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Abstract——The static var compensator (SVC) is a cost-effec‐
tive device in flexible AC transmission system (FACTS) family. 
We introduce an improved artificial hummingbird algorithm 
(IAHA) for optimal allocation of SVCs in distribution networks 
to maximize energy efficiency. Three loading levels (low, medi‐
um, and high) per day are investigated. The proposed IAHA is 
evaluated on the IEEE 33-bus distribution network (DN) and 
69-bus DN. The proposed IAHA demonstrates notable improve‐
ments in cost savings and voltage profile compared with the 
conventional artificial hummingbird algorithm (AHA). In addi‐
tion, it enhances energy savings across various loading condi‐
tions and outperforms the conventional AHA in both best and 
average performance metrics. Although raising the compensa‐
tion limit initially increases cost savings, the benefits decrease 
beyond a threshold, highlighting the importance of balancing 
the compensation levels for maximum efficiency.

Index Terms——Improved artificial hummingbird algorithm 
(IAHA), distribution network (DN), flexible AC transmission 
system (FACTS), static var compensator (SVC), energy efficien‐
cy.

I. INTRODUCTION 

DISTRIBUTION networks (DNs) have recently attracted 
the interest of researchers owing to their critical role in 

power system quality and planning. Losses are relatively 
high in DNs that operate at low voltages and high currents. 
Various approaches have been investigated to reduce losses, 
including distributed generator (DG) placement [1], [2], sys‐
tem topology reconfiguration [3], and reactive power com‐
pensation [4], [5]. DG placement in DN is an efficient meth‐

od for reducing system losses. Furthermore, loss minimiza‐
tion in DN is investigated by applying a modified success-
history-based adaptive differential evolution (DE) algorithm 
to determine the best values for the outputs of rescheduling 
generators in addition to DG source placement/sizing based 
on locational marginal pricing [6]. System topology reconfig‐
uration, commonly referred to as network reconfiguration, 
can be applied through changes in line connection, where 
two types of switches are designed in primary DNs [7], [8]. 
Tie switches are often normally opened and placed first, fol‐
lowed by normally closed sectionalizing switches. These 
switches enable configurability and provide protection. The 
system topology can be modified by changing the statuses of 
these switches (opened/closed) while maintaining the DN ra‐
diality constraint [9]. In [10], a bi-level optimization method 
is achieved using a particle swarm optimizer for coordinated 
reconfiguration and expansion planning with demand re‐
sponse activation. Despite the enhanced effectiveness of the 
method proposed in [10], its performance is validated using 
a small standard IEEE 33-bus DN.

Many reactive power compensators are used to reduce sys‐
tem losses. These compensators should be optimally allocat‐
ed to maximize their effect. Shunt capacitors (SCs) and stat‐
ic var compensators (SVCs) are powerful components in re‐
active power compensators. In [11], SCs are optimally allo‐
cated using a sine-cosine optimizer. The objective function 
aims to enhance the reliability and reduce system losses 
through two strategies. First, a loss sensitivity factor is al‐
lowed to find the best locations for SC installation. Second, 
a sine-cosine optimizer is used to determine the optimal SC 
rating. Hourly load variations are also considered. In [12], 
SVC and thyristor-controlled series capacitor are included in 
the reactive power dispatch and handled using a refined 
lightning-attaching optimizer. In [12], the traditional light‐
ning-attaching optimizer is refined by integrating spiral orien‐
tation motion and Lévy flight distribution to reduce system 
losses, voltage fluctuations, and overall operational costs. In 
addition to the SVC and thyristor-controlled series capacitor, 
a static synchronous compensator is proposed based on the 
artificial bee colony in [13] to reduce transmission line loss‐
es. In [14], a multi-objective antlion optimization technique 
is presented to determine the optimal placement and sizing 
of DGs in a DN. The technique in [14] mimics the foraging 
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behavior of antlions through five key phases: random posi‐
tion adjustment, trap construction, ant trapping, prey capture, 
and trap reconstruction. Multi-objective antlion optimization 
technique is applied to minimize system losses, support volt‐
age stability, and maintain balanced loads while addressing 
load imbalances and excessive voltage increases at buses 
containing DGs. However, multi-objective antlion optimiza‐
tion technique is designed for and applied to the small-scale 
DN, particularly the IEEE 33-bus radial DN. In [15], the 
best positions for SVCs are determined using particle swarm 
optimization, which is subsequently used to establish the dis‐
patch strategy. This particle swarm optimization is aimed to 
maximize the cost savings while considering limits in volt‐
age and total harmonic distortion. In [16], SVCs are devel‐
oped to regulate nodal voltage variations under irregular 
wind and solar power generation. Despite successful applica‐
tion and improved performance in practical case studies in 
the Banat region of Serbia, only a small-scale DN is evaluat‐
ed. In [17], SVC positioning is intended to increase the stat‐
ic voltage stability using the L-index. However, the method 
in [17] is tested on a sample radial DN and 24-bus equiva‐
lent high-voltage DN. In [18], a single SVC is placed and in‐
stalled with specified sizes of 5, 15, 25, 35, and 35 Mvar in 
the IEEE 9-bus DN and 30-bus DN to support their voltage 
profiles and minimize system losses. In [19], bald eagle 
search is applied to allocate DGs coordinated with SCs in 
DNs to minimize power losses. However, only baseline load‐
ing is evaluated in [18] and [19].

In [20], hybrid cuckoo search and antlion optimization are 
applied to allocate 12 SVCs to an IEEE 57-bus DN. Refer‐
ence [20] considers branch outages of lines 50 and 41 as the 
worst-case scenarios. However, the allocation and sizing of 
the SVCs vary significantly across various outage scenarios, 
making it impractical for real-world applications. In [21], 
SVCs and static synchronous compensators are optimally 
placed in an IEEE 14-bus DN to regulate the bus voltage 
levels. In addition, a ranking method based on three voltage 
drop indices is introduced to determine the optimal installa‐
tion location in [21]. However, this method is constrained to 
the installation of a single SVC, and its effectiveness is vali‐
dated using a small test system, likely limiting its scalability. 
In [22], a guided surrogate gradient-based evolutionary strat‐
egy is designed for SVC to mitigate interarea oscillations in 
power systems. This strategy trains a reinforcement learning 
agent to determine the optimal SVC control strategies, ensur‐
ing fast oscillation damping. In [23], mayfly optimization, 
firefly algorithm, and particle swarm optimization are ap‐
plied to optimize the controller parameters of the SVC and 
power system stabilizer, improving the system stability in a 
multimachine power network. In [24], a gradient-based opti‐
mizer (GBO) is utilized for SVC allocation in DNs to mini‐
mize system losses. However, it neglects the hourly load 
variations, which is crucial for real-time power system opera‐
tion. In [25], a modified enhanced moth flame optimization 
algorithm is proposed to determine the optimal position and 
sizing of SVC and thyristor-controlled series capacitor in an 
IEEE 57-bus DN. Although the system losses are reduced 
and power system loading ability is improved using continu‐
ous power flow under both equality and inequality con‐

straints, optimization is conducted solely under peak load 
conditions, limiting its applicability to real-world dynamic 
loading scenarios.

The conventional artificial hummingbird algorithm (AHA) 
[26] emulates the flying ability and foraging behaviors of 
hummingbirds. Foraging patterns involving axial, diagonal, 
and omnidirectional movements are used. In addition, a visit 
table is constructed to simulate the bird search for food. All 
hummingbird agents in AHA have certain food sources that 
they can use for survival. In addition, a hummingbird agent 
can recall the location and frequency of nectar replenishment 
at every foraging location [27]. Moreover, it can track the pe‐
riod during which a food source has been exploited without 
being examined [28]. The AHA has achieved remarkable per‐
formance and versatility, quickly attracting research interest. 
Furthermore, several implementations of AHA have been in‐
vestigated in various domains, including microgrid energy 
management systems [29], Internet of Things, forecasting, 
feature selection, clustering, classification, scheduling, image 
processing, wireless sensor networks, and other engineering 
areas [30], [31].

We introduce an improved AHA (IAHA) with a regulated 
foraging pattern to optimize allocation of SVC in DNs and 
maximize annual energy savings, focusing on loading varia‐
tion control. Although previous research has explored the op‐
timal placement of reactive power compensators using heu‐
ristic techniques, many studies have either focused on small 
networks or lacked adaptive allocation strategies for varying 
load conditions. Additionally, existing studies on SVC de‐
ployment have not fully investigated the impact of compen‐
sation limits on cost savings and voltage profile.

This study bridges current research gaps by providing key 
contributions as follows.

1) Proposing a time-dependent operational allocation of 
SVCs in DNs to enhance adaptability across various loading 
conditions.

2) Introducing an IAHA with enhanced exploration bal‐
ance, thus achieving improvement in cost savings.

3) Incorporating varying compensation limits as supple‐
mentary constraints for the overall reactive power demand.

4) Providing a detailed economic and technical analysis to 
optimize financial and operational performance.

5) Validating the superiority of the proposed IAHA over 
similar algorithms such as DE algorithm [32], dwarf mon‐
goose optimization algorithm (DMOA) [33], salp swarm al‐
gorithm (SSA) [34], [35], GBO [36], and honey badger algo‐
rithm (HBA) [37].

II. TIME-DEPENDENT OPERATIONAL ALLOCATION OF SVCS 
IN DNS 

We propose a time-dependent operational allocation of 
SVCs in DNs, in which different loading levels are consid‐
ered. The corresponding model (SVC model) considers SVC 
controllability because each device is described as either a 
negative or positive supply of the reactive power. Therefore, 
the SVC outputs are managed and adapted every hour to ob‐
tain operational benefits. The cost savings related to the ener‐
gy losses OV are considered as the objective function, which 
is given as:
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OV =Ke∑
LV = 1

NLV

(PLosses0
-PLossesA

)× IntervalLV (1)

where Ke is the cost, which is expressed in $/kWh; PLosses0
 is 

the initial power loss; PLossesA
 is the power loss after optimal 

sizing, placing, and operation of the SVCs by the proposed 
IAHA; IntervalLV is the time interval in hour at loading level 
LV, LVÎ[124]; and NLV is the number of loading levels.

For allocation of SVC, decision variables are categorized 
into three groups: ① installed bus locations; ② reactive 
power capacity of each installed device; and ③ output of 
each installed device at different loading levels. These deci‐
sion variables collectively form vector CV, which is opti‐
mized using the proposed IAHA. According to the proposed 
time-dependent operational allocation of SVCs, the vector of 
decision variables can be mathematically modeled as:
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(2)

where subscript Nsvc is the number of installed SVCs; busI 
(I = 12Nsvc) is the candidate bus I to install SVC; 
QsvcRate

busI
 is the rated SVC capacity at bus I; and QsvcbusILV 

(LV = 12NLV) is the SVC capacity at bus I at loading lev‐
el LV.

The total number of decision variables is Nsvc +Nsvc +
Nsvc NLV. For instance, if three SVCs (i. e., Nsvc = 3) are in‐
stalled in a DN with three predefined loading levels (i. e., 
NLV = 3), the total number of decision variables is 15. Further‐
more, if the DN considers hourly loading variations (i. e., 
NLV = 24), the number of decision variables increases to 78. 
This structure ensures that the proposed IAHA optimizes 
SVC placement, sizing, and reactive power compensation to 
maximize energy savings and voltage stability while main‐
taining cost effectiveness.

A. Equality Constraints

The SVC is essential in the shunt-linked device group of 
flexible AC transmission system (FACTS) devices. Grid volt‐
age can be actively adjusted based on its level parameters 
through producing (capacitive) and absorbing (inductive) re‐
active power. Because of the short-term response and dynam‐
ic performance of SVC, operators can vary the angles and 
amplitudes of the internal voltage to manage the voltage val‐
ues at the point of common coupling [38]. To implement the 
SVC model in a DN, the entire limit of load flow balance is 
updated at all loading levels, which can be given as:

PGridLV =PLossesLV +∑
I = 1

Nsvc

PdbusILV    LVÎ[1NLV ] (3)

∑
I = 1

Nsvc

(QsvcbusILV )+QGridLV =QLossesLV +∑
I = 1

Nsvc

QdbusILV

                                                                           LVÎ[1NLV ] (4)

where PGridLV and QGridLV are the active and reactive power 
provided by the grid at loading level LV, respectively; 
PlossesLV is the total system active power loss at loading level 
LV; QlossesLV is the total system reactive power loss at load‐
ing level LV; and PdbusILV is the real power demand at bus I 

at loading level LV.

B. Inequality Constraints

The decision variables in (2) should be maintained within 
permissible limits. The candidate bus to install SVC is an in‐
teger variable, except for the first substation-related bus (5). 
In addition, the SVC capacity potential must be less than the 
maximum rate (6).

2 ³ busI ³Nbuses    IÎ[1Nsvc ] (5)

Qsvcmax Rate ³QsvcRate
busI

    IÎ[1Nsvc ] (6)

where Nbuses is the number of buses in the DN; and 
QsvcmaxRate is the maximum rated SVC capacity.

For each hourly loading level, the ability of an SVC to 
change its outputs to absorb and inject reactive power simul‐
taneously during the day and night is within a specified rat‐
ed capacity QsvcRate

busI
, which can be expressed as:

-QsvcRate
busI

£QsvcbusILV £QsvcRate
busI

    LVÎ[1NLV ]IÎ[1Nsvc ] 
(7)

Additionally, the voltages of all terminals at each hourly 
loading level must always adhere to the permitted limits 
[39], which are given as:

V max
q £VqLV £V min

q     LVÎ[1NLV ]q =[1Nbuses ] (8)
where V max

q  and V min
q  are the maximum and minimum volt‐

age margins for bus q, with their allowable range being 
10%, respectively.

At each loading level LV, the current flow across the en‐
tire DN branch must always be less than the safe thermal 
limit, which can be given as:

-I max
Line £ ILineLV £ I max

Line     LVÎ[1NLV ]LineÎ[1Nlines ] (9)
where I max

Line  is the safe thermal limit of the DN branch; Nlines 
is the total number of DN branches; and ILineLV is the current 
flow of the DN branch at loading level LV.

III. SOLUTION BASED ON PROPOSED IAHA 

In AHA, a swarm of hummingbirds is initially randomly 
assigned to Bn food sources, which is given as:

Bhk = Lo +Rand(Up - Lo)    "kÎBn (10)

where Lo and Up are the lowest and highest limits of the de‐
cision variables, respectively; Bhk is the location of the k th 
food source, which represents a solution; and Rand denotes 
a random variable in [0,1].

To imitate hummingbird memory of the period during 
which each food source remains unvisited, a feeding source 
visit table is expressed as:

VSTTkj =
ì
í
î

null    k = jjÎ[1Bn ]kÎ[1Bn ]

0         k ¹ jjÎ[1Bn ]kÎ[1Bn ]
(11)

where VSTTkj is the time interval number throughout which 
a hummingbird j does not visit the kth food source; and null 
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denotes lack of information.
Axial, omnidirectional, and diagonal movements are exam‐

ples of flight abilities of AHA during foraging [26]. Hum‐
mingbirds employ a guided technique to investigate a specif‐
ic food source, eventually discovering a potential source as:

Bhnewk (it + 1)=Bhktarget (it)+ (Bhk (it)-Bhktarget (it))×FD × a
 (12)

where a is a flight parameter, which is a random value fol‐
lowing a Gaussian distribution [0, 1]; Bhk (it) and Bhktarget(it) 
are the locations of the k th food source correlated with the in‐
tended and available food sources at iteration it, respective‐
ly; FD is the flying direction; and Bhnewk (it + 1) is the new 
location of the k th food source at iteration it + 1.

In the second step, hummingbirds use a territorial forag‐
ing pattern to look for progressively developed food sources 
within their territory, which is given as:

Bhnewk (it + 1)=Bhk (it)(1 +N(01)×FD) (13)

where N(01) is the Gaussian distribution.
The mechanism for altering the location of each food 

source is expressed as:

Bhk (it + 1)=
ì
í
î

Bhnewk (it + 1)    TF(Bhnewk (it + 1))<TF(Bhk (it))

Bhk (it)                 TF(Bhnewk (it + 1))³TF(Bhk (it))

(14)

where TF(·) denotes the target value of objective function (1).
Thus, the hummingbird decides to forsake the current 

food source and searches for a projected food source to eat 
if the nectar refilling rates of the acquired food source are 
greater than the existing rates.

Hummingbirds fly to a randomly selected fresh food 
source from the complete exploring universe if a food 
source is depleted in its surroundings [26], which is given as:

FDk =

{1    k =P( j)P = rndperm(x)jÎ[1m]xÎ[21 + r(dim - 2)]

0    else
(15)

FDk = {1    k = rndi (1dim)

0    else
(16)

FDk = 1    kÎ[1dim] (17)

where FDk is the k th food source; m is a random integer; rnd‐
perm(x) is the permutation function of random integer x; 
rndi (·) is the function used to generate random integer; dim 
is the number of dimensions; and r is an arbitrary number in 
[01].

Each hummingbird must constantly explore within a spe‐
cific search region. However, any decision variable that does 
not meet this criterion should be forwarded to the search re‐
gion limit, which is given as:

Bh(i)
k (it + 1)=

ì

í

î

ïïïï

ï
ïï
ï

Lo(i)                Bh(i)
j (it + 1)<Lo(i)

Up(i)                Bh(i)
j (it + 1)>Up(i)

Bh(i)
k (it + 1)    else

    kÎ[1Bn ]iÎ dim
(18)

where superscript (i) denotes the dimension of each design 
variable.

The feeding source visit table is an important aspect of 
conventional AHA for tracking the trajectories toward food 
sources. Each hummingbird can select its favored food 
source by evaluating it frequently [27]. Thus, (11) can be ad‐
justed as:

VSTTkj =VSTTkj + 1    j ¹ kj ¹ targetjÎ[1Bn ] (19)

VSTTktarget = 0 (20)

VSTTkj = max
L ¹ kLÎ[1Bn ]

(VSTTkL )+ 1    j ¹ kj =[1Bn ] (21)

where target is the favored food source.
The proposed IAHA includes several modifications to en‐

hance the performance of the conventional AHA. The direct‐
ed foraging pattern considerably improves, which is given as:

Bhnewk (it + 1)= (Bhk (it)-Bhm (it))a ×FD +Bhktarget (it)  (22)

m = randi (1Bn )    m ¹ k (23)

where randi (·) denotes a uniform distribution function to gen‐
erate a pseudorandom integer within the food souce Bn.

Directed foraging pattern is promoted by guiding the 
search pathways out of the optimal solution and into various 
alternative directions near other hummingbirds at each itera‐
tion. Only the most relevant locations for hummingbird for‐
aging are identified. Hence, the exploitative behavior can be 
justified. Territory foraging patterns are incorporated into the 
territorial foraging pattern as:

Bhnewk (it+1)=

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

Bhk (it)+b ×FD ×Bhk (it)                          rand<
1
3

Bhk (it)+b ×FD ×(Bhk (it)-Bhm (it))    
1
3
£rand<

2
3

Bhm (it)+b ×FD ×(Bhk (it)-Bhm (it))    rand³
2
3

(24)

where rand is a randomized value within range [0,1]; and b 
is a territorial parameter that takes a random value following 
a Gaussian distribution function.

The territorial foraging pattern is enhanced in the pro‐
posed IAHA by transferring different and fluctuating knowl‐
edge from surrounding hummingbirds instead of depending 
solely on individual hummingbird experiences. As a result, 
hummingbirds are better equipped to look for a food source 
in their vicinity.

Equation (25) describes a linear regulation with adjustable 
parameter ψ, which increases linearly with iterations. Thus, 
ψ limits the exploitative behavior and hummingbird foraging 
activity. Territory foraging pattern described by (24) is em‐
ployed by all hummingbirds in the beginning and demon‐
strates 100% exploratory behavior. Exploitation using direct‐
ed foraging pattern described by (22) increases, whereas ex‐
ploration in territory foraging pattern described by (24) de‐
creases with increasing the magnitude of parameter ψ.

ψ =
it

max it
(25)

The proposed IAHA addresses the time-dependent opera‐
tional allocation of SVCs in DNs, as depicted in Fig. 1.
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End

Set it=1

Set k=1

Is rand<ψ? 

Y

N

N

Y
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Insert DN data

Read hummingbird solution

Read hummingbird solution Read hummingbird solution

Set Bn, dim, max it, Lo, and Up

 Apply (2) to randomize solution vectors of decision variables

Apply (11) to initialize feeding source visit table of hummingbirds

Relate SVC location and hourly output power

Run load flow for each loading level LV

Check limitations of dependent variables for each LV

Apply (11) to evaluate objective target (TF) 

Generate arbitrary number r in [0,1]

Is r<1/3?

Is r<2/3?

Apply (15) to estimate FD

YApply (16) to estimate FD

Apply (17) to estimate FD

Apply (25) to evaluate ψ

N

N

N

Y

Y

Apply (24) to access territorial foraging pattern Apply (22) to access directed foraging pattern

Record SVC location and hourly output power

Run load flow for each loading level LV

Check limits using (18) 

Update SVC location and hourly output power

Run load flow for each loading level LV

Check limitats of dependent variables for each loading level LV

Apply (11) to evaluate target value of objective function (1)

Y N

Update location using (13)

Is k<Bn?
N

k=k+1

Set voltages adhere to permitted limits using (8)

Update SVC locations and hourly output power

Run load flow for each loading level LV

Check limits of dependent variables for each loading level LV

Apply (9) to evaluate target value of objective function (1)

Is it>max it?
Y

it=it+1

Check limits using (18) 

Check limitats of dependent variables for each loading level LV

Apply (11) to evaluate target value of objective function (1)

Is TF(Bhnewk(it+1))<
TF(Bhk(it))?

Is TF(Bhnewk(it+1))<
TF(Bhk(it))?

Update VSTTk, j by (19) Update VSTTk, j by (19) and (21) Update VSTTk, j by (19) and (21) Update VSTTk, j by (19) and (20)

Fig. 1.　Flowchart of proposed IAHA for solving time-dependent operational allocation of SVCs in DNs.
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IV. SIMULATION RESULTS 

The proposed IAHA is evaluated on IEEE DN models 
with 33 and 69 nodes (IEEE 33-bus DN and IEEE 69-bus 
DN, respectively). Three different loading levels are used, 
with each receiving a daily supply of 8 hours. Low, medium, 
and high loading conditions (loading levels) are managed at 
60%, 80%, and 100% of nominal loading, respectively [40]. 
The maximum number of SVCs for placement is three. The 
highest capacity of the inserted SVC is 3000 kvar. First, a 
compensation limit of 50% of the total reactive power con‐
sumption is considered across three loading levels. Second, 
the effects of varying the compensation limits on the perfor‐
mance of the system are analyzed. The proposed IAHA of‐
fers adaptive parameters for flight and territory while setting 
only iterations and solution individuals, which is similar to 
population metaheuristic algorithms. These two parameters 
are set and fixed for all evaluated algorithms. For both the 
proposed IAHA and conventional AHA, 20 search agents 
and 100 iterations are set while considering three loading 
levels, resulting in 15 decision variables. When the analysis 
is extended to account for 24-hour load variations, the num‐
ber of decision variables increases to 78. The algorithms are 
implemented on a computer equipped with an Intel® CoreTM 
i7-470K CPU at 4.00 GHz with 16.00 GB RAM.

A. IEEE 33-bus DN

The first evaluated DN has 33 nodes, 32 sections, and a 
typical operating voltage of 12.66 kV. Regarding the nomi‐
nal conditions, the total active, reactive, and apparent loads 
are 3.715 MW, 2.3 Mvar, and 4.369 MVA, respectively [41].

1)　Loading Levels in IEEE 33-bus DN
In this part, 50% of the total reactive power consumption 

is considered as the maximum financial limit. The proposed 
IAHA is used and compared with the conventional AHA, 
GBO, HBA, DMOA, SSA, and DE algorithm. Table I lists 
the allocations of SVCs (IEEE 33-bus DN). Figrue 2 shows 
the convergence characteristics of various algorithms (IEEE 
33-bus DN). As indicated in Table I and Fig. 2, the proposed 
IAHA achieves the highest annual cost saving of 
$21735.725 while demonstrating the highest performance. 
The conventional AHA provides annual cost saving of 
$21672.883, ranking second. While the GBO ranks third 
with annual cost saving of $21474.100. In addition, the DE 
algorithm, HBA, and DMOA rank fourth, fifth, and sixth 
with annual cost saving of $21466.900, $21078.800, and 
$21015.600, respectively. SSA has the lowest efficiency of 
the evaluated algorithms, with annual cost saving of 
$15131.600.
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Fig. 2.　Converging features of various algorithms (IEEE 33-bus DN).

TABLE I
ALLOCATIONS OF SVCS (IEEE 33-BUS DN)

Algorithm

AHA

Proposed IAHA

GBO

DMOA

SSA

HBA

DE algorithm

Annual cost saving ($)

21672.883

21735.725

21474.100

21015.600

15131.600

21078.800

21466.900

Allocation of SVCs

Number of installed buses

10

17

30

11

17

30

7

16

30

9

14

30

30

32

13

30

16

30

31

Rated value (kvar)

±130

±181

±804

±321

±135

±692

±116

±136

±898

±328

±147

±651

±574

±239

±289

±831

±279

±588

±271

Operational value (kvar)

High

130

46

717

232

94

615

113

136

898

328

145

583

574

199

289

831

264

588

271

Medium

127

171

824

292

117

692

116

134

855

285

147

651

247

194

269

771

206

471

271

Low

102

181

804

321

135

676

-33

124

739

165

121

511

181

239

-29

811

279

467

228
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Figure 3 shows the voltage profile using the proposed 
IAHA versus conventional AHA (IEEE 33-bus DN), where 
initial scenario denotes the initial topology of the system 
without adding any devices. The proposed IAHA demon‐
strates significant voltage improvement across all loading 
buses for three loading levels compared with conventional 

AHA. Specifically, the proposed IAHA increases the mini‐
mum voltages by 2.59%, 2.34%, and 1.89%, elevating the 
voltage magnitudes from 0.9037, 0.9244, and 0.944 (conven‐
tional AHA) to 0.927, 0.946, and 0.962 at high, medium, 
and low loading levels, respectively.

Figure 4 shows a boxplot of cost savings of various algo‐
rithms. Table II shows the robustness metrics of cost savings 
of various algorithms (IEEE 33-bus DN). The proposed 
IAHA demonstrates superior performance and robustness 
compared with other algorithms, achieving the highest annu‐
al cost saving. The proposed IAHA achieves the best, aver‐
age, and worst annual cost savings of $21735.7, $20921.1, 
and $19257.1, respectively. According to the average annual 
cost saving, DE algorithm ranks second with annual cost sav‐
ings of $20318.0, whereas the conventional AHA ranks third 
with annual cost savings of $20051.4.

Compared with the conventional AHA, the proposed 
IAHA shows a small improvement of 0.29% in the best an‐
nual cost saving. Nevertheless, the proposed IAHA provides 
large improvements of 4.16%, 11.67%, and 37.91% for the 
average annual cost saving, worst annual cost saving, and 
standard deviation, respectively. On one hand, the computa‐
tional time required for each algorithm highlights the effi‐
ciency of the proposed IAHA in solving the optimization 
problem of the IEEE 33-bus DN. The proposed IAHA has a 
computational time of 11.63 s, being comparable with that 
of other algorithms such as DE algorithm (11.82 s), AHA 
(11.66 s), and SSA (10.99 s). On the other hand, a longer 

computational time of 20.21 s is required by DMOA. This 
increase is due to the double-function evaluation per solu‐
tion, whereas the other algorithms require a single function 
evaluation per iteration.

To evaluate the impacts of variations in the compensation 
limits on system performance, we analyse the proposed 
IAHA across compensation limits ranging from 50% to 
100% of the total reactive power load in 10% increments. 
The proposed IAHA is applied to each compensation limit, 
and the annual cost savings are shown in Fig. 5.

Increasing in the maximum reactive power compensation 
limit enhances annual cost savings, but the improvement 
rates vary significantly. For compensation limit increases 
from 50% to 60% of the total reactive power load, the annu‐
al cost saving increases from $21735.72 to $22935.8, that is, 
an improvement rate of 5.23%. For compensation limit in‐
creases from 60% to 70% of the total reactive power load, 
the annual cost saving increases by 2.74%, whereas the annu‐
al cost saving increases by 2.3% when the compensation lim‐
it increases from 70% to 80% of the total reactive power 
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Fig. 3.　Voltage profile based on proposed IAHA versus conventional AHA (IEEE 33-bus DN). (a) Low level. (b) Medium level. (c) High level.

TABLE II
ROBUSTNESS METRICS OF VARIOUS ALGORITHMS (IEEE 33-BUS DN)

Algorithm

DE algorithm

DMOA

GBO

HBA

SSA

Conventional 
AHA

Proposed 
IAHA

Annual cost saving ($)

Best

21466.9

21015.6

21474.1

21078.8

15131.6

21672.9

21735.7

Average

20318.0

19897.4

18339.0

12322.9

12202.0

20051.5

20921.1

Worst

18907.0

17508.6

14902.5

3967.0

9546.8

17009.1

19257.1

Standard 
deviation ($)

781.89

862.88

2528.66

4818.64

1695.28

1268.23

787.44

Computational 
time (s)

11.82

19.52

12.53

11.94

10.99

11.66

11.63
2500
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12500

17500

22500
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algorithm

DMOA GBO HBA SSA Conventional
AHA
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Fig. 4.　Boxplot of cost savings of various algorithms (IEEE 33-bus DN).
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load. In contrast, the improvement rate substantially decreas‐
es to 0.97% and 0.49%, respectively, when the compensation 
limit increases from 90% to 100% of the total reactive pow‐
er load.

Figures 6 and 7 show the power losses and the minimum 
voltage related to each loading level of different compensa‐
tion limits (IEEE 33-bus DN). Large improvements in power 
losses and the minimum voltages are observed at all loading 
levels.

2)　Hourly Loading Variation in IEEE 33-bus DN
The proposed IAHA is used to perform time-dependent op‐

erational allocation of SVCs considering hourly loading vari‐
ation. The amount of compensation limit is fixed at 80% of 
the total reactive power load. Figure 8 shows hourly loading 
profile in terms of the percentage of nominal loading condi‐
tion. A comparative analysis between the proposed IAHA 

and the conventional AHA is conducted, with the correspond‐
ing convergence characteristics in terms of annual cost sav‐
ings depicted in Fig. 9. The results demonstrate that the pro‐
posed IAHA achieves faster convergence, yielding an annual 
cost saving of $22965.74, whereas the conventional AHA 
achieves $22534.09, representing a 1.91% improvement in 
annual cost saving.

The outputs are adjusted throughout the day by injection 
of reactive power. The SVCs operate in the reactive power 
injection mode throughout the day. Their reactive power out‐
puts remain at high levels of more than 95% of their speci‐
fied capacities during the operating hours (11: 00-18: 00), 
which corresponds to the high loading level. Figure 10 
shows the reactive power compensation of the proposed 
IAHA under hourly loading variation.
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Fig. 8.　Hourly loading profile in terms of percentage of nominal loading 
condition.
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In addition, Fig. 11 shows the improvements in power 
loss and the minimum voltage of the proposed IAHA. The 
proposed IAHA achieves consistent hourly power loss reduc‐
tions exceeding 31%. Similarly, a large increase in the mini‐
mum voltage is achieved, ranging from 1.24% to 2.89% at 
04:00 and 16:00, respectively.

B. IEEE 69-bus DN

In this subsection, the evaluated DN has 69 distribution 
nodes and 68 sections, with a typical operating voltage of 
12.66 kV. For the nominal condition, the total active and re‐
active loads are 3.8021 MW and 2.6947 Mvar, respective‐
ly [42].
1)　Loading Levels in IEEE 69-bus DN

As for the IEEE 33-bus DN, 50% of the total reactive 
power load is considered as the maximum financial limit. Ta‐
ble III lists the allocations of SVCs and annual cost savings. 
Figure 12 shows convergence characteristics of different al‐
gorithms (IEEE 69-bus DN). The proposed IAHA achieves 
the highest annual cost saving of $24262.04 while demon‐
strating the highest performance. The conventional AHA 
ranks second with annual cost saving of $23791.3, while the 
GBO ranks third with annual cost saving of $23567.079. In 
addition, DE algorithm, DMOA, and HBA rank fourth, fifth, 
and sixth with annual cost savings of $22789.45, $22451.285, 
and $21036.073, respectively. It is worth noting that, SSA 
provides the lowest efficiency of various algorithms, with 
the annual cost saving of $18007.217.

Figure 13 shows a boxplot of cost savings of various algo‐
rithms (IEEE 69-bus DN). Table IV highlights the robust‐
ness metrics of various algorithms. Despite the moderate 
computational time (13.36 s), the proposed IAHA outper‐
forms the other algorithms in terms of robustness metrics, 
achieving the highest best, average, and worst annual cost 
savings ($24262.04, $23190.72, and $21796.22, respectively) 
while maintaining the lowest standard deviation ($742.112). 
While the proposed IAHA demonstrates a modest 1.94% im‐
provement in the best annual cost savings compared with the 

conventional AHA, it substantially outperforms conventional 
AHA regarding the average annual cost saving, worst annual 
cost saving, and standard deviation by 5.67%, 23.9%, and 
61.79%, respectively. This suggests that the proposed IAHA 
provides superior optimization performance without exces‐
sive computational overhead, making it practical and effi‐
cient for real-world power system applications.

TABLE III
ALLOCATIONS OF SVCS AND ANNUAL COST SAVINGS (IEEE 69-BUS DN) 

Algorithm

Conven‐
tional 
AHA

Proposed 
IAHA

DE 
algorithm

DMOA

SSA

HBA

GBO

Annual 
cost 

saving ($)

23791.30

24262.04

22789.45

22451.28

18007.22

21036.07

23567.08

Allocation of SVCs

Installed 
node

14

61

64

19

61

64

62

63

69

62

63

64

61

64

61

62

21

61

Rated 
value (kvar)

±183

±827

±126

±223

±685

±241

±557

±484

 ±82

±393

±416

±332

±701

±259

±321

±618

±189

±876

Operational value (kvar)

High

146

827

126

223

685

237

557

382

82

393

236

309

324

259

321

618

189

876

Medium

183

788

94

181

677

241

452

484

82

358

416

332

467

154

321

618

165

876

Low

102

766

125

207

579

194

332

383

59

275

261

303

701

211

96
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Fig. 13.　Boxplot of cost savings of various algorithms (IEEE 69-bus DN).
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The proposed IAHA is used to analyze the impact of vary‐
ing compensation limits on the system performance. We  
analyse the proposed IAHA across compensation limits rang‐
ing from 50% to 100% of the total reactive power load in 
10% increments. Figure 14 shows the annual cost saving of 
proposed IAHA under different compensation limits (IEEE 
69-bus DN).

Higher compensation limits generally result in the in‐
crease in annual cost savings, but the improvement rate de‐
creases as the compensation limit increases. Annual cost sav‐
ings grow considerably by 4.79% when the compensation lim‐
it increases from 50% to 60% of the total reactive power load 
and by 1.79% from 60% to 70% of the total reactive power 
load. However, the improvement is reduced to 1.13%, 0.89%, 
and 0.67% for the subsequent 10% increments up to 100%.
2)　Hourly Loading Variation in IEEE 69-bus DN

In this part, the proposed IAHA and conventional AHA 
are used for evaluation. Figure 15 shows the convergence 
characteristics of the proposed IAHA and conventional AHA.

The proposed IAHA reduces the annual cost by 
$26050.05, while the conventional AHA provides annual 
cost saving of $24957.44, that is, a 4.37% increase in cost. 
Figure 16 shows the benefits of power loss and the mini‐
mum voltage provided by the proposed IAHA per hourly 
load. A substantial decrease in power loss is obtained per 
hour, which reaches at least 33.2%. Similarly, the lowest 
voltage increases considerably with each hour, ranging from 
1.14% to 2.31% at 04:00 and 11:00, respectively.

Figure 16 shows the reactive power compensation of the 
proposed IAHA under hourly loading variation (IEEE 69-bus 
DN), which requires the installation of three SVCs at buses 
18, 61, and 62 and specifies the operating outputs of the 
SVCs per hour. Their outputs adapt during the day under a 
heavy supply of reactive power. Figure 17 shows the im‐
provements in power losses and the minimum voltage of pro‐
posed IAHA (IEEE 69-bus DN).

V. CONCLUSION 

This paper presents an IAHA for the optimal placement 
and sizing of SVCs aimed at maximizing the annual cost 
savings in power loss and improving the voltage profile. The 
proposed IAHA simultaneously considers several loading lev‐
els. In addition, the SVC outputs are modulated by the load‐
ing level. Furthermore, the installed SVC ratings are treated 
as supplementary constraints related to the compensation lev‐
els of the overall reactive demand to reflect the financial in‐
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TABLE IV
ROBUSTNESS METRICS OF VARIOUS ALGORITHMS (IEEE 69-BUS DN)

Algorithm

DE 
algorithm

DMOA

GBO

HBA

SSA

Conventional 
AHA

Proposed 
IAHA

Annual cost saving ($)

Best

22789.5

22451.3

23567.1

21036.1

20167.7

23791.3

24262.0

Average

21455.4

21174.1

15569.1

12437.8

14045.6

21875.4

23190.7

Worst

18809.30

18440.70

7395.12

4269.26

9787.98

16587.70

21796.20

Standard 
deviation 

($)

941.67

1290.25

6708.39

6815.09

2705.18

1942.02

742.11

Computa‐
tional time 

(s)

12.97

20.21

13.82

13.01

12.06

13.24

13.36
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Fig. 16.　 Reactive power compensation of proposed IAHA under hourly 
loading variation (IEEE 69-bus DN). (a) Bus 18. (b) Bus 61. (c) Bus 62.
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stallation capacity. The applicability of the proposed IAHA 
is evaluated using the IEEE 33- and 69-bus DNs. The simu‐
lation results show that the proposed IAHA outperforms the 
conventional AHA and other state-of-the-art algorithms in 
terms of annual cost savings. Moreover, a large increase in 
the hourly minimum voltage is achieved. Varying compensa‐
tion levels reveals that increasing the maximum reactive 
power compensation limit leads to higher cost savings. How‐
ever, the benefits decrease as the compensation level increas‐
es, emphasizing the need for balanced compensation.

Although the proposed IAHA enhances SVC allocation, 
savings, and voltage regulation, it has some limitations. 
Equipment aging, maintenance, failure, harmonic distortion, 
transient stability, and power quality issues remain to be ad‐
dressed. In addition, the validation is limited to the IEEE 33-
bus and 69-bus DNs, leaving its scalability to larger net‐
works untested. Additionally, we did not evaluate the impact 
of renewable energy sources on reactive power compensa‐
tion. Although hourly load variations are considered, real-
world demand patterns influenced by weather and consumer 
behavior remain to be studied. Future research can further re‐
fine the proposed IAHA by addressing its limitations and ex‐
panding its applicability. It can incorporate equipment aging, 
maintenance schedules, and failure models to improve the 
long-term reliability of SVC allocation. Analyzing the im‐
pact of SVC operation on power quality issues will enable a 
more comprehensive performance assessment. Validating the 
scalability of the proposed IAHA in large-scale DNs and in‐
tegrating renewable energy sources will lead to more adap‐
tive compensation strategies. Furthermore, exploring ma‐
chine learning for load forecasting and stochastic optimiza‐
tion will likely enhance the effectiveness of the proposed 
IAHA.
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