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Abstract—Liquefied natural gas (LNG), recognized as the pri-
mary form for natural gas transportation, can release substan-
tial cold energy during gasification. To make efficient use of
this cold energy, this paper proposes a data-driven stochastic ro-
bust (DDSR) energy management method for the multi-stage
cascade utilization of LNG cold energy in a multi-energy mi-
crogrid (MEMG) of an LNG receiving terminal. Firstly, a gen-
eral scheduling model considering the flexible coupling between
adjacent stages, energy losses, and electric power consumption
for the cascade utilization of LNG cold energy is introduced.
This model is applied to carbon capture, cryogenic power gener-
ation, and direct cooling, which are sequentially associated with
the deep, medium, and shallow cooling zones of LNG cold ener-
gy, respectively. Moreover, a two-stage energy management
framework is proposed to coordinate the cascade utilization of
LNG cold energy with other energy resources in the MEMG.
To tackle the uncertainties of renewable energy generation and
various loads, a DDSR-based solution method is developed, aim-
ing to achieve both economic benefits and solution robustness
by identifying the worst-case scenarios and the corresponding
worst-case probability. Accordingly, a Benders decomposition-
based solution algorithm is proposed to divide the original prob-
lem into a master problem and a slave problem, which are solved
iteratively. The simulation results verify the effectiveness and
high efficiency of the proposed DDSR energy management meth-
od for multi-stage cascade utilization of LNG cold energy.

Index Terms—Energy management, stochastic robust optimi-
zation, liquefied natural gas (LNG), cold energy, multi-energy
microgrid.
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1. INTRODUCTION

ATURAL gas (NG) is widely recognized as a clean fos-

sil fuel, and its demand has been experiencing substan-
tial growth in the context of carbon neutrality and energy
transition [1]. Upstream NG is transported in the form of lig-
uefied natural gas (LNG) by ocean-going vessels to LNG re-
ceiving terminals. Upon arrival at these terminals, LNG is
gasified before being delivered to end-users [2]. During the
gasification process, approximately 830 kJ of cold energy is
released per kilogram of LNG [3]. Given that the global an-
nual consumption of LNG can reach as high as 39.64 billion
tons annually [4], harnessing the released cold energy during
LNG gasification can bring significant opportunities for a
wide range of energy applications. However, many LNG re-
ceiving terminals use seawater as a natural heat source for
vaporizing and warming LNG, leading to a significant waste
of cold energy. Thus, it is important to explore the effective
utilization of LNG cold energy and to realize great social,
economic, and environmental benefits [5].

The existing technologies of LNG cold energy utilization
can be categorized according to different temperature zones
of cold energy. The low-temperature carbon capture [6],
light hydrocarbon separation [7], and seawater desalination
[8] mainly utilize cold energy from the deep cooling zone.
In contrast, cryogenic power generation [9] primarily utilizes
LNG cold energy from the medium cooling zone. Additional-
ly, the shallow cooling zone of LNG cold energy can be
used for air-conditioning refrigeration [10] and cold storage
[11]. Therefore, integrating these various applications into a
comprehensive energy system that utilizes LNG cold energy
stepwise through multiple temperature zones can significant-
ly enhance energy utilization efficiency and bring substantial
economic and environmental advantages [12].

Extensive research efforts have been devoted to the utiliza-
tion of LNG cold energy. Reference [13] introduces an inte-
grated power and cooling system that incorporates a cascade
organic Rankine cycle (ORC) system, an air-conditioning re-
frigeration, and a direct expansion cycle. Thermodynamic
and economic evaluation are performed along with parame-
ter optimization, aiming to maximize the utilization of LNG
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cold energy. Reference [6] employs a concept of cascade-
nested ORC cycles to develop a combined system for power
generation and CO: capture based on LNG cold energy in
the magnesite processing industry. The system performance
is improved by selecting optimal mixed working fluids and
incorporating regenerators. Furthermore, an LNG cold ener-
gy cascade utilization system that integrates light hydrocar-
bon separation, ORC-based power generation with data cen-
ter cooling, as well as warehouse cold storage, is proposed
in [10]. Moreover, [14] develops a cascade integrated system
for electricity, cooling, heating, and freshwater production us-
ing a gas turbine and desalination in conjunction with LNG
gasification. Thermodynamic, environmental, and economic
analyses indicate a notable improvement in the operation ef-
ficiency and environmental sustainability. Reference [15] de-
signs a combined LNG gasification and liquid air energy
storage system, which applies parallel two-stage Rankine cy-
cles for power generation during peak periods and energy
storage during off-peak periods, thereby enhancing the sys-
tem flexibility, safety, and operational profitability. Overall,
the above studies illustrate the significance of cascade utiliza-
tion of LNG cold energy in energy efficiency and economic
benefits, but they primarily focus on the design and thermo-
dynamic simulation of the LNG cold energy utilization sys-
tem.

With the advancement of the green and low-carbon transi-
tion [16], the LNG receiving terminal can be equipped with
abundant renewable and flexible energy resources to meet di-
verse energy demands, forming a multi-energy microgrid
(MEMG) [17]. At present, there are few studies on the
scheduling level of LNG cold energy utilization in coordina-
tion with other energy resources. Reference [18] proposes a
day-ahead (DA) dispatch model that coordinates the liquid
air storage and LNG gasification. The cold energy from
LNG gasification is only used for air liquefaction, which
may lead to a low utilization efficiency of LNG cold energy.
Moreover, an MEMG scheduling model considering a three-
stage cascade utilization of cold energy for carbon capture,
power generation, and direct cooling is proposed in [19].
This model pre-assigns a fixed range of cold energy to the
three applications without capturing the flexible interactions
between adjacent stages, and also ignores the energy loss
and electric power consumption during the cascade utiliza-
tion process of cold energy.

In addition, to address the uncertainties of renewable ener-
gy generation and loads, stochastic optimization (SO) and ro-
bust optimization (RO) methods are often applied. The SO
method [20] determines the optimal expected objective with
multiple sampled uncertainty scenarios based on the probabil-
ity distribution of uncertainties. However, the probability dis-
tribution may be unknown or inaccurate. Alternatively, the
RO method [21] optimizes decisions under the worst-case
uncertainties characterized by a low probability of occur-
rence, resulting in a conservative result. Therefore, it is im-
portant to develop an optimization method that can address
the disadvantages of SO and RO methods. With the digitali-
zation of MEMG, more available historical data of uncertain-
ties can be collected to support the MEMG operation. Con-

ventional data-driven distributionally robust optimization
method [22] utilizes finite uncertainty scenarios (historical
data) with similar features to make decisions under the worst
probability distribution belonging to an ambiguity set using
1/00 norms [23] or Wasserstein ball [24], [25] measurements.
However, these uncertainty samples may not always reoccur.

Meanwhile, it is rational to assume that the realization of
uncertainties tends to be concentrated around each similar
historical and prediction scenario within a small variation in-
terval [26], which can trace the trajectory of uncertainty pro-
files. By searching for the worst case in each interval and
the corresponding worst-case probability distribution with
overall variation control, a certain level of solution robust-
ness can be preserved while maintaining the economic bene-
fits. Thus, based on this principle, this paper develops a data-
driven solution method to address the uncertainties in
MEMG energy management.

In summary, although existing research offers valuable in-
sights into the cascade utilization of LNG cold energy, there
remain limitations in scheduling-level modelling of cascade
utilization of LNG cold energy and the associated energy
management under uncertainties. To address these challeng-
es, this paper proposes a data-driven stochastic robust
(DDSR) energy management method for multi-stage cascade
utilization of LNG cold energy in an MEMG. The main con-
tributions are summarized as follows.

1) A general scheduling model for the cascade utilization
of LNG cold energy is introduced and applied to carbon cap-
ture, cryogenic power generation, and direct cooling. This
model considers the flexible coupling between adjacent utili-
zation stages, energy losses, and electric power consumption.

2) By taking into account the operating characteristics of
the MEMG, a two-stage energy management framework is
proposed to coordinate the cascade utilization of LNG cold
energy with other energy resources in the MEMG.

3) To address the uncertainties of renewable energy gener-
ation and various loads, a DDSR-based solution method is
developed, aiming to achieve both economic benefits and so-
lution robustness by identifying the worst-case scenarios and
the corresponding worst-case probability.

The remainder of this paper is organized as follows. Sec-
tion II introduces the two-stage energy management frame-
work. Section III presents a general scheduling model for
the cascade utilization of LNG cold energy, and Section IV
provides the mathematical formulation of MEMG energy
management. A DDSR-based solution method is proposed in
Section V. Then, Section VI presents case study to verify the
effectiveness and high efficiency of the proposed DDSR en-
ergy management method. Lastly, Section VII concludes this
paper and provides the direction of future work.

II. TWO-STAGE ENERGY MANAGEMENT FRAMEWORK

This section introduces the two-stage energy management
framework for the cascade utilization of LNG cold energy.
The MEMG structure and energy flows are shown in Fig. 1,
where P and P are the power purchased from and sold
to the power grid, respectively. Other variables will be ex-
plained in the following text.
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Fig. 1. MEMG structure and energy flows.

The LNG receiving terminal-based MEMG needs to fulfill
various energy demands including electric, cooling, and gas
loads with the goal of minimizing operation costs and car-
bon emissions. To make efficient use of LNG cold energy,
the cascade utilization in the LNG gasification station com-
prises carbon capture, cryogenic power generation, and di-
rect cooling that are sequentially associated with the deep,
medium, and shallow cooling zones of LNG cold energy, re-
spectively. Moreover, the MEMG is mainly equipped with re-
newable energy generation, microturbine, electric chiller, gas
storage tank, together with these three applications of LNG
cold energy, to meet various electricity, cooling, and gas de-
mands. Accordingly, there are four distinct energy flows in-
cluding electric flow, cooling flow, gas flow, and carbon
flow, which are mutually coupled. The carbon emission
from the microturbine generation is mitigated by the car-
bon capture process. Electric chiller combines with the di-
rect cooling process to satisfy the cooling requirement. Consid-
ering that the total released cold energy depends on the gas de-
mand, gas storage tank serves as a buffer between the gasified
LNG and the actual gas load to improve the utilization flexi-
bility of LNG cold energy. Lastly, the MEMG can purchase
or sell energy in the DA electricity market and intraday hour-
ly-ahead (HA) electricity market.

Considering the operating characteristics of the MEMG, a
two-stage energy management framework is established. In
the DA stage, the on/off states of LNG gasification, the
multi-stage utilization processes of cold energy, and microtur-
bines are determined based on the whole-day predictions of
uncertain renewable energy generation and various loads. Al-
so, the energy transaction in the DA market is optimized.
Subsequently, in the HA stage of the next day, the output
production of LNG equipment, the power outputs of flexible
resources, and the HA energy transaction are optimized us-
ing more accurate short-term predictions of uncertainties to
meet various load demands with an economic and low-car-
bon objective for MEMG operation.
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III. GENERAL SCHEDULING MODEL FOR CASCADE
UTILIZATION OF LNG COLD ENERGY

This section introduces a general scheduling model for the
cascade utilization of LNG cold energy. For ease of descrip-
tion, each stage of cold energy utilization is indexed by m.

A. LNG Gasification

The constraints for LNG gasification are given as:

ng Ayng ng ng ayng
at NminSNt Sat ]vmax Vt

(M
2

where subscript ¢ is the index of scheduling time interval,
o)® is the binary on/off state of the gasification process; N,
is the gasified NG volume; N,% and N;¢ are the minimum
and maximum gasified NG volumes, respectively; CE is
the total released cold energy; p,, is the NG density; 7,, is
the recovery efficiency of LNG cold energy; ¢, is the aver-
age specific heat capacity of NG; AT is the temperature
change during the gasification process; / is the latent heat of
phase transition from LNG to NG; and ¢,,, is a coefficient
that converts unit kJ to kWh, which is normally 1/3600.

Constraint (1) limits the LNG gasification within the rated
range. The total released cold energy is calculated by (2),
which comprises the latent heat caused by phase change
from liquid to gas and the sensible heat associated with the
temperature change of NG. It is noted that the difference be-
tween the storage temperature and the boiling point of LNG
is small. Therefore, the related cold energy resulting from the
temperature change in the LNG form is neglected in this paper.

Furthermore, the LNG gasification equipment may not
start or stop arbitrarily, and thus should comply with specific
on/off time limits, which are constrained as:

CE/mg:Ntngpngrlce(h + c”gAT)C]‘Wh v

ar¥>a¥—a, Vee [t+1,t+T”g—1]

on

3)

aE<1— (o —a) Vee [t+1r+TE-1]

“)

where T7% and 7.7 are the minimum on-time and off-time
limits, respectively; and ¢ is the selected scheduling time in-
terval within the given periods.

B. General Single-stage Utilization of LNG Cold Energy

Considering the application of each utilization stage, there
are the minimum and maximum amounts of input cold ener-
gy for the normal operation. The utilized cold energy for
each stage is constrained as:

aCE" <CE"<q!" CE"

min max

and CE”™

max

V't 6)
where CE]. are the minimum and maximum lim-
its of the input cold energy in stage m, respectively; o) is
the binary on/off state of the utilization process of cold ener-
gy; and CE/" is the input cold energy in stage m.

The cold energy utilization equipment also needs to ad-
here to specific on-time and off-time limits. 7, and 7 rep-
resent the minimum on-time and off-time limits for the cold
energy utilization equipment in stage m, respectively. These
constraints can be referred to (3) and (4).
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During the utilization process of cold energy, the cold en-
ergy losses occur due to heat exchange, heat transfer, and en-
ergy conversion. Also, some components such as pumps,
compressors, and expanders consume electricity. Therefore,
it is important to consider both energy losses and electric
power consumption during the utilization of cold energy, as
specified in (6) and (7), respectively.

CELS!=f(CE!") Vt,¥m (6)

(7
where CELS" is the cold energy loss in stage m; PC," is the
electric power consumption during the utilization process of
cold energy in stage m; f)(-) is the relationship function be-
tween the cold energy losses and the input cold energy; and
£,(+) is the relationship function between the electric power

PCl'=f,(CE"~CELS}") Vt,Vm

consumption and the utilized cold energy.

Lastly, the utilized cold energy is converted into the target
product in each stage. The output production of the LNG
cold energy utilization is expressed as:

M/ =f (CE"~CELS") Vt,¥m ®)

where M/"¢™ is the output production of the cold energy uti-
lization in stage m; and f,(-) is the relationship function be-
tween the output and the utilized cold energy.

This paper assumes that fi(-), f,(-), and f,() are linear
functions. Thus, (6)-(8) can be rewritten as:

CELS!"=u, CE" ¥t,¥Vm 9
PC"=k,(CE"~CELS") VtYm (10)
M’Mg"mzi’[m(CEtm—CELStm) Vt, Ym (11)

where u,,is the loss coefficient; &, is the coefficient of elec-
tric power consumption; and #, is the utilization rate of
LNG cold energy. It is noted that adopting other functions
does not affect the effectiveness of the proposed general
model for LNG cold energy utilization.

C. Cascade Utilization of LNG Cold Energy

With the above single-stage utilization, the cascade utiliza-
tion of LNG cold energy can be modelled as:

CE/> > CE]' Vt (12)

Pf=>PCl" V1 (13)
where P;" is the total electric power consumption through all
stages.

Constraint (12) indicates that the aggregated input cold en-
ergy of all the stages cannot exceed the total released cold
energy from LNG gasification. With constraints (5) and (12),
it is evident that if one utilization stage consumes less cold
energy, more available cold energy will remain in other stag-
es, showing a flexible coupling between adjacent stages.
Then, the total electric power consumption of the cascade
utilization of LNG cold energy is expressed by (13).
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IV. MATHEMATICAL FORMULATION OF MEMG ENERGY
MANAGEMENT

The MEMG has abundant renewable and flexible energy
resources which can be coordinated with the cascade utiliza-
tion of LNG cold energy to achieve highly efficient energy
management. In this section, the mathematical formula of
MEMG energy management is developed for the multi-stage
cascade utilization of LNG cold energy.

In the following text, the aforementioned utilization stage
m is replaced by ¢, p, and co, which correspond to the car-
bon capture stage, the cryogenic power generation stage, and
the direct cooling stage, respectively. Moreover, the output
production M is replaced by C, P, and CO, representing the
captured carbon quantity, generated power, and produced
cooling power, respectively.

A. Constraints of Renewable and Flexible Energy Recources
1) Renewable Energy Generation

OSP <Pl Vit (14)
where P/ is the renewable energy generation power; and

P’ is its maximum value.

max

2) Gas Storage Tank

Se=52 4 (Npo-Nei) L v (15)
n gSVgS

SanSSE<ShL Vit (16)

0SNS&I<af N& Vi a7

0SN&U< (1-a® ) NE, V1 (18)

Sp =85 1

Pe =k, (NS94 N&4) vt (20)

where S# is the state of charge (SoC) of the gas storage
tank; 7 is the scheduling time interval, Vs is the nominal ca-
pacity of the gas storage tank; 7, is the compression rate;
S§& and S are the minimum and maximum SoC limits of
the gas storage tank, respectively; S§° and S§; are the initial
SoC and last SoC, respectively; af° is the binary charging/
discharging state; N#“" and N#“ are the charging and dis-
charging flow rates of NG, respectively; N is the maxi-
mum charging/discharging flow rate; k,, is the electric power
consumption coefficient; and P# is the electric power con-
sumption of the gas storage tank.

The SoC of the gas storage tank is calculated by (15) and
constrained by (16). Constraints (17) and (18) limit the
charging and discharging flow rates of NG for the gas stor-
age tank, respectively. Constraint (19) ensures that the last
SoC is equal to the initial SoC. Constraint (20) calculates
the electric power consumption of the gas storage tank. It is
noted that other types of energy storage can be considered to
further enhance the temporal coordination capability and
flexibility of the MEMG.

3) Microturbine

P¥=n, N Vi 1)

¥ P Vit (22)

<P <8 PE

max
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Pg —PE<rs. VYt (23)
P8 — P& <rg Vit 24)
C#=ymNE V1t (25)
where P¥ is the electric power of the microturbine; N* is

the consumed NG for electric power generation; 7,, is the
conversion efficiency; af is the binary on/off state of the mi-
croturbine; P and P# _ are the minimum and maximum
power limits of the microturbine, respectively; 2 is the
maximum ramping rate; C# is the carbon emission of the mi-
croturbine; and 4, ., is the carbon emission coefficient.

The electric power generation of the microturbine with re-
spect to the NG consumption is described by (21). Con-
straint (22) limits the power generation. Constraints (23) and
(24) restrict the ramping rate. The carbon emission of the mi-
croturbine is calculated by (25). Additionally, if the mini-
mum on-/off-time limits are necessary, these limits can be re-
ferred to (3) and (4).

4) Electric Chiller

Oec ;/leCPeL Vt

(26)
0<CO“<CO%, Vi 7

where CO;° is the produced cooling power of the electric
chiller; P/ is the electric power consumption of the electric
chiller; #,. is the refrigeration efficiency; and COy,,, is the
maximum cooling power.

Equation (26) describes the produced cooling power with
respect to the electric power consumption, and (27) con-
strains the cooling power.

B. Mathematical Formula of MEMG Energy Management

Aiming at a low-carbon and economic operation, a
MEMG energy management model considering the cascade
utilization of LNG cold energy is proposed as:

min » (C/“+C”+C/+C") (28)

s.t.
(D-(5), (9)-27)

C tra C tra, da Cttra. ha Vt (29)

Ctzra‘daz (prBanBdu —pr tSdaP;S’da)z. Vvt (30)

€2))
(32)

Cttra,ha (prBhaPBha p ;ShaP;Yha)z_ vt

Ccal_c Caut vt

co2

// I Ing, I Ing, I Ing,
Clr= s Clee 4 e Psr 4 (ECOM W (33)
C=cliurt+ '+ S (34)
u'zal—al_, Vty=nggtm (35)
Ptha+P;9ha+P;gt+Ptren+Ptlng,p:P;S'da+P;S'ha+
Pl P&+ PC+PE Yt (36)

NS+ NP = NE+ N+ N Ve (37)
CO% +COM=CO" Vi (38)
Cgt Caut Ctlng.c vt (39)

0< ZC,"“’ <con (40)
0<Pf<pie

{0 SP,Sd“ <plre vi (1)
0 < pBhag plie

0 SP;S‘ha SP”’,’E Vt (42)

0 < phie_ psday phha_ pShag pline gy (43)

where C/ is the total transaction cost; C:* is the carbon
emission cost; C/™ is the operation cost of LNG cold energy
utilization, C is the startup cost; C/*“ and C“" are the
DA and intraday HA transaction costs, respectively; pr’®
and pr? are the DA and intraday HA purchasing prices, re-
spectively; pri® and pri™ are the DA and intraday HA sell-
ing prices, respectively; P and P are the DA and intra-
day HA purchasing power, respectively; P5* and P a
the DA and intraday HA selling power, respectively; c,,,
the carbon tax price; C; is the carbon emission; Cou is the
daily carbon emission limit; ¢, ¢)'%, and ¢/ are the unit op-
eration costs for carbon capture, cryogenic power generation,
and direct cooling, respectively; C"#¢, P"¢r and CO"** are
the reduced carbon emissions from carbon capture, the out-
put power of cryogenic power generation, and the direct
cooling power, respectively; ¢, ¢%, and ¢ are the start-up
costs of the LNG gasification, microturbine, and cold energy
utilization equipment in stage m, respectively; u] is a binary
startup indicator of the related equipment y; P’d N/, and
CO" are the electric, gas, and cooling loads, respectively;
and P/ is the maximum line capacity for the DA or intra-
day HA electricity transactions.

The objective function (28) minimizes the total operation
costs of the MEMG system, including the transaction cost,
carbon emission cost, operation cost of LNG equipment, and
the start-up cost, which are described in (29)-(34), respective-
ly. Constraint (35) defines the startup indicator of the related
equipment. Moreover, energy balances of the electric flow,
gas flow, cooling flow, and carbon flow are specified in (36)-
(39). The daily carbon emission is limited by (40). Con-
straints for purchasing and selling electricity in DA and intra-
day HA markets are given in (41) and (42), respectively.
And finally, the total power exchange with the upstream grid
is limited by (43). It is worth noting that minimizing the
transaction cost implies reducing the electric energy ex-
change with the upstream grid. Given that the purchasing
prices are typically higher than the selling prices, the
MEMG system prioritizes maximizing the consumption of
its internal energy, thereby enhancing the overall efficiency
of energy utilization.

V. DDSR-BASED SOLUTION METHOD

The uncertainties of renewable energy outputs and various
loads can impair the MEMG operation. To deal with them, a
DDSR-based solution method is developed in this section.

Firstly, historical data with the features similar to the next
day and prediction data are aggregated to produce uncertain-
ty scenarios. With these uncertainty scenarios, the proposed
energy management model of the LNG receiving terminal-



WANG et al.: DATA-DRIVEN STOCHASTIC ROBUST ENERGY MANAGEMENT FOR MULTI-STAGE CASCADE UTILIZATION OF... 315

based MEMG in Section IV can be reformulated to the fol-
lowing stochastic compact form as:

N\
min A" x+ min szBTys (44)
X Yoo §=1

s.t.

Cx<d (45)

(40)
Hx+1Iy <v Vs 47)

where A, B, C, E, F, G, H, and I are the coefficient matri-
ces; d, w, and v are the coefficient vectors; subscript s de-
notes the index of uncertainty scenarios with the total num-
ber N p, is the probability of occurrence for each uncertain-
ty scenario; x is a vector of DA decision variables, mainly
including on/off indicators ¢, af, o', and o, startup indica-
tors u/%, u¥, and u", and DA trading power P?* and P5; y
is a vector of intraday decision variables, mainly including
the outputs of LNG equipment and flexible resources, as
well as the intraday HA electricity transactions; u,is a vec-
tor of uncertainty variables including P/", P!, N, and CO".

In (44), the first “min” term is to minimize the DA cost,
and the second “min” term is to minimize the average intra-
day HA operation cost with respect to multiple uncertainty
scenarios. Furthermore, constraint (45) summarizes (3), (4),
(30), (34), (35), and (41). Equation (46) groups (2), (9)-(11),
(13), (15), (19)-(21), (25), (26), (29), (31)-(33), and (36)-
(39). Finally, constraints (1), (5), (12), (16)-(18), (22)-(24),
(27), (40), (42), and (43) form (47).

As previously noted, it is not always true to presume the
reoccurrence of historical events, whereas it is reasonable to
assume that the uncertainty realization is likely to occur
around each scenario within a narrow variation interval. In
the proposed DDSR solution method, each scenario is re-
garded as a reference profile, which is further used to con-
struct an interval. The interval can facilitate the worst-case
searching to trace the trajectory of the uncertainty profile.
The solution will seek the worst case in each interval as
well as the corresponding worst probability of occurrence
with the overall variation control. Accordingly, a scenario
uncertainty set for the worst-case scenario searching and
a probability set for the worst-case distribution searching are
designed.

Ex+Fy +Gu,=w Vs

A. Scenario Uncertainty Set

The scenarios are used to create intervals whose lower
and upper bounds are defined as the ratios of uncertainty
profiles. Moreover, due to multiple uncertainty profiles, two
different uncertainty budgets, i.e., the horizontal budget and
the vertical budget, are established to constrain the variation
level of the worst-case scenarios. The horizontal budget cal-
culates the overall variation of each worst-case scenario
across all scheduling periods of a day, while the vertical bud-
get quantifies the average variation across all worst-case sce-
narios during each scheduling period. The scenario uncertain-
ty set U is defined as:

_mSumSﬁM Vt, Vs
T
u
<> <p, Vs
U= u, oS (48)
N,
1 <u _
@ < 72 <@, Vi
s S
Ss:lum

where u,, is the vector of uncertainties under the expected

values; u, and #u,, are the lower and upper bound vectors of

the uncertainty interval, respectively; 4 and z, are the lower
—t

and upper bounds of the horizontal budget, respectively; and
@ and @, are the lower and upper bounds of the vertical
budget, respectively.

In (48), the first constraint limits the range of uncertainty
variables. The second and third constraints limit the horizon-
tal and vertical budgets within the allowed ranges. For re-
newable energy generation and different loads, separate sce-
nario uncertainty sets are constructed.

B. Probability Set

Each worst-case scenario has the corresponding probabili-
ty of occurrence, but in practice, the probability distribution
may remain unknown. Thus, a probability set is constructed
to characterize the ambiguous distribution, where the worst-
case probability for each scenario is explored. According to
[22], [23], L, and L, norms are used to measure the conver-
gence rate of the distance between the true distribution and
the empirical distribution, which can be approximately ex-
pressed as:

Pr{|p=p], <0,f 2 1-2Ne"
(49)
Pr{” p-p° ”ws (900} > - 2N e

where Pr{-} is the probability distribution; p and p° are the
true distribution and the empirical distribution, which are the
vectors composed of p, and p?, respectively; and 6, and 0,
are the tolerance parameters. Given the pre-set confidence
levels B, and B, 6, and 0, can be calculated by setting the
right-hand side of (49) to be the confidence levels as:

1. 2N,
91—5111 1—ﬂ1
0 —Lln 2N, o
“2N, 15,

Based on the above formulas, the probability set D is ex-
pressed as:

N,

;;m <p.<1
1le-p"],<0,
[o-p"].<0.

Vs (51)

where p_.. is the minimum probability for each identified
scenario. To maintain statistical consistency and avoid sub-
jective bias, a uniform distribution can be assigned to the
empirical distribution p° [24], [25]. In other words, the ini-
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tial p? is equal to 1/N,. It is noteworthy that other probability
distributions can be applied to p° without compromising the
effectiveness of the probability set.

C. Data-driven Stochastic Robust Model with Benders De-
composition-based Solution Algorithm

The general form of the DDSR energy management mod-
el can be expressed as:
N,
s=1 Vs

min A"x+ max
X

p,eDu U

s.t. (45)-(48), (51)

(52)

The “max” term aims to seek the worst-case scenarios
and the corresponding worst-case probabilities in the sce-
nario uncertainty set and the probability set, respectively.

To solve (52), a Benders decomposition-based solution al-
gorithm [27] is developed. It decomposes (52) into a master
problem and a slave problem. The slave problem searches
for the worst-case scenarios and the corresponding worst-
case probabilities, while the master problem optimizes deci-
sion variables of MEMG energy management with the identi-
fied worst-case scenarios and probabilities. The overview of
the proposed solution algorithm is illustrated in Fig. 2.
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1) Slave Problem

With the optimal DA decision variables x", the slave prob-
lem is obtained by dualizing the inner “min” term in (52),
given as:

max
Pt 0,

s.t. (48), (51)
p B +0 F+nlI=0 Vs
=20 Vs

N,
z[éf(Ex* +Gu,—w) +17ST(Hx*—v)} +A'x"
s=1

(53)

where 4, and #, are the vectors of dual variables. The bilin-
ear terms Jlu, in the objective function (53) can be ad-
dressed by an outer approximation (OA) approach [28],
which divides (53) into an OA master problem and an OA
subproblem, given as follows.

Given the uncertainty #, and the dual variable 8., the OA
master problem is given as:
N,

max
Pl 0, £

s.t. (48), (51)
p B +0F+ylI=0 Vs
7,20 Vs

p.<(6)) Gu+(8,-07) Gu'+ (u,~u’) G'8" Vs

[6Z(Ex*—w) +yl(Hx ~v) +[3S} +A X"

(54

By solving the OA master problem (54), the newly ob-
tained u, and p, are sent to the OA subproblem, and the OA
upper bound U is updated.

Furthermore, the OA subproblem aims to update the dual
variables, given as:

N,
max ;[6I(Ex* +Gu,—w) +115T(Hx*—v):| +A" X"

s.t. (48), (51)
p.B"+0'F+y'I=0 Vs

n,20 Vs (55)

By solving this OA subproblem, the optimal results of #,
and o, are obtained, and only & is sent to the OA master
problem. Also, the OA lower bound L% is updated.

These two linear problems are iteratively solved until the
difference between U% and L% decreases to an accepted tol-
erance. The identified u, and p; are sent to the master prob-
lem, and the upper bound is updated.

2) Master Problem

Given the identified worst-case scenarios u, and probabili-

ties p., the master problem is formulated as:

N,
min A" x + ‘min BTy
] ;Ay\ ¥, 56)
s.t. (45)-(47) with u;

The objective of the master problem provides a lower
bound, and the newly obtained x” is passed to the slave prob-
lem.

Finally, the optimal results of the MEMG energy manage-
ment can be achieved by iteratively solving the master prob-
lem and the slave problem until the gap between the upper
and lower bounds converges to an accepted tolerance.
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VI. CASE STUDY

A. System Setting

The proposed DDSR energy management method is ap-
plied to an MEMG with the cascade utilization of LNG cold
energy. The cascade utilization processes contain carbon cap-
ture, cryogenic power generation, and direct cooling. The pa-
rameters of the gasification station and the cascade utiliza-
tion of LNG cold energy [19] are summarized in Table I.
Moreover, the MEMG is equipped with renewable energy
generators, gas storage tanks, electric chillers, and microtur-
bines with parameters given in Table II.

TABLE I

PARAMETERS OF GASIFICATION STATION AND CASCADE UTILIZATION OF
LNG CoLD ENERGY

Parameter Value Parameter Value
Prg 0.71 kg/m? CE!., CEP 200, 4000 kWh
Nee 0.268 CE., CE 30, 3000 kWh
N, N 10000, 120000 m*/h || CE¢,, CE:,. 50, 1000 kWh
Crg 2.2 kJ/(kg-°C) Hes My Moy 0.06, 0.1, 0.1
AT 180 °C ke ks kg, 0.15, 0.18, 0.12
h 530 kl/kg Nes My Mo 6, 0.6, 0.7
% T 3, 3 hours Tos Toy 3, 3 hours
e 0.4 ¥/kg s 0.3 ¥/kW
che 0.05 ¥/kWh ¢l el et 50, 3, 20, 20 ¥/time
TABLE II
PARAMETERS OF MEMG EQUIPMENT
Equipment Parameter Value
Ve 250 m’
N 0.5, 0.5
S& . S& 0.1, 0.9
Gas storage tank NE 30000 m’
up 200
kg 0.05
o COy 1800 kW
Electric chiller
Nec 3
n* 3
Ie 105 ¥/time
Microturbine P&, PS 200, 1500 kW
e s 1000, 1000 kW
Ageon 2.16 kg/m’

The profiles of renewable energy generation (wind tur-
bine) and loads (electric, cooling, and gas loads) are illustrat-
ed in Fig. 3. The maximum capacity of renewable energy
generation is 1000 kW. The peak demands of electric, cool-
ing, and gas loads are 4000 kW, 3000 kW, and 120,000 m’,
respectively. The daily carbon emission limit is set to be
1000 kg. Based on these expected scenarios, the upper and
lower bounds of renewable energy generation are set to be
1.2 and 0.8 of the expected values, respectively, while the
upper and lower bounds of different loads are set to be 1.1
and 0.9 of the expected values, respectively. A total of 50
scenarios are randomly generated within these intervals to
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represent historical and prediction data. Then, the allowed
variation range for each scenario is set between 1.05 and
0.95 of the scenario data. The upper and lower bounds of
the horizontal or vertical budgets are set to be 1.03 and
0.97, respectively. p,;, is set to be 0.01, and the confidence
levels for both £, and /5, are set to be 0.95.

120
100
< 80t
L2 60f
g y
& 40} @
20+
00:00 06:00 12:00 18:00 24:00
Time
—— Cooling load; —— Electric load; —— Gas load
—o—Renewable energy generation
Fig. 3. Profiles of renewable energy generation and loads.

Moreover, the reference electricity prices are based on
[29]. The DA purchasing and selling prices are set to be 1.1
and 0.9 of the reference prices, respectively, while the intra-
day purchasing and selling prices are set to be 1.3 and 0.7
of the reference electricity prices, respectively. The carbon
tax price is set to be 0.5 ¥/kg [30]. The termination toler-
ance of the DDSR-based solution method is set to be 0.001.

The proposed MEMG energy management method is pro-
grammed using YALMIP [31] interface on the MATLAB
platform and solved by the GUROBI solver [32]. The simu-
lation is conducted on a 64-bit PC with a 2.5 GHz CPU and
16 GB RAM.

B. Results of DA Scheduling

The data-driven stochastic robust model in (52) is solved
by the DDSR-based solution method. After three iterations,
the on/off states of LNG gasification, cascade utilization of
LNG cold energy and microturbine, as well as the DA elec-
tricity transaction are determined. The total solution time is
4.27 s, which is fully compatible for practical use.

The DA electricity transaction results are shown in Fig. 4.
The MEMG purchases electricity mainly during the periods
of 00:00-01:00 and 10:00-23:00. A large quantity of purchas-
ing transactions occur between 12:00 and 20:00, correspond-
ing to the periods of large electricity demands of MEMG.

2500
2000+
1500
1000 |

Power (kW)

500

00:00 06:00 12:00

Time

18:00 24:00

Fig. 4. DA electricity transaction results.

In response to the continuous NG demand, the LNG gas-
ification facility is kept on throughout the day. The microtur-
bine also remains in an active state for the entire day to
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meet the electricity demand. Furthermore, the on/off states
of the LNG cold energy utilization equipment are depicted
in Fig. 5.

gl
<
¢ | IINARNRRRRRNRENRREEID
00:00 06:00 12:00 18:00 24:00
Time
(a)
gl
<
7]
00:00 06:00 12:00 18:00 24:00
Time
(b)
gl
<
¢ [ IIENARARARRRNRRNRRNNEIND
00:00 06:00 12:00 18:00 24:00
Time
(©)
Fig. 5. On/off states of LNG cold energy utilization equipment. (a) Carbon

capture stage. (b) Cryogenic power generation. (¢) Direct cooling stage.

The first-stage carbon capture is fully activated as a result
of efforts to reduce carbon emissions. The second-stage cryo-
genic power generation is suspended from 00:00 to 05:00 in
the early morning when the electricity demand is relatively
low. The third-stage direct cooling also remains activated
throughout the entire day.

Additionally, the worst-case probabilities determined for
50 scenarios are illustrated in Fig. 6. It exhibits that scenari-
os 20, 22, 32, 40, 45, and 50 have high probabilities.

0.10¢ o S
0.08} -
2
2 0.06f
S 0.04}
Ay
0.02}
(OO ACnAnAAnAn . ArAn A nann. OO o,
0 10 20 30 40 50

Scenario No.

Fig. 6. Worst-case probabilities for 50 scenarios.

C. Results of Intraday Operation

During the day, the outputs of all MEMG equipment and
HA electricity transactions are optimized using more accu-
rate predictions of renewable energy generation and loads,
aiming to fulfill various load demands while simultaneously
minimizing the overall operation costs and carbon emissions.
Figure 7 shows the supply and demand of gas. The LNG
gasification can primarily meet the gas demand with the as-
sistance of gas storage tanks that enhance the flexibility in
natural gas balancing and the required LNG cold energy.
Moreover, Fig. 8 depicts the supply and demand of cooling.
Given the high cooling demand during daytime hours, a sub-
stantial supply is derived from the direct cooling process of
LNG cold energy. Additionally, as illustrated in Fig. 9, car-
bon emissions from microturbines can be fully captured dur-
ing the day, realizing a zero-carbon emission.
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Figure 10 shows the intraday electricity transactions in the
HA electricity market. MEMG purchases electricity most of
the time to eliminate the energy shortage while selling sur-
plus electricity during the period of 00:00 to 01:00. Further-
more, the supply and demand of electricity are shown in
Fig. 11. It indicates that cryogenic power generation, renew-
able energy generation and microturbine outputs all play sig-
nificant roles in power supply. This helps reduce electricity
purchases during high-price periods, thereby enhancing the
economic benefits of the MEMG.

14000
12000 f
10000 f
8000 f
6000
4000 1
2000
[1)3

-2000
00:00

Gas volume (m?)

12:00 18:00 24:00
Time
-<- Gas load; Gas storage tank charging; e=w LNG station gasification

Microturbine gas consumption; =1 Gas storage tank discharging

06:00

Fig. 7. Supply and demand of gas.
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5 2000}
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21200t

Coolin,
[ee]
S
3
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Time
-=- Cooling load; =X LNG direct cooling; #Z2 Electric chiller refrigeration

Fig. 8.

18:00

Supply and demand of cooling.

1200

1000F [
8001
600+
400

Carbon quantity (kg)

200

00:00 06:00 12:00
Time

-<-Microturbine carbon emission; &zz LNG cryogenic carbon capture

18:00 24:00

Fig. 9. Supply and demand of carbon.

D. Sensitivity Analysis of Different Interval Widths with Fea-
sibility Check

The uncertainty intervals of the scenario data play signifi-
cant roles in the DDSR-based solution method. To evaluate
the effect of different interval widths on the results, another
two interval widths [0.98, 1.02] and [0.92, 1.08] of the sce-
nario data are applied for comparison.
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Fig. 10. Intraday electricity transactions in HA electricity market.
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== Power consumption of gas storage tank
Fig. 11.  Supply and demand of electricity.

To begin with, 500 scenarios of renewable energy genera-
tion power, electric load, cooling load, and gas load are ran-
domly generated. Each scenario, regarded as an uncertainty
realization, is consecutively fed into the intraday optimiza-
tion process for a feasibility check. After solving all these
scenarios, the average cost is calculated. Also, the infeasibili-
ty rate is determined by calculating the ratio of the unsuc-
cessfully solved case number to the total scenario number.

The comparison results of different interval widths are
shown in Table III.

TABLE III
COMPARISON RESULTS OF DIFFERENT INTERVAL WIDTHS

Interval width Average cost (¥) Infeasibility rate (%)

[0.98, 1.02] 26691.5 0
[0.95, 1.05] 26868.3 0
[0.92, 1.08] 27050.9 0

Table III shows that the proposed DDSR energy manage-
ment method for the cascade utilization of LNG cold energy
with different interval widths achieves zero infeasibility rate,
showing high solution robustness. Moreover, it is evident
that as the interval width expands, the average operation cost
increases. This can be attributed to the fact that larger inter-
vals tend to exacerbate the worst-case scenarios, resulting in
more conservative solutions.

E. Comparison with Other Methods with Feasibility Check
In this subsection, the previous 500 scenarios are continu-
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ously employed to demonstrate the advantages of the pro-
posed DDSR energy management method for the multi-stage
cascade utilization of LNG cold energy, compared with the
single-stage utilization of LNG cold energy as well as vari-
ous solution methods.

Firstly, the single-stage utilization (i.e., direct cooling) of
LNG cold energy is applied for comparative analysis. The
characteristics and parameters of other equipment in MEMG
remain unchanged. The comparison results are given in Ta-
ble IV. It is illustrated that the proposed DDSR energy man-
agement method for the multi-stage cascade utilization of
LNG cold energy can achieve a low operation cost, indicat-
ing the improvement of energy utilization efficiency.

TABLE IV
COMPARISON RESULTS OF SINGLE-STAGE AND MULTI-STAGE CASCADE
UTILIZATIONS OF LNG COLD ENERGY

Cascade utilization of LNG cold energy Average cost (¥)
31020.2

26868.3

Single-stage
Multi-stage

Additionally, the DDSR-based solution method is com-
pared with three other solution methods, which are described
as follows.

Method 1: the SO method. The uncertainties are modelled
using randomly generated scenarios.

Method 2: the RO method. A column-and-constraint gener-
ation [33] solution algorithm is applied to seek the worst
case and solve the problem.

Method 3: the data-driven distributionally robust optimiza-
tion (DRO) method [23] using 1- and co-norms for the ambi-
guity set.

Table V shows the comparison results of the average costs
and infeasible rates of different solution methods.

TABLE V
COMPARISON RESULTS OF AVERAGE COSTS AND INFEASIBLE RATES OF
DIFFERENT SOLUTION METHODS

Method Average cost (¥) Infeasibility rate (%)
Method 1 26754.3 4
Method 2 27874.3 0
Method 3 27230.0 0
DDSR-based solution method 26868.3 0

As shown in Table V, Method | has the lowest operation
cost, but there exists an infeasibility rate of 4%. This is be-
cause the SO method primarily focuses on the optimal ex-
pected solution rather than solution robustness. In contrast,
the results of Method 2 exhibit high robustness against un-
certainties, but the operation cost is also the highest, due to
the consideration of the worst-case scenario in a large predic-
tion interval. Furthermore, the average cost of Method 3 lies
between those in Methods 1 and 2, while also achieving ze-
ro infeasible cases. This could be attributed to the fact that
the data-driven DRO optimizes the decision across multiple
uncertainty scenarios under the worst probability distribution.

In comparison, the DDSR-based solution method achieves
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a relatively low operation cost, marginally higher than that
of Method 1 and lower than that of Method 3, with full fea-
sibility. This demonstrates superior performance in cost re-
duction and robustness for MEMG energy management.

To conclude, the proposed DDSR energy management
method for the multi-stage cascade utilization of LNG cold
energy can achieve economic advantages and solution robust-
ness against uncertainties.

VII. CONCLUSION

To efficiently harness the released cold energy during
LNG gasification, this paper proposes a DDSR energy man-
agement method for the MEMG of an LNG receiving termi-
nal. To model the cascade utilization of LNG cold energy, a
general scheduling model considering the flexible coupling
between adjacent stages, energy losses, and electric power
consumption is proposed, which is further applied to the
multi-stage cascade utilization of carbon capture, cryogenic
power generation, and direct cooling. Moreover, a two-stage
energy management framework is introduced to coordinate
the cascade utilization of LNG cold energy with other ener-
gy resources in the MEMG, aiming to minimize operation
costs and carbon emissions. Considering the uncertainties of
renewable generation and various load demands, a DDSR-
based solution method is developed to search for the worst-
case scenarios and their corresponding worst-case probability
based on the prediction data and the historical data. Accord-
ingly, a Benders decomposition-based solution algorithm is
developed to decompose the problem into a master problem
and a slave problem, which are solved iteratively.

Through the simulation, the proposed DDSR energy man-
agement method outperforms the single-stage cascade utiliza-
tion of LNG cold energy, showing great economic benefits
with improved energy utilization efficiency. Furthermore, by
implementing a feasibility check, compared with the conven-
tional SO, RO, and DRO methods, the DDSR-based solution
method in this paper exhibits superior performance in terms
of cost reduction and solution robustness against uncertain-
ties. In future work, the integration of alternative energy stor-
age systems such as battery energy storage or thermal stor-
age can be explored to further enhance the performance of
MEMG operation.
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