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Abstract——The coordination of power distribution networks 
(PDNs) and microgrids (MGs) is challenging due to the abun‐
dant resources and their dispersed geographical distribution, 
making centralized computation inefficient. To address this is‐
sue, we propose a coordination framework with single leader 
and multiple followers that allows limited information ex‐
change. In this framework, the PDN operators act as leaders, 
while the MG operators act as followers. However, variations in 
load and renewable energy during MG scheduling intervals can 
cause variability in power transactions between PDNs and 
MGs. This variability can reduce the net revenue of MGs and 
increase the operation costs of PDNs, which makes it essential 
to consider the worst-case fluctuations. We introduce a multi-
agent robust deep reinforcement learning (MARDRL) approach 
for coordination of PDNs and MGs, accounting for the worst-
case scenarios. The numerical results on the test systems verify 
the effectiveness of the proposed approach in enhancing the co‐
ordination of PDNs and MGs.

Index Terms——Power distribution network, microgrid, leader, 
follower, renewable energy, deep reinforcement learning, infor‐
mation exchange, agent.

NOMENCLATURE

A. Indices, Sets, and Functions

θ Index of neural network parameter
N Function of Gaussian distribution

πm
CS Index of policy for certain state in set Πm

CS

π *m
US Index of policy for the worst-case scenario in 

set Π *m
US

* Index of the worst-case scenario

adjh Index of hour of adjacent similar day

cu Index of load curtailment

CS Index of Markov decision process under cer‐
tain state

e Index of energy storage system in set E

-
fm Lower bound function of uncertainty in mi‐

crogrid (MG) m
-
fm Upper bound function of uncertainty in MG m

gt Index of gas turbine generator in set GT

h Index of hour of current day

j Index of bus in set B

lo Index of load

m Index of MG in set M

max Function of the maximum value

min Function of the minimum value

re Index of renewable energy in set RE

t Index of 5-min interval in set T

tr Index of transaction

up Index of upper-level power grid

US Index of Markov decision process under un‐
certain state

B. Parameters

αtr Reward-penalty coefficient of transaction 
power

γ Discount factor

Σ m
CS Preset covariance matrix of action under poli‐

cy πm
CS

Σ *m
US Preset covariance matrix of action under poli‐

cy π *m
US

Dt 5-min interval

η Learning rate
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ηch Charging efficiency of energy storage system

ηdis Discharging efficiency of energy storage sys‐
tem

ηre Active power conversion efficiency of inverter

agt, bgt, cgt Cost coefficients of gas turbine generator gt

ccu
j Load curtailment price of bus j

ce Charging/discharging cost of unit power in en‐
ergy storage system e

C me
t Rated capacity of energy storage system e in 

MG m at interval t
cre Generation cost of unit power in renewable en‐

ergy re

cup Electricity price of upper-level power grid
- -----
P cu

j The maximum load curtailment of bus j
- -------
P me

ch Preset maximum charging power of energy 
storage system e in MG m

-
P me

dis Preset minimum discharging power of energy 
storage system e in MG m

- -- -----
Qmre Preset maximum output reactive power of re‐

newable energy re in MG m
- -----
RD

gt
The maximum ramping down power of gas 
turbine generator gt

- -----
RU

gt
The maximum ramping up power of gas tur‐
bine generator gt

- -- -- ----- --
SOCme The maximum state-of-charge of energy stor‐

age system e in MG m

- -- -- ----- --SOCme The minimum state-of-charge of energy stor‐
age system e in MG m

- -------
Smre The maximum apparent power of renewable 

energy re in MG m

C. Model Variables

λme
tch Charging state of binary variable of energy 

storage system e in MG m at interval t
λme

tdis Discharging state of binary variable of energy 
storage system e in MG m at interval t

ωme
t Output power ratio of energy storage system e 

in MG m at interval t
ωmre

t Output power ratio of renewable energy re in 
MG m at interval t

cm
t Hourly electricity price in MG m at interval t

F m
t Net revenue in MG m at initial time point of 

interval t
F trm

t Reward-penalty of transaction power P m
t

F pd
t Operation cost of power distribution network 

(PDN) at initial time point of interval t
l m

t Locational marginal price in MG m at initial 
time point of interval t

P cu
jt Load curtailment of bus j at interval t

P me
t Output power of energy storage system e in 

MG m at interval t
P gt

t Output power of gas turbine generator gt at in‐
terval t

P m
t Committed transaction power between MG m 

and PDN at initial time point of interval t

P mav
t Actual transaction power between MG m and 

PDN at initial time point of interval t

P mre
t Output power of renewable energy re in MG 

m at interval t 
- -------
P me

cht The maximum charging power of energy stor‐
age system e in MG m at interval t

- -------
P me

dist The minimum discharging power of energy 

storage system e in MG m at interval t 

P mlo
t Active load in MG m at interval t 

P mre
t Output active power of renewable energy re in 

MG m at interval t

P up
t Purchased power from upper-level power grid 

at interval t 

Qmlo
t Reactive load in MG m at interval t 

Qmre
t Output reactive power of renewable energy re 

in MG m at interval t 
- -- -----
Qmre

t The maximum output reactive power of re‐
newable energy re in MG m at interval t

- -- -----
Qmre

t The minimum output reactive power of renew‐
able energy re in MG m at interval t 

SOC mre
t State-of-charge of energy storage system e in 

MG m at interval t

D. Reinforcement Learning Variables

μm
CSt Mean of action under policy πm

CS at interval t

μ*m
USt Mean of action under policy π *m

US  at interval t

am
t Action in MG m at interval t in set Am

com
t Observation in MG m at interval t

dπm
CS

Probability of reaching state under policy πm
CS

dπ *m
US

Probability of reaching state under policy π *m
US

DJ Loss of expected discounted return

DKL Model output of Kullback-Leibler (KL) diver‐
gence

DKLθ Neural network output of KL divergence

DTV Total variation distance

J Expected discounted return under policy

p(sm
t + 1|s

m
t a

m
t ) Probability of transitioning from state sm

t  to 
state sm

t + 1 with action am
t

r m
t Reward in MG m at interval t in set Sm

sm
t State in MG m at initial time point of interval t

-
sm

t The minimum state sm
t  at interval t

-
sm

t The maximum state sm
t  at interval t

s*m
t The worst-case scenario of state in MG m at 

interval t

sm
tUS Mapping state in Markov decision process un‐

der certain states by policy π *m
US

uom
t Uncertain observation in MG m at interval t

Vπ *m
US

State value function of state under policy π *m
US

Vπm
CS

State value function of state under policy πm
CS
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I. INTRODUCTION

RECENTLY, the share of renewable energy in power dis‐
tribution networks (PDNs) has grown significantly [1]. 

However, the inherent uncertainty and variability of renew‐
able energy generation pose challenges for the planning and 
operation of PDNs. To mitigate these challenges, many ener‐
gy storage systems have been implemented, leading to the 
high operation cost of PDNs [2]. Furthermore, the increasing 
number of dispatchable devices and their frequent dispatches 
escalate the computational complexity of the operation of 
PDNs. Interconnecting PDNs with microgrids (MGs) allows 
some renewable energy to be shared with MGs, reducing the 
need for energy storage systems [3] and alleviating computa‐
tional burdens [4]. Enhanced collaboration between PDNs 
and MGs is anticipated to address these issues effectively.

Therefore, the MGs considered in this paper are grid-con‐
nected. When PDNs and MGs interconnect, their transac‐
tions primarily involve power and pricing at the point of 
common coupling [2]. This interaction presents two main 
challenges. First, fluctuations in transaction power can result 
in stability or reliability issues in PDNs. Second, pricing is 
complex because PDNs and MGs are distinct entities with 
different system operators and optimization goals. As a re‐
sult, effective economic incentives are essential to promote 
MG development and integration, safeguarding the interests 
of all parties involved.

Several approaches have been explored to coordinate the 
operations of PDNs and MGs. Reference [5] proposes a re‐
newable energy buyback program with dynamic pricing to 
achieve smart grid energy efficiency targets. Reference [6] 
presents a dual-layer optimization model, incorporating de‐
mand response. Reference [7] uses probabilistic modeling 
for MG energy and load to optimize operations and mini‐
mize costs. Reference [8] introduces a two-layer model for 
comprehensive pricing of active and reactive power, focus‐
ing on electricity market interactions and virtual power plant 
profits. Reference [9] proposes a Stackelberg game frame‐
work for these operations with a dual-layer model for MG 
energy management in distribution markets. Reference [10] 
proposes a planning and operation model for MGs with 
pumped hydro storage, serving the PDNs exclusively. How‐
ever, as the scale of PDNs and MGs grows, system model‐
ing becomes more complex, and computational demands rise 
due to increasing variables and constraints in the optimiza‐
tion models. Model-based optimization approaches often de‐
mand substantial computation resources, which are difficult 
to satisfy the requirement of real-time applications in prac‐
tice.

Deep reinforcement learning offers several advantages: the 
ability to handle highly complex nonlinear systems, adapt‐
ability to high-dimensional data, and high computational effi‐
ciency in forward propagation. Therefore, it is increasingly 
being used for the coordination of PDNs and MGs. Notable 
research works are as follows. Reference [11] applies deep 
deterministic policy gradients to manage wind power output. 
Reference [12] proposes an energy trading algorithm based 
on deep reinforcement learning to solve the supply and de‐
mand mismatch problem of smart grids with a large number 
of MGs without relying on power supply and demand mod‐

els of other MGs. Reference [13] proposes a federated decen‐
tralized reinforcement learning algorithm addressing privacy 
and scalability. Reference [14] introduces individual atten‐
tion mechanisms for agent-specific reward information. Ref‐
erence [15] uses double-delay deep deterministic policy gra‐
dients with a nonlinear battery degradation model for MG 
energy management. Reference [16] develops a multi-stage 
reward mechanism incorporating expert decisions to avoid 
suboptimal strategies. Reference [17] personalizes demand 
fulfillment with weighted vector adjustments in reward func‐
tions. Reference [18] proposes a deep reinforcement learning 
approach for resilient MG partition models.

The existing literature has notable gaps. Firstly, in trading 
between PDNs and MGs, time-of-use (TOU) pricing [5], [6] 
can lead to excessive incentives and insufficient responsive‐
ness to short-term fluctuations. Real-time pricing (RTP) [9] 
demands significant computation and communication resourc‐
es. Second, addressing uncertainty within scheduling inter‐
vals, reinforcement learning with hard constraints [13], [17] 
requires high-frequency sampled data, but even then, dis‐
crete data may overlook the worst-case scenario. On the oth‐
er hand, reinforcement learning with soft constraints [11], 
[14], [18] diminishes benefits and fails to address the worst-
case scenarios. Additionally, practical applications prefer of‐
fline training with historical data for power system safety. 
Addressing these gaps, the primary contributions of this 
study are as follows.

1) We develop a coordination framework with single lead‐
er and multiple followers for PDNs and MGs with limited in‐
formation exchange. We propose a step-wise optimal pricing 
approach suitable for reinforcement learning training process‐
es, which is distinct from TOU and RTP. This iterative solu‐
tion effectively balances the operations for both PDN and 
DG.

2) We propose a multi-agent robust deep reinforcement 
learning (MARDRL) approach using semi-centralized train‐
ing and decentralized execution to enhance the coordination. 
We model the coordination issues of MGs as a Markov deci‐
sion process (MDP) under uncertain state (US), i. e., MDP-
US, while simulating the optimal power flow of PDNs and 
MGs together with historical data as the environment for of‐
fline training.

3) Our experimental results validate the impact of the pro‐
posed approach in the coordination of PDNs and MGs, dem‐
onstrating mutual benefits and adaptability.

The remainder of this paper is organized as follows. Sec‐
tion II presents the problem formulation. Section III details 
the proposed MARDRL approach. Section IV summarizes 
the computational results of the test systems. Section V con‐
cludes the findings of this paper.

II. PROBLEM FORMULATION

This section initially introduces the Stackelberg game 
framework for coordination of PDNs and MGs. Operation 
models for the PDN operators and the MG operators are de‐
tailed in Sections II-B and II-C.

Two key assumptions are as follows.
1) In the operation model, there is no information sharing 

among MGs.
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2) In the PDNs, the electricity price is sent every hour. In 
the MGs, the transaction power is updated every 5 min.

A. Conceptual Framework for Stackelberg Game

To ensure the responsiveness of MGs, electricity prices 

are transmitted from the PDNs to MGs before each hour. 
Figure 1 illustrates the Stackelberg Game framework for co‐
ordination of PDNs and MGs, where DLMP is short for dis‐
tribution locational marginal price. The PDN operators and 
MG operators act as the leader and followers, respectively.

The iterative optimization cycle continues until the train‐
ing iteration limit is reached, at which point the game con‐
cludes. The process has two parts:

1) Operations for the PDNs and MGs are conducted at 5-
min intervals. At the lower level, MGs independently deter‐
mine their transaction power with the PDNs based on the re‐
ceived hourly electricity prices to maximize overall reve‐
nues. Subsequently, the PDNs minimize operation costs at 
the upper level, using the received transaction power to cal‐
culate DLMP for each MG.

2) Step-wise optimal pricing occurs at the end of each 
hour. The PDN operators update MG prices using DLMPs 
and the corresponding transaction power from the similar 
hour.

The interaction between PDNs and MGs includes hourly 
electricity pricing and penalties for discrepancies between ac‐
tual and committed transaction power. The details are given 
as:

cm
t   =
∑ || l m

t P m
t tÎ adjh∑ || P m

t tÎ adjh

(1)

F trm
t = αtr( )P mav

t -P m
t (2)

Equation (1) represents the hourly electricity price up‐
dates. Similar hours are selected using the approach outlined 
in [19]. Equation (2) represents transaction penalties [20].

The pricing model proposed in this paper uses temporal 
decoupling and progressive relaxation to balance price re‐
sponsiveness and computational complexity. Additionally, it  
aligns with the dynamic interaction mechanisms of reinforce‐
ment learning.

B. Operation Model for PDN Operators

To pursue tractability, the operation is formulated using 

conic relaxation. The PDN flow constraints are based on 
[21]. Details of the DLMP are provided in [9]. The remain‐
ing detailed model of the PDN operators is outlined as:

min F pd
t = ∑

gtÎGT

agt(P gt
t ) 2

+ bgt P gt
t + cgt + cup P up

t +

∑
jÎB

ccu
j P cu

jt + ∑
mÎM

cm
t P m

t (3)

0 £P cu
jt £

- -----
P cu

j (4)

P gt
t -P gt

t - 1 £
- -----
RU

gt
(5)

P gt
t - 1 -P gt

t £
- -----
RD

gt
(6)

Equation (4) specifies the noncritical load curtailment to 
keep electrical parameters within limits. Equations (5) and 
(6) cover the ramping limits of gas turbine generators.

C. Operation Model for MG Operators

To improve the stability and efficiency of reinforcement 
learning, the power of the MG action devices, including the 
energy storage system and renewable energy inverters, will 
be standardized. The energy storage system uses lithium-ion 
batteries. The MG flow constraints are based on [6]. The re‐
maining detailed MG operator model is expressed as:

max F m
t = cm

t P m
t -∑

eÎE

ce| P me
t | - ∑

reÎRE

cre P mre
t (7)

- -------
P me

cht =min ( - -- -- ----- --
SOCme - SOC me

t Cme

λme
tchηchDt


- -------
P me

ch ) (8)

- -------
P me

dist =max ( SOC me
t ηdisC

me - - -- -- ----- --SOCme

λme
tdisDt


-
P me

dis ) (9)

P me
t =

- -------
P me

dist +ω
me
t (- -------

P me
cht - - -------

P me
dist ) (10)

Target hour intervalSimilar hour interval

PDN

5-min interval

Operation for PDN and MGs

Hourly
electricity

price

Hourly
electricity

price

Optimization of operation cost
Upper level

Transaction
power DLMP

Optimization of net revenue
Lower level

MG1 MG2 MGml

PDN

5-min interval

Operation for PDN and MGs

Optimization of operation cost
Upper level

Transaction power DLMP

Optimization of net revenue
Lower level

MG1 MG2 MGml

Step-wise
optimal pricing

Interval

Fig. 1. Stackelberg game framework for coordination of PDNs and MGs.
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λme
tch + λ

me
tdis £ 1 (11)

SOC me
t + 1 = SOC me

t + ( λme
tchηch +

λme
tdis

ηdis ) P me
t

Cme Dt (12)

0 £ωme
t £ 1 (13)

- -- -----
Qmre

t =min ( ( )- -------
Smre

2

- ( )ηre P mre
t

2

- -- -----
Qmre ) (14)

- -- -----
Qmre

t =max ( - ( )- -------
Smre

2

- ( )ηre P mre
t

2
-

- -- -----
Qmre ) (15)

Qmre
t =

- -- -----
Qmre

t +ωmre
t (- -- -----

Qmre
t -

- -- -----
Qmre

t ) (16)

0 £ωmre
t £ 1 (17)

The set of constraints (8) - (13) describes the state-of-
charge (SOC) and the charging/discharging power in the en‐
ergy storage system, where (8) and (9) define the real-time 
charging and discharging power limits, respectively; (10) rep‐
resents the output power of the system based on power ra‐
tios within these limits; (11) specifies the operation states for 
charging and discharging; (12) indicates SOC changes under 
charging and discharging; and (13) specifies the upper and 
lower power ratio limits for the energy storage system. The 
set of constraints (14)-(17) describes the reactive power out‐
put of inverters applied in renewable energy generation, 
where (14) and (15) set the upper and lower limits of the re‐
active power of the inverter; (16) governs the reactive power 
output of the inverter based on its ratio and thresholds men‐
tioned earlier; and (17) specifies the upper and lower power 
ratio limits for the inverter.

III. PROPOSED MARDRL APPROACH 

In this section, we introduce two following key assump‐
tions in the proposed MARDRL approach.

1) In the MDP-US, optimal policies are adjusted for the 
worst-case scenarios. However, the environment still transi‐
tions from the current state to the next state, not the worst-
case scenario.

2) US intervals are deterministic functions depending sole‐
ly on current states, remaining consistent over time.

A. Formulation of MDP-US

The energy management in MGs is described as MDP-
US. Each scheduling interval initiates decisions on the pow‐
er ratios of energy storage systems and inverters based on 
current MG states. Key elements of the MDP-US formula‐
tion in MGs are as follows.

1) States: the MG states at each interval, including certain 
and uncertain observations are given as:

sm
t = {com

t uom
t } (18)

com
t = {tcm

t SOC me
t } (19)

uom
t = {P mre

t P mlo
t Qmlo

t } (20)

The three elements in (19) are designated as certain obser‐
vations due to their consistency throughout the scheduling in‐
terval. t serves as supplementary information to handle the 

non-stationary environments of MGs, and cm
t  directly im‐

pacts total revenue transactions. Considering the time-depen‐
dent constraints of energy storage system, SOC me

t  indirectly 
restricts action ranges. The three elements in (20) are consid‐
ered uncertain observations, directly impacting transaction 
power and varying within the scheduling interval.

2) State interval: to handle the uncertainty in net demands, 
the MG state is expanded to state interval, expressed as:

(-sm
t 
-
sm

t ) = (com
t -

fm (uom
t ) -fm (uom

t ) ) (21)

The bound of uncertain observations is constructed by un‐
certainty upper bound function and uncertainty lower bound 
function, which are provided in [22]. By introducing the un‐
certain function, this model extends MDP-CS to MDP-US. 
The uncertain function operates independently of the actor 
network, enhancing adaptability and simplifying gradient cal‐
culations during decentralized training for MDP-US.

3) Actions: the standardized actions taken by MG opera‐
tors at the beginning of each scheduling interval are defined 
as:

am
t = {ωme

t ωmre
t } (22)

4) Reward: it aligns with optimal energy goals and in‐
cludes a penalty term to enforce MG energy constraints [17]. 
For a single time step, it is defined as:

r m
t = r m

t (sm
t a

m
t ) =F m

t +F trm
t (23)

5) Policy: the policy πm
CS is established for the MDP-CS in 

MG m. With the addition of uncertain functions, πm
CS is 

changed to πm
US for the MDP-US in MG m. The policy π *m

US  
is selected within πm

US. To address the worst-case scenario in 
MG m, since πm

CS, π
m
US, and π *m

US  are generated from the same 
state space to produce the same action space, their sets are 
equivalent, i.e., Πm

CS =Π
m
US =Π

*m
US .

B. Analysis of Proposed MARDRL Approach

Traditional robust optimization uses a max-min frame‐
work, where the worst-case scenario employs robust strate‐
gies to maximize safety redundancy, leading to the lowest 
revenues. Based on the assumption 1) in Section III, which 
considers robust strategies within a single time segment, the 
state value function and expected discounted return are de‐
rived as:

Vπ *m
US
(sm

t ) = ∑
am

t ÎAm

π *m
US (am

t |sm
t )·

( )r m
t + γ ∑

am
t ÎAm

sm
t s

m
t + 1Î Sm

p ( )sm
t + 1|s

m
t a

m
t Vπm

CS
( )sm

t + 1 (24)

J (π *m
US ) = ∑

sm
t Î Sm

dπ *m
US
(sm

t )Vπ *m
US
(sm

t ) (25)

Since robust strategies yield the lowest revenues, the loss 
in expected discounted return between robust and determinis‐
tic strategies is maximized. To simplify the computation of 
robust strategies, the problem of minimizing revenue is trans‐
formed into maximizing the loss. Based on (25), the loss of 
expected discounted return is calculated as:

DJ(π *m
US πm

CS ) = J (πm
CS ) - J (π *m

US ) =∑
sm

t Î Sm

dπm
CS
( )sm

t Vπm
CS
( )sm

t - ∑
sm

t Î Sm

dπ *m
US
( )sm

t Vπ *m
US
( )sm

t (26)
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Due to the nonlinearity of power flow, identifying the 
worst-case scenario under US is challenging. However, it is 
possible to demonstrate that the difference is bounded. By 
the triangle inequality and the total variation distance, an up‐
per bound for the loss can be derived as:

DJ(π *m
US πm

CS ) £ 2 max
am

t ÎAm

sm
t s

m
t + 1Î Sm

 | r m
t | max

sm
t Î Sm

{ }DTV( )π *m
US πm

CS [ ]sm
t (27)

Based on the derivations in (25)-(27), the worst-case strat‐
egy maximizes the total variation distance. As a result, under 
MDP-US, the agent can update uncertain policies based on 
the certain policies under MDP-CS. In Fig. 2, the informa‐
tion exchange is illustrated in the semi-centralized training 
and decentralized execution architecture, combining central‐
ized training [23] for MDP-CS and decentralized training for 
MDP-US. For MDP-CS, the input to the actor network is 
the local CS, as shown in (18). The input to the critic net‐
work consists of global CSs and actions. For MDP-US, the 
input to the actor network is the local state interval, as 
shown in (21), which includes certain observations along 
with the maximum and minimum values of uncertain obser‐
vations. The critic network takes the local state interval and 
policy as inputs.

In Fig. 2, MDP-US is illustrated, which incorporates four 
key modifications to the current architecture [24]. First, the 
actor network processes the individual state intervals instead 
of individual states. Second, the critic network and environ‐
ment input individual US policies, unlike the previous ap‐
proach that uses sampled actions from these policies. Third, 
the output of the critic network is the reward for a single 
time step rather than the expected discounted return. Fourth, 
the environment for MDP-US uses a reinforcement learning 
model instead of a real-world model. In Fig. 2, decentralized 
training and execution for MDP-US involve no information 
sharing, while centralized training for MDP-CS allows limit‐
ed sharing. The proposed approach does not directly employ 
the data encryption algorithm but still offers multiple priva‐
cy protections. Shared states are normalized as per-unit val‐
ues, and the rated values hide the state details (de-identi‐
fied). 

The unique mapping of uncertain functions allows for par‐
tial modification of shared states (dynamic obfuscation). 
Shared actions are standardized by power ratios, with consis‐
tent value ranges masking action types (anonymization), and 
dynamic boundaries safeguarding action details (differential 
privacy).

C. Algorithm Implementation

Due to the high training stability, multi-agent proximal 
policy optimization (MAPPO) algorithm is selected as the 
reference model for improvement, using the traditional MAP‐
PO algorithm for centralized training [24]. Continuous ac‐
tion spaces in this algorithm are typically represented by 
Gaussian distributions. However, the total variation distance 
for multivariate Gaussian distributions is computationally 
complex and lacks non-negativity and symmetry. Conse‐
quently, Kullback-Leibler (KL) divergence [25] is preferred. 
We employ the Bretagnolle-Huber inequality [26] to delin‐
eate the relationship between KL divergence and total varia‐
tion distance.

DTV(π *m
US πm

CS )[ sm
t ] £ 1 -

1
2

e
-DKL( )π *m

US πm
CS [ ]sm

t (28)

The Gaussian policy distribution for MDP-CS is denoted 
as πm

CS(am
t | sm

t )N ( μm
CStΣ

m
CSt ), and for MDP-US, it is denoted 

as π *m
US (am

t | sm
t )N ( μ*m

UStΣ
*m
USt ). To simplify computations, we 

adopt a fixed covariance matrix Σ m
CSt =Σ

*m
USt. The multivariate 

KL divergence is illustrated in [25].
Based on the derivations in (28) and [25], the worst-case 

strategy maximizes KL divergence. This change eliminates 
the need for computations in (24)-(28) and the buffering of 
max | r m

t | in (27), thereby significantly enhancing computa‐

tional efficiency.
The modified MAPPO algorithm, i. e., the proposed algo‐

rithm, addresses the worst-case scenarios through a min-max 
process. Initially, centralized training for MDP-CS identifies 
policies that maximize the expected discounted return for in‐
dividual states. Then, decentralized training for MDP-US 
searches for individual states that minimize the expected dis‐
counted return, maximizing the KL divergence within US in‐
tervals. The pseudo-code of the proposed algorithm is given in 

State 1 State 2
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US actor 1

US critic 1 �
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US critic 2
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US critic m
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�
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Fig. 2. Training and execution architecture of proposed approach.
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Supplementary Material A Algorithm SA1. The parameters of 
the proposed algorithm for MDP-CS remain fixed. Only the 
parameters of the actor network in the proposed algorithm 
are initialized with pre-trained weights based on the input 
state interval, generating MAPPO policies. Other network pa‐
rameters are randomly initialized. This pre-training ensures 
that the decoder keeps the worst-case states within the uncer‐
tain interval during early training, accelerating the search for 
the worst-case scenario through non-zero actor gradients. 
Three key modifications to conventional MAPPO algorithm 
are highlighted within the blue font. First, the actor network 
utilizes an autoencoder, with the decoder reversely comput‐
ing from policy to state, ensuring the maximization of KL di‐
vergence under the unknown worst-case scenarios. Second, 
the actor network initializes parameters based on the input 
state interval and generates MAPPO policies. This setup ac‐
celerates the search for the worst-case scenario through non-
zero actor gradients. Third, the gradient updates of the actor 
and critic network are determined by whether the decoder 
outputs belong to US intervals.

IV. CASE STUDIES 

This section summarizes the findings using four MGs and 
the IEEE 33-bus system as a PDN [27], as shown in Fig. 3. 
The dataset includes daily system demand, as well as photo‐
voltaic and wind power generation data spanning six 
months. Subsequently, we divide it into two parts: the data 
for the first five months serve as training data, while the da‐
ta for the last month is reserved for testing the proposed ap‐
proach. Each training episode represents one day, consisting 
of 288 steps. The US data are obtained by randomly sam‐
pling within intervals formed by CS data and uncertain func‐
tions. Detailed data of the test system are available online 
[1]. Our model is implemented in Python 3.7.16 and execut‐
ed on a personal computer with an Intel Core i9 processor 
(6.0 GHz) and 64 GB RAM, using packages Gurobi and Py‐
Torch.

A. Economic Performance of Proposed Algorithm

We compared the proposed algorithm with four bench‐
marks, which include one non-robust algorithm and three ro‐

bust algorithms, to evaluate its performance. The details of 
each algorithm are as follows.

1) CS-No Soft: training with CS data without soft penal‐
ties (non-robust).

2) CS-SOC Soft: training with CS data including a 20% 
soft penalty [14] on the SOC of energy storage systems in 
MG (robust).

3) CS-Action Soft: training with CS data including a 20% 
soft penalty [14] on the charging and discharging power of 
energy storage systems in MG (robust).

4) US-No Soft: training with US data without soft penal‐
ties (robust).

Figure 4 presents the episodic average reward of MGs  
for five examined algorithms. After 153 training rounds, the 
state and environment in the US-No Soft become non-sta‐
tionary due to the continuous fluctuations of USs, leading to 
unstable and non-convergent learning behaviors. In contrast, 
convergence is consistently achieved under CSs. The uncer‐
tainties in MARDRL approach add extra training burden, 
which causes the proposed algorithm to converge or stabilize 
more slowly than the comparison algorithm under CSs. Addi‐
tionally, the proposed algorithm achieves the maximum epi‐
sodic average reward in each MG, significantly outperform‐
ing the benchmarks. Specifically, it demonstrates a relative 
average growth of 33.41%, 16.86%, and 20.64% compared 
with CS-No Soft, CS-SOC Soft, and CS-Action Soft, respec‐
tively.

Considering the instability and non-convergence in the US-
No Soft, the test results obtained from the four examined al‐
gorithms in MG1 are summarized in Table I. The proposed 
algorithm achieves the highest total revenue for MG. The 
CS-No Soft, which excludes operation redundancy, tends to 
reduce demand power and increase supply power during 
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transactions with the PDN. Consequently, CS-No Soft 
achieves the lowest transaction costs ($53.09) and the high‐
est transaction revenues ($253.98). However, ignoring sys‐
tem uncertainties diminishes the stability of transaction pow‐
er in the 5-min time intervals, resulting in the highest trans‐
action penalties ($57.35) and the lowest transaction rewards 
($37.42). In contrast, the proposed algorithm dynamically ad‐
justs redundancy, unlike the fixed redundancies of the CS-

SOC Soft and the CS-Action Soft. Therefore, the proposed 
algorithm achieves the lower transaction costs and higher 
transaction revenues compared with both. Moreover, the pro‐
posed algorithm designed for the worst-case scenarios 
achieves the lowest transaction penalties (0) and highest 
transaction rewards ($128.68). These results verify the per‐
formance of the proposed algorithm in the total revenue of 
MG.

To further explore the performance of the proposed algo‐
rithm in the coordination of PDNs and MGs, Table II sum‐
marizes the test results obtained from four examined algo‐
rithms in PDN. The proposed algorithm achieves the highest 
total revenue of MGs by adaptive redundancy, thereby maxi‐
mizing transaction costs of PDN. Moreover, through adap‐
tive redundancy, the proposed algorithm ensures supply sta‐
bility, resulting in minimal load curtailment costs. Since the 
load curtailment price is higher than the reward-penalty coef‐
ficient, the proposed algorithm not only reduces the opera‐

tion costs of the PDN but also increases the revenue of the 
MG. By considering future periods with the discount factor 
of the agent, it adjusts MG supply to mitigate PDN demand 
peaks, thereby reducing the generation cost of gas turbine 
generators and purchased costs from the upper-level power 
grid. Overall, the proposed algorithm achieves the lowest to‐
tal operation cost in PDN, reducing it by 2.89%, 1.59%, and 
1.89%, compared with the CS-No Soft, the CS-SOC Soft, 
and the CS-Action Soft, respectively, which demonstrates sig‐
nificant outperformance over the three examined algorithms.

B. Adaptability Performance of Proposed Algorithm

We evaluated the proposed algorithm in two scenarios to 
test its adaptability. The details are as follows:

1) Non-deployed agent for MDP-CS: no centralized or de‐
centralized training has been completed.

2) Deployed agent for MDP-CS: centralized training is 
completed, but no decentralized training has been completed.

Figure 5 presents the episodic average reward of MGs for  
two examined scenarios. Table III summarizes the average 
daily values of total revenue of MGs over 31 test days for  
two examined scenarios in each MG. The deployed agent for 
MDP-CS reduces the number of training episodes required 
to achieve 99% of the maximum reward by an average of 
84.41% compared with the non-deployed agent for MDP-
CS. The mean absolute relative error percentage between the 

two agents in the total revenue of the MG is 0.22%, which 
is below 0.5%. Since the deployed agent has already com‐
pleted centralized training, with known actor and critic pa‐
rameters for MDP-CS, it only requires decentralized training 
for MDP-US. This results in faster convergence and stability 
compared with the non-deployed agent. These results high‐
light the adaptability of the proposed algorithm, allowing the 
transition from MDP-CS to MDP-US with decentralized up‐
dates, avoiding re-centralized training and speeding up the 
training process.

C. Comparison of TOU and RTP Models with Proposed 
Pricing Model

We compare the proposed pricing model with two bench‐
marks to evaluate the performance.

TABLE I
AVERAGE DAILY VALUES OF TRANSACTION COST, TRANSACTION REVENUE, TRANSACTION PENALTY, TRANSACTION REWARD, OTHER COST, AND TOTAL 

REVENUE OF MG OVER 31 TEST DAYS FOR FOUR EXAMINED ALGORITHMS IN MG1

Algorithm

Proposed algorithm

CS-No Soft

CS-SOC Soft

CS-Action Soft

Average daily value ($)

Transaction cost

67.43

53.09

57.54

56.77

Transaction revenue

195.84

253.98

217.22

215.02

Transaction penalty

0

57.35

10.37

10.85

Transaction reward

128.68

37.42

72.03

66.07

Other cost

16.80

16.98

16.20

16.41

Total revenue ($)

240.29

163.98

205.14

197.06

TABLE II
AVERAGE DAILY VALUES OF GENERATION COST, PURCHASED COST, LOAD CURTAILMENT COST, TRANSACTION COST, AND TOTAL OPERATION COST OVER 

31 TEST DAYS FOR FOUR EXAMINED ALGORITHMS IN PDN

Algorithm

Proposed algorithm

CS-No Soft

CS-SOC Soft

CS-Action Soft

Average daily value ($)

Generation cost

12384.82

10839.35

11838.74

11394.73

Purchased cost

2909.36

2785.71

2873.71

2838.19

Load curtailment cost

283.81

2827.39

1281.94

1834.72

Transaction cost

1132.10

754.23

985.08

963.93

Total operation cost ($)

16710.09

17206.68

16979.47

17031.57
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1) TOU model: 0.080 $/kWh (00:00-08:00); 0.117 $/kWh 
(08:00-16:00); and 0.160 $/kWh (16:00-24:00).

2) RTP model: in each reinforcement learning episode, the 
MG optimizes its net revenue to send transaction power 
from MG to PDN. Then, the PDN optimizes operation costs 
to send DLMP from PDN to MG. This iterative process con‐
tinues until the error of DLMPs between adjacent cycles is 
less than 0.001 $/kWh.

Figure 6 summarizes the hourly electricity price of MGs 
for the three examined models on the 12th test day by (1). Ta‐
ble IV summarizes daily net transaction revenue and average 
5-min interval computation time of MGs for three examined  
models on the 12th test day. Due to the high similarity in net 
demands between similar and target hours, the mean percent‐
age errors between the proposed pricing model and RTP 
model in hourly electricity prices are 1.18% in MG1, 1.21% 
in MG2, 1.36% in MG3, and 1.32% in MG4, all of which 
are below 2%. Since RTP model fully reflects real-time de‐
mand in the PDN, it achieves the highest daily net transac‐
tion revenue, as shown in Table IV. Compared with RTP 
model, the proposed pricing model and TOU model reduce 
daily net transaction revenue by 1.25% and 29.96%, respec‐
tively, as shown in Table IV. Since TOU model only requires 
one PDN optimization and one MG optimization per step, it 
achieves the shortest computation time, as shown in Table 
IV. The proposed pricing model and RTP model increase av‐
erage computation time by 0.19% and 7837.14%, respective‐
ly, compared with TOU model, as shown in Table IV. We 
conclude from these results that the proposed pricing model 
properly balances economic efficiency and computation 
time.

D. Impact of MG Demand Level

To further explore the interactions between PDN and MGs 
using the proposed pricing model, we consider the case pre‐
viously described as the base case and four additional cases 
in which the MG demands are increased by 10% with re‐

spect to those of the base case. Figure 7 illustrates how MG 
demand affects PDN prices during operations. Each subplot 
illustrates that higher MG demand results in increased hour‐
ly electricity prices. Among the scenarios, the MG1+10% 
case shows a larger price increase than the MG2+10% case, 
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Fig. 6.　Hourly electricity price of MGs for three examined models on the 
12th test day. (a) MG1. (b) MG2. (c) MG3. (d) MG4.
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TABLE III
AVERAGE DAILY VALUES OF TOTAL REVENUE OF MGS OVER 31 TEST DAYS 

FOR TWO EXAMINED SCENARIOS IN EACH MG

Scenario

Non-deployed agent for MDP-CS

Deployed agent for MDP-CS

Average daily value of total revenue 
of MGs ($)

MG1

240.06

240.69

MG2

163.65

163.99

MG3

248.00

248.45

MG4

420.02

419.01

TABLE IV
DAILY NET TRANSACTION REVENUE AND AVERAGE 5-MIN INTERVAL COMPUTATION TIME OF MGS FOR THREE EXAMINED MODELS ON THE 12TH TEST DAY

Model

Proposed pricing model

TOU model

RTP model

MG1

Transaction 
revenue ($)

129.34

94.45

130.86

Time (ms)

404.90

404.89

31732.87

MG2

Transaction 
revenue ($)

87.78

63.80

88.41

Time (ms)

404.66

404.73

31837.92

MG3

Transaction 
revenue ($)

131.58

92.44

133.23

Time (ms)

407.05

405.28

32437.34

MG4

Transaction 
revenue ($)

220.60

149.36

224.81

Time (ms)

410.17

408.84

32874.92
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while the MG3+10% case shows a larger price increase than 
the MG4+10% case. This is because higher MG net de‐
mands compel the PDN to rely on more expensive energy 
sources and exacerbate network congestion. Furthermore, the 
hourly electricity prices of MG1 and MG4 are higher than 
those of MG2 and MG3, respectively. This is because MG1 
and MG4 are closer to high-cost distributed power sources.

E. Comparison of Model Optimization with Proposed Algo‐
rithm

We compare the proposed algorithm with four bench‐

marks to evaluate the uncertainty part of this paper.
1) DO [28]: deterministic optimization for a single scenar‐

io within certain parameters.
2) SO [29]: stochastic optimization for expected values 

within full probability distribution.
3) RO [30]: robust optimization for the worst-case scenar‐

io within the uncertain set.
4) DRO [31]: distributionally robust optimization for the 

worst-case scenario within the ambiguity set of distributions.
The test results of the proposed algorithm and four bench‐

marks in MG1 are summarized in Table V. DO ignores un‐
certainty, achieving the highest net transaction revenue but 
the lowest reward due to penalties, resulting in the lowest to‐
tal revenue. DRO partially mitigates penalties by optimizing 
over the ambiguity set of distributions, but residual risk 
from its conservative scenario selection limits total revenue 
compared with the robust strategy. The proposed algorithm 
and RO both eliminate penalties by accounting for the worst-
case scenarios. However, the proposed algorithm enhances 
robustness (via scaling in (27) and (28)), sacrificing net reve‐
nue but maximizing rewards to achieve the highest total rev‐
enue. For execution tractability, the proposed algorithm 
shifts computational load to offline training. During the on‐
line operation, it requires only neural network inference, re‐
ducing the average 5-min interval computation time by 
99.999%, 99.997%, and 99.995%, compared with SO, RO, 
and DRO, respectively. For training tractability, the proposed 
algorithm shifts uncertainty part to the reinforcement learn‐
ing formulation, thereby replacing RO with DO in training 
environment. This reduces the training time by 98.77% com‐
pared with RO.

F. Scalability Performance of Proposed Algorithm

This subsection further demonstrates the scalability of the 
proposed algorithm using the modified IEEE 123-bus system 
and PNNL 329-bus taxonomy feeder [32]. New MGs are 
added to the existing four MGs from the IEEE 33-bus sys‐
tem, as shown in Fig. 8. Their points of common coupling 
can be found in Table VI. Table VII presents the average 5-
min interval computation time over 31 test days for exam‐
ined systems and feeder, i.e., three PDNs, in each MG. The 
average 5-min interval computation time of MGs over 31 
test days is 1.01 ms, 1.02 ms, and 1.04 ms, for the three 
PDNs, respectively. During operation, MGs rely solely on lo‐

cal states and avoid coordinated global computations with 
PDNs. Therefore, the average 5-min interval computation 
time of MGs depends on the scale of the MGs, not that of 
the PDNs, showing the scalability of the proposed algorithm 
within the PDNs. Additionally, the calculation times for mod‐
ified IEEE 123-bus system and PNNL 329-bus taxonomy 
feeder increase by 0.69% and 3.31%, respectively, compared 
with that of the IEEE 33-bus system. This is because, in the 
actor networks of reinforcement learning, matrix operations 
during forward propagation are mainly influenced by the 
size of the intermediate layers, further demonstrating the 
scalability of the proposed algorithm within the MGs.
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Fig. 7.　Hourly electricity price of MGs under baseline and higher power. 
(a) MG1. (b) MG2. (c) MG3. (d) MG4.

TABLE V
AVERAGE DAILY VALUES OF TRANSACTION COST, TRANSACTION REVENUE, TRANSACTION PENALTY, TRANSACTION REWARD, OTHER COST, TOTAL 
REVENUE OF MG, AND AVERAGE 5-MIN INTERVAL COMPUTATION TIME OF MG1 FOR PROPOSED ALGORITHM AND FOUR EXAMINED BENCHMARKS 

ON THE 12TH TEST DAY

Item

Proposed algorithm

DO

SO

RO

DRO

Transaction 
cost ($)

62.06

52.15

54.64

61.51

49.54

Transaction 
revenue ($)

194.73

249.06

209.38

195.42

202.94

Transaction 
penalty ($)

0

62.92

37.53

0

10.29

Transaction 
reward ($)

128.35

39.29

71.04

126.76

91.40

Other cost ($)

17.29

17.98

17.49

17.25

17.36

Total revenue ($)

243.73

155.30

170.76

243.42

217.14

Time (ms)

0.98

404.91

81191.96

32805.59

18018.08
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V. CONCLUSION

This paper presents an MARDRL approach for coordina‐
tion of PDNs and MGs with limited information exchange. 
Comparative evaluation demonstrates that the proposed algo‐
rithm improves MG operation profits and reduces the opera‐
tion costs of PDNs, outperforming the existing reinforce‐
ment learning approaches. Additionally, the proposed algo‐
rithm supports adaptive training deployment in diverse real-
world scenarios via serial computation. The proposed pricing 
model effectively balances price responsiveness and compu‐
tational complexity by embedding iterative power-pricing 
loops between MGs and PDNs into the reinforcement learn‐
ing framework.

The findings underscore the importance of implementing 
robust strategies for coordination of PDNs and MGs to en‐
hance system economics. The proposed approach provides a 
decision-making agent for each MG, enabling optimal sched‐
uling under uncertainty. Furthermore, the coordination mod‐
el, which operates under limited information exchange (MGs 
send power and PDNs send electricity prices), could facili‐
tate closer coordination of PDNs and MGs, particularly in 
the scenarios with higher renewable energy penetration. Last‐
ly, integrating the pricing model into the reinforcement learn‐
ing framework optimizes dispatch decisions, highlighting the 
critical role of pricing strategies in ensuring stability and effi‐
ciency in real-time coordination of PDNs and MGs.
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