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Abstract—The growing electricity demand, combined with the
increasing integration of photovoltaic (PV) generation into the
distribution system, requires higher flexibility from the demand
side. This paper proposes a customized scheduling approach for
demand response (DR) of customers with dispatchable inverters
in distribution-level PV facilities. Based on the Chilean context,
the proposed approach enables these energy resources to pro-
vide flexibility in the technical and economic management of
the distribution system operator (DSO). Specifically, a bi-level
optimization model is introduced. At the upper level, the DSO
minimizes distribution system costs by determining daily price
signals for customers based on their response profile classes
(RPCs) and active and reactive power set points for PV facili-
ties. At the lower level, customers aim to reduce their electricity
bills. In addition, the proposed approach ensures the reliable op-
eration of the distribution system with high probability by ad-
dressing uncertainty through chance constraints (CCs). Incorpo-
rated CCs in the distribution system modeling include the
squared magnitude of nodal voltage, complex power flow in
lines, and apparent power of inverters. Finally, two case studies
are presented, involving 420 residential and commercial Chilean
customers with two distribution-level PV facilities using real-
world market prices and daily consumption profiles on the
IEEE 37-node test feeder. Results demonstrate how the pro-
posed model enables the customized scheduling of customers
and PV facilities, highlighting its effectiveness over the uniform
price scheme.

Index Terms—Scheduling, demand response (DR), inverter,
distribution system, photovoltaic (PV), response profile class
(RPC), uncertainty.

1. INTRODUCTION

HE marked growth in electricity demand, driven mainly
by emerging technologies such as electric vehicles and
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heat pumps, poses a significant challenge to the distribution
system concerning electrification. In Chile, for example, the
electricity consumption among residential and commercial
customers and services in 2023 increased by 5.9% compared
with 2022 and 10.2% compared with 2021 [1]. Also, the ef-
fective integration of renewable energy sources, especially
photovoltaic (PV), into the distribution system remains prob-
lematic due to power balance issues. Both conditions need
higher flexibility from the demand side, which can be
achieved through demand response (DR).

The implementation of DR targets the control of the pow-
er-consuming behavior of customers to meet the following
objectives: (D reduction of the peak power consumption; )
reduction of the total needed power generation, as the main
result of the prior objective; 3) change of the demand to fol-
low the available supply, especially with high penetration of
renewable energy sources; and (4) elimination of overloads
in the distribution system [2]. In particular, time-varying pric-
ing, or dynamic pricing, can induce the DR of customers,
thereby improving economic efficiency and enhancing wel-
fare compared to other forms [3].

In this context, several investigations have attempted to
determine effective time-varying price signals for customers
by exploiting important mathematical programming models.
Furthermore, these investigations can be classified based on
the designed price signal. On the one hand, some of them de-
termine a uniform price signal for the set of customers; on
the other hand, others define customized pricing approaches
for different groups of customers. In the former, for exam-
ple, [4] analyzes the scheduling of the load-serving entity
and formulates its interaction with flexible and inflexible ag-
gregated loads as a bi-level problem that delivers hourly tar-
iffs for the flexible ones. Reference [5] proposes a stochastic
bi-level model in which the load-serving entity aims to opti-
mize profit and reserve capacity and similarly designs dy-
namic prices for the aggregated flexible loads. Reference [6]
formulates a hierarchical structure including the distribution
system operator (DSO), DR providers, and customers, where
dynamic and static prices are developed respectively for the
flexible and inflexible customers. A stochastic scheduling ap-
proach is introduced in [7] to determine both the hourly re-
tail prices considering the electricity value and the bidding
strategy of the distribution company in the day-ahead mar-
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ket. In [8], a bi-level model that formulates the interaction
between the DSO and end-users allows for the design of tar-
iffs including uncertainty in demand, PV generation, and
market prices. Reference [9] presents a dynamic pricing
model to promote renewable integration and flatten the grid
demand profile using a bi-level optimization that coordinate-
ly dispatches flexible loads. Based on the potential in DR of
thermostatically controlled loads, [10] proposes a multi-per-
spective pricing model to formulate proper price signals.
Lastly, a stochastic bi-level model is proposed in [11] to de-
sign daily retail prices for energy management of thermal
loads in a community of buildings. Although these investiga-
tions make a notable effort by producing dynamic price sig-
nals and providing financial profits, their main limitation is
considering the same price signal for customers with differ-
ent preferences.

In line with this work, some studies have recently expand-
ed the prior approach by introducing customized price sig-
nals. Reference [12] proposes a dynamic pricing method that
includes adaptive customer segmentation and customized
modeling of the resulting demand clusters based on aggregat-
ed price responses. However, the paper assumes a linear
function for the price elasticities of demand. This approxima-
tion requires many observations to estimate the correspond-
ing parameters, which contrasts with the ideal case of daily
segmentation. Assuming different types of flexible consum-
ers, [13] presents a bi-level optimization for customized re-
tail pricing and bidding of the aggregated demand in the day-
ahead market. Through a bi-level model, [14] determines
customized retail prices for groups of residential and industri-
al consumers, considering a price-elastic demand for the first
and learning the price-demand relation for the second. How-
ever, a practical limitation for the groups of residential con-
sumers is obtaining the actual proportions of the shiftable
and curtailable loads. The common point among these pa-
pers is the generation of daily price signals based on the
characteristics of customer groups. However, two key re-
search questions that motivate this investigation remain unan-
swered. (D Is it feasible to determine the price signals that
provide desired power responses from customers according
to the conditions of the distribution system? @ How can the
uncertainty associated with customers’ behavior be account-
ed for? Answering both questions requires the individual
characterization of customers and assessing the impact of
their consumption profiles on the distribution system in re-
sponse to the customized tariffs while also considering devia-
tions from expected behaviors.

Furthermore, the increasing distribution-level PV genera-
tion raises the interest in scheduling the operation of invert-
ers to provide active power and control reactive power. In
Chile, by March 2025, the capacity of this type of distribut-
ed generation is 2833 MW [15]. The implementation of opti-
mization techniques that include computing the power set
points of dispatchable inverters in PV facilities has also been
developed based on forecasts of available generation and the
expected behavior of customers. Among the related works,
[16] introduces a chance-constrained AC power flow where
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the power set points for PV and battery systems are opti-
mized while enforcing voltage regulation with uncertainty in
renewable energy sources and loads. Similarly, [17] enables
the DSO to obtain the dispatch for PV and battery systems
using a chance-constrained model that accounts for uncertain-
ty in PV generation, end-user consumption, requested flexi-
bility, and squared voltage magnitude. Considering the uncer-
tainty of PV generation, [18] formulates a robust optimiza-
tion that selects the critical subset of inverters to provide an-
cillary services and finds their optimal active and reactive
power set points. The above studies focus on determining
the optimal power set points of inverters, primarily for local
voltage regulation; however, they do not intend to control
DR.

By appropriately choosing dynamic price signals, the
DSO reduces distribution system costs and increases reliabili-
ty, for example, by shifting flexible consumption to periods
with high stochastic power generation [19]. This paper pres-
ents a daily scheduling approach for DR of customers
through customized price signals and dispatchable inverters
in distribution-level PV facilities. To this end, a bi-level opti-
mization model [20] is introduced with the DSO at the up-
per level and customers at the lower level. The DSO mini-
mizes costs and determines the customized price signals and
power set points of inverters, while customers reduce their
electricity bills when the prices materialize. This paper com-
prises a characterization stage to determine response profile
classes (RPCs) [21] of customers and assesses the impact of
their power responses on the distribution system. The pro-
posed model also addresses the uncertainty in the distribu-
tion-system modeling by including chance constraints (CCs)
[22] for the squared magnitude of nodal voltage, complex
power flow in lines, and apparent power of inverters. By as-
suming a normal distribution for uncertainty, the CCs are
then analytically reformulated. Lastly, with the reformulation
of lower-level problems, the chance-constrained bi-level
model is converted to an equivalent mixed-integer second-or-
der cone programming (MISOCP) model.

The ongoing electrification of the Chilean residential and
commercial sectors requires additional infrastructure in the
distribution system. In general, end-users are responsible for
covering the associated costs. However, exploiting demand-
side flexibility contributes to avoiding (or delaying) the oper-
ational cost increase and need for new investments, thus fa-
cilitating the electrification. Regulated customers in Chile
typically contract a (regulated) tariff of a single energy
price. However, the DSO, which obtains electricity through
bilateral contracts, can offer additional tariff options (the reg-
ulated flexible tariffs) [23], which remain wvalid for 12
months and may include dynamic pricing. This paper ex-
plores a scenario in which the DSO engages with customers
using this type of flexible tariff.

The main contributions of this paper are summarized be-
low.

1) A daily scheduling approach is proposed for DR of cus-
tomers through customized price signals and dispatchable in-
verters in distribution-level PV facilities based on the condi-
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tions of the distribution system. This study determines the
RPCs of customers and assesses the impact of their con-
sumption profiles on the distribution system in response to
the customized price signals. In addition, uncertainty is ad-
dressed in the distribution-system modeling considering the
stochastic nature of customers and PV generation. A chance-
constrained bi-level programming model is introduced with
the DSO at the upper level and customers at the lower level.
The DSO minimizes distribution-system costs by determin-
ing the price signals and power set points such that limits of
squared magnitudes of nodal voltages, complex power flows
in lines, and apparent power of inverters are satisfied with
high probability. Customers aim to reduce their electricity
bills.

2) The proposed approach is tested in two case studies
with real-world market prices and daily consumption profiles
of residential and commercial Chilean customers on the
IEEE 37-node test feeder. Results demonstrate how the pro-
posed model enables the customized scheduling of custom-
ers and PV facilities. This paper also explores the impact of
uncertainty on grid operation and presents a comparison
with the uniform price scheme.

The organization of this paper is as follows: Section II
provides theoretical foundations and models for customers,
PV facilities, and the distribution system. Section III formu-
lates the programming problem under uncertainty, and Sec-
tion IV describes its solution methodology. Section V pres-
ents the case studies to assess the proposed approach and an-
alyze the uncertainty cost. Finally, Section VI concludes the
work.

II. THEORETICAL FOUNDATIONS AND MODELS

A. Expected Response Model of Customers
Let 5,=p, +jq, be an expected complex power value to be

consumed at time ¢ by a customer / under a contract. There-
fore, p, is the active component and g, is the reactive one.

In this paper, the following linear model is defined to set a
flexible active power profile [19]:

min

P <p;: 1’/‘““ lelteT (D)
P <p B leliteT )
T
ShiAtzere lel 3)
=1

Equations (1) and (2) provide the expected response p, be-

tween a minimum value p;™ and a maximum value p™* for

customer / at time ¢, as an element of its expected active
power profile. Likewise, L and T are the sets of customers
and time points within the day, respectively. Also, p, can in-
crease or decrease depending on the price due to the com-
bined use of shifting and shedding loads. From an expected
value p,, the corresponding expected response g, can be ob-
tained for a specific power factor. Finally, a minimum daily
energy e, is specified by (3) to account for basic activities,

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 14, NO. 1, January 2026

where At is the interval between two consecutive time

points. Variables g™, ™, and ¢, arranged after the colon,

are dual.

A refined estimation of the customer’s consumption activi-
ty is feasible based on an online characterization of daily
consumption profiles, as demonstrated in [21], which pres-
ents the customer’s RPCs (or consumption patterns) as the
main result. Each RPC represents for a customer a portion
(of similar daily consumption profiles) of the polytope that
entirely contains its load scenarios in the corresponding vec-
tor space. Similarly, this paper comprises a characterization
stage. Specifically, it applies the clustering by fast search
and find of density peaks (CFSFDP) algorithm [24] directly
to the daily consumption profiles of a predefined period be-
fore a selected date for the proposed approach, resulting in
updated customers’ RPCs. For the above-selected date, this
paper assumes that customers use the highest-probability
RPC on the day of the week corresponding to that date.

From a set of daily consumption profiles associated with a
specific RPC, each pair of parameters p?,“'“ and p;™ of the

model can be obtained as the corresponding extreme values,
providing a convex approximation of the active power. For
e, this paper considers the total consumption of the average
profile among all profiles within the RPC.

B. Model of PV Facilities
Let 5, =p, +jq, be a complex power forecast to be inject-

ed by a PV facility g € G at time ¢, where G is the set of PV
facilities. Therefore, p, is the active component, which repre-

sents the active power forecast at the AC side of the invert-
er, and dq is the reactive one. Then, the following control

model is defined for setting a flexible active power profile:

0<p,<p; geGteT @)

Equation (4) denotes an active power curtailment provided
by the inverter, where pg" is the forecast of the available ac-

tive power, which coincides with the maximum power point
and varies stochastically over time based on solar irradiance.

With the increasing penetration of distribution-level PV fa-
cilities, interest is shifting toward using inverter capability to
absorb or inject reactive power. In addition to (4), the follow-
ing constraint defines the inverter capability for adjusting the
reactive power output:

P+, <(S7™) geGitel (5)

where S} is the rated apparent power of the inverter of PV
facility g.

However, the IEEE Standard 1547-2018 [25] encourages
the inverter-level modulation of power values in response to
local grid conditions. This standard recommends injecting or
absorbing reactive power for active power output levels
greater than or equal to the minimum steady-state active
power capability. As a result, the convex region defined
from this value in the complex plane entitles reactive power
generation exclusively during daylight.
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C. Model of Distribution System

This paper uses the linear DistFlow model introduced by
[26], which is a lossless approximation of the AC power
flow equations. The approximate relations to account for
power flows and nodal voltages in the distribution system fa-
cilitate the application of convex reformulations for CCs.

Let a radial distribution system comprise the correspond-
ing nodes, collected in the set NU {0} with N representing
the set of nodes, and distribution lines, represented by the
set of pairs of nodes E={(m,n) :meNU {0},neN}. Any
sending node m lies on the unique path from node 0 to its re-
ceiving node n. Node 0 represents the secondary side of the
power transformer at the substation and is considered as the
slack node. Thus, its nominal voltage v, is fixed and known
(typically 1.0 p.u.).

The power injection at slack node 0 depends on the power
states of the other nodes. Each node 7 is characterized at
time 7 by its complex power S, =P, +jO,, where P, and O,
are the active and reactive power, respectively, and by the
magnitude of its complex voltage v,. To provide linear con-
straints, let V, be the square of v,. V, € [Vmi“, | ], where
ym™n and V™ are the minimum and maximum voltage lim-
its, respectively. Likewise, each line (m,7) has an impedance
value Z,,=R,,,+jX,,., with R, and X, representing the re-

mn?

sistance and reactance, respectively. Also, let S, =P, +j0,,,

no

denote the complex power flow from node m to node n at
time ¢, where P, and Q,, are the active and reactive power

flows, respectively. Finally, let S be the apparent power
limit of the line.

From the above parameters, the following linear power
flow and voltage equations are defined for the model:

P, =d,.p; (mn)ecEteT (6)
0,,=4d (7

I/n,= Vm,_z(Rmann,_‘_ananz) (m7n) € E’te T (8)

(m,n) eFE,teT

T n
mnqt

where d,, is a vector whose elements correspond to the
(m,n)" row of a |E|x |N| binary matrix D that maps the
values of active and reactive power at nodes into power
flows and voltages, and | - | denotes the cardinality of a set;

T T
and p!= [Pll,Pz/, ...,PN/] and ¢/ = [Qu Osseees QN‘] are the
vectors of active and reactive power of nodes, respectively.
In D, each element in the (m,n)" row and n" column takes a
value of 1 if line (m,n) is part of the path from the slack
node 0 to node # and a value of 0 otherwise.
The expressions for the (net) active and reactive power at
each node are as follows:
P,=h,p, neN,teT )
(10)
where h, is a vector whose elements correspond to the n"
column of an |L+G| x |N| binary matrix H that indicates
the belonging of each customer / and PV facility g to the
corresponding node #; and p, and ¢, are the vectors compris-
ing active and reactive power of both customers and PV fa-

Q,=h,q, neNteT

cilities at time ¢, respectively.

III. PROGRAMMING PROBLEM FORMULATION UNDER
UNCERTAINTY

A. Uncertainty Modeling

The modeling of active power values of customers and
PV facilities can take the following form:

p,=p,+¢, leliteT (11)

(12)

where ¢, e R and ¢, € R are the stochastic variables repre-

Pg,:ﬁg,+fg, geG,teT

senting the deviation of customer response and the PV fore-
cast error, respectively.

Thus, for each time ¢, a random vector & e R that col-
lects the resulting active power deviation and forecast error
at the nodes can be determined. Also, it is possible to ex-
press the power flows in lines and nodal voltages in terms
of &. For the first case:

IDmn,:}_)mn,—"dT ft (mqn) ekteT

mn

(13)

(14)
where Ismn/ and Q_mn, are computed using (6) and (7) with ex-

an,:Q_mn,J’_dr:n@tét (m,}’l) EE’t € T

pected and forecast values, respectively; and @, is an | N | x
| N | diagonal matrix relating the active and reactive nodal de-
viations and errors through the tangent of the power factor
angle at time ¢.

Analogously, the uncertain nodal voltages are:

V,=V,-2d/(RD+XD®,)¢, neNteT (15)

where 17, is computed using (8) with expected and forecast

n
values; d, is a vector whose elements correspond to the n"
column of D; and R and X are the | N| x | N | diagonal matri-
ces with resistance and reactance values of lines, respective-

ly.
B. Chance-constrained Bi-level Formulation

This paper presents a hierarchical programming structure
comprising two levels to solve the daily scheduling problem.
At the upper level, the DSO determines the price signals un-
der uncertainty (for the selected date). At the lower level,
each customer adjusts its consumption to reduce the electrici-
ty bill.

The objective function in (16a), representing the differ-
ence between cost and revenue for the DSO, is minimized
under the expected value over the probability distribution of
uncertainty. Each £, is a decision price, and 47" is the market

price. The operator E[-] denotes the expected value. Equa-
tion (16b) defines a feasible region for the decision prices
between a minimum value 2™ and a maximum value A™.
In (16¢), the mean of prices 4, over the time horizon T does

not surpass the regulated price A", which implies that custom-
ers do not incur financial losses beyond A". The outer approx-
imation set of CCs in (16d)-(16f) ensures that scheduling
DR of customers and power set points of inverters satisfies
the limits for squared magnitudes of nodal voltages, com-
plex power flows in lines, and apparent power of inverters



326

with high probability, where ¢, ¢, and ¢, denote the corre-
sponding violation probabilities, and the operator P{-} de-
notes the probability distribution.

T L G
, min E[Zif’(;}ph - 21pg'
= = o

At - iiil plet]

Ip& ‘1; p, t=11=1
(16a)
s.t.
Ami"giLSim“" lelLteT (16b)
1S, <o ier (16¢)
T[:] /,
P{ymn<y, <V™|z1-¢, neNteT  (16d)

{ W+ On, < (Sma*)}21—ef (m,n) €eE.teT (16e)

2
P{p;rqé (Smdx) }Zl—ea geGtel (161)

(4). (6)-(10) (16g)
Equation (16h) represents the lower-level problems, which

enforce the expected optimal response of customers given
the decision prices 4,.

P t=1

st. ()-0)

D€ argmm(z/l,p,At) leL (16h)

IV. PROBLEM SOLUTION METHODOLOGY

Due to (16d)-(16f), the problem solution becomes computa-
tionally intractable. This section first provides second-order
cone (SOC) reformulations for these CCs, assuming the
DSO knows the probability density function of vectors &,
Specifically, each &~N(0,%,), where N () represents the
normal distribution function, and X, € R"*" is a diagonal ma-
trix. Furthermore, due to (16h), tractability depends on refor-
mulating the problem into a single-level one. Since prices 4,

are parameters in the lower-level problems, their objective
functions and corresponding constraints are linear in the deci-
sion variables p,. Thus, the Karush-Kuhn-Tucker (KKT) opti-

mality conditions [27], which are necessary and sufficient
for global optimality, can be used in their place. Finally, the
objective function includes bilinear products, which intro-
duce nonlinearity. However, this nonlinearity can be ad-
dressed through linearization using duality theory [27].

A. Reformulation of CCs

1) Voltage CCs. Every single constraint in (16d) with a
limit for the squared magnitude of nodal voltage is a CC of
the general form: P{a+b"¢,<c|>1-¢, where acR is the

nominal squared voltage; b € R" denotes the influence of ¢,
on the constraint; ¢ is a constant representing the voltage
limit; and € is the violation probability. In particular, the left-
hand side is a random variable whose distribution denotes
the variations in the corresponding voltage, with mean @ and
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standard deviation ” b'x? ”2 The CC is reformulated exact-
ly into the following SOC a<c—-@'(1-
E)” b'x? ”2, where @ is the cumulative distribution function

(CDF) of the standard normal distribution. Thus, CCs of
squared magnitudes of nodal voltages in (16d) can be rewrit-
ten as:

V,<vm-207(1-¢,)|d}(RD+XDO,) £ ”2 neNteT
(17a)

constraint:

7, <=V =207 (1-c, )| d](RD+XDO,) 5" |

neN,teT (17b)

2) Power flow CCs. Every single constraint in (16e) with a
limit for the magnitude of complex power flow is a CC of

the general form: P{(al+bf§,)2+(a2+b;§,)2£c2}21—6,

where a,,a, € R are the nominal active and reactive power
flows in the line, respectively; b,,b, e R denote the corre-
sponding influence of &; and ¢ is a constant representing the
apparent power limit in this general form. The two terms on
the left-hand side are squared random variables that denote
the operating points of the active and reactive power flows,
respectively, contained in the region S e R*. S is convex and
can be internally approximated by the /-sided polygon P in-
scribed inside S, with 7 even and selected in advance [28].
Then, this paper defines that P= {Ws<0}, where {Ws<0} is
a set of half-space linear constraints; W is an /x 3 matrix of
coefficients; and s € R? is the vector formed by each of the
elements of the above general form. By expressing the coef-
ficients of any i" row of W as w, |, w,,, and w,,, the follow-
ing linear CC results are obtained for i=1,2,...,7
]P’{wi,,(al +b1E) +w,,(a,+b3¢&) +w,.‘30S0} >1-¢. Due to
&, in both random variables, the following set of constraints
for the half-space approximation of S can replace the CCs
of complex power flows in (16e):

max
W:]P +W:2an— W' S -

o (1-¢)|[w, 4}, +w,,d},0,] 2} 2

i=1,2,..., ,(m,n)eE,teT (18)

3) Apparent power CCs. Every single constraint in (16f)
with a limit for the inverter capacity is a CC of the general

2
form: P{(al +§g/) +a5302} >1—¢, where in this general

form, a,,a, € R are the nominal active and reactive power
of the inverter, respectively; and ¢ is a constant representing
its apparent power limit. The squared random variable and
the squared scalar variable, on the left-hand side, denote re-
spectively the operating points of the active and reactive
power contained in the region S e R’ As in the above situa-
tion, S is convex and can be internally approximated by the
I-sided polygon P inscribed inside S. By expanding on this,

the following linear CC can be obtained as: P{wi,l(al +§g') +
W,y + W, 3¢ < O} 21-¢Vi,w;;20. Thus, the following set

of constraints for the half-space approximation of S can re-
place the CCs of active and reactive power set points of in-
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verters in (16g):

_ - -1
Wi Dyt Wi.zqg,s_wusé,lrmx_ @ (1 _Ga)

WL 1 O-g, ”2

Viw,,20,ge G, teT

(19)

where o, is the standard deviation of forecast errors for PV
facility g at time ¢.

B. Reformulation of Lower-level Problems

The following expressions are obtained by applying the
KKT formulation to the lower-level problems:

At =B B —ebi=0 IeLieT  (0a)
OS'B;,ninLﬁl/_pZ‘mZO leLteT (20b)
0<py™ L=p,+p;"20 leLitel (209

T
0<e, L >p,At—e20 leL (20d)
t=1

Equation (20a) is the gradient of the Lagrange function
concerning variables p,. Likewise, (20b)-(20d) represent the

complementary slackness conditions between the non-nega-
tive dual variables and the inequality constraints of the pri-
mal problem. Due to the nonlinearity of complementary
slackness conditions, the mixed-integer method of [29] is
used, resulting in the following set of linear constraints:

0<pM™<M'B™ leLteT (21a)

0<p,~pp<M?(1-B™) leLteT (21b)

0SB <M'B™ leLteT 21c)

0<—p, +pP<M?(1-BP™) leLteT  (21d)

0<g,<M'E, lelL (21e)

0< iﬁhAt—e,sM”(l—E,) lelL (219
5

B, B e {0,1} leLteT (21g)

E e {01} leL (21h)

where M? and M* are the positive constants that are valid as
upper bounds for the primal and dual variables, respectively.

C. Reformulation of Objective Function
Bilinear products 4, p, in the objective function (16a) in-

troduce nonlinearity. However, this bilinear term can be writ-
ten in terms of the dual variables of the lower-level prob-
lems. The objective function of dual problems is derived by
multiplying each dual variable by the constant on the right-
hand side of its associated primal constraint and summing
these products. Therefore, the following strong-duality equal-
ity is obtained:

T T
S4B A = D pr BT -pr ) vee, [eL (22)
=1 t=1
Finally, the chance-constrained bi-level problem converts
to the equivalent MISOCP problem, where the optimal solu-
tion can be found through the branch and bound algo-
rithm [27]:

min E At—

i/,'ﬁg,’qg/‘,p/’

T L G
Sir($n-S.
=1 \i= g=1

L T
z[z(pfﬂnﬁ/r,mn _p)?ax lr'nax) +e181:H

I=1Lt=1
s.t. (4), (6)-(10), (16b), (16¢), (17a), (17b), (18), (19),
(20a), (21a)-(21h)

(23)

V. CASE STUDIES

This section presents two case studies to demonstrate the
benefits of the proposed approach and a comparison analysis
with the uniform price scheme. In the algorithmic implemen-
tation, the toolbox YALMIP [30] on MATLAB 2022, with
the Gurobi optimization solver, is used.

The case studies use a modified version of the IEEE 37-
node test feeder [31], replacing the original spot loads with
electricity data of 420 residential and commercial Chilean
customers, which is shown in Fig. 1. It operates at 4.8 kV
line-to-line nominal voltage. The measurement period for the
two cases corresponds to three weeks: from February 14 to
March 5 for the first case, and from February 21 to March
12 for the second case, both in 2020. Two PV facilities are
added to the modified IEEE 37-node test feeder to emulate
the penetration of renewable energy sources on the DSO
scale. Table I outlines the (random) allocation of customers
at load nodes and the nodes for PV generation. The test
dates are March 6 and March 13, for which the local market
prices at the customers’ substation are used, while the PV
generation profiles are simulated based on historical weather
data [32] in their geographical area. Figure 2 depicts the PV
generation and local market prices on the selected dates.
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Fig. 1. Modified IEEE 37-node test feeder considered in case studies.

This paper also defines a feasible region for decision pric-
es between 60 $/MWh and 80 $/MWh, with a regulated
price of 75 $/MWh. The violation probabilities in CCs are
€,=0.1, ¢,=0.01, and ¢,=0.01. Limits for nodal voltages are
set to be 1.05 p.u. and 0.95 p.u., while for power flows, the
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corresponding calculation uses the line-to-line nominal volt-
age and ampacity of electrical conductors. For the dispatch-
able inverters of PV facilities, S;*=370 kVA, and the mini-
mum steady-state active power capability is 7% of S;™*. The
upper bounds in the lower-level problems are MP=30 and
M“=60, while I=12 for the polygon P.

TABLE I
ALLOCATION OF CUSTOMERS AT LOAD NODES AND NODES FOR PV
GENERATION

Node for PV generation

Load node (number of customers) (number of PV facilities)

701 (71), 712 (11), 713 (9), 714 (5), 718

(11), 720 (14), 722 (24), 724 (6), 725 (7),

727 (6), 728 (21), 729 (9), 730 (16), 731

(16), 732 (9), 733 (18), 734 (9), 735 (22),

736 (9), 737 (32), 738 (32), 740 (19), 741
(25), 742 (13), 744 (6)

707 (1), 711 (1)
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Fig. 2. PV generation and local market prices on March 6 and March 13.
(a) PV generation. (b) Local market prices.

Lastly, to construct vectors &, 90 samples are drawn from
normal distributions of nodal demand deviations and forecast
errors. To reflect the evolution of uncertainty over time, the
standard deviation is assumed to be 3% of the expected or
forecasted active power for the 1™ and 2™ hours, 6% for the
3" to 5™ hours, 10% for the 6™ to 9" hours, 15% for the 10"
to 14" hours, and 20% for the rest of future time. The nodal
expected or forecasted value considers the aggregated aver-
age demand or the available PV generation. Power factors of
0.93 and 0.86 are assumed for residential and commercial
customers, respectively.
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A. Case Study 1

The application of the CFSFDP algorithm to the measure-
ment results in three clusters. Their corresponding daily con-
sumption profiles are depicted in Fig. 3, with cardinalities of
3279, 5141, and 288, respectively. The black profile repre-
sents the cluster center. Cluster 1 exhibits a typical residen-
tial pattern characterized by a slightly higher consumption at
night. Cluster 2 presents a pattern where consumption is con-
centrated during working hours, suggesting that most com-
mercial facilities and businesses are included. Instead, clus-
ter 3 presents a pattern with lower consumption during day-
light hours, likely because of vacations during this period.
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Fig. 3. Daily consumption profiles of three clusters. (a) Cluster 1. (b) Clus-

ter 2. (c¢) Cluster 3.

Table II summarizes the RPCs, their combinations, and
the number of customers per highest-probability RPC on
March 6 (which results in the same three RPCs). Most con-
sumers use two RPCs during the period, mainly a combina-
tion of RPCs 1 and 2 (71.7% of the total). Also, the DSO ex-
pects mostly the RPC 2, characterized by higher consump-
tion values.

TABLE 11
RPCSs, THEIR COMBINATIONS, AND NUMBER OF CUSTOMERS PER
HIGHEST-PROBABILITY RPC ON MARCH 6

Combination of RPCs Number of customers

RPC Ii?:;gfse(r)sf (number of customers in per highest-probability
corresponding combination) RPC on March 6
58 2 (40), 1 (15), 3 (3) 128
2 313 1-2 (301), 1-3 (8), 2-3 (4) 285
3 49 1-2-3 (49) 7

Figures 4 and 5 illustrate the three customized price sig-
nals to be broadcast by the DSO and the expected consump-
tion profiles, respectively.
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Fig. 4. Customized price signals according to highest-probability RPC on
March 6. (a) RPC 1. (b) RPC 2. (c) RPC 3.
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Fig. 5. Expected consumption profiles of customers on March 6. (a) RPC
1. (b) RPC 2. (¢) RPC 3.

In Fig. 5, the black profile represents the average con-
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sumption. The customized price signal according to RPC 1
shows 60 $/MWh for almost the entire day, except for the
last three hours when it increases to the maximum price.
The consumption of customers with RPC 1 during these
hours is also higher. Thus, the DSO’s interest is for these
customers to shift part of their consumption activities from
this period to the rest of the day. Likewise, the customized
price signal according to RPC 2 matches the shape of mar-
ket prices very well, with a significant difference only in the
peak prices from 15:00 to 17:00. This difference is because
this period also coincides with the higher PV generation (15:
00 corresponds to the maximum PV generation). Therefore,
the DSO encourages customers with RPC 2 to shift intended
consumption activities to this period and others with lower
market prices. Customers with RPC 3 have the lowest influ-
ence compared with those with RPCs 1 and 2. The custom-
ized price signal, according to RPC 3, aims to shift consump-
tion activities mainly to working hours, except at 16: 00,
when the market price is the highest.

As a result, customers with RPCs 1 and 2, due to their in-
herent flexibility, have higher consumption during periods
with the minimum price (60 $/MWh). In contrast, customers
with RPC 3 experience a slight increase in consumption
around noon.

For the PV facilities, Fig. 6 depicts their active and reac-
tive power set points at nodes 707 and 711. The active pow-
er output comprises some values below the available active
power during the higher-generation period due to the consid-
eration of the uncertainty. On the other hand, reactive power
injections occur mainly during periods of lower active power
generation. The higher reactive power at node 707 also indi-
cates that more commercial customers are closer to it.

Figure 7 depicts the maximum decrease in apparent power
of inverters and the comparison of empirical probabilities of
apparent power violations (including both PV facilities) with
the (deterministic) mixed-integer linear programming
(MILP) model. For the empirical probabilities, the case
study uses 720 new random samples of forecast errors each
hour obtained from a Monte Carlo simulation. The decrease
in apparent power reaches the presented highest values at 15:
00 for both nodes. Likewise, the empirical probabilities (rep-
resented by the color dots) indicate numerous apparent pow-
er violations with the MILP model that significantly exceed
the acceptable limit (represented by the black horizontal
lines). In contrast, only a few constraints have slightly high-
er empirical probabilities using the MISOCP model.

However, considering the uncertainty leads to an increase
in the DSO’s expected cost. For March 6, this cost corre-
sponds to $15.1 using the MILP model and $50.3 using the
MISOCP model. Furthermore, this value depends on the lev-
el of PV generation. For example, Table III presents several
scenarios with different percentages of the initial PV genera-
tion depicted in Fig. 2, maintaining the same market price.
While expanding the PV capacity yields a profit (remarkably
higher in the scenario with 200% of the initial PV genera-
tion), the absence of PV facilities results in a high daily cost
unless adjustments to the bounds of decision prices occur.
Specifically, in simulations with 120%, 150%, and 200% of
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the initial PV generation, the apparent power of inverters al-
S0 increases proportionally.
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Fig. 6. Active and reactive power set points of PV facilities at nodes 707
and 711 on March 6. (a) Active power. (b) Reactive power.
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TABLE III
SCENARIOS WITH DIFFERENT PERCENTAGES OF INITIAL PV GENERATION

Percentage (%)  DSO’s expected profit (§) DSO’s expected cost ($)

120 38.1

150 182.3

200 403.4
80 117.4
50 264.3
0 528.3

Finally, the case study assesses the impact of uncertainty
by considering the voltage at extreme node 741 under the
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condition of PV facilities connected to the main branch.
Node 741 experiences the highest voltage drops when the
PV facilities are, for instance, at nodes 702 and 709. Using
this connection, Fig. 8 shows the expected voltage at node
741 obtained with the MILP and MISOCP models for the
critical time of 19:00, including the CDF of voltage devia-
tions superimposed. Due to incorporating uncertainty in the
MISOCP model, the squared voltage increases to 20.91 kV?.
This increment represents a reduction in the probability of
constraint violation from close to 30% with the MILP model
to the established 10% with the MISOCP model. With the
new configuration, the DSO’s expected cost is $54.8.
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Fig. 8. Expected voltage at node 741 obtained using MILP and MISOCP

models for the critical time of 19:00.

B. Case Study 11

For simplicity, this case study presents only the custom-
ized price signals according to each highest-probability RPC
on March 13, the expected consumption profiles, and the ac-
tive and reactive power set points of PV facilities. As in
case study I, three clusters characterize customers’ behavior
during the corresponding three weeks. The shapes of these
clusters are very similar to those in Fig. 3 due to the close-
ness of both measurement periods. Table IV summarizes the
three RPCs, their combinations, and the number of custom-
ers associated with each highest-probability RPC on March
13. Most consumers use a combination of RPCs 1 and 2
(72.9% of the total), and the DSO primarily expects the
RPC 2.

TABLE IV
RPCS, THEIR COMBINATIONS, AND NUMBER OF CUSTOMERS PER
HIGHEST-PROBABILITY RPC ON MARCH 13

Combination of RPCs Number of customers

I\i]{lxrsrigge(r)sf (number of customers in per highest-probability
corresponding combination) RPC on March 13
64 2 (41), 1 (20), 3 (3) 108
2 315 1-2 (306), 1-3 (4), 2-3 (5) 302
41 1-2-3 (41) 10

The customized price signals according to each highest-
probability RPC on March 13 are depicted in Fig. 9. In the
customized price signal according to RPC 1, the minimum
price (60 $/MWh) is uniform except from 22:00 to 23:00.
This result encourages customers with RPC 1 to shift their
higher consumption at night to close hours in the afternoon,
coinciding with lower market prices and higher PV genera-
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tion. A different situation characterizes the customized price
according to RPC 2, where the minimum price ranges main-
ly from 13:00 to 21:00, involving most of the daily demand
of customers with RPC 2. The DSO minimizes costs if these
consumers maintain a higher consumption during this peri-
od. Finally, customers with RPC 3 face a significant chal-
lenge because the customized price signal according to RPC
3 requires them to change their consumption pattern on the
test day. In particular, periods of higher consumption (from
the beginning of the day to 09:00 and at the end of the day)
coincide with higher market prices.
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Fig. 9. Customized price signals according to highest-probability RPC on
March 13. (a) RPC 1. (b) RPC 2. (¢) RPC 3.

Figure 10 depicts the expected consumption profiles of
customers, where the black profile represents the average
consumption. A similar consumption pattern characterizes
customers with RPCs 1 and 2, with notably higher demand
from 13:00 to 19:00. This period involves high PV genera-
tion and low market prices. Customers with RPC 2, howev-
er, have higher consumption than those with RPC 1. This re-
sult also demonstrates the high flexibility of both in shifting
consumption according to the DSO’s price signals. Concern-
ing customers with RPC 3, they reduce their demand in the
early morning and at night.

Finally, Fig. 11 illustrates the active and reactive power
set points of PV facilities, which exhibit similar behavior as
those in Fig. 6. The differences (in the corresponding values)
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arise from the specific grid conditions on the selected dates.
In particular, March 13 implies an expected profit of $235.4
for the DSO.
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Fig. 10. Expected consumption profiles of customers on March 13. (a)

RPC 1. (b) RPC 2. (c) RPC 3.
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Fig. 11. Active and reactive power set points of PV facilities at nodes 707
and 711 on March 13. (a) Active power. (b) Reactive power.

C. Comparison Analysis

Supplying electricity to customers through customized tar-
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iffs provides technical and economic benefits for the DSO.
In contrast, implementing a uniform price signal overlooks
the specific preferences of individual customers.

Figure 12 depicts the uniform price signals to be broad-
cast by the DSO on March 6 and March 13. Both price sig-
nals are derived based on the specific characteristics defined
for the case studies. A comparison of these price signals
with Figs. 4 and 9 reveals two significant issues: (I the
shape of the resulting uniform price scheme exhibits very
few changes; and (2 in general, the most prevalent RPCs of
customers are reflected in the uniform price signals. For in-
stance, on March 6, the price signal maintains the minimum
price (60 $/MWh) until noon, which aligns with the profile
obtained for customers with RPC 1 in Fig. 4. After noon,
the shape of the price signal matches that for customers with
RPC 2. Similarly, on March 13, the minimum price is ob-
served before 09:00, while the rest of the day resembles the
price signal for customers with RPC 2. Thus, these tariffs do
not adequately consider customers with RPC 3, while the
representation of the other two RPCs is partial.
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Fig. 12.  Uniform price signals to be broadcast by DSO on March 6 and
March 13. (a) March 6. (b) March 13.

On the other hand, the total cost for the DSO on March 6
is $64.4, which is higher than the cost incurred using the
proposed approach ($50.3). Similarly, the DSO records a
profit of $207.6 on March 13, which is lower than the profit
obtained using the proposed approach ($235.4). As a result,
the cost minimization achieved through the uniform price
scheme is less effective, which is a finding that aligns with
the conclusion presented in [13].

VI. CONCLUSION

This paper presents a customized scheduling approach for
DR of customers with dispatchable inverters in distribution-
level PV facilities. Providing flexibility by scheduling the de-
mand side supports the DSO in the technical and economic
management of the distribution system. Specifically, the
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DSO minimizes distribution system costs by determining dai-
ly price signals for customers based on their RPCs and ac-
tive and reactive power set points for PV facilities. Further-
more, the proposed approach ensures the reliable operation
of the distribution system with high probability by address-
ing uncertainty through CCs.

The conducted case studies use real-world market prices
and daily consumption profiles of residential and commer-
cial Chilean customers on the IEEE 37-node test feeder. Re-
sults highlight the suitability of the proposed model to man-
age distribution-level energy resources by delivering custom-
ized price signals and power set points, respectively. The
proposed approach provides an expected cost for the DSO;
however, the DSO has the final decision concerning the trad-
eoff between the security and cost in the distribution system.

The proposed approach can be extended, for example, by
including maximum ramp rates in the customer model, a
higher number of PV facilities or other distribution-level en-
ergy resources, and different risk levels (measured in CCs in
terms of the violation probability) and probability distribu-
tions for deviations and errors.

Future work will expand this investigation by addressing
two significant issues: () analysis of the unbalanced distribu-
tion system with DR and other distributed energy resources;
and (2 an online application of the scheduling problem to ac-
count for updated information on system parameters.
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