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Abstract——This paper proposes a robust faulted line-section lo‐
cation method based on the normalized quantile Hausdorff dis‐
tance (NQHD) algorithm for detecting single-phase-to-ground 
faults in distribution networks. The faulted line section is deter‐
mined according to the characteristic differences between the 
zero-sequence currents on the faulted and healthy line sections. 
Specifically, the zero-sequence currents at both ends of a 
healthy line section are highly similar to each other, while such 
is generally not the case on a faulted line section. The NQHD al‐
gorithm can disregard extremes or outliers while also providing 
a normalized scaling in different scenarios. Thus, it can be ap‐
plied to calculate the robust waveform similarity of zero-se‐
quence current waveforms at both ends of different line sec‐
tions for identifying reliably the faulted line section even under 
the interference of outliers. The results demonstrate the good 
performance of the proposed method in detecting single-phase-
to-ground faults under different fault conditions. Comparative 
tests with the existing methods confirm the advantageous ro‐
bustness of the proposed method against the impacts of outliers 
and noises.

Index Terms——Faulted line-section location, single-phase-to-
ground fault, distribution network, normalized quantile Haus‐
dorff distance, outlier.

I. INTRODUCTION

NEUTRAL ineffectively grounded networks are common‐
ly employed in medium-voltage (MV) distribution net‐

works [1], [2]. A key advantage is that following a single-
phase-to-ground fault, the phase-to-phase voltage remains 
symmetrical, typically allowing the system to operate for an 

additional 1-2 hours. However, single-phase-to-ground faults 
constitute over 70% of all faults [3], and the normal phase 
voltage escalates to be nearly the line voltage during faults. 
Operating an MV distribution network for an extended peri‐
od during a single-phase-to-ground fault may not only endan‐
ger the safety of personnel and equipment, but also potential‐
ly lead to more severe phase-to-phase faults as a result of in‐
sulation breakdown [4]. For secure operation and the imple‐
mentation of automated fault management systems in distri‐
bution networks, it is crucial to detect faulted line section ac‐
curately and reliably.

To address the challenge of locating line sections with sin‐
gle-phase-to-ground faults in distribution networks, several 
faulted line-section location methods have been proposed. 
These methods are generally classified into three categories: 
active injection-based, signal processing-based, and learning-
based. Reference [5] proposes an active injection-based 
method for locating the faulted line section using signal in‐
jection driven by the soft open point; however, the signal in‐
jection method for fault detection has limitations, including 
system interference, waveform/frequency selection, complexi‐
ty, and limited accuracy and sensitivity of sensor/device. 
With the development of artificial intelligence (AI) technolo‐
gy, there has been increasing attention to learning-based 
methods. In [6], the eigenvalues of the time-series signals 
are used to train an improved K-means clustering model for 
locating the faulted line section. A method for faulted line-
section location in resonant grounding distribution networks 
utilizing waveform concatenation and 1-dimensional convolu‐
tional neural network (1-D CNN) is proposed in [7]. In [8], 
a faulted line-section location method based on an autoen‐
coder and a backpropagation neural network is proposed for 
detecting single-phase-to-ground faults in distribution net‐
works by extracting features from transient zero-sequence 
current and voltage. Nevertheless, it should be noted that the 
above learning-based methods may face certain limitations 
such as a considerable need for data quantity and dimension‐
ality.

The advantage of signal processing-based methods lies in 
their use of existing measurement signals for fault identifica‐
tion, thereby avoiding the need for additional signal injec‐
tion equipment as in active injection-based methods, and re‐
ducing the data burden associated with learning-based meth‐
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ods. Reference [9] proposes a feeder terminal unit (FTU) -
based method for identifying single-phase high-impedance 
faults (HIFs) in resonant grounding systems using transient 
zero-sequence admittance. This method remains effective re‐
gardless of fault inception angles, arcing faults, or HIFs. The 
degree of distortion in equivalent admittances is utilized in 
[10] to locate line section in distribution networks under sin‐
gle-phase-to-ground fault. In [11], the leakage energy, de‐
rived from both fault phase voltage and current, is utilized 
as the criterion for faulted line-section location. However, 
these methods require additional sensors to collect voltage 
and current signals, which may increase the cost and com‐
plexity of the faulted line-section location system. Reference 
[12] develops an MV faulted line-section location method 
that relies solely on unsynchronized low-voltage (LV) mea‐
surements in distribution networks. A new faulted line-sec‐
tion location method for HIF is proposed in [13], utilizing 
the significant differences in the declining periodic compo‐
nents of zero-sequence current, which are obtained through 
applying the extended Prony method at upstream and down‐
stream of the fault point. Reference [14] formulates a linear 
model for faulted line-section location, utilizing the distribu‐
tion characteristics of transient zero-sequence current direc‐
tion, which proves capable of pinpointing the faulted line 
section with accuracy and efficiency. In [15], a faulted line-
section location method based on the Hausdorff distance 
(HD) is proposed by comparing the similarity of transient ze‐
ro-sequence currents at both ends of line sections to identify 
the faulted line section. In [16], a dynamic time warping 
(DTW) -based method for locating faulted line sections is 
proposed. This method utilizes waveform similarity calcula‐
tions for identifying single-phase-to-ground faults in distribu‐
tion networks and offers the advantage of not requiring strict 
time synchronization.

The key limitation of these methods is that their reliability 
can be significantly degraded by outliers caused by commu‐
nication failures, measurement interference, or malicious cy‐
ber activities. As outliers sent to a faulted line-section loca‐
tion system may lead to incorrect decision-making, some re‐
search works have concentrated on developing robust tech‐
niques to ensure the cyber security of locating faulted line 
sections. The methods presented in [17]-[19] can address da‐
ta incompleteness and uncertainties by utilizing multi-source 
binary decision information. Since [17] - [19] do not provide 
a method for obtaining binary decision information through 
electrical signals, [20] bridges this gap by detailing this step. 
Subsequently, [20] employs the mixed-integer linear pro‐
gramming (MILP) to combine multi-source binary decision 
information, enhancing the robustness of faulted cable-sec‐
tion location when the decision information contains anoma‐
lous data. To effectively address the outliers in electrical sig‐
nals, a modified Hausdorff distance (MHD)-based faulted 
line-section location method is proposed in [21]. By using 
the average value instead of the maximum, the MHD algo‐
rithm resists minor outlier interference but remains sensitive 
to extreme values. Furthermore, some robust fault detection 
methods designed for transmission networks can be adapted 
for use in distribution networks. For instance, a learning-

based framework is utilized in [22] - [24] to detect outliers 
during the fault detection process, thereby guaranteeing reli‐
able fault detection results. Nonetheless, the learning-based 
methods necessitate a substantial volume of data for training 
the outlier detection model. To ensure the safety of fault de‐
tection in scenarios where outliers cannot be entirely re‐
moved from the current waveforms, [25] proposes a robust 
fault detection method based on Kendall’s tau coefficient 
(KTC) to minimize the impact of undetected outliers. The 
KTC-based method relies on rank order rather than metric 
values, thus keeping outliers at a manageable level. Howev‐
er, KTC-based method can produce inaccurate results in the 
presence of strong noise interference because the ordering of 
data points can be altered under such conditions.

In this paper, a robust faulted line-section location method 
based on normalized quantile Hausdorff distance (NQHD) al‐
gorithm is proposed for detecting single-phase-to-ground 
faults in distribution networks. The distinction between fault‐
ed and healthy line sections is achieved by evaluating the 
NQHD value between the zero-sequence currents at both 
ends of the line sections. The effectiveness of the proposed 
method is demonstrated under different conditions including 
fault distances, fault resistances, and fault inception angles. 
Its robustness is further validated in the presence of HIF. 
The main contributions are summarized as follows.

1) The proposed method enhances the reliability of single-
phase-to-ground fault detection in distribution networks by 
robustly assessing the similarity of sampled zero-sequence 
currents. Compared with existing faulted line-section loca‐
tion methods and traditional current differential techniques, 
the proposed method demonstrates greater robustness, reli‐
ably detecting faults even when the raw signals contain mul‐
tiple outliers. Furthermore, it eliminates the need for addi‐
tional outlier detection mechanisms and, in contrast to multi-
source data fusion methods, requires fewer measurement de‐
vices and a less complex decision-making process, making it 
a more efficient and practical solution.

2) By utilizing quantiles to disregard outliers and leverag‐
ing metric values rather than rank order to minimize varia‐
tions caused by noise interference, the NQHD algorithm fo‐
cuses on the overall data distribution. This enables the pro‐
posed method to maintain its performance, offering an advan‐
tage over commonly used similarity metrics in fault detec‐
tion, which may suffer from misjudgments and performance 
degradation in presence of outliers and noises.

3) The proposed method leverages the diagonal of a ro‐
bust bounding box for two sets of points as a natural scaling 
factor to normalize distances, ensuring consistency and com‐
parability across different datasets and scenarios. By using 
percentiles instead of the absolute minimum and maximum 
values, the proposed method offers resistance to outliers and 
enhances its robustness. This not only makes the normalized 
distance more intuitive and consistent across different scales, 
but also simplifies the threshold setting, particularly in the 
presence of extreme values.

The remainder of this paper is structured as follows. Sec‐
tion II analyzes the fault characteristics of the zero-sequence 
currents under single-phase-to-ground faults in both faulted 
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and healthy line sections. Section III presents the faulted 
line-section location method based on the NQHD algorithm. 
Section IV describes the system structure of the proposed 
method. Section V presents case studies and discussion to 
validate the effectiveness of the proposed method. This pa‐
per concludes in Section VI.

II. FAULT CHARACTERISTICS OF ZERO-SEQUENCE CURRENTS

This section focuses on identifying the distinguishing fea‐
tures of zero-sequence current waveforms between faulted 
and healthy line sections in a distribution network during sin‐
gle-phase-to-ground faults. Figure 1 illustrates the equivalent 
zero-sequence circuit during a single-phase-to-ground fault 
that occurs at point f within the line section MN of feeder L1 
in a typical distribution network with an arc suppression coil 
[21]. It shows four detection devices located at points M, N, 
P, and Q along the feeder L1, with iM, iN, iP, and iQ denoting 
the corresponding zero-sequence currents measured by each 
detection device.

A. Line Section with an External Fault

The zero-sequence current iM observed at detection point 
M, which is located upstream of the fault point f on the fault‐
ed feeder, can be expressed as:

iM = iCBM
+ iå + iL (1)

where iCBM
 is the grounding capacitance current of equivalent 

capacitances CBM on the line section BM, which connects the 
busbar node B to the detection point M; iå is the sum of the 
grounding capacitive currents of all healthy feeders and 
transformer, given by iå = i0s + i02 + ...+i0n, where i0s is the ca‐
pacitive current through the transformer-side capacitance Cs, 
and i02-i0n represent the capacitive currents from the healthy 
feeders L2-Ln; and iL is the inductance current generated by 
the arc suppression coil L.

Correspondingly, the zero-sequence current iN detected at 
detection point N can be expressed as:

iN = iCBM
+ iCMN

+ iå + iL (2)

where iCMN
 is the grounding capacitance current of equivalent 

capacitances CMN on the line section MN.
By comparing (1) and (2), we can obtain the differences 

in zero-sequence current between the two ends of the 

healthy line section, which is upstream of the fault point:
iM - iN = iCMN (3)

Similarly, the differences in zero-sequence currents be‐
tween detection points P and Q for the healthy line section 
PQ downstream of the fault point can be obtained as:

iP - iQ = iCPQ (4)

where iCPQ
 is the grounding capacitance current of equivalent 

capacitances CPQ on the line section PQ.
Equations (3) and (4) indicate that the differences in zero-

sequence currents detected at both ends of the healthy line 
section are mainly influenced by the grounding capacitance 
currents of the equivalent capacitance between them. Given 
that the length between the two ends of the line section is 
relatively short, the grounding capacitance current between 
adjacent detection points can be ignored. Consequently, for 
healthy line sections, the zero-sequence currents observed at 
two adjacent detection points exhibit similar waveforms, i.e., 
iM » iN and iP » iQ.

B. Line Section with an Internal Fault

In the case of a faulted line section, the difference in zero-
sequence current between detection points N and P can be 
described by:

iN - iP = iCNf
+ iCPf

- if (5)

where iCNf
 and iCPf

 are the grounding capacitance currents of 

the equivalent capacitances CNf and CPf, respectively; and if 
is the fault current that flows through the fault point.

According to (5), the currents associated with grounding 
capacitance are significantly smaller than the fault current 
present in the faulted line section, resulting in a notable dif‐
ference in magnitude between iN and iP. Hence, by compar‐
ing the similarity differences of zero-sequence current wave‐
forms at both ends of the line section, we can effectively 
identify the faulted line sections during single-phase-to-
ground faults in the distribution network.

C. Considerations in Utilizing Fault Characteristics amid In‐
terfering Factors

During single-phase-to-ground faults, one of the distin‐
guishing signal characteristics at different detection points is 
the substantial increase in the zero-sequence current. Under 
normal operation with balanced three-phase currents, this ze‐
ro-sequence current is almost negligible. However, when a 
fault occurs, this zero-sequence current exhibits a rapid in‐
crease. Single-phase-to-ground faults can be categorized into 
three types: Phase A to ground, Phase B to ground, and 
Phase C to ground. Given that the zero-sequence current rep‐
resents the collective sum of the currents of Phases A, B, 
and C, analyzing it allows for the effective identification of 
these single-phase-to-ground faults. Based on the analysis in 
the two preceding subsections, a notable feature emerges 
that differentiates faulted line sections from healthy ones: 
the zero-sequence current waveforms at both ends of a 
healthy line section are highly similar, whereas those of a 
faulted line section display significant differences.

Although similarity metrics such as HD, cosine similarity 
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Fig. 1.　 Equivalent zero-sequence circuit during a single-phase-to-ground 
fault.
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(CS), or Pearson correlation coefficient (PCC) can be used 
to locate faulted line sections, challenges such as data losses 
and outliers in the cyber system would lead to erroneous 
fault detection results. To address these challenges, a com‐
mon solution involves deploying additional outlier detection 
mechanisms or implementing the fusion of data from multi‐
ple sources. However, these solutions necessitate extensive 
equipment and sophisticated decision-making algorithms, of‐
ten incurring significant costs. To tackle the problem, this pa‐
per aims to develop a robust similarity metrics to locate 
faulted line section even in the presence of outlier interfer‐
ences.

III. FAULTED LINE-SECTION LOCATION METHOD BASED ON 
NQHD ALGORITHM 

This section will start with a brief introduction to the 
quantile Hausdorff distance (QHD) algorithm. Subsequently, 
an NQHD algorithm will be provided to offer a normalized 
scale. Finally, the implementation of the proposed method 
for locating the faulted line section will be presented.

A. Introduction of QHD

The HD algorithm is a widely used measure of similarity 
or dissimilarity between two sets in different applications. 
To compute the HD value between two vectors X and Y, 
which contain M items each denoted as x1, x2, ..., xi, ..., xM 
and y1, y2, ..., yj, ..., yM, respectively, we have [15]:

H(XY )= max{h(XY )h(YX)} (6)

h(XY )= max
xi Î X {min

yj Î Y
 xi - yj } (7)

h(YX)= max
yj Î Y {min

xi Î X
 xi - yj } (8)

where  ×  represents the Euclidean distance, defined on the 
points of X and Y. Equation (7) signifies that the minimal 
distance is initially determined for each point in X relative 
to Y. Subsequently, the maximum value from this set of mini‐
mum distances is selected as the value of h(XY ). The met‐
ric h(YX) in (8) can be calculated in a similar manner. Final‐
ly, H(XY ) in (6) can be derived by choosing the larger val‐
ue between h(XY ) and h(YX).

The HD algorithm measures the difference between two 
sets by calculating the maximum distance between points in 
the sets. This method is particularly effective in fault signal 
analysis for its ability to emphasize discrepancies based on 
amplitude, contrasting with CS or PCC which focuses on di‐
rection aspects. By concentrating on the largest minimum 
distances, it offers better robustness against noise and a 
more prominent measurement of dissimilarities compared 
with average-based methods like Euclidean distance or rank-
order metrics such as the KTC method. However, it is high‐
ly sensitive to outliers or extreme values, which can lead to 
inaccurate distance estimation. In contrast, the QHD algo‐
rithm is more robust to the interference of outliers compared 
with the HD algorithm due to its utilization of quantiles. By 
using quantiles, QHD can disregard extreme or outlier val‐
ues and focus more on the overall distribution of data 

points. This enhances the robustness of distance estimation, 
resulting in a more reliable measure, particularly when deal‐
ing with outliers. The QHD metric between X and Y is de‐
fined as [26]:

Hq (XY )= max{hq (XY )hq (YX)} (9)

hq (XY )= quantileq

xi Î X
{min

yj Î Y
 xi - yj } (10)

hq (YX)= quantileq

yj Î Y
{min

xi Î X
 xi - yj } (11)

where hq (XY ) indicates that the shortest distance is first 
computed for each point in X with respect to Y; and the 
function quantileq{×} denotes the qth quantile of the given set. 
Following this, the qth quantile from these minimum distanc‐
es is selected as the value of hq (XY ). Here, q represents the 
quantile value, which ranges between 0 and 1. Similarly, the 
metric hq (YX), as specified in (11), can be computed. Final‐
ly, the value of Hq (XY ), as specified in (9), is obtained by 
choosing the larger value between hq (XY ) and hq (YX).

The QHD algorithm is used to assess the similarity be‐
tween zero-sequence currents of healthy and faulted line sec‐
tions. The fault characteristics discussed in Section II sug‐
gest that the zero-sequence currents in X and Y exhibit high 
similarity for healthy line sections, as reflected by a relative‐
ly small QHD value. However, for the faulted line section, 
the zero-sequence currents in X and Y exhibit significant dis‐
similarity, with the largest QHD value. Based on the analy‐
sis above, it can be concluded that the QHD values between 
X and Y can indicate the status of the line section as either 
faulted or healthy during a single-phase-to-ground fault. As 
a result, the faulted line section can be found according 
to (12).

Hq (XY )= max
sn Î S

{Hq (sn ) (XY )} (12)

where Hq (sn ) (XY ) is the QHD value of the nth line section in 

the set of line sections S ={s1s2...sn...sN }, which contains 
N items. In short, (12) indicates that the line section with the 
maximum QHD value is identified as the faulted line section.

B. NQHD Algorithm

The faulted line-section location method based on QHD al‐
gorithm may fail to provide reliable results if it solely relies 
on selecting the maximum QHD value to distinguish be‐
tween line sections. Without establishing a set threshold, 
there is a heightened risk of either overreactions or continu‐
ous interventions, as there is no stable benchmark to guide 
the decision-making.

Normalization is a valuable technique, especially when 
comparisons across different datasets or scenarios are de‐
sired. Min-max normalization is a simple linear scaling tech‐
nique with the primary objective of rescaling data values to 
lie within a specified range, which is often [0, 1]. However, 
a significant limitation of this method is its high sensitivity 
to outliers. Since the min-max normalization directly utilizes 
the minimum and maximum values of the data for scaling, a 
single outlier can drastically affect the scale of normaliza‐
tion. Thus, when outliers are present in the dataset, direct ap‐
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plication of the min-max normalization might not be ideal. 
In such scenarios, a more robust method of data scaling or 
transformation is needed.

To facilitate the threshold setting, the diagonal of a robust 
bounding box for two sets of points, X and Y, is utilized for 
normalization. This aims to provide a natural scaling factor, 
allowing the resulting normalized distance to be compared 
across different datasets and scenarios, even in the presence 
of outliers. To enhance robustness, the bounding box is de‐
fined using percentiles rather than the absolute minimum 
and maximum values, reducing sensitivity to extreme values.

D = |U - L | (13)

L = quantileα{XY} (14)

U = quantileβ{XY} (15)

where L is the lower bound determined by the αth percentile 
of the combined set of X and Y; U is the upper bound de‐
rived from the β th percentile of the same combined set; α 
and β are the variables representing the percentiles, with 0 £
α < β £ 100; and D is the absolute difference between U and 
L, representing the overall spread of the data. This metric re‐
mains robust to outliers due to the flexible selection of the 
percentiles α and β. In this paper, α is specifically chosen as 
the 10th percentile and β as the 90th percentile, because, with 
50 samples (10 kHz sampling rate in this paper) used for 
similarity comparison, removing 10% of data from each tail 
allows the method to suppress up to 5 outliers. Although a 
higher sampling frequency allows more outliers to be tolerat‐
ed, in practical applications, the actual number of outliers 
may be limited. Moreover, higher sampling rates increase da‐
ta transmission, leading to greater communication overhead 
and computational load, especially in extended networks. 
Therefore, a balance between outlier suppression and data 
preservation is achieved, allowing consecutive outliers to be 
removed without significantly reducing the amount of useful 
information.

To emphasize the differences between two sets of points 
and enhance computational efficiency by eliminating square 
root operations, the squared Euclidean distance is chosen 
over the standard Euclidean distance in QHD calculations. 
Consequently, (10) and (11) can be reformulated, with the 
original terms hq (XY ) and hq (YX) being replaced by 
h2

q (XY ) and h2
q (YX), as:

h2
q (XY )= quantileq

xi Î X
{ }min

yj Î Y
 xi - yj

2

(16)

h2
q (YX)= quantileq

yj Î Y
{ }min

xi Î X
 xi - yj

2

(17)

where  × 2
 represents the squared Euclidean distance.

By integrating the QHD algorithm based on the squared 
Euclidean distance with the diagonal of a robust bounding 
box for two sets of points, an NQHD algorithm is presented 
as:

HD(XY )=
max{h2

q (XY )h2
q (YX)}

D
(18)

where HD(XY ) denotes an NQHD value computed using 

the squared Euclidean distance.

C. Faulted Line-section Location Method Based on NQHD 
Algorithm

Based on the analysis above, it can be concluded that the 
NQHD values between X and Y can indicate the status of 
the line section as either faulted or healthy during a single-
phase-to-ground fault. As a result, fault detection criteria can 
be established by using the noticeable differences in the 
NQHD values to distinguish between faulted and healthy 
line sections.

Under stable network conditions, the threshold can be em‐
pirically determined, while a dynamic threshold is proposed 
to ensure robustness in different operation scenarios. Specifi‐
cally, if the following condition is met, the line section will 
be identified as faulted:

HD(XY )³
1
2∑i

HDi (19)

where HD(XY ) is the NQHD value of the current line sec‐
tion; and ∑

i

HDi is the total sum of NQHD values across all 

line sections. A line section is identified as faulted if its 
NQHD value exceeds half of the total sum of NQHD values 
of all line sections. Setting half of the total sum of NQHD 
values of all line sections as the threshold is based on the 
fault contribution ratio principle. In the presence of a fault, 
the NQHD value of the faulted line section is significantly 
higher than that of non-faulted line sections, contributing dis‐
proportionately to the total NQHD distribution. The pro‐
posed method ensures that the threshold dynamically adjusts 
to different network conditions without relying on pre‐
defined parameters. By setting the threshold at half of the to‐
tal sum of NQHD values, the method effectively captures 
the dominance of the faulted line section while maintaining 
adaptability to different feeder configurations and operating 
conditions. Note that this method requires a centralized sys‐
tem for processing, as it involves aggregating and comparing 
NQHD values across multiple sections. Such a method can 
be effectively implemented within the centralized decision-
making system described in Section IV.

The proposed method locates faulted and healthy line sec‐
tions by measuring the similarity between two datasets with 
fault characteristics based on the NQHD algorithm. The 
flowchart of the proposed method is shown in Supplementa‐
ry Material A Fig. SA1, and the step-by-step implementation 
details are outlined below.

Step 1: detect whether a fault occurs. The zero-sequence 
voltage is continuously monitored for its instantaneous val‐
ue. Subsequently, the following start-up criterion is applied 
to detect the presence of a fault condition [9].

Du0 (t)³ kun (20)

where Du0 (t) is an increment of zero-sequence voltage u0 at 
instant t; un is the rated voltage; and the coefficient k, which 
has an empirical value of 0.15, is used to sensitively distin‐
guish between normal and faulted conditions in different sce‐
narios while maintaining an appropriate speed of action. If 
the condition is met for three consecutive samples beginning 
at instant t, the algorithm proceeds to the following step.
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Step 2: acquire the measurement data from both sides of 
each line section in distribution networks. Once a fault con‐
dition is detected, the zero-sequence currents are collected. 
As a result, X and Y, each containing M samples for a quar‐
ter-cycle data window, are obtained at both ends of each line 
section.

Step 3: calculate the NQHD values for each line section. 
This is achieved by computing the NQHD values between X 
and Y using (18). The similarity metrics HD(XY ) of each 
line section sn (n = 12...N) can then be utilized as the fault 
indicator.

Step 4: locate the faulted line section. The NQHD value is 
evaluated to determine whether a line section satisfies the 
criterion described in (19). If the criterion is satisfied, the 
line section is identified as the faulted line section. Converse‐
ly, if the criterion is not satisfied, the line section is consid‐
ered a healthy one.

IV. SYSTEM STRUCTURE OF PROPOSED METHOD 

The overall system structure of the proposed method is de‐
picted in Fig. 2. The proposed method can be implemented 
into an Internet of Things (IoT) infrastructure, which would 
offer advantages such as enhanced real-time monitoring, the 
potential for advanced data analytics and management, re‐
mote access and control capabilities, and improved user’s in‐
teraction [27].

As illustrated in Fig. 2, the IoT infrastructure of the pro‐
posed method, which is designed to identify faulted line-sec‐
tion locations, consists of three layers: the perception layer, 
the network layer, and the application layer. At the lowest 
level of this platform lies the perception layer, equipped 
with intelligent sensors and actuators. These sensors are 
tasked with sampling and processing measurements within 
the distribution network. The raw or pre-processed data are 
then transmitted to the network layer. Meanwhile, the actua‐
tors receive decision-making information and convert it into 
tangible actions. In the middle, the network layer connects 

geographically dispersed sensor and actuator nodes from the 
perception layer, offering functionalities for communication, 
storage, and data aggregation. Positioned at the top of the hi‐
erarchy, the application layer delves into in-depth data analy‐
sis and supports a variety of sophisticated applications with‐
in the IoT-based faulted line-section location system. The 
proposed method remains computationally efficient even in 
large systems with many nodes and lines, because it process‐
es each line section independently and in parallel, although 
it follows a centralized method. The system simultaneously 
collects data from all line sections, and the faulted line-sec‐
tion locations for each line section are performed in parallel, 
ensuring that an increase in the number of lines and nodes 
does not significantly impact overall computational efficien‐
cy. This structure allows the algorithm to scale efficiently 
with the system size while maintaining real-time perfor‐
mance.

The faulted line-section location system identifies faults 
using measurements obtained from sensors in the distribu‐
tion network. When a single-phase-to-ground fault occurs, in‐
telligent sensors in the perception layer capture three-phase 
currents and extract their zero-sequence components. These 
data are relayed to the application layer by the network layer 
utilizing cutting-edge communication technologies such as 
optical fiber, 5G/6G, and other wireless networks. Once the 
application layer acquires the data, it employs advanced ana‐
lytical methods to identify the location of the faulted line 
section. This fault information is then documented and sent 
remotely to the client, optimizing the user experience and en‐
suring efficient human-computer interaction. To circumvent 
overloading the centralized decision-making center with ex‐
cessive data transmission, the faulted feeder is identified us‐
ing the methods outlined in [28], [29], which involve com‐
paring zero-sequence currents from the head-end of each 
feeder. This narrows down the fault searching range. Once 
the faulted feeder is identified, information from each line 
section is transmitted to the central decision-making unit to 
locate the specific faulted line section. The system platform 
for faulted line-section location, developed using LabVIEW 
and MATLAB, is described in Supplementary Material A 
Fig. SA2.

V. CASE STUDIES AND DISCUSSION 

The proposed method is validated through simulations in 
PSCAD/EMTDC using a 10 kV radial distribution network 
and a modified IEEE 33-node system with distributed ener‐
gy resources. Details of the network configuration, parame‐
ters, and simulation setup are provided in Supplementary 
Material A Fig. SA3 and Fig. SA4.

A. Results Under Different Fault Conditions in a Radial Dis‐
tribution Network

1)　Effects of Fault Location
A single-phase-to-ground fault is set at the middle of line 

section NP on feeder 3, as shown in Supplementary Materi‐
als A Fig. SA3, with a fault inception angle of 30° and a 
fault resistance of 50 Ω. The zero-sequence current wave‐
forms for the four detection points are subsequently obtained 

Sensor Actuator Sensor Actuator Sensor Actuator

Communication system

5G/6GOptical fiberWireless

UsersDecision centerDatabase

Application
layer

Network
layer

Perception
layer

Line section
MN

Line section
NP

Line section
PQ

Fault point
M 1N 1P Q

Feeder 1
Feeder 2

Feeder n

…

Feeder

Fig. 2.　Overall system structure of proposed method.
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and depicted in Supplementary Material A Fig. SA5. As can 
be observed from the waveforms, there is a high similarity 
between the waveforms of detection points M and N, located 
upstream of the fault point, and between those of detection 
points P and Q, located downstream of the fault point. How‐
ever, the waveforms between detection points N and P do 
not exhibit similarity. The zero-sequence currents provide 
the intuitive fault characteristics for discriminating faulted 
line section from healthy line sections. A more intuitive dem‐
onstration of the computational process including the Lab‐
VIEW front panel visualization and email notification inter‐
face is provided in Supplementary Material A Fig. SA6.

The performance of the proposed method under different 
fault locations is examined by simulating single-phase-to-
ground faults at different sections of feeder 3, using a fault 
inception angle of 30° and a fault resistance of 1000 Ω. Ta‐
ble I presents the simulation results for different fault loca‐
tions at the front (1 km), middle (3 km), and end (5 km) of 
the line sections when a single-phase-to-ground fault occurs. 
The calculation results presented in Table I demonstrate that 
when a fault occurs at different line sections and fault loca‐
tions within the same line section, the faulted line section ex‐
hibits a significantly different NQHD value compared with 
the healthy line sections. Therefore, the proposed method 
has good generality against variations in fault location.

2)　Effects of Fault Resistance
To further investigate the impact of fault resistances on 

the proposed method, a series of single-phase-to-ground 
faults with different fault resistances are simulated at fault 
points f1, f2, and f3, as shown in Supplementary Material A 
Fig. SA3, with a fault inception angle of 30°. Note that f1, f2, 
and f3 are located in different line sections and are situated 
at distances of 4, 10, and 16 km from the main busbar, re‐
spectively. Table II demonstrates that the proposed method 
consistently and correctly identifies the faulted line section 
for different fault resistances.
3)　Effects of Fault Inception Angles

Single-phase-to-ground faults occurring at different fault 
inception angles at fault points f1, f2, and f3 are simulated, 
with a fault resistance set to be 1000 Ω. The QHD values 
for different fault inception angles are calculated, as shown 
in Table III.

The results shown in Table III reveal that the zero-se‐
quence currents exhibit similar features for healthy line sec‐
tions, with a smaller QHD value. Conversely, for the faulted 
line section, zero-sequence currents display dissimilar fea‐
tures, with the largest QHD value. Consequently, it can be 
concluded that the performance of the proposed method re‐
mains unaffected by the fault inception angle.

B. Results Under HIFs

The detection of HIFs is vital for ensuring distribution net‐
work safety, reliability, and efficiency while protecting hu‐
man lives and valuable assets. The HIF model is adopted by 
employing parallel connections of two sets of series-connect‐
ed elements, i. e., a variable resistance, a diode, and an ad‐
justable DC source in one set, and a variable resistance, an 
antiparallel diode, and a reverse adjustable DC source in the 
other set. This model effectively captures the characteristics 
of asymmetry, intermittence, non-linearity, randomness, 
shoulder, and buildup, as described in [30]. The HIF model 
used in this paper, including its structure and parameter set‐

TABLE Ⅰ
SIMULATION RESULTS FOR DIFFERENT FAULT LOCATIONS

Fault 
location

First

Middle

End

First

Middle

End

First

Middle

End

Similarity metric

MN

0.3696

0.3678

0.2733

0.0006

0.0003

0.0012

0.0008

0.0020

0.0007

NP

0.0007

0.0015

0.0010

0.3453

0.2947

0.3247

0.0012

0.0015

0.0012

PQ

0.0011

0.0008

0.0009

0.0012

0.0046

0.0009

0.2861

0.3140

0.3940

Faulted line 
section

MN

MN

MN

NP

NP

NP

PQ

PQ

PQ

TABLE Ⅱ
SIMULATION RESULTS FOR DIFFERENT FAULT RESISTANCES

Fault 
location

f1

f2

f3

Fault resis‐
tance (Ω)

5

50

500

1000

5

50

500

1000

5

50

500

1000

Similarity metric

MN

1.8614

0.2263

0.3954

0.2891

0.0062

0.0152

0.0023

0.0010

0.0080

0.0058

0.0005

0.0015

NP

0.0139

0.0148

0.0053

0.0018

2.0036

1.7431

0.5280

0.3083

0.0043

0.0068

0.0013

0.0005

PQ

0.0060

0.0052

0.0013

0.0013

0.0021

0.0139

0.0047

0.0017

1.8110

2.5164

0.5619

0.3267

Faulted 
line section

MN

MN

MN

MN

NP

NP

NP

NP

PQ

PQ

PQ

PQ

TABLE Ⅲ
SIMULATION RESULTS FOR DIFFERENT FAULT INCEPTION ANGLES

Fault 
location

f1

f2

f3

Inception 
angle (°)

0

60

90

150

0

60

90

150

0

60

90

150

Similarity metric

MN

0.2997

0.2533

0.1155

0.3593

0.0001

0.0018

0.0014

0.0001

0.0046

0.0011

0.0006

0.0001

NP

0.0008

0.0031

0.0035

0.0077

0.2739

0.3178

0.1767

0.3788

0.0006

0.0011

0.0007

0.0003

PQ

0.0008

0.0013

0.0010

0.0130

0.0025

0.0019

0.0025

0.0121

0.2940

0.2801

0.1289

0.3982

Faulted 
line section

MN

MN

MN

MN

NP

NP

NP

NP

PQ

PQ

PQ

PQ
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tings, is detailed in Supplementary Material A Fig. SA7. The 
evaluation of the startup criterion under HIF conditions is 
presented in Supplementary Material A Fig. SA8.

Figure 3 shows the distorted waveforms of zero-sequence 
currents resulting from the occurrence of the HIF at the f2 lo‐
cation on feeder 3. The fault has a fault inception angle of 
0° , and the variable resistances Rp and Rn randomly vary 
within a range of 450-550 Ω every 0.1 ms. As shown in Fig. 3, 
these zero-sequence currents still effectively capture the dis‐
tinct fault characteristics between the faulted and healthy 
line sections, even under HIF conditions. This is because the 
local nonlinearity distortion at the zero-crossing point, 
caused by the HIF, does not alter the overall waveform 
trend. The results for different HIF conditions with variable 
resistances Rp and Rn, ranging from 450 to 550 Ω, 700 to 
800 Ω, and 900 to 1000 Ω, at a fault inception angle of 0°, 
are presented in Table IV. As demonstrated in Table IV, the 
proposed method can accurately detect the HIFs.

C. Verification of Modified IEEE 33-node Test System

To assess the performance of the proposed method in a 
multi-node distribution network with DGs, the modified 
IEEE 33-node test system shown in Supplementary Material 
A Fig. SA4 was employed.
1)　Effects of Different Load Levels

A single-phase-to-ground fault with a 1000 Ω fault resis‐
tance is introduced 1 km from endpoint 14 at line section 
L14,15. The performance of the proposed method is evaluated 
under three different load conditions: normal (100%), light 
(50%), and heavy (120%). 

The test results in Table V demonstrate that the proposed 
method remains unaffected by load variations and accurately 
identifies the faulted line section.

2)　Effects of Grounding Types
The performance of the proposed method is evaluated un‐

der different grounding types including arc suppression coil 
grounding, direct grounding, low-resistance grounding (5 Ω), 
high-resistance grounding (500 Ω), and ungrounded systems. 
A single-phase-to-ground fault with a 1000 Ω fault resis‐
tance is set to be 2 km from endpoint 13 in line section 
L13,14. As shown in Table VI, the proposed method accurately 
identifies L13,14 as the faulted line section, demonstrating its 
effectiveness across different grounding types.

3)　Effects of Network Topologies
The tie-switch states in Supplementary Material A Fig. 

SA4 are configured to evaluate the performance of the pro‐
posed method under different topologies such as meshed and 
radial networks. A single-phase-to-ground fault with 1000 Ω 
fault resistance is set to be 1 km from endpoint 15 in line 
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Fig. 3.　Zero-sequence current resulting from occurrence of HIF. (a) Point 
M. (b) Point N. (c) Point P. (d) Point Q.

TABLE Ⅳ
SIMULATION RESULTS FOR DIFFERENT HIF CONDITIONS

HIF condition 
(Ω)

450-550

700-800

900-1000

Fault 
location

f1

f2

f3

f1

f2

f3

f1

f2

f3

Similarity metrics

MN

0.1708

0.0004

0.0003

0.1518

0.0002

0.0005

0.1466

0.0002

0.0002

NP

0.0008

0.2201

0.0002

0.0002

0.1378

0.0003

0.0003

0.1168

0.0001

PQ

0.0011

0.0006

0.2358

0.0005

0.0004

0.1642

0.0003

0.0003

0.1496

Faulted 
line section

MN

NP

PQ

MN

NP

PQ

MN

NP

PQ

TABLE Ⅴ
SIMULATION RESULTS UNDER DIFFERENT LOAD CONDITIONS

Load condition 
(%)

50

100

120

Similarity metric

L13,14

0.0005

0.0032

0.0064

L14,15

1.6450

1.6230

1.6632

L15,16

0.0014

0.0004

0.0002

Faulted line 
section

L14,15

L14,15

L14,15

TABLE Ⅵ
RESULTS UNDER DIFFERENT GROUNDING TYPES

Grounding type

Arc suppression coil

Direct grounding

Low-resistance (5 Ω)

High-resistance (500 Ω)

Ungrounded

Similarity metric

L13,14

1.5681

1.5819

1.5696

1.5257

1.5686

L14,15

0.0004

0.0002

0.0005

0.0005

0.0004

L15,16

0.0009

0.0007

0.0004

0.0005

0.0013

Faulted 
line section

L13,14

L13,14

L13,14

L13,14

L13,14
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section L15,16.
In Table VII, S1-S5 represent different tie-switches. A tie-

switch state of 1 indicates a closed switch, while a state of 0 
indicates an open switch. The first three cases correspond to 
meshed topologies, whereas the last represents a radial topol‐
ogy. The results in Table VII indicate that the proposed meth‐
od maintains its performance regardless of the network topol‐
ogy.

D. Resistance to Interference and Comparative Analysis

1)　Resistance to Outlier Interference
During data transmission to the decision center, factors 

such as electromagnetic interference or malicious human ma‐
nipulation may cause outliers to occur. These outliers can 
lead to erroneous fault detection results, making it necessary 
to test the safety of faulted line-section location in such sce‐
narios. A single-phase-to-ground fault is set at f3 location on 
feeder 3, situated at line section PQ, with a fault inception 
angle of 60° and a fault resistance of 1000 Ω. Four consecu‐
tive maximum values multiplied by -2.6 and -1.5 are added 
at detection points M and P as outliers, respectively. Given 
the scenario with the presence of outliers, a comparative 
study between the proposed method and several other wave‐
form-similarity-based fault detection methods is conducted, 
as shown in Table VIII.

For comparing the proposed method with state-of-the-art 
fault detection methods, we chose CS, PCC, HD, DTW, 
MHD, and KTC based on a thorough survey of current wide‐
ly-used methods in power system fault detection, especially 
those based on similarity comparison. These methods have 
been extensively and frequently employed in a variety of 
power system contexts, including transformers, DC lines, 
and transmission lines. The proposed method, which focuses 
on distribution networks, extends to these areas and ensures 
that the comparative analysis remains relevant and compre‐
hensive. In the Table VIII, these methods with and without 
the presence of outliers are evaluated. It is clear from the ta‐
ble that all methods are capable of correctly identifying the 
faulted line section when no outlier interference is present in 
the data. Nevertheless, when outliers are encountered, the 
calculations derived from the CS [31], PCC [32], HD [15], 
DTW [16], and MHD [21] methods deviate from the antici‐
pated value, inevitably resulting in maloperation. The KTC 
method in [25] can correctly identify faults even in the pres‐
ence of outliers. However, compared with the case without 
outliers, the calculated results deteriorate. This is because al‐
though the transformation of outliers into ranks mitigates 
their adverse effects, they still exist within the dataset. In 
contrast, the proposed method achieves reliable results by ef‐
fectively excluding outliers through the utilization of quan‐
tiles, thereby preserving its performance.

Table IX provides a comparison of different robust fault 
detection methods across different aspects. The methods pre‐
sented in [17] - [20] utilize multi-source information to deal 
with outliers in decision information but do not directly han‐
dle outliers in electrical signals. In contrast, the methods pre‐
sented in [22]-[25] along with the proposed method primari‐
ly focus on managing outliers in electrical signals to obtain 
reliable decision information and can be utilized as an initial 
stage for those focusing on dealing with outliers in decision 
information. Clearly, adeptly handling outliers in the initial 
stage can effectively alleviate the cost increments and effi‐
ciency reductions brought about by the second-stage meth‐
ods, which invoke multi-source information and delayed han‐
dling of outliers. Both the method in [25] and the proposed 
method effectively deal with outliers in electrical signals 
without requiring extensive data for model training, as is the 
case with the learning-based methods in [22]-[24], providing 
a straightforward solution. As analyzed in Table VIII, it is 
evident that the proposed method exhibits better robustness 
compared with the method in [25].

TABLE Ⅷ
SIMULATION RESULTS FOR DIFFERENT FAULT DETECTION METHODS UNDER 

INFLUENCE OF OUTLIERS

Method

CS

PCC

HD

DTW

MHD

KTC

Proposed

Outlier

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

Similarity metric

MN

0.9830

-0.4301

0.9707

-0.5034

0.1181

2.7367

1.9024

15.5074

0.0104

0.2236

0.8710

0.5900

0.0011

0.0018

NP

0.9858

-0.1929

0.9756

-0.3299

0.1259

1.4239

1.9869

10.4803

0.0125

0.1208

0.8743

0.5900

0.0011

0.0019

PQ

0.1485

-0.3298

0.1248

-0.3396

0.8226

1.3706

9.2202

12.8622

0.1308

0.1950

-0.0661

-0.1678

0.2801

0.3832

Faulted line 
section

PQ

MN

PQ

MN

PQ

MN

PQ

MN

PQ

MN

PQ

PQ

PQ

PQ

Correct‐
ness

Correct

Incorrect

Correct

Incorrect

Correct

Incorrect

Correct

Incorrect

Correct

Incorrect

Correct

Correct

Correct

Correct

TABLE IX
COMPARISON OF DIFFERENT ROBUST FAULT DETECTION METHODS

Method

[17]-[20]

[22]-[24]

[25] and proposed

Aspect of comparison

Multi-
source in‐
formation

Yes

No

No

Extensive 
data 

involved

No

Yes

No

Dealing with 
outliers in 
electrical 

signals

No

Yes

Yes

Dealing 
with outliers 
in decision 
information

Yes

No

No

TABLE Ⅶ
RESULTS UNDER DIFFERENT TOPOLOGIES

Tie-switch state

S1 = 1, S2 = 1, S3 = 1, S4 = 1, S5 = 1

S1 = 1, S2 = 0, S3 = 1, S4 = 0, S5 = 1

S1 = 0, S2 = 1, S3 = 0, S4 = 1, S5 = 1

S1 = 0, S2 = 0, S3 = 0, S4 = 0, S5 = 0

Similarity metric

L13,14

0.0001

0.0005

0.0018

0.0008

L14,15

0.0005

0.0009

0.0012

0.0012

L15,16

2.2430

2.2287

1.7057

1.5783

Faulted 
line section

L15,16

L15,16

L15,16

L15,16
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The comparative analysis in Tables VIII and IX highlights 
the distinct advantage of the proposed method in handling 
outliers. The NQHD algorithm, in contrast to traditional simi‐
larity-based algorithms, exhibits enhanced robustness against 
outlier interference. This is achieved by strategically using 
quantiles to effectively disregard outliers. Unlike multi-stage 
processing methods that rely on additional outlier detection 
mechanisms or data fusion from multiple sources, the pro‐
posed method directly and efficiently removes outliers from 
electrical signals, thereby improving the efficiency of the 
fault detection process.
2)　Resistance to Noise Interference

The measured current waveforms are usually affected by 
random noise. To validate the effectiveness of the proposed 
method in the presence of noise interference, harmonic noise 
(HN) consisting of the 3rd (150 Hz) and 5th (250 Hz) compo‐
nents scaled to 5% of the root-mean-square (RMS) value of 
the original current signals, α-stable noise (α-SN) (α = 1.8) 
ensuring a heavy-tailed distribution with intensity adaptively 
scaled to 5% of the RMS value, and Gaussian noise (GN) 
with magnitudes of 40, 30, 20, and 10 dB are superimposed 
onto the signals at both ends of the line section. Upon ob‐
serving that both the KTC and the proposed method main‐
tain robustness against outliers while the other methods fail, 
we opt to explore further by comparing these two methods 
in a subsequent analysis under noisy conditions.

Table X presents the calculated results for both the KTC 
method and the proposed method under single-phase-to-
ground faults, considering the effects of HN and α-SN, as 
well as different signal-to-noise ratios (SNRs) for GN. 

The fault has a fault inception angle of 30° and a fault re‐
sistance of 1000 Ω, occurring at fault point f1. From Table 
X, both the proposed method and the KTC method correctly 
identify the faulted line section under HN and α-SN interfer‐
ences. This is because while HN and α-SN introduce distor‐
tions, they do not significantly affect the relative similarity 
differences between faulted and healthy line sections. The 
fault-induced zero-sequence current variations remain domi‐

nant, ensuring that these noise types do not obscure the un‐
derlying fault characteristics. When increasing the noise in‐
tensity such as by introducing GN at different SNR levels, 
the proposed method exhibits superior noise immunity per‐
formance compared with the KTC method. The KTC meth‐
od is susceptible to producing false results when strong 
noise interference alters the ordering of data points, while 
the proposed method, based on the original amplitude differ‐
ences, effectively maintains a low level of changes in ampli‐
tude caused by noise interference.
3)　Comparison Analysis with Data-driven and Hybrid Meth‐
ods

Data-driven and hybrid methods, which combine physical 
models with machine learning or deep learning (DL) tech‐
niques, enhance fault detection by leveraging historical data 
for training. While they can recognize complex fault pat‐
terns, they typically require large labeled datasets, which 
may be sensitive to system variations and often involve high 
computational costs. Additionally, these methods require peri‐
odic retraining to maintain performance in evolving distribu‐
tion networks, making the real-time deployment challenging. 
They also struggle with open-set fault diagnosis [33], as 
they typically only detect faults present in the training data, 
and outliers altering the sample distribution may lead to mis‐
classification. Furthermore, data-driven and hybrid methods 
pose security risks, as they are susceptible to adversarial at‐
tacks [34] and backdoor attacks [35], which can compromise 
the reliability of fault detection. In contrast, the proposed 
method requires no training data, ensures consistent perfor‐
mance in evolving networks, and operates with low computa‐
tional complexity, enabling real-time deployment while 
avoiding security risks associated with data-driven methods.

E. Verification Using Practical Field Data

The proposed method is further validated using a set of 
practical field data recorded on-site in a 10 kV MV distribu‐
tion network. On September 10, 2020, at 05:35:10, a single-
phase-to-ground fault occurred at a line section in the distri‐
bution network, and zero-sequence currents were captured 
by three sensors, forming two line sections. The zero-se‐
quence current waveforms at detection points were sampled 
at a rate of 6400 Hz. Field fault recording data, presented in 
Supplementary Material A Fig. SA9, were obtained in COM‐
TRADE format. From Fig. SA9, it is evident that the zero-
sequence current waveform exhibits characteristics typical of 
an HIF, including asymmetry, intermittence, non-linearity, 
and randomness. The zero-sequence current waveforms on 
both ends of the line section upstream of the fault point ex‐
hibit high similarity, while the waveforms on both ends of 
the line section where the fault point is located show signifi‐
cant differences. To implement the proposed method, data 
from a one-quarter cycle after the fault occurrence are uti‐
lized, corresponding to 32 sample points for the 50 Hz sys‐
tem with a sampling rate of 6400 Hz. The calculated NQHD 
values are 0.0017 and 0.7309 for the healthy and faulted line 
sections, respectively. The results affirm the efficacy of the 
proposed method when applied to field data.

To address the limited availability of field data and en‐

TABLE Ⅹ
RESULTS FOR KTC METHOD AND PROPOSED METHOD UNDER 

SINGLE-PHASE-TO-GROUND FAULTS

Method

KTC

Proposed

Noise 
type

HN

α-SN

GN

HN

α-SN

GN

SNR 
(dB)

40

30

20

10

40

30

20

10

Similarity metric

MN

-0.1184

-0.0792

-0.1282

-0.0727

0.0449

0.0302

0.3081

0.2901

0.2963

0.2751

0.1636

0.0247

NP

0.4988

0.5086

0.5167

0.3796

0.1869

-0.0073

0.0027

0.0025

0.0016

0.0010

0.0004

0.0011

PQ

0.5706

0.5200

0.5739

0.4563

-0.0384

0.1510

0.0017

0.0015

0.0009

0.0013

0.0011

0.0019

Faulted 
line section

MN

MN

MN

MN

PQ

NP

MN

MN

MN

MN

MN

MN

282



ZHANG et al.: ROBUST FAULTED LINE-SECTION LOCATION FOR DISTRIBUTION NETWORKS BASED ON NORMALIZED...

hance real-world applicability, artificial outliers are intro‐
duced into the dataset to evaluate the effectiveness of the 
proposed method under data contamination, with a compara‐
tive analysis against existing methods provided in Supple‐
mentary Material A Fig. SA10 and Table SAI.

F. Discussion

While the proposed method demonstrates robustness 
against noise and outlier interference, its performance under 
cyber-attacks remains a limitation. This is primarily due to 
its reliance on communication networks for exchanging mea‐
surements, making it susceptible to malicious attacks. For in‐
stance, an attacker could reverse the direction of electrical 
signals, leading to misjudgment of faulted line-sections as 
normal and vice versa, which could result in severe conse‐
quences. Existing studies [36]-[38] suggest verification mech‐
anisms, often incorporating DL-based techniques to distin‐
guish between attack and normal states, to enhance the reli‐
ability of fault detection under cyber threats. Integrating 
such mechanisms into the proposed method could improve 
its resilience against cyber-attacks, which is considered as an 
important direction for future research.

Regarding sensor failures, partial data losses or measure‐
ment errors are handled as outliers. An outlier suppression 
method reduces the influence of such issues on the accuracy 
of faulted line-section location. Since the proposed method 
already incorporates the suppression of outliers, small por‐
tions of missing or erroneous data will not impact fault de‐
tection accuracy. If a sensor becomes completely unavail‐
able, fault detection for that section will fail. Nevertheless, 
leveraging neighboring sensors for similarity comparison can 
still provide detection capability, though this may lead to 
identification of an expanded fault section. Multi-source fu‐
sion-based fault detection methods are more effective in the 
scenarios where a sensor completely fails, as they integrate 
multiple sources to compensate for missing data. However, 
the proposed method excels in situations where a single-
source measurement contains outliers, as it can maintain 
fault detection reliability without relying on multi-source fu‐
sion. This makes the proposed method more practical when 
additional measurement sources are unavailable or costly to 
implement.

The fault detection and fault location are two pivotal tech‐
niques essential for timely identifying and addressing electri‐
cal faults. The fault detection method serves to identify the 
faulted line or line section, ensuring quick actions for fault 
isolation or warnings and usually constitutes the first re‐
sponse to a fault. Meanwhile, the fault location method fo‐
cuses on accurately pinpointing the fault position to guaran‐
tee that the fault point can be located and repaired promptly.

Typically, fault detection and fault location are two dis‐
tinct research areas due to the utilization of different meth‐
ods and data sources. Some studies such as the one present‐
ed in [39] have proposed the seamless integration of fault de‐
tection and fault location to enhance the efficiency of the 
fault management system effectively. However, there remain 
two sequential tasks: fault detection first, followed by fault 
location. In this paper, fault detection for a line can be ac‐

complished by evaluating the similarity between the sampled 
current and the reference current. Once fault detection is con‐
cluded, the genetic algorithm randomly generates various 
combinations of fault location and fault resistance, and the 
corresponding fault current is calculated. Subsequently, the 
similarity between the sampled current and the calculated 
fault current is computed. In this context, the higher the simi‐
larity, the more the enumerated fault location and fault resis‐
tance are considered to be consistent with the actual situa‐
tion, thereby determining the fault location. This provides a 
valuable reference for our research, allowing the NQHD al‐
gorithm to be extended for simultaneous application in fault 
detection and location. It can be seamlessly integrated into 
such systems through the addition of substitutable software, 
requiring no hardware modifications to the existing system. 
Given the robust similarity assessment performance of the 
NQHD algorithm amidst the presence of outliers, it presents 
certain prospects for practical implementations.

Deploying multiple measuring devices along a feeder in‐
volves cost considerations. The proposed method leverages 
the existing FTU infrastructure in distribution automation 
(DA) systems, reducing the need for additional installations. 
A key drawback of the proposed method is its reliance on a 
relatively dense deployment of FTUs to achieve accurate 
faulted line-section location. In areas where FTUs are 
sparse, the proposed method becomes ineffective, necessitat‐
ing the use of alternative fault detection methods based on 
limited measurement devices. Such methods have been ad‐
opted in both transmission and distribution networks and of‐
fer a practical solution in low-infrastructure environments 
[40] - [42]. However, despite their cost advantages, these 
methods also face notable limitations. For example, phasor-
based methods [40] typically rely on post-fault phasor aver‐
aging over several cycles to obtain stable measurements, 
which inevitably delays fault detection. Additionally, due to 
signal attenuation over long-distance transmissions, these 
methods are often only validated under low fault resistance 
conditions. Traveling wave-based methods [41] utilize tran‐
sient signals and are resistant to fault resistance, but require 
ultra-high sampling rates, typically exceeding 1 MHz and up 
to 100 MHz for short lines, which are beyond the capabili‐
ties of current feeder FTUs. AI-based methods [42] can oper‐
ate with limited measurements and leverage both transient 
and steady-state data, but they demand extensive training da‐
tasets and are highly sensitive to changes in network topolo‐
gy, limiting their applicability in real-world systems. In sum‐
mary, in the networks where FTUs are sufficiently deployed, 
the proposed method enables more sensitive, faster, and high‐
ly reliable fault detection, especially under high fault resis‐
tance and weak fault signal conditions. Limited-sensor-based 
methods remain valuable in under-instrumented systems and 
can serve as a complement. By integrating both methods 
within a hybrid protection framework, utilities can enhance 
fault detection coverage while balancing cost and perfor‐
mance considerations.

VI. CONCLUSION

A robust faulted line-section location method based on 

283



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 14, NO. 1, January 2026

NQHD algorithm is proposed to identify faulted and healthy 
line sections during single-phase-to-ground faults in distribu‐
tion networks. To effectively disregard extremes or outliers 
and provide consistent normalized scaling across different 
scenarios, the NQHD algorithm is applied by employing 
quantile and robust normalization techniques. The NQHD 
value is calculated based on zero-sequence currents from 
both ends of the line section, providing a representation of 
fault characteristics for single-phase-to-ground faults in fault‐
ed and healthy line sections. The effectiveness of the pro‐
posed method is evaluated through simulation tests and the 
analysis of on-site recorded data. The results demonstrate 
that the proposed method performs well under different fault 
distances, fault resistances, fault inception angles, and HIFs. 
The proposed method demonstrates more tolerance to outli‐
ers and noise than existing methods, which supports reliable 
and secure faulted line-section location in distribution net‐
works.
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