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Abstract——Liquefied natural gas (LNG), recognized as the pri‐
mary form for natural gas transportation, can release substan‐
tial cold energy during gasification. To make efficient use of 
this cold energy, this paper proposes a data-driven stochastic ro‐
bust (DDSR) energy management method for the multi-stage 
cascade utilization of LNG cold energy in a multi-energy mi‐
crogrid (MEMG) of an LNG receiving terminal. Firstly, a gen‐
eral scheduling model considering the flexible coupling between 
adjacent stages, energy losses, and electric power consumption 
for the cascade utilization of LNG cold energy is introduced. 
This model is applied to carbon capture, cryogenic power gener‐
ation, and direct cooling, which are sequentially associated with 
the deep, medium, and shallow cooling zones of LNG cold ener‐
gy, respectively. Moreover, a two-stage energy management 
framework is proposed to coordinate the cascade utilization of 
LNG cold energy with other energy resources in the MEMG. 
To tackle the uncertainties of renewable energy generation and 
various loads, a DDSR-based solution method is developed, aim‐
ing to achieve both economic benefits and solution robustness 
by identifying the worst-case scenarios and the corresponding 
worst-case probability. Accordingly, a Benders decomposition-
based solution algorithm is proposed to divide the original prob‐
lem into a master problem and a slave problem, which are solved 
iteratively. The simulation results verify the effectiveness and 
high efficiency of the proposed DDSR energy management meth‐
od for multi-stage cascade utilization of LNG cold energy.

Index Terms——Energy management, stochastic robust optimi‐
zation, liquefied natural gas (LNG), cold energy, multi-energy 
microgrid.

I. INTRODUCTION 

NATURAL gas (NG) is widely recognized as a clean fos‐
sil fuel, and its demand has been experiencing substan‐

tial growth in the context of carbon neutrality and energy 
transition [1]. Upstream NG is transported in the form of liq‐
uefied natural gas (LNG) by ocean-going vessels to LNG re‐
ceiving terminals. Upon arrival at these terminals, LNG is 
gasified before being delivered to end-users [2]. During the 
gasification process, approximately 830 kJ of cold energy is 
released per kilogram of LNG [3]. Given that the global an‐
nual consumption of LNG can reach as high as 39.64 billion 
tons annually [4], harnessing the released cold energy during 
LNG gasification can bring significant opportunities for a 
wide range of energy applications. However, many LNG re‐
ceiving terminals use seawater as a natural heat source for 
vaporizing and warming LNG, leading to a significant waste 
of cold energy. Thus, it is important to explore the effective 
utilization of LNG cold energy and to realize great social, 
economic, and environmental benefits [5].

The existing technologies of LNG cold energy utilization 
can be categorized according to different temperature zones 
of cold energy. The low-temperature carbon capture [6], 
light hydrocarbon separation [7], and seawater desalination 
[8] mainly utilize cold energy from the deep cooling zone. 
In contrast, cryogenic power generation [9] primarily utilizes 
LNG cold energy from the medium cooling zone. Additional‐
ly, the shallow cooling zone of LNG cold energy can be 
used for air-conditioning refrigeration [10] and cold storage 
[11]. Therefore, integrating these various applications into a 
comprehensive energy system that utilizes LNG cold energy 
stepwise through multiple temperature zones can significant‐
ly enhance energy utilization efficiency and bring substantial 
economic and environmental advantages [12].

Extensive research efforts have been devoted to the utiliza‐
tion of LNG cold energy. Reference [13] introduces an inte‐
grated power and cooling system that incorporates a cascade 
organic Rankine cycle (ORC) system, an air-conditioning re‐
frigeration, and a direct expansion cycle. Thermodynamic 
and economic evaluation are performed along with parame‐
ter optimization, aiming to maximize the utilization of LNG 
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cold energy. Reference [6] employs a concept of cascade-
nested ORC cycles to develop a combined system for power 
generation and CO ₂ capture based on LNG cold energy in 
the magnesite processing industry. The system performance 
is improved by selecting optimal mixed working fluids and 
incorporating regenerators. Furthermore, an LNG cold ener‐
gy cascade utilization system that integrates light hydrocar‐
bon separation, ORC-based power generation with data cen‐
ter cooling, as well as warehouse cold storage, is proposed 
in [10]. Moreover, [14] develops a cascade integrated system 
for electricity, cooling, heating, and freshwater production us‐
ing a gas turbine and desalination in conjunction with LNG 
gasification. Thermodynamic, environmental, and economic 
analyses indicate a notable improvement in the operation ef‐
ficiency and environmental sustainability. Reference [15] de‐
signs a combined LNG gasification and liquid air energy 
storage system, which applies parallel two-stage Rankine cy‐
cles for power generation during peak periods and energy 
storage during off-peak periods, thereby enhancing the sys‐
tem flexibility, safety, and operational profitability. Overall, 
the above studies illustrate the significance of cascade utiliza‐
tion of LNG cold energy in energy efficiency and economic 
benefits, but they primarily focus on the design and thermo‐
dynamic simulation of the LNG cold energy utilization sys‐
tem.

With the advancement of the green and low-carbon transi‐
tion [16], the LNG receiving terminal can be equipped with 
abundant renewable and flexible energy resources to meet di‐
verse energy demands, forming a multi-energy microgrid 
(MEMG) [17]. At present, there are few studies on the 
scheduling level of LNG cold energy utilization in coordina‐
tion with other energy resources. Reference [18] proposes a 
day-ahead (DA) dispatch model that coordinates the liquid 
air storage and LNG gasification. The cold energy from 
LNG gasification is only used for air liquefaction, which 
may lead to a low utilization efficiency of LNG cold energy. 
Moreover, an MEMG scheduling model considering a three-
stage cascade utilization of cold energy for carbon capture, 
power generation, and direct cooling is proposed in [19]. 
This model pre-assigns a fixed range of cold energy to the 
three applications without capturing the flexible interactions 
between adjacent stages, and also ignores the energy loss 
and electric power consumption during the cascade utiliza‐
tion process of cold energy.

In addition, to address the uncertainties of renewable ener‐
gy generation and loads, stochastic optimization (SO) and ro‐
bust optimization (RO) methods are often applied. The SO 
method [20] determines the optimal expected objective with 
multiple sampled uncertainty scenarios based on the probabil‐
ity distribution of uncertainties. However, the probability dis‐
tribution may be unknown or inaccurate. Alternatively, the 
RO method [21] optimizes decisions under the worst-case  
uncertainties characterized by a low probability of occur‐
rence, resulting in a conservative result. Therefore, it is im‐
portant to develop an optimization method that can address 
the disadvantages of SO and RO methods. With the digitali‐
zation of MEMG, more available historical data of uncertain‐
ties can be collected to support the MEMG operation. Con‐

ventional data-driven distributionally robust optimization 
method [22] utilizes finite uncertainty scenarios (historical 
data) with similar features to make decisions under the worst 
probability distribution belonging to an ambiguity set using 
1/¥ norms [23] or Wasserstein ball [24], [25] measurements. 
However, these uncertainty samples may not always reoccur.

Meanwhile, it is rational to assume that the realization of 
uncertainties tends to be concentrated around each similar 
historical and prediction scenario within a small variation in‐
terval [26], which can trace the trajectory of uncertainty pro‐
files. By searching for the worst case in each interval and 
the corresponding worst-case probability distribution with 
overall variation control, a certain level of solution robust‐
ness can be preserved while maintaining the economic bene‐
fits. Thus, based on this principle, this paper develops a data-
driven solution method to address the uncertainties in 
MEMG energy management.

In summary, although existing research offers valuable in‐
sights into the cascade utilization of LNG cold energy, there 
remain limitations in scheduling-level modelling of cascade 
utilization of LNG cold energy and the associated energy 
management under uncertainties. To address these challeng‐
es, this paper proposes a data-driven stochastic robust 
(DDSR) energy management method for multi-stage cascade 
utilization of LNG cold energy in an MEMG. The main con‐
tributions are summarized as follows.

1) A general scheduling model for the cascade utilization 
of LNG cold energy is introduced and applied to carbon cap‐
ture, cryogenic power generation, and direct cooling. This 
model considers the flexible coupling between adjacent utili‐
zation stages, energy losses, and electric power consumption.

2) By taking into account the operating characteristics of 
the MEMG, a two-stage energy management framework is 
proposed to coordinate the cascade utilization of LNG cold 
energy with other energy resources in the MEMG.

3) To address the uncertainties of renewable energy gener‐
ation and various loads, a DDSR-based solution method is 
developed, aiming to achieve both economic benefits and so‐
lution robustness by identifying the worst-case scenarios and 
the corresponding worst-case probability.

The remainder of this paper is organized as follows. Sec‐
tion II introduces the two-stage energy management frame‐
work. Section III presents a general scheduling model for 
the cascade utilization of LNG cold energy, and Section IV 
provides the mathematical formulation of MEMG energy 
management. A DDSR-based solution method is proposed in 
Section V. Then, Section VI presents case study to verify the 
effectiveness and high efficiency of the proposed DDSR en‐
ergy management method. Lastly, Section VII concludes this 
paper and provides the direction of future work.

II. TWO-STAGE ENERGY MANAGEMENT FRAMEWORK

This section introduces the two-stage energy management 
framework for the cascade utilization of LNG cold energy. 
The MEMG structure and energy flows are shown in Fig. 1, 
where P Buy

t  and P Sell
t  are the power purchased from and sold 

to the power grid, respectively. Other variables will be ex‐
plained in the following text.

311



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 14, NO. 1, January 2026

The LNG receiving terminal-based MEMG needs to fulfill 
various energy demands including electric, cooling, and gas 
loads with the goal of minimizing operation costs and car‐
bon emissions. To make efficient use of LNG cold energy, 
the cascade utilization in the LNG gasification station com‐
prises carbon capture, cryogenic power generation, and di‐
rect cooling that are sequentially associated with the deep, 
medium, and shallow cooling zones of LNG cold energy, re‐
spectively. Moreover, the MEMG is mainly equipped with re‐
newable energy generation, microturbine, electric chiller, gas 
storage tank, together with these three applications of LNG 
cold energy, to meet various electricity, cooling, and gas de‐
mands. Accordingly, there are four distinct energy flows in‐
cluding electric flow, cooling flow, gas flow, and carbon 
flow, which are mutually coupled. The carbon emission 
from the microturbine generation is mitigated by the car‐
bon capture process. Electric chiller combines with the di‐
rect cooling process to satisfy the cooling requirement. Consid‐
ering that the total released cold energy depends on the gas de‐
mand, gas storage tank serves as a buffer between the gasified 
LNG and the actual gas load to improve the utilization flexi‐
bility of LNG cold energy. Lastly, the MEMG can purchase 
or sell energy in the DA electricity market and intraday hour‐
ly-ahead (HA) electricity market.

Considering the operating characteristics of the MEMG, a 
two-stage energy management framework is established. In 
the DA stage, the on/off states of LNG gasification, the 
multi-stage utilization processes of cold energy, and microtur‐
bines are determined based on the whole-day predictions of 
uncertain renewable energy generation and various loads. Al‐
so, the energy transaction in the DA market is optimized. 
Subsequently, in the HA stage of the next day, the output 
production of LNG equipment, the power outputs of flexible 
resources, and the HA energy transaction are optimized us‐
ing more accurate short-term predictions of uncertainties to 
meet various load demands with an economic and low-car‐
bon objective for MEMG operation.

III. GENERAL SCHEDULING MODEL FOR CASCADE 
UTILIZATION OF LNG COLD ENERGY 

This section introduces a general scheduling model for the 
cascade utilization of LNG cold energy. For ease of descrip‐
tion, each stage of cold energy utilization is indexed by m.

A. LNG Gasification

The constraints for LNG gasification are given as:

αng
t N ng

min £N ng
t £ αng

t N ng
max    "t (1)

CE lng
t =N ng

t ρngηce( )h + cngDT ckwh    "t (2)

where subscript t is the index of scheduling time interval; 
αng

t  is the binary on/off state of the gasification process; N ng
t  

is the gasified NG volume; N ng
min and N ng

max are the minimum 
and maximum gasified NG volumes, respectively; CE lng

t  is 
the total released cold energy; ρng is the NG density; ηce is 
the recovery efficiency of LNG cold energy; cng is the aver‐
age specific heat capacity of NG; DT is the temperature 
change during the gasification process; h is the latent heat of 
phase transition from LNG to NG; and ckwh is a coefficient 
that converts unit kJ to kWh, which is normally 1/3600.

Constraint (1) limits the LNG gasification within the rated 
range. The total released cold energy is calculated by (2), 
which comprises the latent heat caused by phase change 
from liquid to gas and the sensible heat associated with the 
temperature change of NG. It is noted that the difference be‐
tween the storage temperature and the boiling point of LNG 
is small. Therefore, the related cold energy resulting from the 
temperature change in the LNG form is neglected in this paper.

Furthermore, the LNG gasification equipment may not 
start or stop arbitrarily, and thus should comply with specific 
on/off time limits, which are constrained as:

αng
ε ³ α

ng
t - αng

t - 1    "εÎ [ t + 1t + T ng
on - 1] (3)

αng
ε £ 1 - (αng

t - 1 - α
ng
t )     "εÎ [ t + 1t + T ng

off - 1] (4)

where T ng
on  and T ng

off  are the minimum on-time and off-time 
limits, respectively; and ε is the selected scheduling time in‐
terval within the given periods.

B. General Single-stage Utilization of LNG Cold Energy

Considering the application of each utilization stage, there 
are the minimum and maximum amounts of input cold ener‐
gy for the normal operation. The utilized cold energy for 
each stage is constrained as:

αm
t ·CE m

min £CE m
t £ α

m
t ·CE m

max    "t (5)

where CE m
min and CE m

max are the minimum and maximum lim‐
its of the input cold energy in stage m, respectively; αm

t  is 
the binary on/off state of the utilization process of cold ener‐
gy; and CE m

t  is the input cold energy in stage m.
The cold energy utilization equipment also needs to ad‐

here to specific on-time and off-time limits. T m
on and T m

off rep‐
resent the minimum on-time and off-time limits for the cold 
energy utilization equipment in stage m, respectively. These 
constraints can be referred to (3) and (4).
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Fig. 1.　MEMG structure and energy flows.
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During the utilization process of cold energy, the cold en‐
ergy losses occur due to heat exchange, heat transfer, and en‐
ergy conversion. Also, some components such as pumps, 
compressors, and expanders consume electricity. Therefore, 
it is important to consider both energy losses and electric 
power consumption during the utilization of cold energy, as 
specified in (6) and (7), respectively.

CELS m
t = fl(CE m

t )     "t"m (6)

PC m
t = fp(CE m

t -CELS m
t )     "t"m (7)

where CELS m
t  is the cold energy loss in stage m; PC m

t  is the 
electric power consumption during the utilization process of 
cold energy in stage m; fl( )×  is the relationship function be‐
tween the cold energy losses and the input cold energy; and 
fp( )×  is the relationship function between the electric power 

consumption and the utilized cold energy.
Lastly, the utilized cold energy is converted into the target 

product in each stage. The output production of the LNG 
cold energy utilization is expressed as:

M lngm
t = fo(CE m

t -CELS m
t )     "t"m (8)

where M lngm
t  is the output production of the cold energy uti‐

lization in stage m; and fo(·) is the relationship function be‐
tween the output and the utilized cold energy.

This paper assumes that fl(·), fp(·), and fo(·) are linear 

functions. Thus, (6)-(8) can be rewritten as:

CELS m
t = μm·CE m

t     "t"m (9)

PC m
t = km(CE m

t -CELS m
t )      "t"m (10)

M lngm
t = ηm(CE m

t -CELS m
t )     "t"m (11)

where μm is the loss coefficient; km is the coefficient of elec‐
tric power consumption; and ηm is the utilization rate of 
LNG cold energy. It is noted that adopting other functions 
does not affect the effectiveness of the proposed general 
model for LNG cold energy utilization.

C. Cascade Utilization of LNG Cold Energy

With the above single-stage utilization, the cascade utiliza‐
tion of LNG cold energy can be modelled as:

CE lng
t ³∑

m

CE m
t     "t (12)

P ex
t =∑

m

PC m
t      "t (13)

where P ex
t  is the total electric power consumption through all 

stages.
Constraint (12) indicates that the aggregated input cold en‐

ergy of all the stages cannot exceed the total released cold 
energy from LNG gasification. With constraints (5) and (12), 
it is evident that if one utilization stage consumes less cold 
energy, more available cold energy will remain in other stag‐
es, showing a flexible coupling between adjacent stages. 
Then, the total electric power consumption of the cascade 
utilization of LNG cold energy is expressed by (13).

IV. MATHEMATICAL FORMULATION OF MEMG ENERGY 
MANAGEMENT

The MEMG has abundant renewable and flexible energy 
resources which can be coordinated with the cascade utiliza‐
tion of LNG cold energy to achieve highly efficient energy 
management. In this section, the mathematical formula of 
MEMG energy management is developed for the multi-stage 
cascade utilization of LNG cold energy.

In the following text, the aforementioned utilization stage 
m is replaced by c, p, and co, which correspond to the car‐
bon capture stage, the cryogenic power generation stage, and 
the direct cooling stage, respectively. Moreover, the output 
production M is replaced by C, P, and CO, representing the 
captured carbon quantity, generated power, and produced 
cooling power, respectively.

A. Constraints of Renewable and Flexible Energy Recources

1)　Renewable Energy Generation

0 £P ren
t £P ren

max    "t (14)

where P ren
t  is the renewable energy generation power; and 

P ren
max is its maximum value.

2) Gas Storage Tank

S gs
t = S gs

t - 1 + (N gsch
t -N gsdis

t ) τ
ηgsVgs

    "t (15)

S gs
min £ S gs

t £ S gs
max    "t (16)

0 £N gsch
t £ αgs

t N gs
max    "t (17)

0 £N gsdis
t £ ( )1 - αgs

t N gs
max    "t (18)

S gs
0 = S gs

24 (19)

P gs
t = kgs( )N gsch

t +N gsdis
t     "t (20)

where S gs
t  is the state of charge (SoC) of the gas storage 

tank; τ is the scheduling time interval; Vgs is the nominal ca‐
pacity of the gas storage tank; ηgs is the compression rate; 
S gs

min and S gs
max are the minimum and maximum SoC limits of 

the gas storage tank, respectively; S gs
0  and S gs

24 are the initial 
SoC and last SoC, respectively; αgs

t  is the binary charging/
discharging state; N gsch

t  and N gsdis
t  are the charging and dis‐

charging flow rates of NG, respectively; N gs
max is the maxi‐

mum charging/discharging flow rate; kgs is the electric power 
consumption coefficient; and P gs

t  is the electric power con‐
sumption of the gas storage tank.

The SoC of the gas storage tank is calculated by (15) and 
constrained by (16). Constraints (17) and (18) limit the 
charging and discharging flow rates of NG for the gas stor‐
age tank, respectively. Constraint (19) ensures that the last 
SoC is equal to the initial SoC. Constraint (20) calculates 
the electric power consumption of the gas storage tank. It is 
noted that other types of energy storage can be considered to 
further enhance the temporal coordination capability and 
flexibility of the MEMG.
3)　Microturbine

P gt
t = ηgt N

gt
t     "t (21)

αgt
t P gt

min £P gt
t £ α

gt
t P gt

max    "t (22)

313



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 14, NO. 1, January 2026

P gt
t - 1 -P gt

t £ r gt
max    "t (23)

P gt
t -P gt

t - 1 £ r gt
max    "t (24)

C gt
t = λgco2 N gt

t     "t (25)

where P gt
t  is the electric power of the microturbine; N gt

t  is 
the consumed NG for electric power generation; ηgt is the 
conversion efficiency; αgt

t  is the binary on/off state of the mi‐
croturbine; P gt

min and P gt
max are the minimum and maximum 

power limits of the microturbine, respectively; r gt
max is the 

maximum ramping rate; C gt
t  is the carbon emission of the mi‐

croturbine; and λgco2 is the carbon emission coefficient.
The electric power generation of the microturbine with re‐

spect to the NG consumption is described by (21). Con‐
straint (22) limits the power generation. Constraints (23) and 
(24) restrict the ramping rate. The carbon emission of the mi‐
croturbine is calculated by (25). Additionally, if the mini‐
mum on-/off-time limits are necessary, these limits can be re‐
ferred to (3) and (4).
4)　Electric Chiller

COec
t = ηec P ec

t     "t (26)

0 £COec
t £COec

max    "t (27)

where COec
t  is the produced cooling power of the electric 

chiller; P ec
t  is the electric power consumption of the electric 

chiller; ηec is the refrigeration efficiency; and COec
max is the 

maximum cooling power.
Equation (26) describes the produced cooling power with 

respect to the electric power consumption, and (27) con‐
strains the cooling power.

B. Mathematical Formula of MEMG Energy Management

Aiming at a low-carbon and economic operation, a 
MEMG energy management model considering the cascade 
utilization of LNG cold energy is proposed as:

min∑
t
( )C tra

t +C co2
t +C lng

t +C su
t (28)

s.t.
(1)-(5), (9)-(27)

C tra
t =C trada

t +C traha
t     "t (29)

C trada
t = ( pr Bda

t P Bda
t - pr Sda

t P Sda
t ) τ    "t (30)

C traha
t = ( pr Bha

t P Bha
t - pr Sha

t P Sha
t ) τ    "t (31)

C co2
t = cco2C

out
t     "t (32)

C lng
t = clng

c C lngc
t + clng

p P lngp
t + clng

co COlngco
t     "t (33)

C su
t = cng

su ung
t + cgt

suugt
t +∑

m

cm
suum

t     "t (34)

uγt ³ α
γ
t - α

γ
t - 1    "tγ = nggtm (35)

P Bda
t +P Bha

t +P gt
t +P ren

t +P lngp
t =P Sda

t +P Sha
t +

P ld
t +P ex

t +P ec
t +P gs

t     "t (36)

N ng
t +N gsdis

t =N gt
t +N ld

t +N gsch
t     "t (37)

COec
t +COlngco

t =COld
t     "t (38)

C gt
t =C out

t +C lngc
t     "t (39)

0 £∑
t

C out
t £C out

max (40)

{0 £P Bda
t £P line

max

0 £P Sda
t £P line

max

    "t (41)

{0 £P Bha
t £P line

max

0 £P Sha
t £P line

max

    "t (42)

0 £P Bda
t -P Sda

t +P Bha
t -P Sha

t £P line
max    "t (43)

where C tra
t  is the total transaction cost; C co2

t  is the carbon 
emission cost; C lng

t  is the operation cost of LNG cold energy 
utilization, C su

t  is the startup cost; C trada
t  and C traha

t  are the 
DA and intraday HA transaction costs, respectively; pr Bda

t  
and pr Bha

t  are the DA and intraday HA purchasing prices, re‐
spectively; pr Sda

t  and pr Sha
t  are the DA and intraday HA sell‐

ing prices, respectively; P Bda
t  and P Bha

t  are the DA and intra‐
day HA purchasing power, respectively; P Sda

t  and P Sha
t  are 

the DA and intraday HA selling power, respectively; cco2 is 
the carbon tax price; C out

t  is the carbon emission; C out
max is the 

daily carbon emission limit; clng
c , clng

p , and clng
co  are the unit op‐

eration costs for carbon capture, cryogenic power generation, 
and direct cooling, respectively; C lngc

t , P lngp
t , and COlngco

t  are 
the reduced carbon emissions from carbon capture, the out‐
put power of cryogenic power generation, and the direct 
cooling power, respectively; cng

su, cgt
su, and cm

su are the start-up 
costs of the LNG gasification, microturbine, and cold energy 
utilization equipment in stage m, respectively; uγt is a binary 
startup indicator of the related equipment γ; P ld

t , N ld
t , and 

COld
t  are the electric, gas, and cooling loads, respectively; 

and P line
max is the maximum line capacity for the DA or intra‐

day HA electricity transactions.
The objective function (28) minimizes the total operation 

costs of the MEMG system, including the transaction cost, 
carbon emission cost, operation cost of LNG equipment, and 
the start-up cost, which are described in (29)-(34), respective‐
ly. Constraint (35) defines the startup indicator of the related 
equipment. Moreover, energy balances of the electric flow, 
gas flow, cooling flow, and carbon flow are specified in (36)-
(39). The daily carbon emission is limited by (40). Con‐
straints for purchasing and selling electricity in DA and intra‐
day HA markets are given in (41) and (42), respectively. 
And finally, the total power exchange with the upstream grid 
is limited by (43). It is worth noting that minimizing the 
transaction cost implies reducing the electric energy ex‐
change with the upstream grid. Given that the purchasing 
prices are typically higher than the selling prices, the 
MEMG system prioritizes maximizing the consumption of 
its internal energy, thereby enhancing the overall efficiency 
of energy utilization.

V. DDSR-BASED SOLUTION METHOD

The uncertainties of renewable energy outputs and various 
loads can impair the MEMG operation. To deal with them, a 
DDSR-based solution method is developed in this section.

Firstly, historical data with the features similar to the next 
day and prediction data are aggregated to produce uncertain‐
ty scenarios. With these uncertainty scenarios, the proposed 
energy management model of the LNG receiving terminal-
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based MEMG in Section IV can be reformulated to the fol‐
lowing stochastic compact form as:

min
x

AT x + min
ys

∑
s = 1

Ns

ρs BT ys (44)

s.t.

Cx £ d (45)

Ex +Fys +Gus =w    "s (46)

Hx + Iys £ v    "s (47)

where A, B, C, E, F, G, H, and I are the coefficient matri‐
ces; d, w, and v are the coefficient vectors; subscript s de‐
notes the index of uncertainty scenarios with the total num‐
ber Ns; ρs is the probability of occurrence for each uncertain‐
ty scenario; x is a vector of DA decision variables, mainly 
including on/off indicators αng

t , αgt
t , αm

t , and αgs
t , startup indica‐

tors ung
t , ugt

t , and um
t , and DA trading power P Bda

t  and P Sda
t ; ys 

is a vector of intraday decision variables, mainly including 
the outputs of LNG equipment and flexible resources, as 
well as the intraday HA electricity transactions; us is a vec‐
tor of uncertainty variables including P ren

t , P ld
t , N ld

t , and COld
t .

In (44), the first “min” term is to minimize the DA cost, 
and the second “min” term is to minimize the average intra‐
day HA operation cost with respect to multiple uncertainty 
scenarios. Furthermore, constraint (45) summarizes (3), (4), 
(30), (34), (35), and (41). Equation (46) groups (2), (9)-(11), 
(13), (15), (19) - (21), (25), (26), (29), (31) - (33), and (36) -
(39). Finally, constraints (1), (5), (12), (16) - (18), (22) - (24), 
(27), (40), (42), and (43) form (47).

As previously noted, it is not always true to presume the 
reoccurrence of historical events, whereas it is reasonable to 
assume that the uncertainty realization is likely to occur 
around each scenario within a narrow variation interval. In 
the proposed DDSR solution method, each scenario is re‐
garded as a reference profile, which is further used to con‐
struct an interval. The interval can facilitate the worst-case 
searching to trace the trajectory of the uncertainty profile. 
The solution will seek the worst case in each interval as 
well as the corresponding worst probability of occurrence 
with the overall variation control. Accordingly, a scenario 
uncertainty set for the worst-case scenario searching and 
a probability set for the worst-case distribution searching are 
designed.

A. Scenario Uncertainty Set

The scenarios are used to create intervals whose lower 
and upper bounds are defined as the ratios of uncertainty 
profiles. Moreover, due to multiple uncertainty profiles, two 
different uncertainty budgets, i. e., the horizontal budget and 
the vertical budget, are established to constrain the variation 
level of the worst-case scenarios. The horizontal budget cal‐
culates the overall variation of each worst-case scenario 
across all scheduling periods of a day, while the vertical bud‐
get quantifies the average variation across all worst-case sce‐
narios during each scheduling period. The scenario uncertain‐
ty set U is defined as:

U =

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïïï
ï

ï

ï
uts

|

|
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(48)

where ûts is the vector of uncertainties under the expected 
values; -u ts and ūts are the lower and upper bound vectors of 

the uncertainty interval, respectively; 
-
μ

t
 and μ̄t are the lower 

and upper bounds of the horizontal budget, respectively; and 

-ϖ s and ϖ̄s are the lower and upper bounds of the vertical 
budget, respectively.

In (48), the first constraint limits the range of uncertainty 
variables. The second and third constraints limit the horizon‐
tal and vertical budgets within the allowed ranges. For re‐
newable energy generation and different loads, separate sce‐
nario uncertainty sets are constructed.

B. Probability Set

Each worst-case scenario has the corresponding probabili‐
ty of occurrence, but in practice, the probability distribution 
may remain unknown. Thus, a probability set is constructed 
to characterize the ambiguous distribution, where the worst-
case probability for each scenario is explored. According to 
[22], [23], L1 and L¥ norms are used to measure the conver‐
gence rate of the distance between the true distribution and 
the empirical distribution, which can be approximately ex‐
pressed as:

ì

í

î

ïïïï

ïïïï

Pr{ } ρ - ρ0

1
£ θ1 ³ 1 - 2Nse

-2θ1

Pr{ } ρ - ρ0

¥
£ θ¥ ³ 1 - 2Nse

-2Nsθ¥
(49)

where Pr{ }×  is the probability distribution; ρ and ρ0 are the 
true distribution and the empirical distribution, which are the 
vectors composed of ρs and ρ0

s, respectively; and θ1 and θ¥ 
are the tolerance parameters. Given the pre-set confidence 
levels β1 and β¥, θ1 and θ¥ can be calculated by setting the 
right-hand side of (49) to be the confidence levels as:

ì

í

î

ï
ïï
ï

ï
ïï
ï

θ1 =
1
2

ln
2Ns

1 - β1

θ¥ =
1

2Ns

ln
2Ns

1 - β¥

(50)

Based on the above formulas, the probability set D is ex‐
pressed as:

D =

ì
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(51)

where ρmin is the minimum probability for each identified 
scenario. To maintain statistical consistency and avoid sub‐
jective bias, a uniform distribution can be assigned to the 
empirical distribution ρ0 [24], [25]. In other words, the ini‐
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tial ρ0
s is equal to 1/Ns. It is noteworthy that other probability 

distributions can be applied to ρ0 without compromising the 
effectiveness of the probability set.

C. Data-driven Stochastic Robust Model with Benders De‐
composition-based Solution Algorithm

The general form of the DDSR energy management mod‐
el can be expressed as:

ì

í

î

ïïïï

ïïïï

min
x

AT x + max
ρsÎDusÎU

∑
s = 1

Ns

ρs min
ys

BT ys

s.t.  (45)-(48) (51)
(52)

The “max” term aims to seek the worst-case scenarios 
and the corresponding worst-case probabilities in the sce‐
nario uncertainty set and the probability set, respectively.

To solve (52), a Benders decomposition-based solution al‐
gorithm [27] is developed. It decomposes (52) into a master 
problem and a slave problem. The slave problem searches 
for the worst-case scenarios and the corresponding worst-
case probabilities, while the master problem optimizes deci‐
sion variables of MEMG energy management with the identi‐
fied worst-case scenarios and probabilities. The overview of 
the proposed solution algorithm is illustrated in Fig. 2.

1)　Slave Problem
With the optimal DA decision variables x*, the slave prob‐

lem is obtained by dualizing the inner “min” term in (52), 
given as:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

max
ρsusηsδs

∑
s = 1

Ns

[ ]δT
s ( )Ex* +Gus -w + ηT

s ( )Hx* - v +AT x*

s.t.  (48) (51)

        ρs BT + δT
s F + ηT

s I = 0    "s

        ηs ³ 0    "s

(53)

where δs and ηs are the vectors of dual variables. The bilin‐
ear terms δT

s us in the objective function (53) can be ad‐
dressed by an outer approximation (OA) approach [28], 
which divides (53) into an OA master problem and an OA 
subproblem, given as follows.

Given the uncertainty u*
s and the dual variable δ*

s, the OA 
master problem is given as:

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

max
ρsusηsδs

∑
s = 1

Ns

[ ]δT
s ( )Ex* -w + ηT

s ( )Hx* - ν + βs +AT x*

s.t.  (48) (51)

        ρs BT + δT
s F + ηT

s I = 0    "s

        ηs ³ 0    "s

        βs £ ( )δ*
s

T
Gu*

s + ( )δs - δ
*
s

T
Gu*

s + ( )us - u*
s

T
GTδ*

s    "s

(54)

By solving the OA master problem (54), the newly ob‐
tained u*

s and ρ*
s are sent to the OA subproblem, and the OA 

upper bound U OA is updated.
Furthermore, the OA subproblem aims to update the dual 

variables, given as:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

max
ηsδs

∑
s = 1

Ns

[ ]δT
s ( )Ex* +Gu*

s -w + ηT
s ( )Hx* - ν +AT x*

s.t.  (48) (51)

        ρ*
s BT + δT

s F + ηT
s I = 0    "s

        ηs ³ 0    "s
(55)

By solving this OA subproblem, the optimal results of η*
s 

and δ*
s are obtained, and only δ*

s is sent to the OA master 
problem. Also, the OA lower bound LOA is updated.

These two linear problems are iteratively solved until the 
difference between U OA and LOA decreases to an accepted tol‐
erance. The identified u*

s and ρ*
s are sent to the master prob‐

lem, and the upper bound is updated.
2)　Master Problem

Given the identified worst-case scenarios u*
s and probabili‐

ties ρ*
s, the master problem is formulated as:

ì

í

î

ïïïï

ïïïï

min
x

AT x +∑
s = 1

Ns

ρ*
s min

ys

BT ys

s.t.  (45)-(47) with u*
s

(56)

The objective of the master problem provides a lower 
bound, and the newly obtained x* is passed to the slave prob‐
lem.

Finally, the optimal results of the MEMG energy manage‐
ment can be achieved by iteratively solving the master prob‐
lem and the slave problem until the gap between the upper 
and lower bounds converges to an accepted tolerance.

Slave problem Master problemMaster problem

min ATx+

Upper bound
Lower bound

Output result

Outer approximation

max [δs
T(Ex*+Gus�w)+

Load

Prediction data and 
historical data

Probability set

Renewable energy
generation

Scenario uncertainty set

Data-driven stochastic robust model with Benders
decomposition-based solution algorithm

x yss=1s=1
∑∑ ρs min BTys*

Ns

ρs,us,ηs,δs

ηs
T(Hx*�v)]+ATx* x*

us*, ρs
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*, ρs
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δs
*

Lower bound
Expected value
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Ns
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Fig. 2.　Overview of proposed solution algorithm.
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VI. CASE STUDY 

A. System Setting

The proposed DDSR energy management method is ap‐
plied to an MEMG with the cascade utilization of LNG cold 
energy. The cascade utilization processes contain carbon cap‐
ture, cryogenic power generation, and direct cooling. The pa‐
rameters of the gasification station and the cascade utiliza‐
tion of LNG cold energy [19] are summarized in Table I. 
Moreover, the MEMG is equipped with renewable energy 
generators, gas storage tanks, electric chillers, and microtur‐
bines with parameters given in Table II.

The profiles of renewable energy generation (wind tur‐
bine) and loads (electric, cooling, and gas loads) are illustrat‐
ed in Fig. 3. The maximum capacity of renewable energy 
generation is 1000 kW. The peak demands of electric, cool‐
ing, and gas loads are 4000 kW, 3000 kW, and 120,000 m3, 
respectively. The daily carbon emission limit is set to be 
1000 kg. Based on these expected scenarios, the upper and 
lower bounds of renewable energy generation are set to be 
1.2 and 0.8 of the expected values, respectively, while the 
upper and lower bounds of different loads are set to be 1.1 
and 0.9 of the expected values, respectively. A total of 50 
scenarios are randomly generated within these intervals to 

represent historical and prediction data. Then, the allowed 
variation range for each scenario is set between 1.05 and 
0.95 of the scenario data. The upper and lower bounds of 
the horizontal or vertical budgets are set to be 1.03 and 
0.97, respectively. ρmin is set to be 0.01, and the confidence 
levels for both β1 and β¥ are set to be 0.95.

Moreover, the reference electricity prices are based on 
[29]. The DA purchasing and selling prices are set to be 1.1 
and 0.9 of the reference prices, respectively, while the intra‐
day purchasing and selling prices are set to be 1.3 and 0.7 
of the reference electricity prices, respectively. The carbon 
tax price is set to be 0.5 ¥/kg [30]. The termination toler‐
ance of the DDSR-based solution method is set to be 0.001.

The proposed MEMG energy management method is pro‐
grammed using YALMIP [31] interface on the MATLAB 
platform and solved by the GUROBI solver [32]. The simu‐
lation is conducted on a 64-bit PC with a 2.5 GHz CPU and 
16 GB RAM.

B. Results of DA Scheduling

The data-driven stochastic robust model in (52) is solved 
by the DDSR-based solution method. After three iterations, 
the on/off states of LNG gasification, cascade utilization of 
LNG cold energy and microturbine, as well as the DA elec‐
tricity transaction are determined. The total solution time is 
4.27 s, which is fully compatible for practical use.

The DA electricity transaction results are shown in Fig. 4. 
The MEMG purchases electricity mainly during the periods 
of 00:00-01:00 and 10:00-23:00. A large quantity of purchas‐
ing transactions occur between 12:00 and 20:00, correspond‐
ing to the periods of large electricity demands of MEMG.

In response to the continuous NG demand, the LNG gas‐
ification facility is kept on throughout the day. The microtur‐
bine also remains in an active state for the entire day to 

TABLE I
PARAMETERS OF GASIFICATION STATION AND CASCADE UTILIZATION OF 

LNG COLD ENERGY

Parameter

ρng

ηce

N ng
min, N

ng
max

cng

DT

h

T ng
on , T ng

off

clng
c

clng
co

Value

0.71 kg/m³

0.268

10000, 120000 m3/h

2.2 kJ/(kg·℃)

180 ℃

530 kJ/kg

3, 3 hours

0.4 ¥/kg

0.05 ¥/kWh

Parameter

CE p
min, CE p

max

CE co
min, CE co

max

CE c
min, CE c

max

μc, μp, μco

kc, kp, kco

ηc, ηp, ηco

T m
on, T

m
off

clng
p

cc
su, c

p
su, c

co
su, c

ng
su

Value

200, 4000 kWh

30, 3000 kWh

50, 1000 kWh

0.06, 0.1, 0.1

0.15, 0.18, 0.12

6, 0.6, 0.7

3, 3 hours

0.3 ¥/kW

50, 3, 20, 20 ¥/time

TABLE II
PARAMETERS OF MEMG EQUIPMENT

Equipment

Gas storage tank

Electric chiller

Microturbine

Parameter

Vgs

S gs
0 , S gs

24

S gs
min, S

gs
min

N gs
max

ηgs

kgs

COec
max

ηec

ηgt

cgt
su

P gt
min, P

gt
max

r gt
min, r

gt
max

λgco2

Value

250 m3

0.5, 0.5

0.1, 0.9

30000 m3

200

0.05

1800 kW

3

3

105 ¥/time

200, 1500 kW

1000, 1000 kW

2.16 kg/m3
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Fig. 3.　Profiles of renewable energy generation and loads.
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Fig. 4.　DA electricity transaction results.
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meet the electricity demand. Furthermore, the on/off states 
of the LNG cold energy utilization equipment are depicted 
in Fig. 5.

The first-stage carbon capture is fully activated as a result 
of efforts to reduce carbon emissions. The second-stage cryo‐
genic power generation is suspended from 00:00 to 05:00 in 
the early morning when the electricity demand is relatively 
low. The third-stage direct cooling also remains activated 
throughout the entire day.

Additionally, the worst-case probabilities determined for 
50 scenarios are illustrated in Fig. 6. It exhibits that scenari‐
os 20, 22, 32, 40, 45, and 50 have high probabilities.

C. Results of Intraday Operation

During the day, the outputs of all MEMG equipment and 
HA electricity transactions are optimized using more accu‐
rate predictions of renewable energy generation and loads, 
aiming to fulfill various load demands while simultaneously 
minimizing the overall operation costs and carbon emissions. 
Figure 7 shows the supply and demand of gas. The LNG 
gasification can primarily meet the gas demand with the as‐
sistance of gas storage tanks that enhance the flexibility in 
natural gas balancing and the required LNG cold energy. 
Moreover, Fig. 8 depicts the supply and demand of cooling. 
Given the high cooling demand during daytime hours, a sub‐
stantial supply is derived from the direct cooling process of 
LNG cold energy. Additionally, as illustrated in Fig. 9, car‐
bon emissions from microturbines can be fully captured dur‐
ing the day, realizing a zero-carbon emission.

Figure 10 shows the intraday electricity transactions in the 
HA electricity market. MEMG purchases electricity most of 
the time to eliminate the energy shortage while selling sur‐
plus electricity during the period of 00:00 to 01:00. Further‐
more, the supply and demand of electricity are shown in 
Fig. 11. It indicates that cryogenic power generation, renew‐
able energy generation and microturbine outputs all play sig‐
nificant roles in power supply. This helps reduce electricity 
purchases during high-price periods, thereby enhancing the 
economic benefits of the MEMG.

D. Sensitivity Analysis of Different Interval Widths with Fea‐
sibility Check

The uncertainty intervals of the scenario data play signifi‐
cant roles in the DDSR-based solution method. To evaluate 
the effect of different interval widths on the results, another 
two interval widths [0.98, 1.02] and [0.92, 1.08] of the sce‐
nario data are applied for comparison.
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Fig. 6.　Worst-case probabilities for 50 scenarios.
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Fig. 5.　On/off states of LNG cold energy utilization equipment. (a) Carbon 
capture stage. (b) Cryogenic power generation. (c) Direct cooling stage.
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Fig. 8.　Supply and demand of cooling.
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To begin with, 500 scenarios of renewable energy genera‐
tion power, electric load, cooling load, and gas load are ran‐
domly generated. Each scenario, regarded as an uncertainty 
realization, is consecutively fed into the intraday optimiza‐
tion process for a feasibility check. After solving all these 
scenarios, the average cost is calculated. Also, the infeasibili‐
ty rate is determined by calculating the ratio of the unsuc‐
cessfully solved case number to the total scenario number.

The comparison results of different interval widths are 
shown in Table III.

Table III shows that the proposed DDSR energy manage‐
ment method for the cascade utilization of LNG cold energy 
with different interval widths achieves zero infeasibility rate, 
showing high solution robustness. Moreover, it is evident 
that as the interval width expands, the average operation cost 
increases. This can be attributed to the fact that larger inter‐
vals tend to exacerbate the worst-case scenarios, resulting in 
more conservative solutions.

E. Comparison with Other Methods with Feasibility Check

In this subsection, the previous 500 scenarios are continu‐

ously employed to demonstrate the advantages of the pro‐
posed DDSR energy management method for the multi-stage 
cascade utilization of LNG cold energy, compared with the 
single-stage utilization of LNG cold energy as well as vari‐
ous solution methods.

Firstly, the single-stage utilization (i. e., direct cooling) of 
LNG cold energy is applied for comparative analysis. The 
characteristics and parameters of other equipment in MEMG 
remain unchanged. The comparison results are given in Ta‐
ble IV. It is illustrated that the proposed DDSR energy man‐
agement method for the multi-stage cascade utilization of 
LNG cold energy can achieve a low operation cost, indicat‐
ing the improvement of energy utilization efficiency.

Additionally, the DDSR-based solution method is com‐
pared with three other solution methods, which are described 
as follows.

Method 1: the SO method. The uncertainties are modelled 
using randomly generated scenarios.

Method 2: the RO method. A column-and-constraint gener‐
ation [33] solution algorithm is applied to seek the worst 
case and solve the problem.

Method 3: the data-driven distributionally robust optimiza‐
tion (DRO) method [23] using 1- and ¥-norms for the ambi‐
guity set.

Table V shows the comparison results of the average costs 
and infeasible rates of different solution methods.

As shown in Table V, Method 1 has the lowest operation 
cost, but there exists an infeasibility rate of 4%. This is be‐
cause the SO method primarily focuses on the optimal ex‐
pected solution rather than solution robustness. In contrast, 
the results of Method 2 exhibit high robustness against un‐
certainties, but the operation cost is also the highest, due to 
the consideration of the worst-case scenario in a large predic‐
tion interval. Furthermore, the average cost of Method 3 lies 
between those in Methods 1 and 2, while also achieving ze‐
ro infeasible cases. This could be attributed to the fact that 
the data-driven DRO optimizes the decision across multiple 
uncertainty scenarios under the worst probability distribution.

In comparison, the DDSR-based solution method achieves 
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Fig. 10.　Intraday electricity transactions in HA electricity market.
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Fig. 11.　Supply and demand of electricity.

TABLE III
COMPARISON RESULTS OF DIFFERENT INTERVAL WIDTHS

Interval width

[0.98, 1.02]

[0.95, 1.05]

[0.92, 1.08]

Average cost (¥)

26691.5

26868.3

27050.9

Infeasibility rate (%)

0

0

0

TABLE IV
COMPARISON RESULTS OF SINGLE-STAGE AND MULTI-STAGE CASCADE 

UTILIZATIONS OF LNG COLD ENERGY

Cascade utilization of LNG cold energy

Single-stage

Multi-stage

Average cost (¥)

31020.2

26868.3

TABLE V
COMPARISON RESULTS OF AVERAGE COSTS AND INFEASIBLE RATES OF 

DIFFERENT SOLUTION METHODS

Method

Method 1

Method 2

Method 3

DDSR-based solution method

Average cost (¥)

26754.3

27874.3

27230.0

26868.3

Infeasibility rate (%)

4

0

0

0
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a relatively low operation cost, marginally higher than that 
of Method 1 and lower than that of Method 3, with full fea‐
sibility. This demonstrates superior performance in cost re‐
duction and robustness for MEMG energy management.

To conclude, the proposed DDSR energy management 
method for the multi-stage cascade utilization of LNG cold 
energy can achieve economic advantages and solution robust‐
ness against uncertainties.

VII. CONCLUSION

To efficiently harness the released cold energy during 
LNG gasification, this paper proposes a DDSR energy man‐
agement method for the MEMG of an LNG receiving termi‐
nal. To model the cascade utilization of LNG cold energy, a 
general scheduling model considering the flexible coupling 
between adjacent stages, energy losses, and electric power 
consumption is proposed, which is further applied to the 
multi-stage cascade utilization of carbon capture, cryogenic 
power generation, and direct cooling. Moreover, a two-stage 
energy management framework is introduced to coordinate 
the cascade utilization of LNG cold energy with other ener‐
gy resources in the MEMG, aiming to minimize operation 
costs and carbon emissions. Considering the uncertainties of 
renewable generation and various load demands, a DDSR-
based solution method is developed to search for the worst-
case scenarios and their corresponding worst-case probability 
based on the prediction data and the historical data. Accord‐
ingly, a Benders decomposition-based solution algorithm is 
developed to decompose the problem into a master problem 
and a slave problem, which are solved iteratively.

Through the simulation, the proposed DDSR energy man‐
agement method outperforms the single-stage cascade utiliza‐
tion of LNG cold energy, showing great economic benefits 
with improved energy utilization efficiency. Furthermore, by 
implementing a feasibility check, compared with the conven‐
tional SO, RO, and DRO methods, the DDSR-based solution 
method in this paper exhibits superior performance in terms 
of cost reduction and solution robustness against uncertain‐
ties. In future work, the integration of alternative energy stor‐
age systems such as battery energy storage or thermal stor‐
age can be explored to further enhance the performance of 
MEMG operation.
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