compared with 2021 [1]. Also, the ef‐
fective integration of renewable energy sources, especially 
photovoltaic (PV), into the distribution system remains prob‐
lematic due to power balance issues. Both conditions need 
higher flexibility from the demand side, which can be 
achieved through demand response (DR).

The implementation of DR targets the control of the pow‐
er-consuming behavior of customers to meet the following 
objectives: ① reduction of the peak power consumption; ② 
reduction of the total needed power generation, as the main 
result of the prior objective; ③ change of the demand to fol‐
low the available supply, especially with high penetration of 
renewable energy sources; and ④ elimination of overloads 
in the distribution system [2]. In particular, time-varying pric‐
ing, or dynamic pricing, can induce the DR of customers, 
thereby improving economic efficiency and enhancing wel‐
fare compared to other forms [3].

In this context, several investigations have attempted to 
determine effective time-varying price signals for customers 
by exploiting important mathematical programming models. 
Furthermore, these investigations can be classified based on 
the designed price signal. On the one hand, some of them de‐
termine a uniform price signal for the set of customers; on 
the other hand, others define customized pricing approaches 
for different groups of customers. In the former, for exam‐
ple, [4] analyzes the scheduling of the load-serving entity 
and formulates its interaction with flexible and inflexible ag‐
gregated loads as a bi-level problem that delivers hourly tar‐
iffs for the flexible ones. Reference [5] proposes a stochastic 
bi-level model in which the load-serving entity aims to opti‐
mize profit and reserve capacity and similarly designs dy‐
namic prices for the aggregated flexible loads. Reference [6] 
formulates a hierarchical structure including the distribution 
system operator (DSO), DR providers, and customers, where 
dynamic and static prices are developed respectively for the 
flexible and inflexible customers. A stochastic scheduling ap‐
proach is introduced in [7] to determine both the hourly re‐
tail prices considering the electricity value and the bidding 
strategy of the distribution company in the day-ahead mar‐
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ket. In [8], a bi-level model that formulates the interaction 
between the DSO and end-users allows for the design of tar‐
iffs including uncertainty in demand, PV generation, and 
market prices. Reference [9] presents a dynamic pricing 
model to promote renewable integration and flatten the grid 
demand profile using a bi-level optimization that coordinate‐
ly dispatches flexible loads. Based on the potential in DR of 
thermostatically controlled loads, [10] proposes a multi-per‐
spective pricing model to formulate proper price signals. 
Lastly, a stochastic bi-level model is proposed in [11] to de‐
sign daily retail prices for energy management of thermal 
loads in a community of buildings. Although these investiga‐
tions make a notable effort by producing dynamic price sig‐
nals and providing financial profits, their main limitation is 
considering the same price signal for customers with differ‐
ent preferences.

In line with this work, some studies have recently expand‐
ed the prior approach by introducing customized price sig‐
nals. Reference [12] proposes a dynamic pricing method that 
includes adaptive customer segmentation and customized 
modeling of the resulting demand clusters based on aggregat‐
ed price responses. However, the paper assumes a linear 
function for the price elasticities of demand. This approxima‐
tion requires many observations to estimate the correspond‐
ing parameters, which contrasts with the ideal case of daily 
segmentation. Assuming different types of flexible consum‐
ers, [13] presents a bi-level optimization for customized re‐
tail pricing and bidding of the aggregated demand in the day-
ahead market. Through a bi-level model, [14] determines 
customized retail prices for groups of residential and industri‐
al consumers, considering a price-elastic demand for the first 
and learning the price-demand relation for the second. How‐
ever, a practical limitation for the groups of residential con‐
sumers is obtaining the actual proportions of the shiftable 
and curtailable loads. The common point among these pa‐
pers is the generation of daily price signals based on the 
characteristics of customer groups. However, two key re‐
search questions that motivate this investigation remain unan‐
swered. ① Is it feasible to determine the price signals that 
provide desired power responses from customers according 
to the conditions of the distribution system? ② How can the 
uncertainty associated with customers’  behavior be account‐
ed for? Answering both questions requires the individual 
characterization of customers and assessing the impact of 
their consumption profiles on the distribution system in re‐
sponse to the customized tariffs while also considering devia‐
tions from expected behaviors.

Furthermore, the increasing distribution-level PV genera‐
tion raises the interest in scheduling the operation of invert‐
ers to provide active power and control reactive power. In 
Chile, by March 2025, the capacity of this type of distribut‐
ed generation is 2833 MW [15]. The implementation of opti‐
mization techniques that include computing the power set 
points of dispatchable inverters in PV facilities has also been 
developed based on forecasts of available generation and the 
expected behavior of customers. Among the related works, 
[16] introduces a chance-constrained AC power flow where 

the power set points for PV and battery systems are opti‐
mized while enforcing voltage regulation with uncertainty in 
renewable energy sources and loads. Similarly, [17] enables 
the DSO to obtain the dispatch for PV and battery systems 
using a chance-constrained model that accounts for uncertain‐
ty in PV generation, end-user consumption, requested flexi‐
bility, and squared voltage magnitude. Considering the uncer‐
tainty of PV generation, [18] formulates a robust optimiza‐
tion that selects the critical subset of inverters to provide an‐
cillary services and finds their optimal active and reactive 
power set points. The above studies focus on determining 
the optimal power set points of inverters, primarily for local 
voltage regulation; however, they do not intend to control 
DR.

By appropriately choosing dynamic price signals, the 
DSO reduces distribution system costs and increases reliabili‐
ty, for example, by shifting flexible consumption to periods 
with high stochastic power generation [19]. This paper pres‐
ents a daily scheduling approach for DR of customers 
through customized price signals and dispatchable inverters 
in distribution-level PV facilities. To this end, a bi-level opti‐
mization model [20] is introduced with the DSO at the up‐
per level and customers at the lower level. The DSO mini‐
mizes costs and determines the customized price signals and 
power set points of inverters, while customers reduce their 
electricity bills when the prices materialize. This paper com‐
prises a characterization stage to determine response profile 
classes (RPCs) [21] of customers and assesses the impact of 
their power responses on the distribution system. The pro‐
posed model also addresses the uncertainty in the distribu‐
tion-system modeling by including chance constraints (CCs) 
[22] for the squared magnitude of nodal voltage, complex 
power flow in lines, and apparent power of inverters. By as‐
suming a normal distribution for uncertainty, the CCs are 
then analytically reformulated. Lastly, with the reformulation 
of lower-level problems, the chance-constrained bi-level 
model is converted to an equivalent mixed-integer second-or‐
der cone programming (MISOCP) model.

The ongoing electrification of the Chilean residential and 
commercial sectors requires additional infrastructure in the 
distribution system. In general, end-users are responsible for 
covering the associated costs. However, exploiting demand-
side flexibility contributes to avoiding (or delaying) the oper‐
ational cost increase and need for new investments, thus fa‐
cilitating the electrification. Regulated customers in Chile 
typically contract a (regulated) tariff of a single energy 
price. However, the DSO, which obtains electricity through 
bilateral contracts, can offer additional tariff options (the reg‐
ulated flexible tariffs) [23], which remain valid for 12 
months and may include dynamic pricing. This paper ex‐
plores a scenario in which the DSO engages with customers 
using this type of flexible tariff.

The main contributions of this paper are summarized be‐
low.

1) A daily scheduling approach is proposed for DR of cus‐
tomers through customized price signals and dispatchable in‐
verters in distribution-level PV facilities based on the condi‐
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tions of the distribution system. This study determines the 
RPCs of customers and assesses the impact of their con‐
sumption profiles on the distribution system in response to 
the customized price signals. In addition, uncertainty is ad‐
dressed in the distribution-system modeling considering the 
stochastic nature of customers and PV generation. A chance-
constrained bi-level programming model is introduced with 
the DSO at the upper level and customers at the lower level. 
The DSO minimizes distribution-system costs by determin‐
ing the price signals and power set points such that limits of 
squared magnitudes of nodal voltages, complex power flows 
in lines, and apparent power of inverters are satisfied with 
high probability. Customers aim to reduce their electricity 
bills.

2) The proposed approach is tested in two case studies 
with real-world market prices and daily consumption profiles 
of residential and commercial Chilean customers on the 
IEEE 37-node test feeder. Results demonstrate how the pro‐
posed model enables the customized scheduling of custom‐
ers and PV facilities. This paper also explores the impact of 
uncertainty on grid operation and presents a comparison 
with the uniform price scheme.

The organization of this paper is as follows: Section II 
provides theoretical foundations and models for customers, 
PV facilities, and the distribution system. Section III formu‐
lates the programming problem under uncertainty, and Sec‐
tion IV describes its solution methodology. Section V pres‐
ents the case studies to assess the proposed approach and an‐
alyze the uncertainty cost. Finally, Section VI concludes the 
work.

II. THEORETICAL FOUNDATIONS AND MODELS 

A. Expected Response Model of Customers

Let s̄lt
= p̄lt

+ jq̄lt
 be an expected complex power value to be 

consumed at time t by a customer l under a contract. There‐
fore, p̄lt

 is the active component and q̄lt
 is the reactive one. 

In this paper, the following linear model is defined to set a 
flexible active power profile [19]:

pmin
lt
£ p̄lt

: βmin
lt

    lÎ LtÎ T (1)

p̄lt
£ pmax

lt
: βmax

lt
    lÎ LtÎ T (2)

∑
t = 1

T

p̄lt
Dt ³ el: εl    lÎ L (3)

Equations (1) and (2) provide the expected response p̄lt
 be‐

tween a minimum value pmin
lt

 and a maximum value pmax
lt

 for 

customer l at time t, as an element of its expected active 
power profile. Likewise, L and T are the sets of customers 
and time points within the day, respectively. Also, p̄lt

 can in‐

crease or decrease depending on the price due to the com‐
bined use of shifting and shedding loads. From an expected 
value p̄lt

, the corresponding expected response q̄lt
 can be ob‐

tained for a specific power factor. Finally, a minimum daily 
energy el is specified by (3) to account for basic activities, 

where Dt is the interval between two consecutive time 
points. Variables βmin

lt
, βmax

lt
, and εl, arranged after the colon, 

are dual.
A refined estimation of the customer’s consumption activi‐

ty is feasible based on an online characterization of daily 
consumption profiles, as demonstrated in [21], which pres‐
ents the customer’s RPCs (or consumption patterns) as the 
main result. Each RPC represents for a customer a portion 
(of similar daily consumption profiles) of the polytope that 
entirely contains its load scenarios in the corresponding vec‐
tor space. Similarly, this paper comprises a characterization 
stage. Specifically, it applies the clustering by fast search 
and find of density peaks (CFSFDP) algorithm [24] directly 
to the daily consumption profiles of a predefined period be‐
fore a selected date for the proposed approach, resulting in 
updated customers’  RPCs. For the above-selected date, this 
paper assumes that customers use the highest-probability 
RPC on the day of the week corresponding to that date.

From a set of daily consumption profiles associated with a 
specific RPC, each pair of parameters pmin

lt
 and pmax

lt
 of the 

model can be obtained as the corresponding extreme values, 
providing a convex approximation of the active power. For 
el, this paper considers the total consumption of the average 
profile among all profiles within the RPC.

B. Model of PV Facilities

Let s̄gt
= p̄gt

+ jq̄gt
 be a complex power forecast to be inject‐

ed by a PV facility gÎG at time t, where G is the set of PV 
facilities. Therefore, p̄gt

 is the active component, which repre‐

sents the active power forecast at the AC side of the invert‐
er, and q̄gt

 is the reactive one. Then, the following control 

model is defined for setting a flexible active power profile:

0 £ p̄gt
£ p̄av

gt
    gÎGtÎ T (4)

Equation (4) denotes an active power curtailment provided 
by the inverter, where p̄av

gt
 is the forecast of the available ac‐

tive power, which coincides with the maximum power point 
and varies stochastically over time based on solar irradiance.

With the increasing penetration of distribution-level PV fa‐
cilities, interest is shifting toward using inverter capability to 
absorb or inject reactive power. In addition to (4), the follow‐
ing constraint defines the inverter capability for adjusting the 
reactive power output:

p̄2
gt
+ q̄2

gt
£(S max

g )2    gÎGtÎ T (5)

where S max
g  is the rated apparent power of the inverter of PV 

facility g.
However, the IEEE Standard 1547-2018 [25] encourages 

the inverter-level modulation of power values in response to 
local grid conditions. This standard recommends injecting or 
absorbing reactive power for active power output levels 
greater than or equal to the minimum steady-state active 
power capability. As a result, the convex region defined 
from this value in the complex plane entitles reactive power 
generation exclusively during daylight.
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C. Model of Distribution System

This paper uses the linear DistFlow model introduced by 
[26], which is a lossless approximation of the AC power 
flow equations. The approximate relations to account for 
power flows and nodal voltages in the distribution system fa‐
cilitate the application of convex reformulations for CCs.

Let a radial distribution system comprise the correspond‐
ing nodes, collected in the set N {0} with N representing 
the set of nodes, and distribution lines, represented by the 
set of pairs of nodes E = {(mn) :mÎN {0}nÎN}. Any 
sending node m lies on the unique path from node 0 to its re‐
ceiving node n. Node 0 represents the secondary side of the 
power transformer at the substation and is considered as the 
slack node. Thus, its nominal voltage v0 is fixed and known 
(typically 1.0 p.u.).

The power injection at slack node 0 depends on the power 
states of the other nodes. Each node n is characterized at 
time t by its complex power Snt

=Pnt
+ jQnt

, where Pnt
 and Qnt

 

are the active and reactive power, respectively, and by the 
magnitude of its complex voltage vnt

. To provide linear con‐

straints, let Vnt
 be the square of vnt

. Vnt
Î [V minV max ], where 

V min and V max are the minimum and maximum voltage lim‐
its, respectively. Likewise, each line (mn) has an impedance 
value Zmn =Rmn + jXmn, with Rmn and Xmn representing the re‐
sistance and reactance, respectively. Also, let Smnt

=Pmnt
+ jQmnt

 

denote the complex power flow from node m to node n at 
time t, where Pmnt

 and Qmnt
 are the active and reactive power 

flows, respectively. Finally, let S max
mn  be the apparent power 

limit of the line.
From the above parameters, the following linear power 

flow and voltage equations are defined for the model:

Pmnt
= d T

mn pn
t     (mn) ÎEtÎ T (6)

Qmnt
= d T

mnqn
t     (mn) ÎEtÎ T (7)

Vnt
=Vmt

- 2 (Rmn Pmnt
+XmnQmnt )     (mn) ÎEtÎ T (8)

where dmn is a vector whose elements correspond to the 
(mn)th row of a | E | ´ | N | binary matrix D that maps the 
values of active and reactive power at nodes into power 
flows and voltages, and | × | denotes the cardinality of a set; 

and pn
t = [ ]P1t

P2t
PNt

T

 and qn
t = [ ]Q1t

Q2t
QNt

T

 are the 

vectors of active and reactive power of nodes, respectively. 
In D, each element in the (mn)th row and nth column takes a 
value of 1 if line (mn) is part of the path from the slack 
node 0 to node n and a value of 0 otherwise.

The expressions for the (net) active and reactive power at 
each node are as follows:

Pnt
= hT

n p t    nÎNtÎ T (9)

Qnt
= hT

n qt    nÎNtÎ T (10)

where hn is a vector whose elements correspond to the nth 
column of an | L +G | ´ | N | binary matrix H that indicates 
the belonging of each customer l and PV facility g to the 
corresponding node n; and p t and q t are the vectors compris‐
ing active and reactive power of both customers and PV fa‐

cilities at time t, respectively.

III. PROGRAMMING PROBLEM FORMULATION UNDER 
UNCERTAINTY 

A. Uncertainty Modeling

The modeling of active power values of customers and 
PV facilities can take the following form:

plt
= p̄lt

+ ξlt
    lÎ LtÎ T (11)

pgt
= p̄gt

+ ξgt
    gÎGtÎ T (12)

where ξlt
ÎR and ξgt

ÎR are the stochastic variables repre‐

senting the deviation of customer response and the PV fore‐
cast error, respectively.

Thus, for each time t, a random vector ξ tÎRN that col‐
lects the resulting active power deviation and forecast error 
at the nodes can be determined. Also, it is possible to ex‐
press the power flows in lines and nodal voltages in terms 
of ξ t. For the first case:

Pmnt
= P̄mnt

+ d T
mnξt    (mn) ÎEtÎ T (13)

Qmnt
= Q̄mnt

+ d T
mnΘtξt    (mn) ÎEtÎ T (14)

where P̄mnt
 and Q̄mnt

 are computed using (6) and (7) with ex‐

pected and forecast values, respectively; and Θt is an | N | ´
| N | diagonal matrix relating the active and reactive nodal de‐
viations and errors through the tangent of the power factor 
angle at time t.

Analogously, the uncertain nodal voltages are:

Vnt
= V̄nt

- 2d T
n (RD +XDΘt ) ξt    nÎNtÎ T (15)

where V̄nt
 is computed using (8) with expected and forecast 

values; dn is a vector whose elements correspond to the nth 
column of D; and R and X are the | N | ´ | N | diagonal matri‐
ces with resistance and reactance values of lines, respective‐
ly.

B. Chance-constrained Bi-level Formulation

This paper presents a hierarchical programming structure 
comprising two levels to solve the daily scheduling problem. 
At the upper level, the DSO determines the price signals un‐
der uncertainty (for the selected date). At the lower level, 
each customer adjusts its consumption to reduce the electrici‐
ty bill.

The objective function in (16a), representing the differ‐
ence between cost and revenue for the DSO, is minimized 
under the expected value over the probability distribution of 
uncertainty. Each λlt

 is a decision price, and λm
t  is the market 

price. The operator E[ ]⋅  denotes the expected value. Equa‐
tion (16b) defines a feasible region for the decision prices 
between a minimum value λmin and a maximum value λmax. 
In (16c), the mean of prices λlt

 over the time horizon T does 

not surpass the regulated price λr, which implies that custom‐
ers do not incur financial losses beyond λr. The outer approx‐
imation set of CCs in (16d) - (16f) ensures that scheduling 
DR of customers and power set points of inverters satisfies 
the limits for squared magnitudes of nodal voltages, com‐
plex power flows in lines, and apparent power of inverters 
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with high probability, where ϵv, ϵf, and ϵa denote the corre‐
sponding violation probabilities, and the operator P{ }×  de‐
notes the probability distribution.

min
λlt
p̄gt

q̄gt
p̄lt

E é

ë

ê
êê
ê
ê
ê∑

t = 1

T

λm
t (∑l = 1

L

plt
-∑

g = 1

G

pgt )Dt -∑
t = 1

T∑
l = 1

L

λlt
plt
Dt

ù

û

ú
úú
ú
ú
ú

 (16a)

s.t.

λmin £ λlt
£ λmax    lÎ LtÎ T (16b)

1
T∑t = 1

T

λlt
£ λr    lÎ L (16c)

P{V min £Vnt
£V max} ³ 1 - ϵv    nÎNtÎ T (16d)

P{P 2
mnt
+Q2

mnt
£ ( )S max

mn

2} ³ 1 - ϵf    (mn) ÎEtÎ T (16e)

P{p2
gt
+ q2

gt
£ ( )S max

g

2} ³ 1 - ϵa    gÎGtÎ T (16f)

(4) (6)-(10) (16g)

Equation (16h) represents the lower-level problems, which 
enforce the expected optimal response of customers given 
the decision prices λlt

.

ì

í

î

ïïïï

ïïïï

p̄lt
Î arg min

p̄lt
( )∑

t = 1

T

λlt
p̄lt
Dt     lÎ L

s.t.  (1)-(3)

(16h)

IV. PROBLEM SOLUTION METHODOLOGY 

Due to (16d)-(16f), the problem solution becomes computa‐
tionally intractable. This section first provides second-order 
cone (SOC) reformulations for these CCs, assuming the 
DSO knows the probability density function of vectors ξ t. 
Specifically, each ξ t~N (0Σt ), where N ( )×  represents the 

normal distribution function, and ΣtÎRN ´N is a diagonal ma‐
trix. Furthermore, due to (16h), tractability depends on refor‐
mulating the problem into a single-level one. Since prices λlt

 

are parameters in the lower-level problems, their objective 
functions and corresponding constraints are linear in the deci‐
sion variables p̄lt

. Thus, the Karush-Kuhn-Tucker (KKT) opti‐

mality conditions [27], which are necessary and sufficient 
for global optimality, can be used in their place. Finally, the 
objective function includes bilinear products, which intro‐
duce nonlinearity. However, this nonlinearity can be ad‐
dressed through linearization using duality theory [27].

A. Reformulation of CCs

1) Voltage CCs. Every single constraint in (16d) with a 
limit for the squared magnitude of nodal voltage is a CC of 
the general form: P{a + bTξt £ c} ³ 1 - ϵ, where aÎR is the 

nominal squared voltage; bÎRN denotes the influence of ξ t 
on the constraint; c is a constant representing the voltage 
limit; and ϵ is the violation probability. In particular, the left-
hand side is a random variable whose distribution denotes 
the variations in the corresponding voltage, with mean a and 

standard deviation  bTΣ 1/2
t 2

. The CC is reformulated exact‐

ly into the following SOC constraint: a £ c -Φ-1(1 -
ϵ ) bTΣ 1/2

t 2
, where Φ is the cumulative distribution function 

(CDF) of the standard normal distribution. Thus, CCs of 
squared magnitudes of nodal voltages in (16d) can be rewrit‐
ten as:

V̄nt
£V max - 2Φ-1(1 - ϵv ) d T

n ( )RD +XDΘt Σ 1/2
t

2
    nÎNtÎ T

(17a)

-V̄nt
£-V min - 2Φ-1(1 - ϵv ) d T

n ( )RD +XDΘt Σ 1/2
t

2

nÎNtÎ T (17b)

2) Power flow CCs. Every single constraint in (16e) with a 
limit for the magnitude of complex power flow is a CC of 

the general form: P{( )a1 + bT
1 ξt

2
+ ( )a2 + bT

2 ξt

2
£ c2} ³ 1 - ϵ, 

where a1a2ÎR are the nominal active and reactive power 
flows in the line, respectively; b1b2ÎRN denote the corre‐
sponding influence of ξ t; and c is a constant representing the 
apparent power limit in this general form. The two terms on 
the left-hand side are squared random variables that denote 
the operating points of the active and reactive power flows, 
respectively, contained in the region SÎR2. S is convex and 
can be internally approximated by the I-sided polygon P in‐
scribed inside S, with I even and selected in advance [28]. 
Then, this paper defines that P = {Ws £ 0}, where {Ws £ 0} is 
a set of half-space linear constraints; W is an I ´ 3 matrix of 
coefficients; and sÎR3 is the vector formed by each of the 
elements of the above general form. By expressing the coef‐
ficients of any ith row of W as wi1, wi2, and wi3, the follow‐
ing linear CC results are obtained for i = 12I: 
P{wi1( )a1 + bT

1 ξt +wi2( )a2 + bT
2 ξt +wi3c £ 0} ³ 1 - ϵ. Due to 

ξ t in both random variables, the following set of constraints 
for the half-space approximation of S can replace the CCs 
of complex power flows in (16e):

wi1 P̄mnt
+wi2Q̄mnt

£-wi3S max
mn -

Φ-1(1 - ϵf ) [ ]wi1d T
mn +wi2d T

mnΘt Σ 1/2
t

2

                       i = 12I(mn) ÎEtÎ T (18)

3) Apparent power CCs. Every single constraint in (16f ) 
with a limit for the inverter capacity is a CC of the general 

form: P{( )a1 + ξgt

2

+ a2
2 £ c2} ³ 1 - ϵ, where in this general 

form, a1a2ÎR are the nominal active and reactive power 
of the inverter, respectively; and c is a constant representing 
its apparent power limit. The squared random variable and 
the squared scalar variable, on the left-hand side, denote re‐
spectively the operating points of the active and reactive 
power contained in the region SÎR2. As in the above situa‐
tion, S is convex and can be internally approximated by the 
I-sided polygon P inscribed inside S. By expanding on this, 

the following linear CC can be obtained as: P{wi1( )a1 + ξgt
+

wi2a2 +wi3c £ 0} ³ 1 - ϵ"iwi1 ³ 0. Thus, the following set 

of constraints for the half-space approximation of S can re‐
place the CCs of active and reactive power set points of in‐
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verters in (16g):

wi1 p̄gt
+wi2 q̄gt

£-wi3S max
g -Φ-1(1 - ϵa ) wi1σgt 2

                                             "iwi1 ³ 0gÎGtÎ T (19)

where σgt
 is the standard deviation of forecast errors for PV 

facility g at time t.

B. Reformulation of Lower-level Problems

The following expressions are obtained by applying the 
KKT formulation to the lower-level problems:

Dtλlt
- βmin

lt
+ βmax

lt
- εlDt = 0    lÎ LtÎ T (20a)

0 £ βmin
lt

^ p̄lt
- pmin

lt
³ 0    lÎ LtÎ T (20b)

0 £ βmax
lt

^-p̄lt
+ pmax

lt
³ 0    lÎ LtÎ T (20c)

0 £ εl^∑
t = 1

T

p̄lt
Dt - el ³ 0    lÎ L (20d)

Equation (20a) is the gradient of the Lagrange function 
concerning variables p̄lt

. Likewise, (20b)-(20d) represent the 

complementary slackness conditions between the non-nega‐
tive dual variables and the inequality constraints of the pri‐
mal problem. Due to the nonlinearity of complementary 
slackness conditions, the mixed-integer method of [29] is 
used, resulting in the following set of linear constraints:

0 £ βmin
lt

£M dΒmin
lt

    lÎ LtÎ T (21a)

0 £ p̄lt
- pmin

lt
£M p(1 -Βmin

lt )     lÎ LtÎ T (21b)

0 £ βmax
lt

£M dΒmax
lt

    lÎ LtÎ T (21c)

0 £-p̄lt
+ pmax

lt
£M p(1 -Βmax

lt )     lÎ LtÎ T (21d)

0 £ εl £M dΕ l    lÎ L (21e)

0 £∑
t = 1

T

p̄lt
Dt - el £M p(1 -Ε l )     lÎ L (21f)

Βmin
lt
Βmax

lt
Î {01}     lÎ LtÎ T (21g)

Ε lÎ {01}     lÎ L (21h)

where M p and M d are the positive constants that are valid as 
upper bounds for the primal and dual variables, respectively.

C. Reformulation of Objective Function

Bilinear products λlt
p̄lt

 in the objective function (16a) in‐

troduce nonlinearity. However, this bilinear term can be writ‐
ten in terms of the dual variables of the lower-level prob‐
lems. The objective function of dual problems is derived by 
multiplying each dual variable by the constant on the right-
hand side of its associated primal constraint and summing 
these products. Therefore, the following strong-duality equal‐
ity is obtained:

∑
t = 1

T

λlt
p̄lt
Dt =∑

t = 1

T ( )pmin
lt
βmin

lt
- pmax

lt
βmax

lt
+ elεl    lÎ L (22)

Finally, the chance-constrained bi-level problem converts 
to the equivalent MISOCP problem, where the optimal solu‐
tion can be found through the branch and bound algo‐
rithm [27]:
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min
λlt
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T ( )pmin
lt
βmin

lt
- pmax

lt
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lt
+ elεl

s.t.  (4) (6)-(10) (16b) (16c) (17a) (17b) (18) (19)
           (20a) (21a)-(21h)

(23)

V. CASE STUDIES 

This section presents two case studies to demonstrate the 
benefits of the proposed approach and a comparison analysis 
with the uniform price scheme. In the algorithmic implemen‐
tation, the toolbox YALMIP [30] on MATLAB 2022, with 
the Gurobi optimization solver, is used.

The case studies use a modified version of the IEEE 37-
node test feeder [31], replacing the original spot loads with 
electricity data of 420 residential and commercial Chilean 
customers, which is shown in Fig. 1. It operates at 4.8 kV 
line-to-line nominal voltage. The measurement period for the 
two cases corresponds to three weeks: from February 14 to 
March 5 for the first case, and from February 21 to March 
12 for the second case, both in 2020. Two PV facilities are 
added to the modified IEEE 37-node test feeder to emulate 
the penetration of renewable energy sources on the DSO 
scale. Table I outlines the (random) allocation of customers 
at load nodes and the nodes for PV generation. The test 
dates are March 6 and March 13, for which the local market 
prices at the customers’  substation are used, while the PV 
generation profiles are simulated based on historical weather 
data [32] in their geographical area. Figure 2 depicts the PV 
generation and local market prices on the selected dates.

This paper also defines a feasible region for decision pric‐
es between 60 $/MWh and 80 $/MWh, with a regulated 
price of 75 $/MWh. The violation probabilities in CCs are 
ϵv = 0.1, ϵf = 0.01, and ϵa = 0.01. Limits for nodal voltages are 
set to be 1.05 p.u. and 0.95 p.u., while for power flows, the 
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Fig. 1.　Modified IEEE 37-node test feeder considered in case studies.
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corresponding calculation uses the line-to-line nominal volt‐
age and ampacity of electrical conductors. For the dispatch‐
able inverters of PV facilities, S max

g = 370 kVA, and the mini‐
mum steady-state active power capability is 7% of S max

g . The 
upper bounds in the lower-level problems are M p = 30 and 
M d = 60, while I = 12 for the polygon P.

Lastly, to construct vectors ξ t, 90 samples are drawn from 
normal distributions of nodal demand deviations and forecast 
errors. To reflect the evolution of uncertainty over time, the 
standard deviation is assumed to be 3% of the expected or 
forecasted active power for the 1st and 2nd hours, 6% for the 
3rd to 5th hours, 10% for the 6th to 9th hours, 15% for the 10th 
to 14th hours, and 20% for the rest of future time. The nodal 
expected or forecasted value considers the aggregated aver‐
age demand or the available PV generation. Power factors of 
0.93 and 0.86 are assumed for residential and commercial 
customers, respectively.

A. Case Study I

The application of the CFSFDP algorithm to the measure‐
ment results in three clusters. Their corresponding daily con‐
sumption profiles are depicted in Fig. 3, with cardinalities of 
3279, 5141, and 288, respectively. The black profile repre‐
sents the cluster center. Cluster 1 exhibits a typical residen‐
tial pattern characterized by a slightly higher consumption at 
night. Cluster 2 presents a pattern where consumption is con‐
centrated during working hours, suggesting that most com‐
mercial facilities and businesses are included. Instead, clus‐
ter 3 presents a pattern with lower consumption during day‐
light hours, likely because of vacations during this period.

Table II summarizes the RPCs, their combinations, and 
the number of customers per highest-probability RPC on 
March 6 (which results in the same three RPCs). Most con‐
sumers use two RPCs during the period, mainly a combina‐
tion of RPCs 1 and 2 (71.7% of the total). Also, the DSO ex‐
pects mostly the RPC 2, characterized by higher consump‐
tion values.

Figures 4 and 5 illustrate the three customized price sig‐
nals to be broadcast by the DSO and the expected consump‐
tion profiles, respectively.

TABLE I
ALLOCATION OF CUSTOMERS AT LOAD NODES AND NODES FOR PV 

GENERATION

Load node (number of customers)

701 (71), 712 (11), 713 (9), 714 (5), 718 
(11), 720 (14), 722 (24), 724 (6), 725 (7), 
727 (6), 728 (21), 729 (9), 730 (16), 731 
(16), 732 (9), 733 (18), 734 (9), 735 (22), 
736 (9), 737 (32), 738 (32), 740 (19), 741 

(25), 742 (13), 744 (6)

Node for PV generation 
(number of PV facilities)

707 (1), 711 (1)
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Fig. 2.　PV generation and local market prices on March 6 and March 13. 
(a) PV generation. (b) Local market prices.
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Fig. 3.　Daily consumption profiles of three clusters. (a) Cluster 1. (b) Clus‐
ter 2. (c) Cluster 3.

TABLE II
RPCS, THEIR COMBINATIONS, AND NUMBER OF CUSTOMERS PER 

HIGHEST-PROBABILITY RPC ON MARCH 6

RPC

1

2

3

Number of 
customers

58

313

49

Combination of RPCs 
(number of customers in 

corresponding combination)

2 (40), 1 (15), 3 (3)

1-2 (301), 1-3 (8), 2-3 (4)

1-2-3 (49)

Number of customers 
per highest-probability 

RPC on March 6

128

285

7
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In Fig. 5, the black profile represents the average con‐

sumption. The customized price signal according to RPC 1 
shows 60 $/MWh for almost the entire day, except for the 
last three hours when it increases to the maximum price. 
The consumption of customers with RPC 1 during these 
hours is also higher. Thus, the DSO’s interest is for these 
customers to shift part of their consumption activities from 
this period to the rest of the day. Likewise, the customized 
price signal according to RPC 2 matches the shape of mar‐
ket prices very well, with a significant difference only in the 
peak prices from 15:00 to 17:00. This difference is because 
this period also coincides with the higher PV generation (15:
00 corresponds to the maximum PV generation). Therefore, 
the DSO encourages customers with RPC 2 to shift intended 
consumption activities to this period and others with lower 
market prices. Customers with RPC 3 have the lowest influ‐
ence compared with those with RPCs 1 and 2. The custom‐
ized price signal, according to RPC 3, aims to shift consump‐
tion activities mainly to working hours, except at 16: 00, 
when the market price is the highest.

As a result, customers with RPCs 1 and 2, due to their in‐
herent flexibility, have higher consumption during periods 
with the minimum price (60 $/MWh). In contrast, customers 
with RPC 3 experience a slight increase in consumption 
around noon.

For the PV facilities, Fig. 6 depicts their active and reac‐
tive power set points at nodes 707 and 711. The active pow‐
er output comprises some values below the available active 
power during the higher-generation period due to the consid‐
eration of the uncertainty. On the other hand, reactive power 
injections occur mainly during periods of lower active power 
generation. The higher reactive power at node 707 also indi‐
cates that more commercial customers are closer to it.

Figure 7 depicts the maximum decrease in apparent power 
of inverters and the comparison of empirical probabilities of 
apparent power violations (including both PV facilities) with 
the (deterministic) mixed-integer linear programming 
(MILP) model. For the empirical probabilities, the case 
study uses 720 new random samples of forecast errors each 
hour obtained from a Monte Carlo simulation. The decrease 
in apparent power reaches the presented highest values at 15:
00 for both nodes. Likewise, the empirical probabilities (rep‐
resented by the color dots) indicate numerous apparent pow‐
er violations with the MILP model that significantly exceed 
the acceptable limit (represented by the black horizontal 
lines). In contrast, only a few constraints have slightly high‐
er empirical probabilities using the MISOCP model.

However, considering the uncertainty leads to an increase 
in the DSO’s expected cost. For March 6, this cost corre‐
sponds to $15.1 using the MILP model and $50.3 using the 
MISOCP model. Furthermore, this value depends on the lev‐
el of PV generation. For example, Table III presents several 
scenarios with different percentages of the initial PV genera‐
tion depicted in Fig. 2, maintaining the same market price. 
While expanding the PV capacity yields a profit (remarkably 
higher in the scenario with 200% of the initial PV genera‐
tion), the absence of PV facilities results in a high daily cost 
unless adjustments to the bounds of decision prices occur. 
Specifically, in simulations with 120%, 150%, and 200% of 
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Fig. 4.　Customized price signals according to highest-probability RPC on 
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the initial PV generation, the apparent power of inverters al‐
so increases proportionally.

Finally, the case study assesses the impact of uncertainty 
by considering the voltage at extreme node 741 under the 

condition of PV facilities connected to the main branch. 
Node 741 experiences the highest voltage drops when the 
PV facilities are, for instance, at nodes 702 and 709. Using 
this connection, Fig. 8 shows the expected voltage at node 
741 obtained with the MILP and MISOCP models for the 
critical time of 19: 00, including the CDF of voltage devia‐
tions superimposed. Due to incorporating uncertainty in the 
MISOCP model, the squared voltage increases to 20.91 kV2. 
This increment represents a reduction in the probability of 
constraint violation from close to 30% with the MILP model 
to the established 10% with the MISOCP model. With the 
new configuration, the DSO’s expected cost is $54.8.

B. Case Study II

For simplicity, this case study presents only the custom‐
ized price signals according to each highest-probability RPC 
on March 13, the expected consumption profiles, and the ac‐
tive and reactive power set points of PV facilities. As in 
case study I, three clusters characterize customers’  behavior 
during the corresponding three weeks. The shapes of these 
clusters are very similar to those in Fig. 3 due to the close‐
ness of both measurement periods. Table IV summarizes the 
three RPCs, their combinations, and the number of custom‐
ers associated with each highest-probability RPC on March 
13. Most consumers use a combination of RPCs 1 and 2 
(72.9% of the total), and the DSO primarily expects the 
RPC 2.

The customized price signals according to each highest-
probability RPC on March 13 are depicted in Fig. 9. In the 
customized price signal according to RPC 1, the minimum 
price (60 $/MWh) is uniform except from 22: 00 to 23: 00. 
This result encourages customers with RPC 1 to shift their 
higher consumption at night to close hours in the afternoon, 
coinciding with lower market prices and higher PV genera‐

TABLE IV
RPCS, THEIR COMBINATIONS, AND NUMBER OF CUSTOMERS PER 

HIGHEST-PROBABILITY RPC ON MARCH 13

RPC

1

2

3

Number of 
customers

64

315

41

Combination of RPCs 
(number of customers in 

corresponding combination)

2 (41), 1 (20), 3 (3)

1-2 (306), 1-3 (4), 2-3 (5)

1-2-3 (41)

Number of customers 
per highest-probability 

RPC on March 13

108

302
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Fig. 8.　Expected voltage at node 741 obtained using MILP and MISOCP 
models for the critical time of 19:00.

06:0001:00 12:00 18:00 24:00
Time of day

(a)

06:0001:00 12:00 18:00 24:00
Time of day

(b)

0

50

100

150

200

250

300

A
ct

iv
e 

po
w

er
 (k

W
)

Node 707
Node 711

0

50

100

150

200

250

350

300

Re
ac

tiv
e 

po
w

er
 (k

va
r)

Node 707
Node 711

Fig. 6.　Active and reactive power set points of PV facilities at nodes 707 
and 711 on March 6. (a) Active power. (b) Reactive power.

0
20
40
60
80

100
120
140
160
180

MILP MISOCP
0

0.1

0.2

0.3

0.4

0.5

 T
he

 m
ax

im
um

 d
ec

re
as

e 
in

 a
pp

ar
en

t p
ow

er
 (k

V
A

)

Em
pi

ric
al

 p
ro

ba
bi

lit
y 

of
 

ap
pa

re
nt

 p
ow

er
 v

io
la

tio
ns

 707 711
Node

(a)
Model

(b)
Fig. 7.　The maximum decrease in apparent power of inverters and compar‐
ison of empirical probabilities of apparent power violations with MILP and 
MISOCP models. (a) The maximum decrease in apparent power of invert‐
ers. (b) Comparison of empirical probabilities of apparent power violations.

TABLE III
SCENARIOS WITH DIFFERENT PERCENTAGES OF INITIAL PV GENERATION

Percentage (%)

120

150

200

80

50

0

DSO’s expected profit ($)

38.1

182.3

403.4

DSO’s expected cost ($)

117.4

264.3

528.3
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tion. A different situation characterizes the customized price 
according to RPC 2, where the minimum price ranges main‐
ly from 13:00 to 21:00, involving most of the daily demand 
of customers with RPC 2. The DSO minimizes costs if these 
consumers maintain a higher consumption during this peri‐
od. Finally, customers with RPC 3 face a significant chal‐
lenge because the customized price signal according to RPC 
3 requires them to change their consumption pattern on the 
test day. In particular, periods of higher consumption (from 
the beginning of the day to 09:00 and at the end of the day) 
coincide with higher market prices.

Figure 10 depicts the expected consumption profiles of 
customers, where the black profile represents the average 
consumption. A similar consumption pattern characterizes 
customers with RPCs 1 and 2, with notably higher demand 
from 13:00 to 19:00. This period involves high PV genera‐
tion and low market prices. Customers with RPC 2, howev‐
er, have higher consumption than those with RPC 1. This re‐
sult also demonstrates the high flexibility of both in shifting 
consumption according to the DSO’s price signals. Concern‐
ing customers with RPC 3, they reduce their demand in the 
early morning and at night.

Finally, Fig. 11 illustrates the active and reactive power 
set points of PV facilities, which exhibit similar behavior as 
those in Fig. 6. The differences (in the corresponding values) 

arise from the specific grid conditions on the selected dates. 
In particular, March 13 implies an expected profit of $235.4 
for the DSO.

C. Comparison Analysis

Supplying electricity to customers through customized tar‐
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Fig. 9.　Customized price signals according to highest-probability RPC on 
March 13. (a) RPC 1. (b) RPC 2. (c) RPC 3.
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iffs provides technical and economic benefits for the DSO. 
In contrast, implementing a uniform price signal overlooks 
the specific preferences of individual customers.

Figure 12 depicts the uniform price signals to be broad‐
cast by the DSO on March 6 and March 13. Both price sig‐
nals are derived based on the specific characteristics defined 
for the case studies. A comparison of these price signals 
with Figs. 4 and 9 reveals two significant issues: ① the 
shape of the resulting uniform price scheme exhibits very 
few changes; and ② in general, the most prevalent RPCs of 
customers are reflected in the uniform price signals. For in‐
stance, on March 6, the price signal maintains the minimum 
price (60 $/MWh) until noon, which aligns with the profile 
obtained for customers with RPC 1 in Fig. 4. After noon, 
the shape of the price signal matches that for customers with 
RPC 2. Similarly, on March 13, the minimum price is ob‐
served before 09:00, while the rest of the day resembles the 
price signal for customers with RPC 2. Thus, these tariffs do 
not adequately consider customers with RPC 3, while the 
representation of the other two RPCs is partial.

On the other hand, the total cost for the DSO on March 6 
is $64.4, which is higher than the cost incurred using the 
proposed approach ($50.3). Similarly, the DSO records a 
profit of $207.6 on March 13, which is lower than the profit 
obtained using the proposed approach ($235.4). As a result, 
the cost minimization achieved through the uniform price 
scheme is less effective, which is a finding that aligns with 
the conclusion presented in [13].

VI. CONCLUSION 

This paper presents a customized scheduling approach for 
DR of customers with dispatchable inverters in distribution-
level PV facilities. Providing flexibility by scheduling the de‐
mand side supports the DSO in the technical and economic 
management of the distribution system. Specifically, the 

DSO minimizes distribution system costs by determining dai‐
ly price signals for customers based on their RPCs and ac‐
tive and reactive power set points for PV facilities. Further‐
more, the proposed approach ensures the reliable operation 
of the distribution system with high probability by address‐
ing uncertainty through CCs.

The conducted case studies use real-world market prices 
and daily consumption profiles of residential and commer‐
cial Chilean customers on the IEEE 37-node test feeder. Re‐
sults highlight the suitability of the proposed model to man‐
age distribution-level energy resources by delivering custom‐
ized price signals and power set points, respectively. The 
proposed approach provides an expected cost for the DSO; 
however, the DSO has the final decision concerning the trad‐
eoff between the security and cost in the distribution system.

The proposed approach can be extended, for example, by 
including maximum ramp rates in the customer model, a 
higher number of PV facilities or other distribution-level en‐
ergy resources, and different risk levels (measured in CCs in 
terms of the violation probability) and probability distribu‐
tions for deviations and errors.

Future work will expand this investigation by addressing 
two significant issues: ① analysis of the unbalanced distribu‐
tion system with DR and other distributed energy resources; 
and ② an online application of the scheduling problem to ac‐
count for updated information on system parameters.

REFERENCES

[1] National Energy Commission. (2024, Nov.). National energy balance. 
[Online]. Available: http://energiaabierta. cl/visualizaciones/balance-de-
energia

[2] J. S. Vardakas, N. Zorba, and C. V. Verikoukis, “A survey on demand 
response programs in smart grids: pricing methods and optimization al‐
gorithms,” IEEE Communications Surveys & Tutorials, vol. 17, no. 1, 
pp. 152-178, Jan. 2015.

[3] M. Tanaka, A. J. Conejo, and A. S. Siddiqui, Economics of Power Sys‐
tems. Cham: Springer, 2022.

[4] D. T. Nguyen, H. T. Nguyen, and L. B. Le, “Dynamic pricing design 
for demand response integration in power distribution networks,” 
IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 3457-3472, 
Sept. 2016.

[5] H. Karimi, R. Bahmani, and S. Jadid, “Stochastic multi-objective opti‐
mization to design optimal transactive pricing for dynamic demand re‐
sponse programs: a bi-level fuzzy approach,” International Journal of 
Electrical Power & Energy Systems, vol. 125, p. 106487, Feb. 2021.

[6] V. C. Pandey, N. Gupta, K. R. Niazi et al., “A hierarchical price-based 
demand response framework in distribution network,” IEEE Transac‐
tions on Smart Grid, vol. 13, no. 2, pp. 1151-1164, Mar. 2022.

[7] H. J. Monfared and A. Ghasemi, “Retail electricity pricing based on 
the value of electricity for consumers,” Sustainable Energy, Grids and 
Networks, vol. 18, p. 100205, Jun. 2019.

[8] M. Askeland, T. Burandt, and S. A. Gabriel, “A stochastic MPEC ap‐
proach for grid tariff design with demand-side flexibility,” Energy Sys‐
tems, vol. 14, no. 3, pp. 707-729, Aug. 2023.

[9] Q. Cai, Q. Xu, J. Qing et al., “Promoting wind and photovoltaics re‐
newable energy integration through demand response: dynamic pricing 
mechanism design and economic analysis for smart residential commu‐
nities,” Energy, vol. 261, p. 125293, Dec. 2022.

[10] Y. Tao, J. Qiu, S. Lai et al., “Customer-centered pricing strategy based 
on privacy-preserving load disaggregation,” IEEE Transactions on 
Smart Grid, vol. 14, no. 5, pp. 3401-3412, Sept. 2023.

[11] S. Su, Z. Li, X. Jin et al., “Bi-level energy management and pricing 
for community energy retailer incorporating smart buildings based on 
chance-constrained programming,” International Journal of Electrical 
Power & Energy Systems, vol. 138, p. 107894, Jun. 2022.

[12] F. Meng, Q. Ma, Z. Liu et al., “Multiple dynamic pricing for demand 
response with adaptive clustering-based customer segmentation in 

60

55

65

70

75

80

U
ni

fo
rm

 p
ric

e 
($

/M
W

h)
U

ni
fo

rm
 p

ric
e 

($
/M

W
h)

06:0001:00 12:00 18:00 24:00
Time of day

(a)

60

55

65

70

75

80

06:0001:00 12:00 18:00 24:00
Time of day

(b)

Fig. 12.　Uniform price signals to be broadcast by DSO on March 6 and 
March 13. (a) March 6. (b) March 13.

332



MARRERO et al.: CUSTOMIZED SCHEDULING OF DEMAND RESPONSE OF CUSTOMERS WITH DISPATCHABLE INVERTERS...

smart grids,” Applied Energy, vol. 333, p. 120626, Mar. 2023.
[13] D. Qiu, Y. Wang, J. Wang et al., “Personalized retail pricing design 

for smart metering consumers in electricity market,” Applied Energy, 
vol. 348, p. 121545, Oct. 2023.

[14] P. Che, C. Zhang, Y. Liu et al., “An integrated learning and optimiza‐
tion approach to optimal dynamic retail electricity pricing of residen‐
tial and industrial consumers,” Applied Energy, vol. 382, p. 125234, 
Mar. 2025.

[15] Chilean Association for Renewable Energies and Storage. (2025, 
Mar.). Information center. [Online]. Available: https://www.acera.cl/cen‐
tro-de-informacion

[16] E. Dall’Anese, K. Baker, and T. Summers, “Chance-constrained AC 
optimal power flow for distribution systems with renewables,” IEEE 
Transactions on Power Systems, vol. 32, no. 5, pp. 3427-3438, Sept. 
2017.

[17] M. Rayati, M. Bozorg, R. Cherkaoui et al., “Distributionally robust 
chance constrained optimization for providing flexibility in an active 
distribution network,” IEEE Transactions on Smart Grid, vol. 13, no. 
4, pp. 2920-2934, Jul. 2022.

[18] T. Ding, C. Li, Y. Yang et al., “A two-stage robust optimization for 
centralized-optimal dispatch of photovoltaic inverters in active distribu‐
tion networks,” IEEE Transactions on Sustainable Energy, vol. 8, no. 
2, pp. 744-754, Apr. 2017.

[19] J. M. Morales, A. J. Conejo, H. Madsen et al., Integrating Renewables 
in Electricity Markets: Operational Problems. New York: Springer, 
2014.

[20] S. A. Gabriel, A. J. Conejo, J. D. Fuller et al., Complementarity Mod‐
eling in Energy Markets. New York: Springer, 2013.

[21] L. Marrero, D. Sbarbaro, and L. Garcia-Santander, “Online demand re‐
sponse characterization based on variability in customer behavior,” 
Journal of Modern Power Systems and Clean Energy, vol. 12, no. 3, 
pp. 936-946, May 2024.

[22] D. Bienstock, M. Chertkov, and S. Harnett, “Chance-constrained opti‐
mal power flow: risk-aware network control under uncertainty,” SIAM 
Review, vol. 56, no. 3, pp. 461-495, Jan. 2014.

[23] Ministry of Energy, National Energy Commission. (2023, Nov.). Reso‐
lution 574 exempt. [Online]. Available: https://www. bcn. cl/leychile/
navegar?idNorma=1198390

[24] A. Rodriguez and A. Laio, “Clustering by fast search and find of den‐
sity peaks,” Science, vol. 344, no. 6191, pp. 1492-1496, Jun. 2014.

[25] IEEE Standard for Interconnection and Interoperability of Distributed 
Energy Resources with Associated Electric Power Systems Interfaces, 
IEEE Standard 1547-2018, Apr. 2018.

[26] M. E. Baran and F. Wu, “Optimal capacitor placement on radial distri‐
bution systems,” IEEE Transactions on Power Delivery, vol. 4, no. 1, 
pp. 725-734, Jan. 1989.

[27] R. Sioshansi and A. J. Conejo, Optimization in Engineering: Models 

and Algorithms. Cham: Springer, 2017.
[28] M. S. Nazir, I. A. Hiskens, A. Bernstein et al. (2019, Mar.). Inner ap‐

proximation of Minkowski sums: a union-based approach and applica‐
tions to aggregated energy resources. [Online]. Available: https://www.
nrel.gov/docs/fy19osti/73423.pdf

[29] J. Fortuny-Amat and B. McCarl, “A representation and economic inter‐
pretation of a two-level programming problem,” Journal of the Opera‐
tional Research Society, vol. 32, no. 9, pp. 783-792, Sept. 1981.

[30] GitHub. (2024, Dec.). YALMIP. [Online]. Available: https://yalmip.
github.io

[31] IEEE. (2017, Sept.). IEEE PES test feeder. [Online]. Available: https://
cmte.ieee.org/pes-testfeeders/resources

[32] A. Molina, M. Falvey, and R. Rondanelli, “A solar radiation database 
for Chile,” Scientific Reports, vol. 7, no. 1, p. 14823, Dec. 2017.

Lester Marrero received the B.Sc. and M.Sc. degrees in electrical engineer‐
ing from Universidad Central de Las Villas, Santa Clara, Cuba, and the Ph.D. 
degree in electrical engineering from Universidad de Concepción, Concep‐
ción, Chile, in 2024. He is currently a Postdoctoral Researcher at the Center 
for Energy Transition, Universidad Adolfo Ibáñez, Santiago, Chile. His re‐
search interests include modeling and optimization of electric distribution 
systems, distributed energy resources, and data analytics in smart grids.

Daniel Sbárbaro received the electrical engineering degree from Universi‐
dad de Concepción, Concepción, Chile, in 1984, and the Ph. D. degree in 
electrical engineering from Glasgow University, Glasgow, U.K., in 1993. In 
1998, he was an Alexander von Humboldt Fellow with the Control Engi‐
neering Laboratory, Ruhr University, Bochum, Germany. He also held Visit‐
ing Research positions with the Daimler-Benz Research Institute, Berlin, 
Germany, and Stuttgart University, Stuttgart, Germany, in 1993 and 2009, re‐
spectively. He has developed projects with the industry in the areas of tech‐
nological benchmarking, economic assessment of control improvements, de‐
velopment of training programs, advanced control, and data processing. He 
is currently a Professor with the Department of Electrical Engineering, Uni‐
versidad de Concepción. His current research interests include modeling and 
control of energy systems and development of technologies for improving 
sustainability of main Chilean productive sectors.

Luis García-Santander received the Ph.D. degree in electrical engineering 
from Supélec, Paris, France, in 2003. Since 1996, he has been with the De‐
partment of Electrical Engineering, Universidad de Concepción, Concep‐
ción, Chile, where he is currently an Associate Professor. His research inter‐
ests include renewable generation, planning and operation of distribution 
systems, energy management and efficiency, smart grid, and electromobility.

333


