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Abstract—The coordination of power distribution networks
(PDNs) and microgrids (MGs) is challenging due to the abun-
dant resources and their dispersed geographical distribution,
making centralized computation inefficient. To address this is-
sue, we propose a coordination framework with single leader
and multiple followers that allows limited information ex-
change. In this framework, the PDN operators act as leaders,
while the MG operators act as followers. However, variations in
load and renewable energy during MG scheduling intervals can
cause variability in power transactions between PDNs and
MGs. This variability can reduce the net revenue of MGs and
increase the operation costs of PDNs, which makes it essential
to consider the worst-case fluctuations. We introduce a multi-
agent robust deep reinforcement learning (MARDRL) approach
for coordination of PDNs and MGs, accounting for the worst-
case scenarios. The numerical results on the test systems verify
the effectiveness of the proposed approach in enhancing the co-
ordination of PDNs and MGs.

Index Terms—Power distribution network, microgrid, leader,
follower, renewable energy, deep reinforcement learning, infor-
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1. INTRODUCTION

ECENTLY, the share of renewable energy in power dis-

tribution networks (PDNs) has grown significantly [1].
However, the inherent uncertainty and variability of renew-
able energy generation pose challenges for the planning and
operation of PDNs. To mitigate these challenges, many ener-
gy storage systems have been implemented, leading to the
high operation cost of PDNs [2]. Furthermore, the increasing
number of dispatchable devices and their frequent dispatches
escalate the computational complexity of the operation of
PDNs. Interconnecting PDNs with microgrids (MGs) allows
some renewable energy to be shared with MGs, reducing the
need for energy storage systems [3] and alleviating computa-
tional burdens [4]. Enhanced collaboration between PDNs
and MGs is anticipated to address these issues effectively.

Therefore, the MGs considered in this paper are grid-con-
nected. When PDNs and MGs interconnect, their transac-
tions primarily involve power and pricing at the point of
common coupling [2]. This interaction presents two main
challenges. First, fluctuations in transaction power can result
in stability or reliability issues in PDNs. Second, pricing is
complex because PDNs and MGs are distinct entities with
different system operators and optimization goals. As a re-
sult, effective economic incentives are essential to promote
MG development and integration, safeguarding the interests
of all parties involved.

Several approaches have been explored to coordinate the
operations of PDNs and MGs. Reference [5] proposes a re-
newable energy buyback program with dynamic pricing to
achieve smart grid energy efficiency targets. Reference [6]
presents a dual-layer optimization model, incorporating de-
mand response. Reference [7] uses probabilistic modeling
for MG energy and load to optimize operations and mini-
mize costs. Reference [8] introduces a two-layer model for
comprehensive pricing of active and reactive power, focus-
ing on electricity market interactions and virtual power plant
profits. Reference [9] proposes a Stackelberg game frame-
work for these operations with a dual-layer model for MG
energy management in distribution markets. Reference [10]
proposes a planning and operation model for MGs with
pumped hydro storage, serving the PDNs exclusively. How-
ever, as the scale of PDNs and MGs grows, system model-
ing becomes more complex, and computational demands rise
due to increasing variables and constraints in the optimiza-
tion models. Model-based optimization approaches often de-
mand substantial computation resources, which are difficult
to satisfy the requirement of real-time applications in prac-
tice.

Deep reinforcement learning offers several advantages: the
ability to handle highly complex nonlinear systems, adapt-
ability to high-dimensional data, and high computational effi-
ciency in forward propagation. Therefore, it is increasingly
being used for the coordination of PDNs and MGs. Notable
research works are as follows. Reference [11] applies deep
deterministic policy gradients to manage wind power output.
Reference [12] proposes an energy trading algorithm based
on deep reinforcement learning to solve the supply and de-
mand mismatch problem of smart grids with a large number
of MGs without relying on power supply and demand mod-
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els of other MGs. Reference [13] proposes a federated decen-
tralized reinforcement learning algorithm addressing privacy
and scalability. Reference [14] introduces individual atten-
tion mechanisms for agent-specific reward information. Ref-
erence [15] uses double-delay deep deterministic policy gra-
dients with a nonlinear battery degradation model for MG
energy management. Reference [16] develops a multi-stage
reward mechanism incorporating expert decisions to avoid
suboptimal strategies. Reference [17] personalizes demand
fulfillment with weighted vector adjustments in reward func-
tions. Reference [18] proposes a deep reinforcement learning
approach for resilient MG partition models.

The existing literature has notable gaps. Firstly, in trading
between PDNs and MGs, time-of-use (TOU) pricing [5], [6]
can lead to excessive incentives and insufficient responsive-
ness to short-term fluctuations. Real-time pricing (RTP) [9]
demands significant computation and communication resourc-
es. Second, addressing uncertainty within scheduling inter-
vals, reinforcement learning with hard constraints [13], [17]
requires high-frequency sampled data, but even then, dis-
crete data may overlook the worst-case scenario. On the oth-
er hand, reinforcement learning with soft constraints [11],
[14], [18] diminishes benefits and fails to address the worst-
case scenarios. Additionally, practical applications prefer of-
fline training with historical data for power system safety.
Addressing these gaps, the primary contributions of this
study are as follows.

1) We develop a coordination framework with single lead-
er and multiple followers for PDNs and MGs with limited in-
formation exchange. We propose a step-wise optimal pricing
approach suitable for reinforcement learning training process-
es, which is distinct from TOU and RTP. This iterative solu-
tion effectively balances the operations for both PDN and
DG.

2) We propose a multi-agent robust deep reinforcement
learning (MARDRL) approach using semi-centralized train-
ing and decentralized execution to enhance the coordination.
We model the coordination issues of MGs as a Markov deci-
sion process (MDP) under uncertain state (US), i.e., MDP-
US, while simulating the optimal power flow of PDNs and
MGs together with historical data as the environment for of-
fline training.

3) Our experimental results validate the impact of the pro-
posed approach in the coordination of PDNs and MGs, dem-
onstrating mutual benefits and adaptability.

The remainder of this paper is organized as follows. Sec-
tion II presents the problem formulation. Section III details
the proposed MARDRL approach. Section IV summarizes
the computational results of the test systems. Section V con-
cludes the findings of this paper.

II. PROBLEM FORMULATION

This section initially introduces the Stackelberg game
framework for coordination of PDNs and MGs. Operation
models for the PDN operators and the MG operators are de-
tailed in Sections II-B and II-C.

Two key assumptions are as follows.

1) In the operation model, there is no information sharing
among MGs.
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2) In the PDNSs, the electricity price is sent every hour. In
the MGs, the transaction power is updated every 5 min.

A. Conceptual Framework for Stackelberg Game
To ensure the responsiveness of MGs, electricity prices

Similar hour interval

are transmitted from the PDNs to MGs before each hour.
Figure 1 illustrates the Stackelberg Game framework for co-
ordination of PDNs and MGs, where DLMP is short for dis-
tribution locational marginal price. The PDN operators and
MG operators act as the leader and followers, respectively.

Target hour interval
/\

- N o N
l 1 [ 1 _ — 1 [ /\/ ‘ I - L1 R 1 1 1 ‘
: e : : L T ' Interval
5-min interval : - S5-min interval
Upper level Upper level
Optimization of operation cost Optimization of operation cost
\ PDN \ \ PDN \
Transaction DLMP Transaction power DLMP
power
Hourly Lower level Hourly Lower level
electricity |, Optimization of net revenue electricity Optimization of net revenue
price IMG1|[MG2]| -+ [ MGm | price ! IMG1]|[MG2]| -+ | MGm |
Step-wise

Operation for PDN and MGs

Fig. 1. Stackelberg game framework for coordination of PDNs and MGs.

The iterative optimization cycle continues until the train-
ing iteration limit is reached, at which point the game con-
cludes. The process has two parts:

1) Operations for the PDNs and MGs are conducted at 5-
min intervals. At the lower level, MGs independently deter-
mine their transaction power with the PDNs based on the re-
ceived hourly electricity prices to maximize overall reve-
nues. Subsequently, the PDNs minimize operation costs at
the upper level, using the received transaction power to cal-
culate DLMP for each MG.

2) Step-wise optimal pricing occurs at the end of each
hour. The PDN operators update MG prices using DLMPs
and the corresponding transaction power from the similar
hour.

The interaction between PDNs and MGs includes hourly
electricity pricing and penalties for discrepancies between ac-
tual and committed transaction power. The details are given
as:

m m
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Equation (1) represents the hourly electricity price up-
dates. Similar hours are selected using the approach outlined
in [19]. Equation (2) represents transaction penalties [20].

The pricing model proposed in this paper uses temporal
decoupling and progressive relaxation to balance price re-
sponsiveness and computational complexity. Additionally, it
aligns with the dynamic interaction mechanisms of reinforce-
ment learning.

B. Operation Model for PDN Operators
To pursue tractability, the operation is formulated using

optimal pricing

Operation for PDN and MGs

conic relaxation. The PDN flow constraints are based on
[21]. Details of the DLMP are provided in [9]. The remain-
ing detailed model of the PDN operators is outlined as:

. 2
min F'= > a®(P#) +b" P+ ¢+ P +

gteGT
D Pl > P 3)
JjEB meM
0<PI< P (4)
P#—p¢ <RU" (5)
P¢ —P<RD" (6)

Equation (4) specifies the noncritical load curtailment to
keep electrical parameters within limits. Equations (5) and
(6) cover the ramping limits of gas turbine generators.

C. Operation Model for MG Operators

To improve the stability and efficiency of reinforcement
learning, the power of the MG action devices, including the
energy storage system and renewable energy inverters, will
be standardized. The energy storage system uses lithium-ion
batteries. The MG flow constraints are based on [6]. The re-
maining detailed MG operator model is expressed as:
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The set of constraints (8) - (13) describes the state-of-
charge (SOC) and the charging/discharging power in the en-
ergy storage system, where (8) and (9) define the real-time
charging and discharging power limits, respectively; (10) rep-
resents the output power of the system based on power ra-
tios within these limits; (11) specifies the operation states for
charging and discharging; (12) indicates SOC changes under
charging and discharging; and (13) specifies the upper and
lower power ratio limits for the energy storage system. The
set of constraints (14)-(17) describes the reactive power out-
put of inverters applied in renewable energy generation,
where (14) and (15) set the upper and lower limits of the re-
active power of the inverter; (16) governs the reactive power
output of the inverter based on its ratio and thresholds men-
tioned earlier; and (17) specifies the upper and lower power
ratio limits for the inverter.

III. PROPOSED MARDRL APPROACH

In this section, we introduce two following key assump-
tions in the proposed MARDRL approach.

1) In the MDP-US, optimal policies are adjusted for the
worst-case scenarios. However, the environment still transi-
tions from the current state to the next state, not the worst-
case scenario.

2) US intervals are deterministic functions depending sole-
ly on current states, remaining consistent over time.

A. Formulation of MDP-US

The energy management in MGs is described as MDP-
US. Each scheduling interval initiates decisions on the pow-
er ratios of energy storage systems and inverters based on
current MG states. Key elements of the MDP-US formula-
tion in MGs are as follows.

1) States: the MG states at each interval, including certain
and uncertain observations are given as:

sy = {cof’, uo’,”}

(18)
(19)
(20)

The three elements in (19) are designated as certain obser-
vations due to their consistency throughout the scheduling in-
terval. ¢ serves as supplementary information to handle the

col'={1,¢l',SOC!}

m m,re m, lo m, lo
uot:{Pt ’Pz 7Qt }

non-stationary environments of MGs, and ¢} directly im-
pacts total revenue transactions. Considering the time-depen-
dent constraints of energy storage system, SOC,;" indirectly
restricts action ranges. The three elements in (20) are consid-
ered uncertain observations, directly impacting transaction
power and varying within the scheduling interval.

2) State interval: to handle the uncertainty in net demands,
the MG state is expanded to state interval, expressed as:

(g,ﬁ) = (cof’,ﬂ(uot ) fm(uo )) 21

The bound of uncertain observations is constructed by un-
certainty upper bound function and uncertainty lower bound
function, which are provided in [22]. By introducing the un-
certain function, this model extends MDP-CS to MDP-US.
The uncertain function operates independently of the actor
network, enhancing adaptability and simplifying gradient cal-
culations during decentralized training for MDP-US.

3) Actions: the standardized actions taken by MG opera-
tors at the beginning of each scheduling interval are defined
as:

m,e m,re }

m
a; = {wt s Wy

(22)

4) Reward: it aligns with optimal energy goals and in-
cludes a penalty term to enforce MG energy constraints [17].
For a single time step, it is defined as:

rr=r(stal) =F"+ F (23)

5) Policy: the policy z( is established for the MDP-CS in
MG m. With the addition of uncertain functions, 7g is
changed to z}i for the MDP-US in MG m. The policy 7"
is selected Wlthln 7). To address the worst-case scenario 1n
MG m, since nl, m}, and z;;" are generated from the same
state space to produce the same action space, their sets are
equivalent, i.e., I1%=11]=11"

B. Analysis of Proposed MARDRL Approach

Traditional robust optimization uses a max-min frame-
work, where the worst-case scenario employs robust strate-
gies to maximize safety redundancy, leading to the lowest
revenues. Based on the assumption 1) in Section III, which
considers robust strategies within a single time segment, the
state value function and expected discounted return are de-
rived as:

my _ *m mymYy.
Vn;g"(st ) = z nUS( ayls; )

ayed"”
m m
rt +V 2 r+1|st ’a )VnZ'S(SHl)
(24)
S7.sT e ST
* m z m
7'L' d ( )
US 7[1 3 l (25)
sies”

Since robust strategies yield the lowest revenues, the loss
in expected discounted return between robust and determinis-
tic strategies is maximized. To simplify the computation of
robust strategies, the problem of minimizing revenue is trans-
formed into maximizing the loss. Based on (25), the loss of
expected discounted return is calculated as:

D(mjy n'c"s) J(frcs) ~J (7)) =

3 (V)= S () g

siesS” sies”
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Due to the nonlinearity of power flow, identifying the
worst-case scenario under US is challenging. However, it is
possible to demonstrate that the difference is bounded. By
the triangle inequality and the total variation distance, an up-
per bound for the loss can be derived as:
fnaX{DTV(”US ” ”cs)[ ]} (27)

m

D(nUSHnCS)<2 max |7,

v ed"

nnnnn

Based on the derlvatlons in (25)-(27), the worst-case strat-
egy maximizes the total variation distance. As a result, under
MDP-US, the agent can update uncertain policies based on
the certain policies under MDP-CS. In Fig. 2, the informa-
tion exchange is illustrated in the semi-centralized training
and decentralized execution architecture, combining central-
ized training [23] for MDP-CS and decentralized training for
MDP-US. For MDP-CS, the input to the actor network is
the local CS, as shown in (18). The input to the critic net-
work consists of global CSs and actions. For MDP-US, the
input to the actor network is the local state interval, as
shown in (21), which includes certain observations along
with the maximum and minimum values of uncertain obser-
vations. The critic network takes the local state interval and
policy as inputs.

Decentralized training for MDP-US

’ US critic 1 H US critic 2 ‘ ’ US criticm ‘
'777:::::5::::,{’:::"’:::::%::::?:::::jiiiiiiii:%:::%:::::ii“
- US policy m | |
""" [
’ US actor 1 H US actor 2 " US actorm ‘ :
State State State .
interval 1 interval 2 interval m | !

Decentralized execution

Centralized training for MDP-CS

’ CS critic 1 H CS critic 2 " Cscriticm‘

T S . i

; ’ CS actor 1 H CS actor 2 " CS actor m ‘ b

Lossof |\ T T 1 |

expected | ! | - - - 5

discounted | ’ CS poll(iy 1 ‘ ’ CS Ipolli:y 2 ‘ ’ CS policy m ‘ %

return 3 T T T T T T 3 3

27) ’ CS actor 1 H CS actor 2 " CS actor m ‘

o |l w: ——— - ——

interval «’ State 1 ‘ ’ State 2 " State m ‘ b
(21) 1 77777777777777777777777777777777777777777777777777777777777

] PDN \

— State input; — Information exchange

Training and execution architecture of proposed approach.

In Fig. 2, MDP-US is illustrated, which incorporates four
key modifications to the current architecture [24]. First, the
actor network processes the individual state intervals instead
of individual states. Second, the critic network and environ-
ment input individual US policies, unlike the previous ap-
proach that uses sampled actions from these policies. Third,
the output of the critic network is the reward for a single
time step rather than the expected discounted return. Fourth,
the environment for MDP-US uses a reinforcement learning
model instead of a real-world model. In Fig. 2, decentralized
training and execution for MDP-US involve no information
sharing, while centralized training for MDP-CS allows limit-
ed sharing. The proposed approach does not directly employ
the data encryption algorithm but still offers multiple priva-
cy protections. Shared states are normalized as per-unit val-
ues, and the rated values hide the state details (de-identi-
fied).

The unique mapping of uncertain functions allows for par-
tial modification of shared states (dynamic obfuscation).
Shared actions are standardized by power ratios, with consis-
tent value ranges masking action types (anonymization), and
dynamic boundaries safeguarding action details (differential

privacy).
C. Algorithm Implementation

Due to the high training stability, multi-agent proximal
policy optimization (MAPPO) algorithm is selected as the
reference model for improvement, using the traditional MAP-
PO algorithm for centralized training [24]. Continuous ac-
tion spaces in this algorithm are typically represented by
Gaussian distributions. However, the total variation distance
for multivariate Gaussian distributions is computationally
complex and lacks non-negativity and symmetry. Conse-
quently, Kullback-Leibler (KL) divergence [25] is preferred.
We employ the Bretagnolle-Huber inequality [26] to delin-
cate the relationship between KL divergence and total varia-
tion distance.

DTV(”;sm ZJS)[S:”] <l- %e

The Gaussian policy distribution for MDP-CS is denoted
s )N(y'g&,,zcs,) and for MDP-US, it is denoted

as ”Lis( |s”’)/\/ ( ,u’[;g",,EUS,) To simplify computations, we

=Dz wes)[57]

(28)

m m
as ncg( a,

adopt a fixed covariance matrix X%, =2;"". The multivariate
KL divergence is illustrated in [25].

Based on the derivations in (28) and [25], the worst-case
strategy maximizes KL divergence. This change eliminates
the need for computations in (24)-(28) and the buffering of
max|r;”| in (27), thereby significantly enhancing computa-
tional efficiency.

The modified MAPPO algorithm, i.e., the proposed algo-
rithm, addresses the worst-case scenarios through a min-max
process. Initially, centralized training for MDP-CS identifies
policies that maximize the expected discounted return for in-
dividual states. Then, decentralized training for MDP-US
searches for individual states that minimize the expected dis-
counted return, maximizing the KL divergence within US in-
tervals. The pseudo-code of the proposed algorithm is given in



292

Supplementary Material A Algorithm SA1. The parameters of
the proposed algorithm for MDP-CS remain fixed. Only the
parameters of the actor network in the proposed algorithm
are initialized with pre-trained weights based on the input
state interval, generating MAPPO policies. Other network pa-
rameters are randomly initialized. This pre-training ensures
that the decoder keeps the worst-case states within the uncer-
tain interval during early training, accelerating the search for
the worst-case scenario through non-zero actor gradients.
Three key modifications to conventional MAPPO algorithm
are highlighted within the blue font. First, the actor network
utilizes an autoencoder, with the decoder reversely comput-
ing from policy to state, ensuring the maximization of KL di-
vergence under the unknown worst-case scenarios. Second,
the actor network initializes parameters based on the input
state interval and generates MAPPO policies. This setup ac-
celerates the search for the worst-case scenario through non-
zero actor gradients. Third, the gradient updates of the actor
and critic network are determined by whether the decoder
outputs belong to US intervals.

IV. CASE STUDIES

This section summarizes the findings using four MGs and
the IEEE 33-bus system as a PDN [27], as shown in Fig. 3.
The dataset includes daily system demand, as well as photo-
voltaic and wind power generation data spanning six
months. Subsequently, we divide it into two parts: the data
for the first five months serve as training data, while the da-
ta for the last month is reserved for testing the proposed ap-
proach. Each training episode represents one day, consisting
of 288 steps. The US data are obtained by randomly sam-
pling within intervals formed by CS data and uncertain func-
tions. Detailed data of the test system are available online
[1]. Our model is implemented in Python 3.7.16 and execut-
ed on a personal computer with an Intel Core 19 processor
(6.0 GHz) and 64 GB RAM, using packages Gurobi and Py-
Torch.

PDN

Upper-level ! 1950517
L

power grid !

@

(@ Inverter; (B) Chemical energy storage system; @) Gas turbine generator
(® static var generator; §) Wind turbine; () Photovoltaic
e Load in PDN; (D Load in MG

Fig. 3. Topologies of power system (example).
A. Economic Performance of Proposed Algorithm

We compared the proposed algorithm with four bench-
marks, which include one non-robust algorithm and three ro-
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bust algorithms, to evaluate its performance. The details of
each algorithm are as follows.

1) CS-No Soft: training with CS data without soft penal-
ties (non-robust).

2) CS-SOC Soft: training with CS data including a 20%
soft penalty [14] on the SOC of energy storage systems in
MG (robust).

3) CS-Action Soft: training with CS data including a 20%
soft penalty [14] on the charging and discharging power of
energy storage systems in MG (robust).

4) US-No Soft: training with US data without soft penal-
ties (robust).

Figure 4 presents the episodic average reward of MGs
for five examined algorithms. After 153 training rounds, the
state and environment in the US-No Soft become non-sta-
tionary due to the continuous fluctuations of USs, leading to
unstable and non-convergent learning behaviors. In contrast,
convergence is consistently achieved under CSs. The uncer-
tainties in MARDRL approach add extra training burden,
which causes the proposed algorithm to converge or stabilize
more slowly than the comparison algorithm under CSs. Addi-
tionally, the proposed algorithm achieves the maximum epi-
sodic average reward in each MG, significantly outperform-
ing the benchmarks. Specifically, it demonstrates a relative
average growth of 33.41%, 16.86%, and 20.64% compared
with CS-No Soft, CS-SOC Soft, and CS-Action Soft, respec-
tively.
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Fig. 4. Episodic average reward of MGs for five examined algorithms. (a)
MG1. (b) MG2. (c) MG3. (d) MG4.

Considering the instability and non-convergence in the US-
No Soft, the test results obtained from the four examined al-
gorithms in MGI1 are summarized in Table I. The proposed
algorithm achieves the highest total revenue for MG. The
CS-No Soft, which excludes operation redundancy, tends to
reduce demand power and increase supply power during
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transactions with the PDN. Consequently, CS-No Soft
achieves the lowest transaction costs ($53.09) and the high-
est transaction revenues ($253.98). However, ignoring sys-
tem uncertainties diminishes the stability of transaction pow-
er in the 5-min time intervals, resulting in the highest trans-
action penalties ($57.35) and the lowest transaction rewards
($37.42). In contrast, the proposed algorithm dynamically ad-
justs redundancy, unlike the fixed redundancies of the CS-
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SOC Soft and the CS-Action Soft. Therefore, the proposed
algorithm achieves the lower transaction costs and higher
transaction revenues compared with both. Moreover, the pro-
posed algorithm designed for the worst-case scenarios
achieves the lowest transaction penalties (0) and highest
transaction rewards ($128.68). These results verify the per-

formance of the proposed algorithm in the total revenue of
MG.

TABLE I
AVERAGE DAILY VALUES OF TRANSACTION COST, TRANSACTION REVENUE, TRANSACTION PENALTY, TRANSACTION REWARD, OTHER COST, AND TOTAL
REVENUE OF MG OVER 31 TEST DAYS FOR FOUR EXAMINED ALGORITHMS IN MG1

Average daily value ($)

Algorithm - - - - Total revenue ($)
Transaction cost Transaction revenue Transaction penalty Transaction reward Other cost
Proposed algorithm 67.43 195.84 0 128.68 16.80 240.29
CS-No Soft 53.09 253.98 57.35 37.42 16.98 163.98
CS-SOC Soft 57.54 217.22 10.37 72.03 16.20 205.14
CS-Action Soft 56.77 215.02 10.85 66.07 16.41 197.06

To further explore the performance of the proposed algo-
rithm in the coordination of PDNs and MGs, Table II sum-
marizes the test results obtained from four examined algo-
rithms in PDN. The proposed algorithm achieves the highest
total revenue of MGs by adaptive redundancy, thereby maxi-
mizing transaction costs of PDN. Moreover, through adap-
tive redundancy, the proposed algorithm ensures supply sta-
bility, resulting in minimal load curtailment costs. Since the
load curtailment price is higher than the reward-penalty coef-
ficient, the proposed algorithm not only reduces the opera-

tion costs of the PDN but also increases the revenue of the
MG. By considering future periods with the discount factor
of the agent, it adjusts MG supply to mitigate PDN demand
peaks, thereby reducing the generation cost of gas turbine
generators and purchased costs from the upper-level power
grid. Overall, the proposed algorithm achieves the lowest to-
tal operation cost in PDN, reducing it by 2.89%, 1.59%, and
1.89%, compared with the CS-No Soft, the CS-SOC Soft,
and the CS-Action Soft, respectively, which demonstrates sig-
nificant outperformance over the three examined algorithms.

TABLE 11
AVERAGE DAILY VALUES OF GENERATION COST, PURCHASED COST, LOAD CURTAILMENT COST, TRANSACTION COST, AND TOTAL OPERATION COST OVER
31 TEST DAYS FOR FOUR EXAMINED ALGORITHMS IN PDN

Average daily value ($)

Total operation cost ($)

Load curtailment cost Transaction cost

Algorithm -
Generation cost Purchased cost
Proposed algorithm 12384.82 2909.36
CS-No Soft 10839.35 2785.71
CS-SOC Soft 11838.74 2873.71
CS-Action Soft 11394.73 2838.19

283.81 1132.10 16710.09
2827.39 754.23 17206.68
1281.94 985.08 16979.47
1834.72 963.93 17031.57

B. Adaptability Performance of Proposed Algorithm

We evaluated the proposed algorithm in two scenarios to
test its adaptability. The details are as follows:

1) Non-deployed agent for MDP-CS: no centralized or de-
centralized training has been completed.

2) Deployed agent for MDP-CS: centralized training is
completed, but no decentralized training has been completed.

Figure 5 presents the episodic average reward of MGs for
two examined scenarios. Table III summarizes the average
daily values of total revenue of MGs over 31 test days for
two examined scenarios in each MG. The deployed agent for
MDP-CS reduces the number of training episodes required
to achieve 99% of the maximum reward by an average of
84.41% compared with the non-deployed agent for MDP-
CS. The mean absolute relative error percentage between the

two agents in the total revenue of the MG is 0.22%, which
is below 0.5%. Since the deployed agent has already com-
pleted centralized training, with known actor and critic pa-
rameters for MDP-CS, it only requires decentralized training
for MDP-US. This results in faster convergence and stability
compared with the non-deployed agent. These results high-
light the adaptability of the proposed algorithm, allowing the
transition from MDP-CS to MDP-US with decentralized up-
dates, avoiding re-centralized training and speeding up the
training process.

C. Comparison of TOU and RTP Models with Proposed
Pricing Model

We compare the proposed pricing model with two bench-
marks to evaluate the performance.
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TABLE III
AVERAGE DAILY VALUES OF TOTAL REVENUE OF MGS OVER 31 TEST DAYS
FOR TWO EXAMINED SCENARIOS IN EACH MG

Average daily value of total revenue

Scenario of MGs ($)
MG1 MG2 MG3 MG4
Non-deployed agent for MDP-CS  240.06 ~ 163.65  248.00  420.02
Deployed agent for MDP-CS 240.69 16399 24845 419.01

1) TOU model: 0.080 $/kWh (00:00-08:00); 0.117 $/kWh
(08:00-16:00); and 0.160 $/kWh (16:00-24:00).

2) RTP model: in each reinforcement learning episode, the
MG optimizes its net revenue to send transaction power
from MG to PDN. Then, the PDN optimizes operation costs
to send DLMP from PDN to MG. This iterative process con-
tinues until the error of DLMPs between adjacent cycles is
less than 0.001 $/kWh.
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Figure 6 summarizes the hourly electricity price of MGs
for the three examined models on the 12" test day by (1). Ta-
ble IV summarizes daily net transaction revenue and average
5-min interval computation time of MGs for three examined
models on the 12" test day. Due to the high similarity in net
demands between similar and target hours, the mean percent-
age errors between the proposed pricing model and RTP
model in hourly electricity prices are 1.18% in MG1, 1.21%
in MG2, 1.36% in MG3, and 1.32% in MG4, all of which
are below 2%. Since RTP model fully reflects real-time de-
mand in the PDN, it achieves the highest daily net transac-
tion revenue, as shown in Table IV. Compared with RTP
model, the proposed pricing model and TOU model reduce
daily net transaction revenue by 1.25% and 29.96%, respec-
tively, as shown in Table IV. Since TOU model only requires
one PDN optimization and one MG optimization per step, it
achieves the shortest computation time, as shown in Table
IV. The proposed pricing model and RTP model increase av-
erage computation time by 0.19% and 7837.14%, respective-
ly, compared with TOU model, as shown in Table IV. We
conclude from these results that the proposed pricing model
properly balances economic efficiency and computation
time.
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Fig. 6. Hourly electricity price of MGs for three examined models on the

12" test day. (a) MG1. (b) MG2. (c) MG3. (d) MG4.

TABLE IV
DAILY NET TRANSACTION REVENUE AND AVERAGE 5-MIN INTERVAL COMPUTATION TIME OF MGS FOR THREE EXAMINED MODELS ON THE 12TH TEST DAY

MG1 MG2 MG3 MG4
Model Transaction . Transaction . Transaction . Transaction .
revenue ($) Time (ms) revenue ($) Time (ms) revenue ($) Time (ms) revenue ($) Time (ms)
Proposed pricing model 129.34 404.90 87.78 404.66 131.58 407.05 220.60 410.17
TOU model 94.45 404.89 63.80 404.73 92.44 405.28 149.36 408.84
RTP model 130.86 31732.87 88.41 31837.92 133.23 32437.34 224.81 32874.92

D. Impact of MG Demand Level

To further explore the interactions between PDN and MGs
using the proposed pricing model, we consider the case pre-
viously described as the base case and four additional cases
in which the MG demands are increased by 10% with re-

spect to those of the base case. Figure 7 illustrates how MG
demand affects PDN prices during operations. Each subplot
illustrates that higher MG demand results in increased hour-
ly electricity prices. Among the scenarios, the MG1+10%
case shows a larger price increase than the MG2+10% case,
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while the MG3+10% case shows a larger price increase than
the MG4+10% case. This is because higher MG net de-
mands compel the PDN to rely on more expensive energy
sources and exacerbate network congestion. Furthermore, the
hourly electricity prices of MG1 and MG4 are higher than
those of MG2 and MG3, respectively. This is because MGl
and MG#4 are closer to high-cost distributed power sources.
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Fig. 7. Hourly electricity price of MGs under baseline and higher power.
(a) MG1. (b) MG2. (c) MG3. (d) MG4.

E. Comparison of Model Optimization with Proposed Algo-
rithm

We compare the proposed algorithm with four bench-

marks to evaluate the uncertainty part of this paper.

1) DO [28]: deterministic optimization for a single scenar-
io within certain parameters.

2) SO [29]: stochastic optimization for expected values
within full probability distribution.

3) RO [30]: robust optimization for the worst-case scenar-
io within the uncertain set.

4) DRO [31]: distributionally robust optimization for the
worst-case scenario within the ambiguity set of distributions.

The test results of the proposed algorithm and four bench-
marks in MG1 are summarized in Table V. DO ignores un-
certainty, achieving the highest net transaction revenue but
the lowest reward due to penalties, resulting in the lowest to-
tal revenue. DRO partially mitigates penalties by optimizing
over the ambiguity set of distributions, but residual risk
from its conservative scenario selection limits total revenue
compared with the robust strategy. The proposed algorithm
and RO both eliminate penalties by accounting for the worst-
case scenarios. However, the proposed algorithm enhances
robustness (via scaling in (27) and (28)), sacrificing net reve-
nue but maximizing rewards to achieve the highest total rev-
enue. For execution tractability, the proposed algorithm
shifts computational load to offline training. During the on-
line operation, it requires only neural network inference, re-
ducing the average 5-min interval computation time by
99.999%, 99.997%, and 99.995%, compared with SO, RO,
and DRO, respectively. For training tractability, the proposed
algorithm shifts uncertainty part to the reinforcement learn-
ing formulation, thereby replacing RO with DO in training
environment. This reduces the training time by 98.77% com-
pared with RO.

TABLE V
AVERAGE DAILY VALUES OF TRANSACTION COST, TRANSACTION REVENUE, TRANSACTION PENALTY, TRANSACTION REWARD, OTHER COST, TOTAL
REVENUE OF MG, AND AVERAGE 5-MIN INTERVAL COMPUTATION TIME OF MG1 FOR PROPOSED ALGORITHM AND FOUR EXAMINED BENCHMARKS
ON THE 12TH TEST DAY

Transaction Transaction Transaction

Transaction

Item cost ($) revenue ($) penalty () reward (8) Other cost (§)  Total revenue ($) Time (ms)
Proposed algorithm 62.06 194.73 0 128.35 17.29 243.73 0.98
DO 52.15 249.06 62.92 39.29 17.98 155.30 404.91

SO 54.64 209.38 37.53 71.04 17.49 170.76 81191.96

RO 61.51 195.42 0 126.76 17.25 243.42 32805.59

DRO 49.54 202.94 10.29 91.40 17.36 217.14 18018.08

F. Scalability Performance of Proposed Algorithm

This subsection further demonstrates the scalability of the
proposed algorithm using the modified IEEE 123-bus system
and PNNL 329-bus taxonomy feeder [32]. New MGs are
added to the existing four MGs from the IEEE 33-bus sys-
tem, as shown in Fig. 8. Their points of common coupling
can be found in Table VI. Table VII presents the average 5-
min interval computation time over 31 test days for exam-
ined systems and feeder, i.e., three PDNs, in each MG. The
average S5-min interval computation time of MGs over 31
test days is 1.01 ms, 1.02 ms, and 1.04 ms, for the three
PDN:ss, respectively. During operation, MGs rely solely on lo-

cal states and avoid coordinated global computations with
PDNs. Therefore, the average 5-min interval computation
time of MGs depends on the scale of the MGs, not that of
the PDNs, showing the scalability of the proposed algorithm
within the PDNs. Additionally, the calculation times for mod-
ified IEEE 123-bus system and PNNL 329-bus taxonomy
feeder increase by 0.69% and 3.31%, respectively, compared
with that of the IEEE 33-bus system. This is because, in the
actor networks of reinforcement learning, matrix operations
during forward propagation are mainly influenced by the
size of the intermediate layers, further demonstrating the
scalability of the proposed algorithm within the MGs.
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Fig. 8. Topologies of additional MGs.

TABLE VI
POINTS OF COMMON COUPLING FOR MODIFIED IEEE 123-BUS SYSTEM AND
PNNL 329-Bus TAXONOMY FEEDER

Point of common coupling

MG Modified IEEE 123-bus PNNL 329-bus taxonomy
system feeder
1 19 15
2 22 33
3 36 103
4 47 121
5 64 132
6 76 133
7 87 143
8 106 158
9 193
10 201
11 204
12 205
TABLE VII

AVERAGE 5-MIN INTERVAL COMPUTATION TIME OVER 31 TEST DAYS FOR
THREE EXAMINED PDNS IN EACH MG

Average 5-min interval computation time (ms)

IEEE 33-bus system Modified IEEE 123-bus  PNNL 329-bus

system taxonomy feeder
1 0.98 1.05 0.95
2 0.99 0.95 0.98
3 0.98 1.07 0.97
4 1.10 0.99 1.02
5 0.94 0.99
6 1.12 1.10
7 1.01 1.11
8 1.02 1.11
9 1.01
10 1.09
11 1.11
12 1.10

V. CONCLUSION

This paper presents an MARDRL approach for coordina-
tion of PDNs and MGs with limited information exchange.
Comparative evaluation demonstrates that the proposed algo-
rithm improves MG operation profits and reduces the opera-
tion costs of PDNs, outperforming the existing reinforce-
ment learning approaches. Additionally, the proposed algo-
rithm supports adaptive training deployment in diverse real-
world scenarios via serial computation. The proposed pricing
model effectively balances price responsiveness and compu-
tational complexity by embedding iterative power-pricing
loops between MGs and PDNs into the reinforcement learn-
ing framework.

The findings underscore the importance of implementing
robust strategies for coordination of PDNs and MGs to en-
hance system economics. The proposed approach provides a
decision-making agent for each MG, enabling optimal sched-
uling under uncertainty. Furthermore, the coordination mod-
el, which operates under limited information exchange (MGs
send power and PDNs send electricity prices), could facili-
tate closer coordination of PDNs and MGs, particularly in
the scenarios with higher renewable energy penetration. Last-
ly, integrating the pricing model into the reinforcement learn-
ing framework optimizes dispatch decisions, highlighting the
critical role of pricing strategies in ensuring stability and effi-
ciency in real-time coordination of PDNs and MGs.
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