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Abstract—This paper proposes a robust faulted line-section lo-
cation method based on the normalized quantile Hausdorff dis-
tance (NQHD) algorithm for detecting single-phase-to-ground
faults in distribution networks. The faulted line section is deter-
mined according to the characteristic differences between the
zero-sequence currents on the faulted and healthy line sections.
Specifically, the zero-sequence currents at both ends of a
healthy line section are highly similar to each other, while such
is generally not the case on a faulted line section. The NQHD al-
gorithm can disregard extremes or outliers while also providing
a normalized scaling in different scenarios. Thus, it can be ap-
plied to calculate the robust waveform similarity of zero-se-
quence current waveforms at both ends of different line sec-
tions for identifying reliably the faulted line section even under
the interference of outliers. The results demonstrate the good
performance of the proposed method in detecting single-phase-
to-ground faults under different fault conditions. Comparative
tests with the existing methods confirm the advantageous ro-
bustness of the proposed method against the impacts of outliers
and noises.

Index Terms—Faulted line-section location, single-phase-to-
ground fault, distribution network, normalized quantile Haus-
dorff distance, outlier.

1. INTRODUCTION

EUTRAL ineffectively grounded networks are common-
ly employed in medium-voltage (MV) distribution net-
works [1], [2]. A key advantage is that following a single-
phase-to-ground fault, the phase-to-phase voltage remains
symmetrical, typically allowing the system to operate for an
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additional 1-2 hours. However, single-phase-to-ground faults
constitute over 70% of all faults [3], and the normal phase
voltage escalates to be nearly the line voltage during faults.
Operating an MV distribution network for an extended peri-
od during a single-phase-to-ground fault may not only endan-
ger the safety of personnel and equipment, but also potential-
ly lead to more severe phase-to-phase faults as a result of in-
sulation breakdown [4]. For secure operation and the imple-
mentation of automated fault management systems in distri-
bution networks, it is crucial to detect faulted line section ac-
curately and reliably.

To address the challenge of locating line sections with sin-
gle-phase-to-ground faults in distribution networks, several
faulted line-section location methods have been proposed.
These methods are generally classified into three categories:
active injection-based, signal processing-based, and learning-
based. Reference [5] proposes an active injection-based
method for locating the faulted line section using signal in-
jection driven by the soft open point; however, the signal in-
jection method for fault detection has limitations, including
system interference, waveform/frequency selection, complexi-
ty, and limited accuracy and sensitivity of sensor/device.
With the development of artificial intelligence (AI) technolo-
gy, there has been increasing attention to learning-based
methods. In [6], the eigenvalues of the time-series signals
are used to train an improved K-means clustering model for
locating the faulted line section. A method for faulted line-
section location in resonant grounding distribution networks
utilizing waveform concatenation and 1-dimensional convolu-
tional neural network (1-D CNN) is proposed in [7]. In [8],
a faulted line-section location method based on an autoen-
coder and a backpropagation neural network is proposed for
detecting single-phase-to-ground faults in distribution net-
works by extracting features from transient zero-sequence
current and voltage. Nevertheless, it should be noted that the
above learning-based methods may face certain limitations
such as a considerable need for data quantity and dimension-
ality.

The advantage of signal processing-based methods lies in
their use of existing measurement signals for fault identifica-
tion, thereby avoiding the need for additional signal injec-
tion equipment as in active injection-based methods, and re-
ducing the data burden associated with learning-based meth-
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ods. Reference [9] proposes a feeder terminal unit (FTU)-
based method for identifying single-phase high-impedance
faults (HIFs) in resonant grounding systems using transient
zero-sequence admittance. This method remains effective re-
gardless of fault inception angles, arcing faults, or HIFs. The
degree of distortion in equivalent admittances is utilized in
[10] to locate line section in distribution networks under sin-
gle-phase-to-ground fault. In [11], the leakage energy, de-
rived from both fault phase voltage and current, is utilized
as the criterion for faulted line-section location. However,
these methods require additional sensors to collect voltage
and current signals, which may increase the cost and com-
plexity of the faulted line-section location system. Reference
[12] develops an MV faulted line-section location method
that relies solely on unsynchronized low-voltage (LV) mea-
surements in distribution networks. A new faulted line-sec-
tion location method for HIF is proposed in [13], utilizing
the significant differences in the declining periodic compo-
nents of zero-sequence current, which are obtained through
applying the extended Prony method at upstream and down-
stream of the fault point. Reference [14] formulates a linear
model for faulted line-section location, utilizing the distribu-
tion characteristics of transient zero-sequence current direc-
tion, which proves capable of pinpointing the faulted line
section with accuracy and efficiency. In [15], a faulted line-
section location method based on the Hausdorff distance
(HD) is proposed by comparing the similarity of transient ze-
ro-sequence currents at both ends of line sections to identify
the faulted line section. In [16], a dynamic time warping
(DTW) -based method for locating faulted line sections is
proposed. This method utilizes waveform similarity calcula-
tions for identifying single-phase-to-ground faults in distribu-
tion networks and offers the advantage of not requiring strict
time synchronization.

The key limitation of these methods is that their reliability
can be significantly degraded by outliers caused by commu-
nication failures, measurement interference, or malicious cy-
ber activities. As outliers sent to a faulted line-section loca-
tion system may lead to incorrect decision-making, some re-
search works have concentrated on developing robust tech-
niques to ensure the cyber security of locating faulted line
sections. The methods presented in [17]-[19] can address da-
ta incompleteness and uncertainties by utilizing multi-source
binary decision information. Since [17]-[19] do not provide
a method for obtaining binary decision information through
electrical signals, [20] bridges this gap by detailing this step.
Subsequently, [20] employs the mixed-integer linear pro-
gramming (MILP) to combine multi-source binary decision
information, enhancing the robustness of faulted cable-sec-
tion location when the decision information contains anoma-
lous data. To effectively address the outliers in electrical sig-
nals, a modified Hausdorff distance (MHD)-based faulted
line-section location method is proposed in [21]. By using
the average value instead of the maximum, the MHD algo-
rithm resists minor outlier interference but remains sensitive
to extreme values. Furthermore, some robust fault detection
methods designed for transmission networks can be adapted
for use in distribution networks. For instance, a learning-

based framework is utilized in [22]-[24] to detect outliers
during the fault detection process, thereby guaranteeing reli-
able fault detection results. Nonetheless, the learning-based
methods necessitate a substantial volume of data for training
the outlier detection model. To ensure the safety of fault de-
tection in scenarios where outliers cannot be entirely re-
moved from the current waveforms, [25] proposes a robust
fault detection method based on Kendall’s tau coefficient
(KTC) to minimize the impact of undetected outliers. The
KTC-based method relies on rank order rather than metric
values, thus keeping outliers at a manageable level. Howev-
er, KTC-based method can produce inaccurate results in the
presence of strong noise interference because the ordering of
data points can be altered under such conditions.

In this paper, a robust faulted line-section location method
based on normalized quantile Hausdorff distance (NQHD) al-
gorithm is proposed for detecting single-phase-to-ground
faults in distribution networks. The distinction between fault-
ed and healthy line sections is achieved by evaluating the
NQHD value between the zero-sequence currents at both
ends of the line sections. The effectiveness of the proposed
method is demonstrated under different conditions including
fault distances, fault resistances, and fault inception angles.
Its robustness is further validated in the presence of HIF.
The main contributions are summarized as follows.

1) The proposed method enhances the reliability of single-
phase-to-ground fault detection in distribution networks by
robustly assessing the similarity of sampled zero-sequence
currents. Compared with existing faulted line-section loca-
tion methods and traditional current differential techniques,
the proposed method demonstrates greater robustness, reli-
ably detecting faults even when the raw signals contain mul-
tiple outliers. Furthermore, it eliminates the need for addi-
tional outlier detection mechanisms and, in contrast to multi-
source data fusion methods, requires fewer measurement de-
vices and a less complex decision-making process, making it
a more efficient and practical solution.

2) By utilizing quantiles to disregard outliers and leverag-
ing metric values rather than rank order to minimize varia-
tions caused by noise interference, the NQHD algorithm fo-
cuses on the overall data distribution. This enables the pro-
posed method to maintain its performance, offering an advan-
tage over commonly used similarity metrics in fault detec-
tion, which may suffer from misjudgments and performance
degradation in presence of outliers and noises.

3) The proposed method leverages the diagonal of a ro-
bust bounding box for two sets of points as a natural scaling
factor to normalize distances, ensuring consistency and com-
parability across different datasets and scenarios. By using
percentiles instead of the absolute minimum and maximum
values, the proposed method offers resistance to outliers and
enhances its robustness. This not only makes the normalized
distance more intuitive and consistent across different scales,
but also simplifies the threshold setting, particularly in the
presence of extreme values.

The remainder of this paper is structured as follows. Sec-
tion II analyzes the fault characteristics of the zero-sequence
currents under single-phase-to-ground faults in both faulted
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and healthy line sections. Section III presents the faulted
line-section location method based on the NQHD algorithm.
Section IV describes the system structure of the proposed
method. Section V presents case studies and discussion to
validate the effectiveness of the proposed method. This pa-
per concludes in Section VI.

II. FAULT CHARACTERISTICS OF ZERO-SEQUENCE CURRENTS

This section focuses on identifying the distinguishing fea-
tures of zero-sequence current waveforms between faulted
and healthy line sections in a distribution network during sin-
gle-phase-to-ground faults. Figure 1 illustrates the equivalent
zero-sequence circuit during a single-phase-to-ground fault
that occurs at point f within the line section MN of feeder L,
in a typical distribution network with an arc suppression coil
[21]. It shows four detection devices located at points M, N,
P, and Q along the feeder L, with i,, i\, i, and i, denoting
the corresponding zero-sequence currents measured by each
detection device.

Fig. 1.
fault.

Equivalent zero-sequence circuit during a single-phase-to-ground

A. Line Section with an External Fault

The zero-sequence current i,, observed at detection point
M, which is located upstream of the fault point f on the fault-
ed feeder, can be expressed as:

iy=ic, +is+ip

(M
where i, is the grounding capacitance current of equivalent
capacitances C,,, on the line section BM, which connects the
busbar node B to the detection point M; iy is the sum of the
grounding capacitive currents of all healthy feeders and
transformer, given by iy=iy +iy,+...+i,,, where iy is the ca-
pacitive current through the transformer-side capacitance C,
and iy,-i,, represent the capacitive currents from the healthy
feeders L,-L; and i, is the inductance current generated by
the arc suppression coil L.
Correspondingly, the zero-sequence current i, detected at
detection point N can be expressed as:
Iy=lic, *ic, *iyti;

2
where i is the grounding capacitance current of equivalent

capacitances C,,, on the line section MN.
By comparing (1) and (2), we can obtain the differences
in zero-sequence current between the two ends of the

healthy line section, which is upstream of the fault point:

A3)

Similarly, the differences in zero-sequence currents be-
tween detection points P and Q for the healthy line section
PQ downstream of the fault point can be obtained as:

Iy=In=l1c,,

ip=ig=ic,

“)
where i¢ is the grounding capacitance current of equivalent

capacitances C,, on the line section PQ.

Equations (3) and (4) indicate that the differences in zero-
sequence currents detected at both ends of the healthy line
section are mainly influenced by the grounding capacitance
currents of the equivalent capacitance between them. Given
that the length between the two ends of the line section is
relatively short, the grounding capacitance current between
adjacent detection points can be ignored. Consequently, for
healthy line sections, the zero-sequence currents observed at
two adjacent detection points exhibit similar waveforms, i.e.,
iy~iyand ip~i,

B. Line Section with an Internal Fault

In the case of a faulted line section, the difference in zero-
sequence current between detection points N and P can be
described by:

®)

where i and i, are the grounding capacitance currents of
N Pf

In—1p= lC.‘w+lCFr_lf

the equivalent capacitances C,, and C,, respectively; and i,
is the fault current that flows through the fault point.

According to (5), the currents associated with grounding
capacitance are significantly smaller than the fault current
present in the faulted line section, resulting in a notable dif-
ference in magnitude between i, and i, Hence, by compar-
ing the similarity differences of zero-sequence current wave-
forms at both ends of the line section, we can effectively
identify the faulted line sections during single-phase-to-
ground faults in the distribution network.

C. Considerations in Utilizing Fault Characteristics amid In-
terfering Factors

During single-phase-to-ground faults, one of the distin-
guishing signal characteristics at different detection points is
the substantial increase in the zero-sequence current. Under
normal operation with balanced three-phase currents, this ze-
ro-sequence current is almost negligible. However, when a
fault occurs, this zero-sequence current exhibits a rapid in-
crease. Single-phase-to-ground faults can be categorized into
three types: Phase A to ground, Phase B to ground, and
Phase C to ground. Given that the zero-sequence current rep-
resents the collective sum of the currents of Phases A, B,
and C, analyzing it allows for the effective identification of
these single-phase-to-ground faults. Based on the analysis in
the two preceding subsections, a notable feature emerges
that differentiates faulted line sections from healthy ones:
the zero-sequence current waveforms at both ends of a
healthy line section are highly similar, whereas those of a
faulted line section display significant differences.

Although similarity metrics such as HD, cosine similarity
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(CS), or Pearson correlation coefficient (PCC) can be used
to locate faulted line sections, challenges such as data losses
and outliers in the cyber system would lead to erroneous
fault detection results. To address these challenges, a com-
mon solution involves deploying additional outlier detection
mechanisms or implementing the fusion of data from multi-
ple sources. However, these solutions necessitate extensive
equipment and sophisticated decision-making algorithms, of-
ten incurring significant costs. To tackle the problem, this pa-
per aims to develop a robust similarity metrics to locate
faulted line section even in the presence of outlier interfer-
ences.

III. FAULTED LINE-SECTION LOCATION METHOD BASED ON
NQHD ALGORITHM

This section will start with a brief introduction to the
quantile Hausdorff distance (QHD) algorithm. Subsequently,
an NQHD algorithm will be provided to offer a normalized
scale. Finally, the implementation of the proposed method
for locating the faulted line section will be presented.

A. Introduction of QHD

The HD algorithm is a widely used measure of similarity
or dissimilarity between two sets in different applications.
To compute the HD value between two vectors X and Y,

which contain M items each denoted as x,, X,, ..., X;, ..., X,
and y,, Yy, s Vs wos Vg respectively, we have [15]:

H(X,Y)=max {h(X, ¥), (¥, X)} (6)

o= pay i | g

030 = ma min x| ®

where |-| represents the Euclidean distance, defined on the

points of X and Y. Equation (7) signifies that the minimal
distance is initially determined for each point in X relative
to Y. Subsequently, the maximum value from this set of mini-
mum distances is selected as the value of 4(X, Y). The met-
ric A(Y,X) in (8) can be calculated in a similar manner. Final-
ly, H(X,Y) in (6) can be derived by choosing the larger val-
ue between A(X, Y) and A(Y, X).

The HD algorithm measures the difference between two
sets by calculating the maximum distance between points in
the sets. This method is particularly effective in fault signal
analysis for its ability to emphasize discrepancies based on
amplitude, contrasting with CS or PCC which focuses on di-
rection aspects. By concentrating on the largest minimum
distances, it offers better robustness against noise and a
more prominent measurement of dissimilarities compared
with average-based methods like Euclidean distance or rank-
order metrics such as the KTC method. However, it is high-
ly sensitive to outliers or extreme values, which can lead to
inaccurate distance estimation. In contrast, the QHD algo-
rithm is more robust to the interference of outliers compared
with the HD algorithm due to its utilization of quantiles. By
using quantiles, QHD can disregard extreme or outlier val-
ues and focus more on the overall distribution of data
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points. This enhances the robustness of distance estimation,
resulting in a more reliable measure, particularly when deal-
ing with outliers. The QHD metric between X and Y is de-
fined as [26]:

H,(X,Y)=max {h, (X, Y).h (¥, X)} ©)

h, (X, ¥)= quantile’ {mig| X, H} (10)
xeX Vi€ !

h,(¥.X)= quff:t;'leq{gﬁgg H X~V H} (11)

where £,(X Y) indicates that the shortest distance is first
computed for each point in X with respect to ¥; and the
function quantile’ {?} denotes the ¢" quantile of the given set.
Following this, the ¢" quantile from these minimum distanc-
es is selected as the value of 4, (X, Y). Here, ¢ represents the
quantile value, which ranges between 0 and 1. Similarly, the
metric i, (¥, X), as specified in (11), can be computed. Final-
ly, the value of H, (X, Y), as specified in (9), is obtained by
choosing the larger value between 4, (X, Y) and 4, (¥, X).

The QHD algorithm is used to assess the similarity be-
tween zero-sequence currents of healthy and faulted line sec-
tions. The fault characteristics discussed in Section II sug-
gest that the zero-sequence currents in X and ¥ exhibit high
similarity for healthy line sections, as reflected by a relative-
ly small QHD value. However, for the faulted line section,
the zero-sequence currents in X and ¥ exhibit significant dis-
similarity, with the largest QHD value. Based on the analy-
sis above, it can be concluded that the QHD values between
X and Y can indicate the status of the line section as either
faulted or healthy during a single-phase-to-ground fault. As
a result, the faulted line section can be found according
to (12).

H,(X.Y)= max {H, (X Y)}

(12)
where H, (X, ¥) is the QHD value of the n™ line section in

the set of line sections S={s,,5,,....5,,... Sy}, Which contains
N items. In short, (12) indicates that the line section with the
maximum QHD value is identified as the faulted line section.

B. NOHD Algorithm

The faulted line-section location method based on QHD al-
gorithm may fail to provide reliable results if it solely relies
on selecting the maximum QHD wvalue to distinguish be-
tween line sections. Without establishing a set threshold,
there is a heightened risk of either overreactions or continu-
ous interventions, as there is no stable benchmark to guide
the decision-making.

Normalization is a valuable technique, especially when
comparisons across different datasets or scenarios are de-
sired. Min-max normalization is a simple linear scaling tech-
nique with the primary objective of rescaling data values to
lie within a specified range, which is often [0, 1]. However,
a significant limitation of this method is its high sensitivity
to outliers. Since the min-max normalization directly utilizes
the minimum and maximum values of the data for scaling, a
single outlier can drastically affect the scale of normaliza-
tion. Thus, when outliers are present in the dataset, direct ap-
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plication of the min-max normalization might not be ideal.
In such scenarios, a more robust method of data scaling or
transformation is needed.

To facilitate the threshold setting, the diagonal of a robust
bounding box for two sets of points, X and ¥, is utilized for
normalization. This aims to provide a natural scaling factor,
allowing the resulting normalized distance to be compared
across different datasets and scenarios, even in the presence
of outliers. To enhance robustness, the bounding box is de-
fined using percentiles rather than the absolute minimum
and maximum values, reducing sensitivity to extreme values.

D=|U-L]| (13)
L=quantile*{XUY} (14)
U= quantile’ { XU Y} (15)

where L is the lower bound determined by the o™ percentile
of the combined set of X and ¥; U is the upper bound de-
rived from the S percentile of the same combined set; a
and S are the variables representing the percentiles, with 0<
a<f<100; and D is the absolute difference between U and
L, representing the overall spread of the data. This metric re-
mains robust to outliers due to the flexible selection of the
percentiles a and . In this paper, o is specifically chosen as
the 10" percentile and S as the 90" percentile, because, with
50 samples (10 kHz sampling rate in this paper) used for
similarity comparison, removing 10% of data from each tail
allows the method to suppress up to 5 outliers. Although a
higher sampling frequency allows more outliers to be tolerat-
ed, in practical applications, the actual number of outliers
may be limited. Moreover, higher sampling rates increase da-
ta transmission, leading to greater communication overhead
and computational load, especially in extended networks.
Therefore, a balance between outlier suppression and data
preservation is achieved, allowing consecutive outliers to be
removed without significantly reducing the amount of useful
information.

To emphasize the differences between two sets of points
and enhance computational efficiency by eliminating square
root operations, the squared Euclidean distance is chosen
over the standard Euclidean distance in QHD calculations.
Consequently, (10) and (11) can be reformulated, with the
original terms #,(X.Y) and h, (¥Y,X) being replaced by
h}(X.Y) and £} (Y, X), as:

2
hl(X.Y)= quantzle"{glelryl ” x;= | } (16)

xeX

1 (¥, X)= quantile” {““2 |, ”2}

yeY

(17)

where || |* represents the squared Euclidean distance.

By integrating the QHD algorithm based on the squared
Euclidean distance with the diagonal of a robust bounding
box for two sets of points, an NQHD algorithm is presented
as:

max {/. (X,;)Jl; F.X); (18)

where HD(X,Y) denotes an NQHD value computed using

HD(X.Y)=

the squared Euclidean distance.

C. Faulted Line-section Location Method Based on NQHD
Algorithm

Based on the analysis above, it can be concluded that the
NQHD values between X and Y can indicate the status of
the line section as either faulted or healthy during a single-
phase-to-ground fault. As a result, fault detection criteria can
be established by using the noticeable differences in the
NQHD values to distinguish between faulted and healthy
line sections.

Under stable network conditions, the threshold can be em-
pirically determined, while a dynamic threshold is proposed
to ensure robustness in different operation scenarios. Specifi-
cally, if the following condition is met, the line section will
be identified as faulted:

1
HD(X.Y)> - ZHD" (19)
where HD(X,Y) is the NQHD value of the current line sec-
tion; and zHDi is the total sum of NQHD values across all

line sections. A line section is identified as faulted if its
NQHD value exceeds half of the total sum of NQHD values
of all line sections. Setting half of the total sum of NQHD
values of all line sections as the threshold is based on the
fault contribution ratio principle. In the presence of a fault,
the NQHD value of the faulted line section is significantly
higher than that of non-faulted line sections, contributing dis-
proportionately to the total NQHD distribution. The pro-
posed method ensures that the threshold dynamically adjusts
to different network conditions without relying on pre-
defined parameters. By setting the threshold at half of the to-
tal sum of NQHD values, the method effectively captures
the dominance of the faulted line section while maintaining
adaptability to different feeder configurations and operating
conditions. Note that this method requires a centralized sys-
tem for processing, as it involves aggregating and comparing
NQHD values across multiple sections. Such a method can
be effectively implemented within the centralized decision-
making system described in Section IV.

The proposed method locates faulted and healthy line sec-
tions by measuring the similarity between two datasets with
fault characteristics based on the NQHD algorithm. The
flowchart of the proposed method is shown in Supplementa-
ry Material A Fig. SA1, and the step-by-step implementation
details are outlined below.

Step 1: detect whether a fault occurs. The zero-sequence
voltage is continuously monitored for its instantaneous val-
ue. Subsequently, the following start-up criterion is applied
to detect the presence of a fault condition [9].

Auy(t)=ku, (20)
where Au,(¢) is an increment of zero-sequence voltage u, at
instant #; u, is the rated voltage; and the coefficient &, which
has an empirical value of 0.15, is used to sensitively distin-
guish between normal and faulted conditions in different sce-
narios while maintaining an appropriate speed of action. If
the condition is met for three consecutive samples beginning
at instant #, the algorithm proceeds to the following step.
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Step 2: acquire the measurement data from both sides of
each line section in distribution networks. Once a fault con-
dition is detected, the zero-sequence currents are collected.
As a result, X and ¥, each containing M samples for a quar-
ter-cycle data window, are obtained at both ends of each line
section.

Step 3: calculate the NQHD values for each line section.
This is achieved by computing the NQHD values between X
and ¥ using (18). The similarity metrics HD(X,Y) of each
line section s, (n=1,2,...,N) can then be utilized as the fault
indicator.

Step 4: locate the faulted line section. The NQHD value is
evaluated to determine whether a line section satisfies the
criterion described in (19). If the criterion is satisfied, the
line section is identified as the faulted line section. Converse-
ly, if the criterion is not satisfied, the line section is consid-
ered a healthy one.

IV. SYSTEM STRUCTURE OF PROPOSED METHOD

The overall system structure of the proposed method is de-
picted in Fig. 2. The proposed method can be implemented
into an Internet of Things (IoT) infrastructure, which would
offer advantages such as enhanced real-time monitoring, the
potential for advanced data analytics and management, re-
mote access and control capabilities, and improved user’s in-
teraction [27].

Database DeCISlon center

Appllcatlon
layer

layer

e

i E [Sensor] [Actuator]

T RV 0.0 a0

[Sensor][Actuator] [Sensor][Actuator]\i

T Feeder n
Perception !} [ Feeder 2 |
layer |1} Fault point Feeder 1

i,

ine section
1 MN

D &

Llne section
NP

Line section
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Fig. 2. Overall system structure of proposed method.

As illustrated in Fig. 2, the IoT infrastructure of the pro-
posed method, which is designed to identify faulted line-sec-
tion locations, consists of three layers: the perception layer,
the network layer, and the application layer. At the lowest
level of this platform lies the perception layer, equipped
with intelligent sensors and actuators. These sensors are
tasked with sampling and processing measurements within
the distribution network. The raw or pre-processed data are
then transmitted to the network layer. Meanwhile, the actua-
tors receive decision-making information and convert it into
tangible actions. In the middle, the network layer connects
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geographically dispersed sensor and actuator nodes from the
perception layer, offering functionalities for communication,
storage, and data aggregation. Positioned at the top of the hi-
erarchy, the application layer delves into in-depth data analy-
sis and supports a variety of sophisticated applications with-
in the IoT-based faulted line-section location system. The
proposed method remains computationally efficient even in
large systems with many nodes and lines, because it process-
es each line section independently and in parallel, although
it follows a centralized method. The system simultaneously
collects data from all line sections, and the faulted line-sec-
tion locations for each line section are performed in parallel,
ensuring that an increase in the number of lines and nodes
does not significantly impact overall computational efficien-
cy. This structure allows the algorithm to scale efficiently
with the system size while maintaining real-time perfor-
mance.

The faulted line-section location system identifies faults
using measurements obtained from sensors in the distribu-
tion network. When a single-phase-to-ground fault occurs, in-
telligent sensors in the perception layer capture three-phase
currents and extract their zero-sequence components. These
data are relayed to the application layer by the network layer
utilizing cutting-edge communication technologies such as
optical fiber, 5G/6G, and other wireless networks. Once the
application layer acquires the data, it employs advanced ana-
Iytical methods to identify the location of the faulted line
section. This fault information is then documented and sent
remotely to the client, optimizing the user experience and en-
suring efficient human-computer interaction. To circumvent
overloading the centralized decision-making center with ex-
cessive data transmission, the faulted feeder is identified us-
ing the methods outlined in [28], [29], which involve com-
paring zero-sequence currents from the head-end of each
feeder. This narrows down the fault searching range. Once
the faulted feeder is identified, information from each line
section is transmitted to the central decision-making unit to
locate the specific faulted line section. The system platform
for faulted line-section location, developed using LabVIEW
and MATLAB, is described in Supplementary Material A
Fig. SA2.

V. CASE STUDIES AND DISCUSSION

The proposed method is validated through simulations in
PSCAD/EMTDC using a 10 kV radial distribution network
and a modified IEEE 33-node system with distributed ener-
gy resources. Details of the network configuration, parame-
ters, and simulation setup are provided in Supplementary
Material A Fig. SA3 and Fig. SA4.

A. Results Under Different Fault Conditions in a Radial Dis-
tribution Network

1) Effects of Fault Location

A single-phase-to-ground fault is set at the middle of line
section NP on feeder 3, as shown in Supplementary Materi-
als A Fig. SA3, with a fault inception angle of 30° and a
fault resistance of 50 Q. The zero-sequence current wave-
forms for the four detection points are subsequently obtained
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and depicted in Supplementary Material A Fig. SAS5. As can
be observed from the waveforms, there is a high similarity
between the waveforms of detection points M and N, located
upstream of the fault point, and between those of detection
points P and Q, located downstream of the fault point. How-
ever, the waveforms between detection points N and P do
not exhibit similarity. The zero-sequence currents provide
the intuitive fault characteristics for discriminating faulted
line section from healthy line sections. A more intuitive dem-
onstration of the computational process including the Lab-
VIEW front panel visualization and email notification inter-
face is provided in Supplementary Material A Fig. SA6.

The performance of the proposed method under different
fault locations is examined by simulating single-phase-to-
ground faults at different sections of feeder 3, using a fault
inception angle of 30° and a fault resistance of 1000 Q. Ta-
ble T presents the simulation results for different fault loca-
tions at the front (1 km), middle (3 km), and end (5 km) of
the line sections when a single-phase-to-ground fault occurs.
The calculation results presented in Table I demonstrate that
when a fault occurs at different line sections and fault loca-
tions within the same line section, the faulted line section ex-

TABLE I
SIMULATION RESULTS FOR DIFFERENT FAULT RESISTANCES

Fault Fault resis- Similarity metric Faulted
location tance () MN NP PO line section
5 1.8614 0.0139 0.0060 MN
50 0.2263 0.0148 0.0052 MN
Y 500 0.3954 0.0053 0.0013 MN
1000 0.2891 0.0018 0.0013 MN
5 0.0062 2.0036 0.0021 NP
50 0.0152 1.7431 0.0139 NP
% 500 0.0023 0.5280 0.0047 NP
1000 0.0010 0.3083 0.0017 NP
5 0.0080 0.0043 1.8110 PO
50 0.0058 0.0068 2.5164 PO
Z 500 0.0005 0.0013 0.5619 PO
1000 0.0015 0.0005 0.3267 PO
TABLE III

SIMULATION RESULTS FOR DIFFERENT FAULT INCEPTION ANGLES

o .. . . i Similarity metric
hibits a significantly different NQHD value compared with Fault Inception Y Faulted
. . location angle (°) MN NP PQ line section
the healthy line sections. Therefore, the proposed method
. . .. . . 0 0.2997 0.0008 0.0008 MN
has good generality against variations in fault location.
) 60 0.2533 0.0031 0.0013 MN
TABLE I / 90 0.1155 0.0035 0.0010 MN
SIMULATION RESULTS FOR DIFFERENT FAULT LOCATIONS : : :
150 0.3593 0.0077 0.0130 MN
Fault Similarity metric Faulted line 0 0.0001 02739  0.0025 NP
location MN NP PO section 7 60 0.0018 0.3178 0.0019 NP
First 0.3696 0.0007 0.0011 MN : 90 0.0014 0.1767 0.0025 NP
Middle 0.3678 0.0015 0.0008 MN 150 0.0001 0.3788 0.0121 NP
End 0.2733 0.0010 0.0009 MN 0 0.0046 0.0006 0.2940 PO
First 0.0006 0.3453 0.0012 NP F 60 0.0011 0.0011 0.2801 PO
Middle 0.0003 0.2947 0.0046 NP ’ 90 0.0006 0.0007 0.1289 PO
End 0.0012 0.3247 0.0009 NP 150 0.0001 0.0003 0.3982 PO
First 0.0008 0.0012 0.2861 PQ
Middle 0.0020 0.0015 0.3140 P .
Q The results shown in Table III reveal that the zero-se-
End 0.0007 0.0012 0.3940 PO

2) Effects of Fault Resistance

To further investigate the impact of fault resistances on
the proposed method, a series of single-phase-to-ground
faults with different fault resistances are simulated at fault
points f,, f,, and f,, as shown in Supplementary Material A
Fig. SA3, with a fault inception angle of 30°. Note that f,, f,,
and f; are located in different line sections and are situated
at distances of 4, 10, and 16 km from the main busbar, re-
spectively. Table II demonstrates that the proposed method
consistently and correctly identifies the faulted line section
for different fault resistances.
3) Effects of Fault Inception Angles

Single-phase-to-ground faults occurring at different fault
inception angles at fault points f,, f,, and f; are simulated,
with a fault resistance set to be 1000 Q. The QHD values
for different fault inception angles are calculated, as shown
in Table III.

quence currents exhibit similar features for healthy line sec-
tions, with a smaller QHD value. Conversely, for the faulted
line section, zero-sequence currents display dissimilar fea-
tures, with the largest QHD value. Consequently, it can be
concluded that the performance of the proposed method re-
mains unaffected by the fault inception angle.

B. Results Under HIFs

The detection of HIFs is vital for ensuring distribution net-
work safety, reliability, and efficiency while protecting hu-
man lives and valuable assets. The HIF model is adopted by
employing parallel connections of two sets of series-connect-
ed elements, i.e., a variable resistance, a diode, and an ad-
justable DC source in one set, and a variable resistance, an
antiparallel diode, and a reverse adjustable DC source in the
other set. This model effectively captures the characteristics
of asymmetry, intermittence, non-linearity, randomness,
shoulder, and buildup, as described in [30]. The HIF model
used in this paper, including its structure and parameter set-
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tings, is detailed in Supplementary Material A Fig. SA7. The
evaluation of the startup criterion under HIF conditions is
presented in Supplementary Material A Fig. SAS.

Figure 3 shows the distorted waveforms of zero-sequence
currents resulting from the occurrence of the HIF at the f, lo-
cation on feeder 3. The fault has a fault inception angle of
0°, and the variable resistances R, and R, randomly vary
within a range of 450-550 Q every 0.1 ms. As shown in Fig. 3,
these zero-sequence currents still effectively capture the dis-
tinct fault characteristics between the faulted and healthy
line sections, even under HIF conditions. This is because the
local nonlinearity distortion at the zero-crossing point,
caused by the HIF, does not alter the overall waveform
trend. The results for different HIF conditions with variable
resistances R, and R,, ranging from 450 to 550 Q, 700 to
800 Q, and 900 to 1000 €, at a fault inception angle of 0°,
are presented in Table IV. As demonstrated in Table IV, the
proposed method can accurately detect the HIFs.
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C. Verification of Modified IEEE 33-node Test System

To assess the performance of the proposed method in a
multi-node distribution network with DGs, the modified
IEEE 33-node test system shown in Supplementary Material
A Fig. SA4 was employed.

1) Effects of Different Load Levels

A single-phase-to-ground fault with a 1000 Q fault resis-
tance is introduced 1 km from endpoint 14 at line section
L,,,s- The performance of the proposed method is evaluated
under three different load conditions: normal (100%), light
(50%), and heavy (120%).
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TABLE IV
SIMULATION RESULTS FOR DIFFERENT HIF CONDITIONS

HIF condition  Fault Similarity metrics Faulted
(Q) location MN NP PO line section
h 0.1708 0.0008 0.0011 MN
450-550 5 0.0004 0.2201 0.0006 NP
/i 0.0003 0.0002 0.2358 PO
A 0.1518 0.0002 0.0005 MN
700-800 5 0.0002 0.1378 0.0004 NP
/i 0.0005 0.0003 0.1642 PO
A 0.1466 0.0003 0.0003 MN
900-1000 5 0.0002 0.1168 0.0003 NP
f 0.0002 0.0001 0.1496 PO

The test results in Table V demonstrate that the proposed
method remains unaffected by load variations and accurately
identifies the faulted line section.

TABLE V
SIMULATION RESULTS UNDER DIFFERENT LOAD CONDITIONS

Load condition Similarity metric Faulted line
(%) L13,|4 L|4.15 LIS,I() SeCtion
50 0.0005 1.6450 0.0014 Ly
100 0.0032 16230 0.0004 L
120 0.0064 1.6632 0.0002 L

14,15

2) Effects of Grounding Types

The performance of the proposed method is evaluated un-
der different grounding types including arc suppression coil
grounding, direct grounding, low-resistance grounding (5 Q),
high-resistance grounding (500 Q), and ungrounded systems.
A single-phase-to-ground fault with a 1000 Q fault resis-
tance is set to be 2 km from endpoint 13 in line section
L., As shown in Table VI, the proposed method accurately
identifies L;,, as the faulted line section, demonstrating its
effectiveness across different grounding types.

TABLE VI
RESULTS UNDER DIFFERENT GROUNDING TYPES

) Similarity metric Faulted
Grounding type i i
1‘13,14 L14,15 1‘15,16 ne section

Arc suppression coil 1.5681 0.0004 0.0009 Ly,
Direct grounding 1.5819 0.0002 0.0007 L,
Low-resistance (5 Q) 1.5696 0.0005 0.0004 L,
High-resistance (500 Q) 1.5257 0.0005 0.0005 Ly,
Ungrounded 1.5686 0.0004 0.0013 L,

3) Effects of Network Topologies

The tie-switch states in Supplementary Material A Fig.
SA4 are configured to evaluate the performance of the pro-
posed method under different topologies such as meshed and
radial networks. A single-phase-to-ground fault with 1000 Q
fault resistance is set to be 1 km from endpoint 15 in line
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section L, .

In Table VII, S1-S5 represent different tie-switches. A tie-
switch state of 1 indicates a closed switch, while a state of 0
indicates an open switch. The first three cases correspond to
meshed topologies, whereas the last represents a radial topol-
ogy. The results in Table VII indicate that the proposed meth-
od maintains its performance regardless of the network topol-
ogy.

TABLE VII
RESULTS UNDER DIFFERENT TOPOLOGIES

Tie-switch state Similarity metric AFaulted_

LI}.M LM,IS LIS.I& llne section
S1=1,82=1,83=1,84=1,55=1 0.0001 0.0005 2.2430 Liss
S1=1,82=0,583=1, 84=0,55=1 0.0005 0.0009 2.2287 L
S1=0,52=1,53=0, $4=1,55=1 0.0018 0.0012 17057 L
S1=0, §2=0, S3=0, $4=0, S5=0 0.0008 0.0012 1.5783 L6

D. Resistance to Interference and Comparative Analysis

1) Resistance to Outlier Interference

During data transmission to the decision center, factors
such as electromagnetic interference or malicious human ma-
nipulation may cause outliers to occur. These outliers can
lead to erroneous fault detection results, making it necessary
to test the safety of faulted line-section location in such sce-
narios. A single-phase-to-ground fault is set at f; location on
feeder 3, situated at line section PQ, with a fault inception
angle of 60° and a fault resistance of 1000 Q. Four consecu-
tive maximum values multiplied by —2.6 and —1.5 are added
at detection points M and P as outliers, respectively. Given
the scenario with the presence of outliers, a comparative
study between the proposed method and several other wave-
form-similarity-based fault detection methods is conducted,
as shown in Table VIIL.

TABLE VIII
SIMULATION RESULTS FOR DIFFERENT FAULT DETECTION METHODS UNDER
INFLUENCE OF OUTLIERS

Similarity metric i _
Method  Outlier Y Faulteq line Correct
MN NP PO section ness
s No 0.9830 0.9858 0.1485 PO Correct
Yes —-0.4301 -0.1929 -0.3298 MN Incorrect
. No 0.9707 0.9756 0.1248 PQ Correct
Yes —-0.5034 -0.3299 -0.3396 MN Incorrect
HD No 0.1181 0.1259 0.8226 PO Correct
Yes 2.7367 1.4239 1.3706 MN Incorrect
DTW No 1.9024 1.9869 9.2202 PO Correct
Yes 15.5074 10.4803 12.8622 MN Incorrect
No 0.0104 0.0125 0.1308 PO Correct
MHD
Yes 0.2236  0.1208  0.1950 MN Incorrect
KTC No 0.8710 0.8743 -0.0661 PO Correct
Yes 0.5900 0.5900 -0.1678 PO Correct
No 0.0011  0.0011 0.2801 PO Correct
Proposed
Yes 0.0018 0.0019 0.3832 PQ Correct

For comparing the proposed method with state-of-the-art
fault detection methods, we chose CS, PCC, HD, DTW,
MHD, and KTC based on a thorough survey of current wide-
ly-used methods in power system fault detection, especially
those based on similarity comparison. These methods have
been extensively and frequently employed in a variety of
power system contexts, including transformers, DC lines,
and transmission lines. The proposed method, which focuses
on distribution networks, extends to these areas and ensures
that the comparative analysis remains relevant and compre-
hensive. In the Table VIII, these methods with and without
the presence of outliers are evaluated. It is clear from the ta-
ble that all methods are capable of correctly identifying the
faulted line section when no outlier interference is present in
the data. Nevertheless, when outliers are encountered, the
calculations derived from the CS [31], PCC [32], HD [15],
DTW [16], and MHD [21] methods deviate from the antici-
pated value, inevitably resulting in maloperation. The KTC
method in [25] can correctly identify faults even in the pres-
ence of outliers. However, compared with the case without
outliers, the calculated results deteriorate. This is because al-
though the transformation of outliers into ranks mitigates
their adverse effects, they still exist within the dataset. In
contrast, the proposed method achieves reliable results by ef-
fectively excluding outliers through the utilization of quan-
tiles, thereby preserving its performance.

Table IX provides a comparison of different robust fault
detection methods across different aspects. The methods pre-
sented in [17]-[20] utilize multi-source information to deal
with outliers in decision information but do not directly han-
dle outliers in electrical signals. In contrast, the methods pre-
sented in [22]-[25] along with the proposed method primari-
ly focus on managing outliers in electrical signals to obtain
reliable decision information and can be utilized as an initial
stage for those focusing on dealing with outliers in decision
information. Clearly, adeptly handling outliers in the initial
stage can effectively alleviate the cost increments and effi-
ciency reductions brought about by the second-stage meth-
ods, which invoke multi-source information and delayed han-
dling of outliers. Both the method in [25] and the proposed
method effectively deal with outliers in electrical signals
without requiring extensive data for model training, as is the
case with the learning-based methods in [22]-[24], providing
a straightforward solution. As analyzed in Table VIII, it is
evident that the proposed method exhibits better robustness
compared with the method in [25].

TABLE IX
COMPARISON OF DIFFERENT ROBUST FAULT DETECTION METHODS

Aspect of comparison

. . Dealing with Dealing
Method sol:l/lrlé}a:tli_n- Exae;zlve outliers in  with outliers
formation  involved electrical in decision
signals information
[17]-[20] Yes No No Yes
[22]-[24] No Yes Yes No
[25] and proposed No No Yes No
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The comparative analysis in Tables VIII and IX highlights
the distinct advantage of the proposed method in handling
outliers. The NQHD algorithm, in contrast to traditional simi-
larity-based algorithms, exhibits enhanced robustness against
outlier interference. This is achieved by strategically using
quantiles to effectively disregard outliers. Unlike multi-stage
processing methods that rely on additional outlier detection
mechanisms or data fusion from multiple sources, the pro-
posed method directly and efficiently removes outliers from
electrical signals, thereby improving the efficiency of the
fault detection process.

2) Resistance to Noise Interference

The measured current waveforms are usually affected by
random noise. To validate the effectiveness of the proposed
method in the presence of noise interference, harmonic noise
(HN) consisting of the 3" (150 Hz) and 5" (250 Hz) compo-
nents scaled to 5% of the root-mean-square (RMS) value of
the original current signals, a-stable noise (a-SN) (a=1.8)
ensuring a heavy-tailed distribution with intensity adaptively
scaled to 5% of the RMS value, and Gaussian noise (GN)
with magnitudes of 40, 30, 20, and 10 dB are superimposed
onto the signals at both ends of the line section. Upon ob-
serving that both the KTC and the proposed method main-
tain robustness against outliers while the other methods fail,
we opt to explore further by comparing these two methods
in a subsequent analysis under noisy conditions.

Table X presents the calculated results for both the KTC
method and the proposed method under single-phase-to-
ground faults, considering the effects of HN and a-SN, as
well as different signal-to-noise ratios (SNRs) for GN.

TABLE X
RESULTS FOR KTC METHOD AND PROPOSED METHOD UNDER
SINGLE-PHASE-TO-GROUND FAULTS

Noise ~ SNR Similarity metric Faulted
Method . .
type (dB) MN NP PO line section
HN -0.1184  0.4988  0.5706 MN
o-SN -0.0792  0.5086  0.5200 MN
40 -0.1282  0.5167  0.5739 MN
KTC
GN 30 -0.0727  0.3796  0.4563 MN
20 0.0449  0.1869 —0.0384 PO
10 0.0302 -0.0073  0.1510 NP
HN 0.3081  0.0027  0.0017 MN
o-SN 0.2901  0.0025  0.0015 MN
40 0.2963  0.0016  0.0009 MN
Proposed
GN 30 0.2751  0.0010  0.0013 MN
20 0.1636  0.0004  0.0011 MN
10 0.0247  0.0011  0.0019 MN

The fault has a fault inception angle of 30° and a fault re-
sistance of 1000 Q, occurring at fault point f,. From Table
X, both the proposed method and the KTC method correctly
identify the faulted line section under HN and a-SN interfer-
ences. This is because while HN and a-SN introduce distor-
tions, they do not significantly affect the relative similarity
differences between faulted and healthy line sections. The
fault-induced zero-sequence current variations remain domi-

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 14, NO. 1, January 2026

nant, ensuring that these noise types do not obscure the un-
derlying fault characteristics. When increasing the noise in-
tensity such as by introducing GN at different SNR levels,
the proposed method exhibits superior noise immunity per-
formance compared with the KTC method. The KTC meth-
od is susceptible to producing false results when strong
noise interference alters the ordering of data points, while
the proposed method, based on the original amplitude differ-
ences, effectively maintains a low level of changes in ampli-
tude caused by noise interference.
3) Comparison Analysis with Data-driven and Hybrid Meth-
ods

Data-driven and hybrid methods, which combine physical
models with machine learning or deep learning (DL) tech-
niques, enhance fault detection by leveraging historical data
for training. While they can recognize complex fault pat-
terns, they typically require large labeled datasets, which
may be sensitive to system variations and often involve high
computational costs. Additionally, these methods require peri-
odic retraining to maintain performance in evolving distribu-
tion networks, making the real-time deployment challenging.
They also struggle with open-set fault diagnosis [33], as
they typically only detect faults present in the training data,
and outliers altering the sample distribution may lead to mis-
classification. Furthermore, data-driven and hybrid methods
pose security risks, as they are susceptible to adversarial at-
tacks [34] and backdoor attacks [35], which can compromise
the reliability of fault detection. In contrast, the proposed
method requires no training data, ensures consistent perfor-
mance in evolving networks, and operates with low computa-
tional complexity, enabling real-time deployment while
avoiding security risks associated with data-driven methods.

E. Verification Using Practical Field Data

The proposed method is further validated using a set of
practical field data recorded on-site in a 10 kV MV distribu-
tion network. On September 10, 2020, at 05:35:10, a single-
phase-to-ground fault occurred at a line section in the distri-
bution network, and zero-sequence currents were captured
by three sensors, forming two line sections. The zero-se-
quence current waveforms at detection points were sampled
at a rate of 6400 Hz. Field fault recording data, presented in
Supplementary Material A Fig. SA9, were obtained in COM-
TRADE format. From Fig. SA9, it is evident that the zero-
sequence current waveform exhibits characteristics typical of
an HIF, including asymmetry, intermittence, non-linearity,
and randomness. The zero-sequence current waveforms on
both ends of the line section upstream of the fault point ex-
hibit high similarity, while the waveforms on both ends of
the line section where the fault point is located show signifi-
cant differences. To implement the proposed method, data
from a one-quarter cycle after the fault occurrence are uti-
lized, corresponding to 32 sample points for the 50 Hz sys-
tem with a sampling rate of 6400 Hz. The calculated NQHD
values are 0.0017 and 0.7309 for the healthy and faulted line
sections, respectively. The results affirm the efficacy of the
proposed method when applied to field data.

To address the limited availability of field data and en-
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hance real-world applicability, artificial outliers are intro-
duced into the dataset to evaluate the effectiveness of the
proposed method under data contamination, with a compara-
tive analysis against existing methods provided in Supple-
mentary Material A Fig. SA10 and Table SAI

F. Discussion

While the proposed method demonstrates robustness
against noise and outlier interference, its performance under
cyber-attacks remains a limitation. This is primarily due to
its reliance on communication networks for exchanging mea-
surements, making it susceptible to malicious attacks. For in-
stance, an attacker could reverse the direction of electrical
signals, leading to misjudgment of faulted line-sections as
normal and vice versa, which could result in severe conse-
quences. Existing studies [36]-[38] suggest verification mech-
anisms, often incorporating DL-based techniques to distin-
guish between attack and normal states, to enhance the reli-
ability of fault detection under cyber threats. Integrating
such mechanisms into the proposed method could improve
its resilience against cyber-attacks, which is considered as an
important direction for future research.

Regarding sensor failures, partial data losses or measure-
ment errors are handled as outliers. An outlier suppression
method reduces the influence of such issues on the accuracy
of faulted line-section location. Since the proposed method
already incorporates the suppression of outliers, small por-
tions of missing or erroneous data will not impact fault de-
tection accuracy. If a sensor becomes completely unavail-
able, fault detection for that section will fail. Nevertheless,
leveraging neighboring sensors for similarity comparison can
still provide detection capability, though this may lead to
identification of an expanded fault section. Multi-source fu-
sion-based fault detection methods are more effective in the
scenarios where a sensor completely fails, as they integrate
multiple sources to compensate for missing data. However,
the proposed method excels in situations where a single-
source measurement contains outliers, as it can maintain
fault detection reliability without relying on multi-source fu-
sion. This makes the proposed method more practical when
additional measurement sources are unavailable or costly to
implement.

The fault detection and fault location are two pivotal tech-
niques essential for timely identifying and addressing electri-
cal faults. The fault detection method serves to identify the
faulted line or line section, ensuring quick actions for fault
isolation or warnings and usually constitutes the first re-
sponse to a fault. Meanwhile, the fault location method fo-
cuses on accurately pinpointing the fault position to guaran-
tee that the fault point can be located and repaired promptly.

Typically, fault detection and fault location are two dis-
tinct research areas due to the utilization of different meth-
ods and data sources. Some studies such as the one present-
ed in [39] have proposed the seamless integration of fault de-
tection and fault location to enhance the efficiency of the
fault management system effectively. However, there remain
two sequential tasks: fault detection first, followed by fault
location. In this paper, fault detection for a line can be ac-

complished by evaluating the similarity between the sampled
current and the reference current. Once fault detection is con-
cluded, the genetic algorithm randomly generates various
combinations of fault location and fault resistance, and the
corresponding fault current is calculated. Subsequently, the
similarity between the sampled current and the calculated
fault current is computed. In this context, the higher the simi-
larity, the more the enumerated fault location and fault resis-
tance are considered to be consistent with the actual situa-
tion, thereby determining the fault location. This provides a
valuable reference for our research, allowing the NQHD al-
gorithm to be extended for simultaneous application in fault
detection and location. It can be seamlessly integrated into
such systems through the addition of substitutable software,
requiring no hardware modifications to the existing system.
Given the robust similarity assessment performance of the
NQHD algorithm amidst the presence of outliers, it presents
certain prospects for practical implementations.

Deploying multiple measuring devices along a feeder in-
volves cost considerations. The proposed method leverages
the existing FTU infrastructure in distribution automation
(DA) systems, reducing the need for additional installations.
A key drawback of the proposed method is its reliance on a
relatively dense deployment of FTUs to achieve accurate
faulted line-section location. In areas where FTUs are
sparse, the proposed method becomes ineffective, necessitat-
ing the use of alternative fault detection methods based on
limited measurement devices. Such methods have been ad-
opted in both transmission and distribution networks and of-
fer a practical solution in low-infrastructure environments
[40] - [42]. However, despite their cost advantages, these
methods also face notable limitations. For example, phasor-
based methods [40] typically rely on post-fault phasor aver-
aging over several cycles to obtain stable measurements,
which inevitably delays fault detection. Additionally, due to
signal attenuation over long-distance transmissions, these
methods are often only validated under low fault resistance
conditions. Traveling wave-based methods [41] utilize tran-
sient signals and are resistant to fault resistance, but require
ultra-high sampling rates, typically exceeding 1 MHz and up
to 100 MHz for short lines, which are beyond the capabili-
ties of current feeder FTUs. Al-based methods [42] can oper-
ate with limited measurements and leverage both transient
and steady-state data, but they demand extensive training da-
tasets and are highly sensitive to changes in network topolo-
gy, limiting their applicability in real-world systems. In sum-
mary, in the networks where FTUs are sufficiently deployed,
the proposed method enables more sensitive, faster, and high-
ly reliable fault detection, especially under high fault resis-
tance and weak fault signal conditions. Limited-sensor-based
methods remain valuable in under-instrumented systems and
can serve as a complement. By integrating both methods
within a hybrid protection framework, utilities can enhance
fault detection coverage while balancing cost and perfor-
mance considerations.

VI. CONCLUSION

A robust faulted line-section location method based on
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NQHD algorithm is proposed to identify faulted and healthy
line sections during single-phase-to-ground faults in distribu-
tion networks. To effectively disregard extremes or outliers
and provide consistent normalized scaling across different
scenarios, the NQHD algorithm is applied by employing
quantile and robust normalization techniques. The NQHD
value is calculated based on zero-sequence currents from
both ends of the line section, providing a representation of
fault characteristics for single-phase-to-ground faults in fault-
ed and healthy line sections. The effectiveness of the pro-
posed method is evaluated through simulation tests and the
analysis of on-site recorded data. The results demonstrate
that the proposed method performs well under different fault
distances, fault resistances, fault inception angles, and HIFs.
The proposed method demonstrates more tolerance to outli-
ers and noise than existing methods, which supports reliable
and secure faulted line-section location in distribution net-
works.
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