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for Optimal Allocation of SVCs in Distribution
Networks to Maximize Energy Efficiency

Ali S. Aljumah, Member, IEEE, Mohammed H. Alqahtani, Member, IEEE, Ahmed R. Ginidi, and
Abdullah M. Shaheen

Abstract—The static var compensator (SVC) is a cost-effec-
tive device in flexible AC transmission system (FACTS) family.
We introduce an improved artificial hummingbird algorithm
(IAHA) for optimal allocation of SVCs in distribution networks
to maximize energy efficiency. Three loading levels (low, medi-
um, and high) per day are investigated. The proposed IAHA is
evaluated on the IEEE 33-bus distribution network (DN) and
69-bus DN. The proposed IAHA demonstrates notable improve-
ments in cost savings and voltage profile compared with the
conventional artificial hummingbird algorithm (AHA). In addi-
tion, it enhances energy savings across various loading condi-
tions and outperforms the conventional AHA in both best and
average performance metrics. Although raising the compensa-
tion limit initially increases cost savings, the benefits decrease
beyond a threshold, highlighting the importance of balancing
the compensation levels for maximum efficiency.

Index Terms—Improved artificial hummingbird algorithm
(IAHA), distribution network (DN), flexible AC transmission
system (FACTS), static var compensator (SVC), energy efficien-

cy.

[. INTRODUCTION

ISTRIBUTION networks (DNs) have recently attracted

the interest of researchers owing to their critical role in
power system quality and planning. Losses are relatively
high in DNs that operate at low voltages and high currents.
Various approaches have been investigated to reduce losses,
including distributed generator (DG) placement [1], [2], sys-
tem topology reconfiguration [3], and reactive power com-
pensation [4], [5]. DG placement in DN is an efficient meth-
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od for reducing system losses. Furthermore, loss minimiza-
tion in DN is investigated by applying a modified success-
history-based adaptive differential evolution (DE) algorithm
to determine the best values for the outputs of rescheduling
generators in addition to DG source placement/sizing based
on locational marginal pricing [6]. System topology reconfig-
uration, commonly referred to as network reconfiguration,
can be applied through changes in line connection, where
two types of switches are designed in primary DNs [7], [8].
Tie switches are often normally opened and placed first, fol-
lowed by normally closed sectionalizing switches. These
switches enable configurability and provide protection. The
system topology can be modified by changing the statuses of
these switches (opened/closed) while maintaining the DN ra-
diality constraint [9]. In [10], a bi-level optimization method
is achieved using a particle swarm optimizer for coordinated
reconfiguration and expansion planning with demand re-
sponse activation. Despite the enhanced effectiveness of the
method proposed in [10], its performance is validated using
a small standard IEEE 33-bus DN.

Many reactive power compensators are used to reduce sys-
tem losses. These compensators should be optimally allocat-
ed to maximize their effect. Shunt capacitors (SCs) and stat-
ic var compensators (SVCs) are powerful components in re-
active power compensators. In [11], SCs are optimally allo-
cated using a sine-cosine optimizer. The objective function
aims to enhance the reliability and reduce system losses
through two strategies. First, a loss sensitivity factor is al-
lowed to find the best locations for SC installation. Second,
a sine-cosine optimizer is used to determine the optimal SC
rating. Hourly load variations are also considered. In [12],
SVC and thyristor-controlled series capacitor are included in
the reactive power dispatch and handled using a refined
lightning-attaching optimizer. In [12], the traditional light-
ning-attaching optimizer is refined by integrating spiral orien-
tation motion and Lévy flight distribution to reduce system
losses, voltage fluctuations, and overall operational costs. In
addition to the SVC and thyristor-controlled series capacitor,
a static synchronous compensator is proposed based on the
artificial bee colony in [13] to reduce transmission line loss-
es. In [14], a multi-objective antlion optimization technique
is presented to determine the optimal placement and sizing
of DGs in a DN. The technique in [14] mimics the foraging
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behavior of antlions through five key phases: random posi-
tion adjustment, trap construction, ant trapping, prey capture,
and trap reconstruction. Multi-objective antlion optimization
technique is applied to minimize system losses, support volt-
age stability, and maintain balanced loads while addressing
load imbalances and excessive voltage increases at buses
containing DGs. However, multi-objective antlion optimiza-
tion technique is designed for and applied to the small-scale
DN, particularly the IEEE 33-bus radial DN. In [15], the
best positions for SVCs are determined using particle swarm
optimization, which is subsequently used to establish the dis-
patch strategy. This particle swarm optimization is aimed to
maximize the cost savings while considering limits in volt-
age and total harmonic distortion. In [16], SVCs are devel-
oped to regulate nodal voltage variations under irregular
wind and solar power generation. Despite successful applica-
tion and improved performance in practical case studies in
the Banat region of Serbia, only a small-scale DN is evaluat-
ed. In [17], SVC positioning is intended to increase the stat-
ic voltage stability using the L-index. However, the method
in [17] is tested on a sample radial DN and 24-bus equiva-
lent high-voltage DN. In [18], a single SVC is placed and in-
stalled with specified sizes of 5, 15, 25, 35, and 35 Mvar in
the IEEE 9-bus DN and 30-bus DN to support their voltage
profiles and minimize system losses. In [19], bald eagle
search is applied to allocate DGs coordinated with SCs in
DNs to minimize power losses. However, only baseline load-
ing is evaluated in [18] and [19].

n [20], hybrid cuckoo search and antlion optimization are
applied to allocate 12 SVCs to an IEEE 57-bus DN. Refer-
ence [20] considers branch outages of lines 50 and 41 as the
worst-case scenarios. However, the allocation and sizing of
the SVCs vary significantly across various outage scenarios,
making it impractical for real-world applications. In [21],
SVCs and static synchronous compensators are optimally
placed in an IEEE 14-bus DN to regulate the bus voltage
levels. In addition, a ranking method based on three voltage
drop indices is introduced to determine the optimal installa-
tion location in [21]. However, this method is constrained to
the installation of a single SVC, and its effectiveness is vali-
dated using a small test system, likely limiting its scalability.
In [22], a guided surrogate gradient-based evolutionary strat-
egy is designed for SVC to mitigate interarea oscillations in
power systems. This strategy trains a reinforcement learning
agent to determine the optimal SVC control strategies, ensur-
ing fast oscillation damping. In [23], mayfly optimization,
firefly algorithm, and particle swarm optimization are ap-
plied to optimize the controller parameters of the SVC and
power system stabilizer, improving the system stability in a
multimachine power network. In [24], a gradient-based opti-
mizer (GBO) is utilized for SVC allocation in DNs to mini-
mize system losses. However, it neglects the hourly load
variations, which is crucial for real-time power system opera-
tion. In [25], a modified enhanced moth flame optimization
algorithm is proposed to determine the optimal position and
sizing of SVC and thyristor-controlled series capacitor in an
IEEE 57-bus DN. Although the system losses are reduced
and power system loading ability is improved using continu-
ous power flow under both equality and inequality con-
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straints, optimization is conducted solely under peak load
conditions, limiting its applicability to real-world dynamic
loading scenarios.

The conventional artificial hummingbird algorithm (AHA)
[26] emulates the flying ability and foraging behaviors of
hummingbirds. Foraging patterns involving axial, diagonal,
and omnidirectional movements are used. In addition, a visit
table is constructed to simulate the bird search for food. All
hummingbird agents in AHA have certain food sources that
they can use for survival. In addition, a hummingbird agent
can recall the location and frequency of nectar replenishment
at every foraging location [27]. Moreover, it can track the pe-
riod during which a food source has been exploited without
being examined [28]. The AHA has achieved remarkable per-
formance and versatility, quickly attracting research interest.
Furthermore, several implementations of AHA have been in-
vestigated in various domains, including microgrid energy
management systems [29], Internet of Things, forecasting,
feature selection, clustering, classification, scheduling, image
processing, wireless sensor networks, and other engineering
areas [30], [31].

We introduce an improved AHA (IAHA) with a regulated
foraging pattern to optimize allocation of SVC in DNs and
maximize annual energy savings, focusing on loading varia-
tion control. Although previous research has explored the op-
timal placement of reactive power compensators using heu-
ristic techniques, many studies have either focused on small
networks or lacked adaptive allocation strategies for varying
load conditions. Additionally, existing studies on SVC de-
ployment have not fully investigated the impact of compen-
sation limits on cost savings and voltage profile.

This study bridges current research gaps by providing key
contributions as follows.

1) Proposing a time-dependent operational allocation of
SVCs in DNs to enhance adaptability across various loading
conditions.

2) Introducing an IAHA with enhanced exploration bal-
ance, thus achieving improvement in cost savings.

3) Incorporating varying compensation limits as supple-
mentary constraints for the overall reactive power demand.

4) Providing a detailed economic and technical analysis to
optimize financial and operational performance.

5) Validating the superiority of the proposed IAHA over
similar algorithms such as DE algorithm [32], dwarf mon-
goose optimization algorithm (DMOA) [33], salp swarm al-
gorithm (SSA) [34], [35], GBO [36], and honey badger algo-
rithm (HBA) [37].

II. TIME-DEPENDENT OPERATIONAL ALLOCATION OF SVCS
IN DNs

We propose a time-dependent operational allocation of
SVCs in DNs, in which different loading levels are consid-
ered. The corresponding model (SVC model) considers SVC
controllability because each device is described as either a
negative or positive supply of the reactive power. Therefore,
the SVC outputs are managed and adapted every hour to ob-
tain operational benefits. The cost savings related to the ener-
gy losses OV are considered as the objective function, which
is given as:
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Losses, Losses

where K, is the cost, which is expressed in $/kWh; P, is

the initial power loss; P is the power loss after optimal

Losses ,
sizing, placing, and operation of the SVCs by the proposed
IAHA; Interval,, is the time interval in hour at loading level
LV, LV €[1,24]; and N, is the number of loading levels.

For allocation of SVC, decision variables are categorized
into three groups: @ installed bus locations; @ reactive
power capacity of each installed device; and 3 output of
each installed device at different loading levels. These deci-
sion variables collectively form vector CV, which is opti-
mized using the proposed IAHA. According to the proposed
time-dependent operational allocation of SVCs, the vector of
decision variables can be mathematically modeled as:

bus,,bus,, ...,bus,

Rate Rate Rate
stcbusl ’ stcbus2 L stcbus‘\‘m
stcbus,. 1 stcbusz, 1220 stcbus\‘”; 1

V= 2

stcbus,.2’ stcbusz,D M4 stcbus\x".Z

stcbus,‘NL,,’ stcbusz,N,_,,’ Tt stcbus‘vm,NLV

where subscript N, is the number of installed SVCs; bus,
(I=1,2,...,N,) is the candidate bus / to install SVC;
stcf;‘s’j' is the rated SVC capacity at bus /; and Osvc,, ;

(LV=12,...,N,,) is the SVC capacity at bus / at loading lev-
el LV.

The total number of decision variables is N, +N, +
N,,.N;,. For instance, if three SVCs (i.e., N, =3) are in-
stalled in a DN with three predefined loading levels (i.e.,
N,,=3), the total number of decision variables is 15. Further-
more, if the DN considers hourly loading variations (i.e.,
N;,=24), the number of decision variables increases to 78.
This structure ensures that the proposed TAHA optimizes
SVC placement, sizing, and reactive power compensation to
maximize energy savings and voltage stability while main-
taining cost effectiveness.

A. Equality Constraints

The SVC is essential in the shunt-linked device group of
flexible AC transmission system (FACTS) devices. Grid volt-
age can be actively adjusted based on its level parameters
through producing (capacitive) and absorbing (inductive) re-
active power. Because of the short-term response and dynam-
ic performance of SVC, operators can vary the angles and
amplitudes of the internal voltage to manage the voltage val-
ues at the point of common coupling [38]. To implement the
SVC model in a DN, the entire limit of load flow balance is
updated at all loading levels, which can be given as:

N\v(
PGrid,LV:Pmeex.LV—i_ Zpdbus,.LV LVE[LNLV] (3)
=1

N, N,
E(QSVC bus,, LV ) + QGrid, L= QLo.vse.v, LV + z deux,‘ LV
I=1 I=1

LVe[lLN,,] (4

263

where P, and Qg,,,, are the active and reactive power
provided by the grid at loading level LV, respectively;
P i1 18 the total system active power loss at loading level
LV Ojpses.ry 18 the total system reactive power loss at load-
ing level LV; and Pd,,, ,, is the real power demand at bus /

at loading level LV.

B. Inequality Constraints

The decision variables in (2) should be maintained within
permissible limits. The candidate bus to install SVC is an in-
teger variable, except for the first substation-related bus (5).
In addition, the SVC capacity potential must be less than the
maximum rate (6).

22> bus, >N,

buses

Te[lLN,, ] (5)

(6)
where N, . is the number of buses in the DN; and
Osve™ %4 i5 the maximum rated SVC capacity.

For each hourly loading level, the ability of an SVC to
change its outputs to absorb and inject reactive power simul-
taneously during the day and night is within a specified rat-

ed capacity stcfjjf, which can be expressed as:

—Osveyn <Qsvey,, 1, <0svepns LV e[l,N,, LT€[l,N,, ]

bus, sve
(7
Additionally, the voltages of all terminals at each hourly
loading level must always adhere to the permitted limits
[39], which are given as:

VISV, oy <V,™ LVe[l,N].q=[lN, (8)
where V™ and V™ are the maximum and minimum volt-
age margins for bus ¢, with their allowable range being
10%, respectively.

At each loading level LV, the current flow across the en-
tire DN branch must always be less than the safe thermal
limit, which can be given as:

stcmax . Rate > stcRate

bus,

1 E[I’vac]

uses ]

_12?13: SlLine.LVS[I{?I?: LV e[17NLV:|7 Ll/’l@ e[l’Nlines ] (9)
where /7% is the safe thermal limit of the DN branch; N,

is the total number of DN branches; and 7, ,, is the current
flow of the DN branch at loading level LV.

III. SOLUTION BASED ON PROPOSED IAHA

In AHA, a swarm of hummingbirds is initially randomly
assigned to B, food sources, which is given as:

Bh,=Lo+Rand(Up—Lo) VkeB, (10)

where Lo and Up are the lowest and highest limits of the de-
cision variables, respectively; Bh, is the location of the k™
food source, which represents a solution; and Rand denotes
a random variable in [0,1].

To imitate hummingbird memory of the period during
which each food source remains unvisited, a feeding source
visit table is expressed as:

null k=jje€[l,B,].k<[l.B,
VST, — J.J€ll.B,].ke[l.B,]

9o kejjemskens)

where VSTT,; is the time interval number throughout which
a hummingbird ;j does not visit the k" food source; and null
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denotes lack of information.

Axial, omnidirectional, and diagonal movements are exam-
ples of flight abilities of AHA during foraging [26]. Hum-
mingbirds employ a guided technique to investigate a specif-
ic food source, eventually discovering a potential source as:

Bhnew, (it + 1)=Bh, 1,0, (it) +(Bh, (it)— Bhy 0, (i1))- FD - a

(12)
where a is a flight parameter, which is a random value fol-
lowing a Gaussian distribution [0, 1]; Bh,(it) and Bhy,,,..[it)
are the locations of the k™ food source correlated with the in-
tended and available food sources at iteration it, respective-
ly; FD is the flying direction; and Bhnew, (it+1) is the new
location of the k™ food source at iteration it + 1.

In the second step, hummingbirds use a territorial forag-
ing pattern to look for progressively developed food sources
within their territory, which is given as:

Bhnew, (it + 1)=Bh, (it\1 + N(0. 1)- FD)

where N(0, 1) is the Gaussian distribution.

The mechanism for altering the location of each food
source is expressed as:
Bhnew, (it+1) TF(Bhnew, (it+1))< TF(Bh,(it))
Bh, (it) TF(Bhnew, (it+ 1))> TF(Bh, (it))

(14)

where TF () denotes the target value of objective function (1).

Thus, the hummingbird decides to forsake the current
food source and searches for a projected food source to eat
if the nectar refilling rates of the acquired food source are
greater than the existing rates.

Hummingbirds fly to a randomly selected fresh food
source from the complete exploring universe if a food
source is depleted in its surroundings [26], which is given as:

(13)

Bh, (it + 1)=

FD, =
1 k=P(j), P=rndperm(x),j €[l,m],x €[2, 1 + r(dim —2)]
0 else
15)
1 k=rnd;(1,dim)
FD, = (16)
0 else
FD,=1 ke[l,dim] (17)

where FD, is the k™ food source; m is a random integer; rnd-
perm(x) is the permutation function of random integer x;
rnd, () is the function used to generate random integer; dim
is the number of dimensions; and 7 is an arbitrary number in
[0, 1].

Each hummingbird must constantly explore within a spe-
cific search region. However, any decision variable that does
not meet this criterion should be forwarded to the search re-
gion limit, which is given as:

BhO (it + 1)=
Lo" th(.i) (it+ 1)< Lo?
. . | 18)
Up? BhY (it+1)>Up"”  ke[l.B,].i e dim (

BhY(it+1) else
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where superscript (/) denotes the dimension of each design
variable.

The feeding source visit table is an important aspect of
conventional AHA for tracking the trajectories toward food
sources. Each hummingbird can select its favored food
source by evaluating it frequently [27]. Thus, (11) can be ad-
justed as:

VSTT,,=VSTT,;+1 j#kj#targetje[l.B,]  (19)
VSTkatarget:O (20)
VSIT, = | max (VSTT, )+1 j#kj=[LB,] (21)

where target is the favored food source.

The proposed IAHA includes several modifications to en-
hance the performance of the conventional AHA. The direct-
ed foraging pattern considerably improves, which is given as:

Bhnew, (it + 1)=(Bh,(it)— Bh,, (it)a- FD + Bh, ., (it) (22)
m=rand,(1,B,) m#k (23)

where rand, () denotes a uniform distribution function to gen-
erate a pseudorandom integer within the food souce B,

Directed foraging pattern is promoted by guiding the
search pathways out of the optimal solution and into various
alternative directions near other hummingbirds at each itera-
tion. Only the most relevant locations for hummingbird for-
aging are identified. Hence, the exploitative behavior can be
justified. Territory foraging patterns are incorporated into the
territorial foraging pattern as:

Bhnew, (it+1)=
Bhy(it)+b-FD-Bhy (if) rand< %
Bh,(ity+b- FD~(Bh, (it)~Bh,, (i1)) % <rand< % (24)
Bh, (ity+b-FD-(Bh, (it)~Bh, (if) rand> %

where rand is a randomized value within range [0,1]; and b
is a territorial parameter that takes a random value following
a Gaussian distribution function.

The territorial foraging pattern is enhanced in the pro-
posed IAHA by transferring different and fluctuating knowl-
edge from surrounding hummingbirds instead of depending
solely on individual hummingbird experiences. As a result,
hummingbirds are better equipped to look for a food source
in their vicinity.

Equation (25) describes a linear regulation with adjustable
parameter y, which increases linearly with iterations. Thus,
w limits the exploitative behavior and hummingbird foraging
activity. Territory foraging pattern described by (24) is em-
ployed by all hummingbirds in the beginning and demon-
strates 100% exploratory behavior. Exploitation using direct-
ed foraging pattern described by (22) increases, whereas ex-
ploration in territory foraging pattern described by (24) de-
creases with increasing the magnitude of parameter y.

it
max it

= (25)

The proposed IAHA addresses the time-dependent opera-
tional allocation of SVCs in DN, as depicted in Fig. 1.
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| Set B,, dim, max it, Lo, and Up|
)
| Apply (2) to randomize solution vectors of decision variables |
)
|Apply (11) to initialize feeding source visit table of hummingbirds|

| Read hummingbird solution|

| Relate SVC location and hourly output power |

| Run load flow for each loading level LV |

|Check limitations of dependent variables for each LV|
|

>
| Apply (11) to evaluate objective target (7F) |

Set k=1

| Generate arbitrary number 7 in [0,1] |

[

Apply (15) to estimate FD Y

| Apply (25) to evaluate (//|
N @ Apply (16) to estimate FD
Y Apply (17) to estimate FD

| Apply (24) to access territorial foraging pattern |

v
| Apply (22) to access directed foraging pattern |

| Check limits using (18) | | Check limits using (18) |
T S [kt ]
| Read hummingbird solution | |Read hummingbird solut10n|
!
| Update SVC location and hourly output power | | Record SVC location and hourly output power |
| Run load flow for each loading level LV | | Run load flow for each loading level LV |
|Check limitats of dependent variables for each loading level LV| |Check limitats of dependent variables for each loading level LV|
!
| Apply (11) to evaluate target value of objective function (1) | | Apply (11) to evaluate target value of objective function (1) |

Update VSTT, ; by (19) | | Update VSTT, ; by (19) and (21) | | Update V'STT, by (19) and (21) | | Update VSTT, by (19) and (20) |
L T

i
| Update location using (13) |
T

N

Ts k<B,?

| Set voltages adhere to permitted limits using (8) |

i=it1 | Update SVC locations and hourly output power |

| Run load flow for each loading level LV |
¥
| Check limits of dependent variables for each loading level LV|

)
| Apply (9) to evaluate target value of objective function (1) |

Is it>max it?

Fig. 1. Flowchart of proposed IAHA for solving time-dependent operational allocation of SVCs in DNs.
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IV. SIMULATION RESULTS

The proposed TAHA is evaluated on IEEE DN models
with 33 and 69 nodes (IEEE 33-bus DN and IEEE 69-bus
DN, respectively). Three different loading levels are used,
with each receiving a daily supply of 8 hours. Low, medium,
and high loading conditions (loading levels) are managed at
60%, 80%, and 100% of nominal loading, respectively [40].
The maximum number of SVCs for placement is three. The
highest capacity of the inserted SVC is 3000 kvar. First, a
compensation limit of 50% of the total reactive power con-
sumption is considered across three loading levels. Second,
the effects of varying the compensation limits on the perfor-
mance of the system are analyzed. The proposed IAHA of-
fers adaptive parameters for flight and territory while setting
only iterations and solution individuals, which is similar to
population metaheuristic algorithms. These two parameters
are set and fixed for all evaluated algorithms. For both the
proposed TAHA and conventional AHA, 20 search agents
and 100 iterations are set while considering three loading
levels, resulting in 15 decision variables. When the analysis
is extended to account for 24-hour load variations, the num-
ber of decision variables increases to 78. The algorithms are
implemented on a computer equipped with an Intel® Core™
i7-470K CPU at 4.00 GHz with 16.00 GB RAM.

A. IEEE 33-bus DN

The first evaluated DN has 33 nodes, 32 sections, and a
typical operating voltage of 12.66 kV. Regarding the nomi-
nal conditions, the total active, reactive, and apparent loads
are 3.715 MW, 2.3 Mvar, and 4.369 MVA, respectively [41].
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1) Loading Levels in IEEE 33-bus DN

In this part, 50% of the total reactive power consumption
is considered as the maximum financial limit. The proposed
IAHA is used and compared with the conventional AHA,
GBO, HBA, DMOA, SSA, and DE algorithm. Table I lists
the allocations of SVCs (IEEE 33-bus DN). Figrue 2 shows
the convergence characteristics of various algorithms (IEEE
33-bus DN). As indicated in Table I and Fig. 2, the proposed
IAHA achieves the highest annual cost saving of
$21735.725 while demonstrating the highest performance.
The conventional AHA provides annual cost saving of
$21672.883, ranking second. While the GBO ranks third
with annual cost saving of $21474.100. In addition, the DE
algorithm, HBA, and DMOA rank fourth, fifth, and sixth
with annual cost saving of $21466.900, $21078.800, and
$21015.600, respectively. SSA has the lowest efficiency of
the evaluated algorithms, with annual cost saving of

$15131.600.
22500
20000+ =T
17500+
215000 e
en
E 12500+ DE algorithm
& 10000} — DMOA
= — GBO
8 7500+ —_— ls-lé?a[i\
s000p =) £ — Conventional AHA
2500+ —— Proposed IAHA
1 11 21 31 41 51 61 71 81 91 101
Iteration

Fig. 2. Converging features of various algorithms (IEEE 33-bus DN).

TABLE I
ALLOCATIONS OF SVCs (IEEE 33-Bus DN)

Allocation of SVCs

Operational value (kvar)

Algorithm Annual cost saving ($) - - -
Number of installed buses ~ Rated value (kvar) High Medium Low
10 +130 130 127 102
AHA 21672.883 17 +181 46 171 181
30 +804 717 824 804
11 +321 232 292 321
Proposed IAHA 21735.725 17 +135 94 117 135
30 +692 615 692 676
7 +116 113 116 -33
GBO 21474.100 16 +136 136 134 124
30 +898 898 855 739
9 +328 328 285 165
DMOA 21015.600 14 +147 145 147 121
30 +651 583 651 511
SSA 15131.600 30 +574 574 247 181
32 +239 199 194 239
HBA 51078.800 13 +289 289 269 -29
30 +831 831 771 811
16 +279 264 206 279
DE algorithm 21466.900 30 +588 588 471 467
31 +271 271 271 228
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Figure 3 shows the voltage profile using the proposed
IAHA versus conventional AHA (IEEE 33-bus DN), where
initial scenario denotes the initial topology of the system
without adding any devices. The proposed IAHA demon-
strates significant voltage improvement across all loading
buses for three loading levels compared with conventional
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AHA. Specifically, the proposed IAHA increases the mini-
mum voltages by 2.59%, 2.34%, and 1.89%, elevating the
voltage magnitudes from 0.9037, 0.9244, and 0.944 (conven-
tional AHA) to 0.927, 0.946, and 0.962 at high, medium,
and low loading levels, respectively.
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Figure 4 shows a boxplot of cost savings of various algo-
rithms. Table II shows the robustness metrics of cost savings
of various algorithms (IEEE 33-bus DN). The proposed
IAHA demonstrates superior performance and robustness
compared with other algorithms, achieving the highest annu-
al cost saving. The proposed IAHA achieves the best, aver-
age, and worst annual cost savings of $21735.7, $20921.1,

Voltage profile based on proposed IAHA versus conventional AHA (IEEE 33-bus DN). (a) Low level. (b) Medium level. (¢) High level.

computational time of 20.21 s is required by DMOA. This
increase is due to the double-function evaluation per solu-
tion, whereas the other algorithms require a single function
evaluation per iteration.

TABLE II
ROBUSTNESS METRICS OF VARIOUS ALGORITHMS (IEEE 33-Bus DN)

and $19257.1, respectively. According to the average annual Alsorith Annual cost saving ($) Standard  Computational
cost saving, DE algorithm ranks second with annual cost sav- gorttm Best Average Worst deviation (§) time (s)
ings of $20318.0, whereas the conventional AHA ranks third  DE algorithm 21466.9 20318.0 18907.0  781.89 11.82
with annual cost savings of $20051.4. DMOA  21015.6 19897.4 17508.6 862.88 19.52
22500 GBO 214741 18339.0 149025  2528.66 12.53
. = 1 ‘ *? HBA 21078.8 12322.9 3967.0  4818.64 11.94
e?:017500 - " SSA 15131.6 12202.0 95468  1695.28 10.99
Z 12500 } ‘* C"nfgjfnal 21672.9 20051.5 17009.1  1268.23 11.66
g 730 ‘ Prl"[{’;fd 217357 20921.1 19257.1  787.44 11.63
2300 DE DMOA  GBO HBA SSA C‘onventiona‘l Proposed‘
algorithm AHA IAHA
Algorithm To evaluate the impacts of variations in the compensation

Fig. 4. Boxplot of cost savings of various algorithms (IEEE 33-bus DN).

Compared with the conventional AHA, the proposed
IAHA shows a small improvement of 0.29% in the best an-
nual cost saving. Nevertheless, the proposed TAHA provides
large improvements of 4.16%, 11.67%, and 37.91% for the
average annual cost saving, worst annual cost saving, and
standard deviation, respectively. On one hand, the computa-
tional time required for each algorithm highlights the effi-
ciency of the proposed IAHA in solving the optimization
problem of the IEEE 33-bus DN. The proposed IAHA has a
computational time of 11.63 s, being comparable with that
of other algorithms such as DE algorithm (11.82 s), AHA
(11.66 s), and SSA (10.99 s). On the other hand, a longer

limits on system performance, we analyse the proposed
IAHA across compensation limits ranging from 50% to
100% of the total reactive power load in 10% increments.
The proposed IAHA is applied to each compensation limit,
and the annual cost savings are shown in Fig. 5.

Increasing in the maximum reactive power compensation
limit enhances annual cost savings, but the improvement
rates vary significantly. For compensation limit increases
from 50% to 60% of the total reactive power load, the annu-
al cost saving increases from $21735.72 to $22935.8, that is,
an improvement rate of 5.23%. For compensation limit in-
creases from 60% to 70% of the total reactive power load,
the annual cost saving increases by 2.74%, whereas the annu-
al cost saving increases by 2.3% when the compensation lim-
it increases from 70% to 80% of the total reactive power
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load. In contrast, the improvement rate substantially decreas-
es to 0.97% and 0.49%, respectively, when the compensation
limit increases from 90% to 100% of the total reactive pow-
er load.
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Fig. 5. Annual cost saving of proposed IAHA under different compensa-
tion limits (IEEE 33-bus DN).

Figures 6 and 7 show the power losses and the minimum
voltage related to each loading level of different compensa-
tion limits (IEEE 33-bus DN). Large improvements in power
losses and the minimum voltages are observed at all loading
levels.
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Fig. 6. Power losses related to each loading level of different compensa-

tion limits (IEEE 33-bus DN).
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Fig. 7. The minimum voltage related to each loading level of different
compensation limits (IEEE 33-bus DN).

2) Hourly Loading Variation in IEEE 33-bus DN

The proposed IAHA is used to perform time-dependent op-
erational allocation of SVCs considering hourly loading vari-
ation. The amount of compensation limit is fixed at 80% of
the total reactive power load. Figure 8 shows hourly loading
profile in terms of the percentage of nominal loading condi-
tion. A comparative analysis between the proposed IAHA
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and the conventional AHA is conducted, with the correspond-
ing convergence characteristics in terms of annual cost sav-
ings depicted in Fig. 9. The results demonstrate that the pro-
posed IAHA achieves faster convergence, yielding an annual
cost saving of $22965.74, whereas the conventional AHA
achieves $22534.09, representing a 1.91% improvement in
annual cost saving.
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Fig. 8. Hourly loading profile in terms of percentage of nominal loading
condition.
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Fig. 9. Convergence characteristics of conventional AHA and proposed

IAHA (IEEE 33-bus DN).

The outputs are adjusted throughout the day by injection
of reactive power. The SVCs operate in the reactive power
injection mode throughout the day. Their reactive power out-
puts remain at high levels of more than 95% of their speci-
fied capacities during the operating hours (11: 00-18: 00),
which corresponds to the high loading level. Figure 10
shows the reactive power compensation of the proposed
IAHA under hourly loading variation.
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Fig. 10. Reactive power compensation of proposed IAHA under hourly
loading variation (IEEE 33-bus DN). (a) Bus 12. (b) Bus 30.
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In addition, Fig. 11 shows the improvements in power
loss and the minimum voltage of the proposed IAHA. The
proposed IAHA achieves consistent hourly power loss reduc-
tions exceeding 31%. Similarly, a large increase in the mini-
mum voltage is achieved, ranging from 1.24% to 2.89% at
04:00 and 16:00, respectively.
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Fig. 11. Improvements in power losses and the minimum voltage of pro-
posed IAHA (IEEE 33-bus DN). (a) Power loss. (b) The minimum voltage.

B. IEEE 69-bus DN

In this subsection, the evaluated DN has 69 distribution
nodes and 68 sections, with a typical operating voltage of
12.66 kV. For the nominal condition, the total active and re-
active loads are 3.8021 MW and 2.6947 Mvar, respective-
ly [42].

1) Loading Levels in IEEE 69-bus DN

As for the IEEE 33-bus DN, 50% of the total reactive
power load is considered as the maximum financial limit. Ta-
ble III lists the allocations of SVCs and annual cost savings.
Figure 12 shows convergence characteristics of different al-
gorithms (IEEE 69-bus DN). The proposed IAHA achieves
the highest annual cost saving of $24262.04 while demon-
strating the highest performance. The conventional AHA
ranks second with annual cost saving of $23791.3, while the
GBO ranks third with annual cost saving of $23567.079. In
addition, DE algorithm, DMOA, and HBA rank fourth, fifth,
and sixth with annual cost savings of $22789.45, $22451.285,
and $21036.073, respectively. It is worth noting that, SSA
provides the lowest efficiency of various algorithms, with
the annual cost saving of $18007.217.

Figure 13 shows a boxplot of cost savings of various algo-
rithms (IEEE 69-bus DN). Table IV highlights the robust-
ness metrics of various algorithms. Despite the moderate
computational time (13.36 s), the proposed IAHA outper-
forms the other algorithms in terms of robustness metrics,
achieving the highest best, average, and worst annual cost
savings ($24262.04, $23190.72, and $21796.22, respectively)
while maintaining the lowest standard deviation ($742.112).
While the proposed IAHA demonstrates a modest 1.94% im-
provement in the best annual cost savings compared with the
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conventional AHA, it substantially outperforms conventional
AHA regarding the average annual cost saving, worst annual
cost saving, and standard deviation by 5.67%, 23.9%, and
61.79%, respectively. This suggests that the proposed IAHA
provides superior optimization performance without exces-
sive computational overhead, making it practical and effi-
cient for real-world power system applications.

TABLE 111
ALLOCATIONS OF SVCS AND ANNUAL COST SAVINGS (IEEE 69-BUS DN)

Annual Allocation of SVCs  Operational value (kvar)
Algorithm cost Installed Rated . .
saving ($) node  value (kvar) High Medium  Low
Conven- 14 +183 146 183 102
tional 23791.30 61 +827 827 788 766
AHA 64 +126 126 94 125
19 +223 223 181 207
Proposed
IALA 24262.04 61 +685 685 677 579
64 +241 237 241 194
62 +557 557 452 332
DE 278045 63 w484 382 484 383
algorithm
69 +82 82 82 59
62 +393 393 358 275
DMOA  22451.28 63 +416 236 416 261
64 +332 309 332 303
61 +701 324 467 701
SSA 18007.22
64 +259 259 154 211
61 +321 321 321 96
HBA 21036.07
62 +618 618 618 277
21 +189 189 165 149
GBO 23567.08
61 +876 876 876 781
25000
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Fig. 12. Convergence characteristics of various algorithms (IEEE 69-bus
DN).
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Fig. 13.  Boxplot of cost savings of various algorithms (IEEE 69-bus DN).
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TABLE IV
ROBUSTNESS METRICS OF VARIOUS ALGORITHMS (IEEE 69-BUs DN)

) Annual cost saving ($) Stalfld?rd Compgta-
Algorithm deviation  tional time
Best Average Worst ©) (s)
DE 22789.5 214554  18809.30 941.67 12.97
algorithm
DMOA 224513 21174.1 18440.70  1290.25 20.21
GBO 23567.1  15569.1 7395.12  6708.39 13.82
HBA 21036.1 12437.8  4269.26  6815.09 13.01
SSA 20167.7 14045.6  9787.98  2705.18 12.06
Conventional
AHA 237913 218754 16587.70  1942.02 13.24
Proposed
IAHA 24262.0 23190.7 21796.20 742.11 13.36

The proposed IAHA is used to analyze the impact of vary-
ing compensation limits on the system performance. We
analyse the proposed IAHA across compensation limits rang-
ing from 50% to 100% of the total reactive power load in
10% increments. Figure 14 shows the annual cost saving of
proposed IAHA under different compensation limits (IEEE
69-bus DN).
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Annual cost saving ($)

23000
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Compensation limit (%)
Fig. 14. Annual cost saving of proposed IAHA under different compensa-

tion limits (IEEE 69-bus DN).

Higher compensation limits generally result in the in-
crease in annual cost savings, but the improvement rate de-
creases as the compensation limit increases. Annual cost sav-
ings grow considerably by 4.79% when the compensation lim-
it increases from 50% to 60% of the total reactive power load
and by 1.79% from 60% to 70% of the total reactive power
load. However, the improvement is reduced to 1.13%, 0.89%,
and 0.67% for the subsequent 10% increments up to 100%.

2) Hourly Loading Variation in IEEE 69-bus DN

In this part, the proposed IAHA and conventional AHA
are used for evaluation. Figure 15 shows the convergence
characteristics of the proposed IAHA and conventional AHA.

The proposed IAHA reduces the annual cost by
$26050.05, while the conventional AHA provides annual
cost saving of $24957.44, that is, a 4.37% increase in cost.
Figure 16 shows the benefits of power loss and the mini-
mum voltage provided by the proposed TAHA per hourly
load. A substantial decrease in power loss is obtained per
hour, which reaches at least 33.2%. Similarly, the lowest
voltage increases considerably with each hour, ranging from
1.14% to 2.31% at 04:00 and 11:00, respectively.
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Fig. 15. Convergence characteristics of conventional AHA and proposed

IAHA (IEEE 69-bus DN).

Figure 16 shows the reactive power compensation of the
proposed IAHA under hourly loading variation (IEEE 69-bus
DN), which requires the installation of three SVCs at buses
18, 61, and 62 and specifies the operating outputs of the
SVCs per hour. Their outputs adapt during the day under a
heavy supply of reactive power. Figure 17 shows the im-
provements in power losses and the minimum voltage of pro-
posed IAHA (IEEE 69-bus DN).
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Fig. 16. Reactive power compensation of proposed IAHA under hourly
loading variation (IEEE 69-bus DN). (a) Bus 18. (b) Bus 61. (c) Bus 62.

V. CONCLUSION

This paper presents an IAHA for the optimal placement
and sizing of SVCs aimed at maximizing the annual cost
savings in power loss and improving the voltage profile. The
proposed IAHA simultaneously considers several loading lev-
els. In addition, the SVC outputs are modulated by the load-
ing level. Furthermore, the installed SVC ratings are treated
as supplementary constraints related to the compensation lev-
els of the overall reactive demand to reflect the financial in-
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stallation capacity. The applicability of the proposed IAHA
is evaluated using the IEEE 33- and 69-bus DNs. The simu-
lation results show that the proposed IAHA outperforms the
conventional AHA and other state-of-the-art algorithms in
terms of annual cost savings. Moreover, a large increase in
the hourly minimum voltage is achieved. Varying compensa-
tion levels reveals that increasing the maximum reactive
power compensation limit leads to higher cost savings. How-
ever, the benefits decrease as the compensation level increas-
es, emphasizing the need for balanced compensation.
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Fig. 17. Improvements in power losses and the minimum voltage of pro-
posed IAHA (IEEE 69-bus DN). (a) Power loss. (b) The minimum voltage.

Although the proposed IAHA enhances SVC allocation,
savings, and voltage regulation, it has some limitations.
Equipment aging, maintenance, failure, harmonic distortion,
transient stability, and power quality issues remain to be ad-
dressed. In addition, the validation is limited to the IEEE 33-
bus and 69-bus DNs, leaving its scalability to larger net-
works untested. Additionally, we did not evaluate the impact
of renewable energy sources on reactive power compensa-
tion. Although hourly load variations are considered, real-
world demand patterns influenced by weather and consumer
behavior remain to be studied. Future research can further re-
fine the proposed IAHA by addressing its limitations and ex-
panding its applicability. It can incorporate equipment aging,
maintenance schedules, and failure models to improve the
long-term reliability of SVC allocation. Analyzing the im-
pact of SVC operation on power quality issues will enable a
more comprehensive performance assessment. Validating the
scalability of the proposed IAHA in large-scale DNs and in-
tegrating renewable energy sources will lead to more adap-
tive compensation strategies. Furthermore, exploring ma-
chine learning for load forecasting and stochastic optimiza-
tion will likely enhance the effectiveness of the proposed
IAHA.
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