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Abstract——The proliferation of distributed energy resources 
and time-varying network topologies in active distribution net‐
works presents unprecedented challenges for network opera‐
tors. While reinforcement learning (RL) has shown promise in 
addressing network-constrained energy scheduling, it faces diffi‐
culties in managing the complexities of dynamic topologies and 
discrete-continuous hybrid action spaces. To address these chal‐
lenges, a graph-based safe RL approach is proposed to learn dy‐
namic optimal power flow under time-varying network topolo‐
gies. This proposed approach leverages graph convolution oper‐
ators to handle network topology changes, while safe RL with 
parameterized action ensures policy development. Specifically, 
the graph convolution operator abstracts key characteristics of 
the network topology, enabling effective power flow manage‐
ment in non-stationary environments. Besides that, a parameter‐
ized action constrained Markov decision process is employed to 
handle the hybrid action space and ensure compliance with 
physical network constraints, thereby accelerating the deploy‐
ment of safe policy for hybrid action spaces. Numerical results 
demonstrate that the proposed approach efficiently navigates 
the discrete-continuous decision space while accounting for the 
constraints imposed by the dynamic nature of power flow in 
time-varying network topologies.

Index Terms——Active distribution network, distributed energy 
resource, reinforcement learning, graph convolution operator, 
network topology, hybrid action space, optimal power flow.

I. INTRODUCTION 

OPTIMAL power flow (OPF) is central to power system 
operation and is viewed as a complex economic, elec‐

trical, and computational problem [1]. The ubiquitous distrib‐
uted energy resources (DERs) within active distribution net‐
works (ADNs), such as photovoltaics (PVs) and energy stor‐
age systems (ESSs), emphasize the importance of managing 
their dynamic nature and uncertainties [2]. The emergence of 
smart meters and the unprecedentedly large volumes of data 
have triggered a shift in ADN control from reliance on local 
control loops to grid-state responsiveness [3].

Viewed from the perspective of ADN operation, the dy‐
namic optimal power flow (DOPF) involves the strategic dis‐
patching of available resources to minimize operating costs 
and network losses simultaneously across varying time hori‐
zons [4]. Distinguished from the static OPF paradigm, 
DOPF emphasizes the integration of time-couple technolo‐
gies, wherein decision-making spans multiple time horizons 
to effectively manage flexible resources such as ESSs. Fur‐
thermore, the trend in accommodating the high penetrations 
of renewable energy introduces significant stochasticity and 
fluctuations. Consequently, there is a critical need to tackle 
the inherent uncertainty associated with formulating DOPF 
to ensure the effectiveness and safety of ADN operations.

Prior works on modeling DOPF with high penetrations of 
renewable energy have predominantly focused on uncertain-
aware mathematical programming, deep learning (DL), and 
reinforcement learning (RL) approaches. For characterizing 
renewable energy generation uncertainties, the uncertain-
aware mathematical programming approaches concentrate on 
robust optimization (RO), stochastic optimization (SO), and 
model predictive control (MPC). The robust OPF methodolo‐
gies are investigated via leveraging convex hull [5], two-
stage adaptive RO [6], and scenario-based RO [7]. Despite 
RO has the ability to handle uncertainty, it tends to yield 
conservative solutions as it prioritizes worst-case scenarios 
within the uncertainty set. The SO-based approaches aim to 
characterize uncertainties via probabilistic-based or scenario-
based methods. The probabilistic-based methods such as 
chance-constrained [8], conditional value at risk [9], and ro‐
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bust SO [10] introduce a hyperparameter to quantify and 
manage their tail risks. However, these hyperparameters lack 
interpretability, making it challenging to understand their 
risk implications for risk management. The scenario-based 
methods, like sample average approximation (SAA) [11], 
aim to approximate uncertainties by generating discrete sce‐
narios for representing potential realizations of uncertain pa‐
rameters. While these methods are straightforward for esti‐
mating the expected value of objectives, they face the curse 
of dimensionality and low sample efficiency in large-scale 
optimization problems. The MPC-based framework is pre‐
sented in [12], [13] to optimize power flow and coordinate 
demand response jointly within interconnected cluster of 
ADNs via its predictive and self-correcting capabilities. 
Nonetheless, MPC necessitates solving optimization prob‐
lems online, which demands substantial computational re‐
sources and relies heavily on accurate system dynamic mod‐
els. The measurement noise and estimation error could ad‐
versely affect long-term performance. It is worth noting that 
the aforementioned uncertain-aware mathematical program‐
ming approaches rely on linearized or second-order cone re‐
laxation to approximate the non-convex nature of power 
flow. However, these approaches neglect power loss compo‐
nents, resulting in an incomplete representation of ADNs 
with high ratio of resistance to reactance [14]. Besides that, 
the original power flow formulation, particularly involving 
integer variables, is computationally intensive due to its NP-
hard nature. Consequently, finding a trade-off solution be‐
tween computational efficiency and precision in the govern‐
ing equations of power flow remains a significant challenge.

The DL-based DOPF approach aims to predict the solu‐
tion of alternating current (AC) OPF problem directly via le‐
veraging the powerful learning ability of deep neural net‐
works (DNNs). References [15] and [16] propose a DNN-
based approach for addressing voltage-constrained AC-OPF 
problems, while [17] embeds the discrete topology represen‐
tation into the continuous admittance space to train a DNN 
for learning the corresponding OPF solution with flexible to‐
pology. However, the temporal-coupled devices are not ade‐
quately considered in these approaches, which are essentially 
static OPFs. To incorporate the temporal-coupled devices, 
[16] presents a convolutional neural network-based approach 
to coordinate ESSs and further formulate OPF based on the 
dataset solved as a mixed-integer programming problem. 
Nonetheless, it is non-trivial and computationally expensive 
to prepare a comprehensive dataset associated with integer 
decision variables and is considered NP-hard for large-scale 
problems. Under this condition, the unsupervised learning 
paradigm is proposed in [18] to solve OPF. Although the pro‐
posed unsupervised learning does not necessitate the ground 
truths, the weight pertaining to different sub-loss metrics 
should be carefully designed, and unreasonable assignments 
could result in violating security constraints or converging in‐
to sub-optimal solutions.

RL and its variants have emerged as a promising para‐
digm for tackling DOPF problems, with deep RL in [19] and 
safe RL in [20] - [22]. Specifically, [19] introduces penalty-
based approaches to enforce action feasibility, but manually 

setting these penalties can lead to sub-optimal convergence. 
The Lagrangian-based approaches [20]- [22] are state-of-the-
art RL approaches to formulate operational constraints as an 
augmented Lagrangian function. However, these approaches 
focus on either continuous action domains or discrete action 
spaces. Nevertheless, realistic ADN operations involve both 
discrete actions such as those from on-load tap changers 
(OLTCs), and continuous actions, including those from PVs 
and ESSs. The neglect could result in an incompetent ability 
to simulate ADN operation conditions for deriving OPF. 
Moreover, the existing RL-based approaches are sensitive to 
specific topologies within ADNs. Changes in network topolo‐
gy lead to a non-stationary environment, thereby disrupting 
the stationary assumptions underlying ADN operation. Spe‐
cifically, the network topology changes cause identical pow‐
er injections to yield varying power flow outcomes. This 
variability results in fluctuations in the associated rewards, 
posing significant challenges in accurately approximating po‐
tential returns. Therefore, it is an ongoing topic to integrate 
the topology information into RL-based approaches for coor‐
dinating prevalent discrete-continuous hybrid action domains 
in ADNs with time-varying network topologies.

In this paper, we endeavor to propose a graph-based safe 
RL approach for tackling DOPF with hybrid action space in 
ADNs with time-varying network topologies. The proposed 
approach consists of three sub-components to simulate 
DOPF in ADNs with time-varying network topologies: ① 
parameterized action to model discrete-continuous hybrid ac‐
tion space; ② constrained Markov decision process (CMDP) 
for modeling the operational constraints in ADN; and ③ em‐
bedding graph structure into RL for abstracting topology fea‐
tures. These integrations enable the proposed approach to 
learn DOPF while accounting for the dynamic, stochastic in‐
herent, and topological characteristics in ADNs. The main 
contributions are summarized as follows.

1) A novel approach is proposed to implement DOPF in 
ADNs with time-varying network topologies. In this ap‐
proach, the graph convolution operator is advocated for pa‐
rameterized action CMDP on graph to address heterogeneous 
environments, uncertainties, discrete-continuous action space, 
and time-coupled devices during the operation of ADNs.

2) The graph convolution operator is integrated into actor-
critic networks of the proposed approach. This allows the 
agent to capture graph-based knowledge from ADN topology 
and learn the optimal mapping among nodal injections, grid 
topologies, and DER generations.

3) To deal with safe explorations in ADN with discrete-
continuous hybrid action space, primal-dual parameterized 
action twin delayed deep deterministic policy gradient (PD-
PATD3) algorithm is adopted to implement DOPF. The PD-
PATD3 employs a hybrid actor-critic network to estimate dis‐
crete and continuous action jointly for learning DOPF.

The remainder of this paper is organized as follows. Sec‐
tion II describes the mathematical formulation of DOPF. Sec‐
tion III details the formulation of the parameterized action 
CMDP on graph for DOPF, while Section IV proposes the 
graph convolution-based PD-PATD3 for implementing 
DOPF. Section V presents experimental results on the simpli‐
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fied United Kingdom Generic Distribution System (UKGDS) 
case. The conclusions are stated in Section VI.

II. MATHEMATICAL FORMULATION OF DOPF 

We consider an ADN with N nodes denoted by the set of 
buses N = {12N}, and the set of branches is represented 
by L. The set of DERs and the set of loads are denoted as 
ΩG and ΩD, respectively. The objective of DOPF is to find 
the optimal set-points of DERs and OLTCs to minimize the 
overall operational cost and adhere to corresponding con‐
straints across multiple time horizons.

A. DERs

The DERs considered in this paper are inverter-based re‐
sources. Therefore, they can simultaneously consume or gen‐
erate active and reactive power through the coordination of 
inverters. The operation models of ESSs and PVs are intro‐
duced in detail below.
1)　ESSs

The operational constraints of ESSs are related to the 
charging/discharging power, energy context, and converter 
capacity. Thus, the feasible set of ESS is shown in (1).

Z c
G ={(pcqc ):

-
p

d
£ pc £ p̄c-E £Et £ Ēp2

c + q2
c £ s̄2

c } (1)

where pc and qc are the active and reactive power converted 
by the ESS converter, respectively; 

-
p

d
 and p̄c are the limits 

of discharging and changing power, respectively; Et is the en‐
ergy context of ESS at time slot t; -E and Ē are the lower 
and upper limits of the energy context, respectively; and s̄c 
is the capacity of the ESS converter.

The dynamic process of ESSs is shown in (2).

Et + 1 =Et + (ηc [pct ]
+ - ηd [pct ]

+ )Dt (2)

where ηc and ηd are the charging and discharging efficien‐
cies, respectively; [×]+ denotes the max(×0); pct is the active 
power converted by the ESS converter at time slot t; and Dt 
is the interval of the time slot. It is worth noting that the 
charging and discharging efficiencies are subject to the con‐
straints ηc £ 1 and 1/ηd £ 1.
2)　PV Systems

The operation model of inverter-based PV accounts for 
the curtailment of active power. Thus, the feasible set of PV 
is described in (3).

Z pv
G ={(ppvqpv ):0 £ ppv £ p̄pvp

2
pv + q2

pv £ s̄2
pv } (3)

where ppv and qpv are the active and reactive power from the 
PV converter, respectively; p̄pv is the maximum active power 
output of the PV inverter; and s̄pv is the capacity of the PV 
converter.

B. OLTCs

The OLTC regulates the voltage ratio of an electric trans‐
former by adjusting the turn ratio. The different voltage ra‐
tios could result in differentiated power flows and further im‐
pact nodal voltage and branch flow across the ADNs. The 
operation model of OLTC is shown in (4).

V = (1 + α × Tpt )Vsub (4)

where V is the root voltage of ADN; Vsub is the rated second‐

ary voltage magnitude of the substation transformer; Tpt is 
the position of the OLTC at time slot t; and α is the change 
ratio per step.

C. Network Model

The AC power flow equations are shown in (5). It is 
worth noting that AC power flow is a non-convex constraint, 
rendering a relaxation gap for convex optimization approach‐
es.

Pi =∑
k = 1

N

ViVk (Gik cos θik +Bik sin θik ) (5a)

Qi =∑
k = 1

N

ViVk (Gik sin θik +Bik cos θik ) (5b)

where Pi and Qi are the net injected active and reactive pow‐
er at bus i, respectively; Gik and Bik are the real and imagi‐
nary elements of the bus admittance matrix, respectively; Vi 
is the voltage magnitude at bus i; and θik is the voltage 
phase angle difference between bus i and bus k. In scenarios 
where distribution networks exhibit limited historical data or 
low observability, a data-driven state estimation algorithm 
[23] or matrix completion-based state estimation model [24] 
is employed to estimate the operational state of the distribu‐
tion network. In such cases, state estimation algorithms are 
employed to replace the AC power flow equations. This sub‐
stitution enables the provision of accurate power flow out‐
comes despite the limited availability of observational data. 
Besides that, if the prior knowledge about network parame‐
ters is unavailable, the surrogate model can be developed for 
mapping the power injections and power flow, even if with 
unknown distribution network topology and parameter [25].

D. Objective Function

The objective of DOPF is to minimize the energy pur‐
chase cost from the wholesale power market, operational 
cost of DERs, and OLTC adjustment cost while satisfying 
the operational constraints of the network and DER. The for‐
mulation for DOPF is shown in (6). It is worth noting that 
the reactive power cost aims to compensate individual gener‐
ators/bulk systems that provide additional voltage support, 
which is aligned with economic principles in the competitive 
market [26].

min
é

ë

ê
êê
ê ù

û

ú
úú
úπ p

t P s
t + π

q
t Qs

t + ∑
iÎΩG

(σ p
i |P G

it| + σ
Q
i |QG

it|)+ σ
kDkt (6a)

s.t.

P s
t = ∑

iÎΩD

P D
it + ∑

(ij)ÎL
I 2

ijt Rij - ∑
iÎΩG

P G
it (6b)

Qs
t = ∑

iÎΩD

QD
it + ∑

(ij)ÎL
I 2

ijt Xij - ∑
iÎΩG

QG
it (6c)

-V £Vit £
-
V (6d)

P 2
ijt +Q2

ijt £
-
S

2
ij (6e)

(Pijt - I 2
ijt Rij )

2 + (Qijt - I 2
ijt Xij )

2 £ -
S

2
ij (6f)

(1)-(5) (6g)
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where P s
t  and Qs

t are the total active and reactive power im‐
ported from the wholesale market at time slot t, respectively; 
π p

t  and π q
t  are the time-of-use (TOU) prices of active and re‐

active power at time slot t, respectively; σ p
i  and σ q

i  are the 
levelized unit operational costs of DERs in terms of active 
and reactive power, respectively; P D

it and QD
it are the aggre‐

gated active and reactive power demands of node i at time 
slot t, respectively; σ k is the unit per-tap cost of OLTC; Dkt =
|Tpt - Tpt - 1 | is the tap position change at time slot t; Rij and 
Xij are the inverses of Gik and Bik, respectively; P G

it and QG
it 

are the active and reactive power of the DERs at time slot t, 
respectively; Iijt is the current at line (ij)ÎL at time slot t; 
Pijt and Qijt are the inflow active and reactive power at line 
(ij)ÎL at time slot t, respectively, whereas the outflow ac‐
tive and reactive power is denoted as Pijt - I 2

ijt Rij and Qijt -
I 2

ijt Xij, respectively; Vit is the voltage magnitude at bus i at 
time slot t; -V and 

-
V are the limitations of voltage magnitude; 

and 
-
S ij is the thermal constraints of each line. Formula (6a) 

is the objective function of the DOPF problem. Formulas 
(6b) and (6c) represent the active and reactive power bal‐
ance among ADNs. Formula (6d) is the limit of the voltage 
ranges among the nodes in ADN, while (6e) and (6f) are the 
complex flow constraints to ensure that the thermal con‐
straints are not violated in both directions of each line in 
ADN.

III. FORMULATION OF PARAMETERIZED ACTION CMDP ON 
GRAPH FOR DOPF 

The DOPF is essentially a sequential decision problem, 
where the distribution network operator (DNO) acts as an 
agent to interact with ADNs based on the current observa‐
tions. The goal of RL-based DOPF formulation is to learn a 
policy that maximizes the cumulative discount reward while 
minimizing the cumulative discount cost across horizons. To 
achieve economic power flow management while adhering 
to operational constraints, the CMDP framework is proposed 
to simulate the dynamic behavior of DERs and OLTC opera‐
tions within ADNs. Given that the coordination of DERs 
and OLTCs involves discrete-continuous hybrid action space, 
the parameterized action is leveraged to effectively manage 
this hybrid action space. To further accommodate time-vary‐
ing network topologies, a graph structure is incorporated in‐
to parameterized action CMDP, reformulating it as a parame‐
terized action CMDP on graph, which consists of a tuple 
SHTRCγT . S is the state of environments. H is the 

hybrid action space. T is the state transition function to the 
next state. R is the reward function given its state and ac‐
tion, while the cost function C is the penalty. γÎ[01] is the 
discount factor. T is a horizon. The main element associated 
with the parameterized action CMDP on graph is examined 
as follows.

A. State

To implement the DOPF, the DNO agent makes its deci‐
sion based on the state of the parameterized action CMDP 
on graph, including the power injection, operational state of 
DERs, OLTC position, and power price. These elements can 

be categorized into two aspects: ① graph-agnostic state, 
which is represented by a flattened vector in the form sg

t =
[EtP̄pvtTptπ

p
t π

q
t ], where P̄pvt is the maximum PV active 

power generation; ② graph-based state sg
t =[P D

t Q
D
t ]ÎRN ´ 2, 

which is denoted as a matrix to represent the active and reac‐
tive power demand within ADNs, and P D

t = (P D
it ), QD

t = (QD
it ), 

i = 12N. The graph-agnostic state allows the DNO agent 
to understand the situation of DERs, OLTCs, and the power 
market, while the graph-based states enable it to abstract crit‐
ical features of power demand amid topology changes. 
These states could orientate appropriate guidance for imple‐
menting DOPF under a time-varying network topology. It is 
worth noting that the levelized operational costs of DERs 
and OLTCs are assumed to be fixed over the long term, giv‐
en their service lives of up to 20 years and 40 years, respec‐
tively. In scenarios where these costs vary over time, such 
variations can be integrated into graph-agnostic states to en‐
sure the algorithm remains robust with the generalization ca‐
pabilities of neural networks.

B. Hybrid Action

The action of the DNO agent contains the discrete action 
for changing OLTC taps and continuous action for active 
and reactive power generation of DERs. Thus, it is modeled 
as a hybrid action space, which is shown in (7).

H ={(kxk |) xkÎXk"kÎK}} (7)

where K ={012K} is the set of OLTC taps; xk =
[pcqcppvqpv ] is the vector of active and reactive power 
generation of DERs; and Xk =Z c

GZ pv
G  is the feasible opera‐

tion region of DERs.

C. Reward

Given that the RL-based technique aims to maximize cu‐
mulative rewards, while the original DOPF formulation fo‐
cuses on minimizing operational costs. Under this condition, 
the snapshot of negative DOPF objective function is adopted 
as the reward function within the parameterized action 
CMDP on graph, as shown in (8). It is observed that the re‐
ward function can be represented as R:S ´H®R, which is 
a function of the graph-agnostic and graph-based states and 
the hybrid action. These state and action elements under‐
score the significance of simultaneously incorporating dis‐
crete-continuous hybrid action spaces and ADNs with time-
varying network topologies to enable reward formulation for 
implementing DOPF.

rt =-π
p
t P s

t - π
q
t Qs

t - ∑
iÎΩG

(σ p
i |P G

it| + σ
Q
i |QG

it|) - σ
kDkt (8)

D. Cost

The cost of the DNO agent includes a set of auxiliary cost 
functions C ={c1c2cm } to reflect the operational con‐
straints of DERs in (1) and (3), and the operational con‐
straints of ADNs in (6d)-(6f). Under this condition, the cost 
of the proposed parameterized action CMDP on graph is re‐
formulated as (9), which is denoted as C:S ´H®R to evalu‐
ate the immediate cost associated with a state-action pair. It 
is worth noting that the negative design of cost functions 
aims to minimize the degree of violating operational con‐
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straints.

ì
í
î

c1: =Et -
-
E £ 0

c2: = -E -Et £ 0
(9a)

c3: = p2
ct + q2

ct - s̄2
c £ 0 (9b)

c4: = p2
pvt + q2

pvt - s̄2
pv £ 0 (9c)

ì
í
î

ïï
ïï

c5: =Vit -
-
V £ 0

c6: = -V -Vit £ 0
(9d)

c7: =P 2
ijt +Q2

ijt -
-
S

2
ij £ 0 (9e)

c8: = (Pijt - I 2
ijt Rij )

2 + (Qijt - I 2
ijt Xij )

2 - -
S

2
ij £ 0 (9f)

where pct and qct are the active and reactive power convert‐
ed by the ESS converter at time slot t, respectively; and ppvt 
and qpvt are the active and reactive power from the PV con‐
verter at time slot t, respectively.

E. State Transition

The state transition is denoted as T:S ´H®S to specify 
the transition of the current state to the next state. It is 
worth noting that both explicit and implicit state transition 
functions exist in this work. The explicit state transitions 
have specific physical laws to guide their state, like ESS and 
OLTC in (2) and (4), respectively. The implicit state transi‐
tions include PV generation, TOU price, and power demand, 
and the proposed approach aims to learn its internal state 
transition functions as a data-driven paradigm.

The objective of the DNO agent is to learn a policy π:
S®H to maximize the expected discounted cumulative re‐
ward while all functions are satisfied, which is shown 
in (10).

max J(π)=Eτ  π
é

ë
ê
êê
ê ù

û
ú
úú
ú∑

t = 0

T

γtrt (s tktxkt ) (10a)

Jci
(π)=Eτ  π

é

ë
ê
êê
ê ù

û
ú
úú
ú∑

t = 0

T

γtcit (s tktxkt ) £ di    "ciÎ C (10b)

where J(π) and Jci
(π ) are the objective function of expected 

discounted cumulative reward and cost function, respective‐
ly; E is the expection funcion; rt (s tktxkt ) and cit (s tktxkt ) 
are the reward and cost at time slot t, resepctively; di ³ 0 is a 
tolerance parameter, which restricts the violation of con‐
straint (9) within a small value; and s t ={sn

t s
g
t }, kt, and xkt 

are the state set, discrete action, and continuous action at 
time slot t, resepctively. This objective reformulates DOPF 
in an RL framework and is further addressed using a La‐
grangian approach. It is worth noting that the RL framework 
involves multiple periods, which are evaluated using Q-learn‐
ing and improved through policy gradient to maximize La‐
grangian function. The detailed policy evaluation and im‐
provement procedure are presented in Section IV-B.

IV. GRAPH CONVOLUTION-BASED PD-PATD3 FOR 
IMPLEMENTING DOPF 

In this section, a novel graph convolution-based PD-
PATD3 is introduced to address DOPF represented by param‐

eterized action CMDP on graph. The proposed approach con‐
sists of two components: ① graph convolution-based actor-
critic networks; and ② PD-PATD3. Specifically, graph con‐
volution-based actor-critic networks are designed to capture 
key characteristics among graph-based and graph-agnostic 
states. The parameters of the aforementioned actor-critic net‐
work are updated via the PD-PATD3, ensuring effective poli‐
cy learning and robust decision-making within dynamic net‐
work environments.

A. Graph Convolution-based Actor-critic Networks

The existing actor-critic networks are good at capturing 
hidden patterns of Euclidean data (e.g., images, text, and vid‐
eos), but fail to facilitate the non-Euclidean domains repre‐
sented as graphs. In this work, the graph convolution opera‐
tor (GCO) is advocated for integration with actor-critic net‐
works to accommodate the power demand under the time-
varying network topologies. The proposed framework of 
graph convolution-based actor-critic networks is shown in 
Fig. 1.

To abstract the graph-based state of the power demand 
within ADN, the GCO is advocated to form the normalized 
Laplacian matrix of the graph on topology. The formulation 
of GCO is shown in (11).

G = D͂
-

1
2 A͂D͂

-
1
2 (11)

where G is the graph convolution operator; A͂ is the adjacen‐
cy matrix of the original graph on ADN topology with self-
loops; and D͂ is the diagonal degree matrix of A͂, whose ele‐
ment is denoted as D͂ii =∑

j

A͂ij. It is worth noting that GCO 

GÎRN ´N can be viewed as a graph-based feature based on a 
specific ADN topology.

Under this condition, the graph state and GCO are fed in‐
to the neural network jointly to formulate the graph convolu‐
tion network (GCN) [27], which is shown in (12).

H l + 1
g = σ(GH l

gW
l

g ) (12)

where H l
g is the entry of layer l within graph convolution 

Output

Vector concatenation

Graph-based state (stg) Graph-agnostic state (stn)

Graph-convolution layer Multi-layer perceptions

Hg
l

Hg
l|| f(stn;θn)

f(stn;θn)

 Graph-based feature Graph-agnostic feature

Multi-layer perceptions

Neural network; Input/output

Input state

Fig. 1.　Framework of graph convolution-based actor-critic networks.
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layer and it is worth noting that H 0
g = sg

t  for the input layer; 
W l

g is the vector of parameters of graph convolution layer; 
and σ is the activation function.

The final outputs of the proposed framework of graph con‐
volution-based actor-critic networks are implemented using 
multilayer perceptions (MLPs). The input data comprise 
graph-based features abstracted from the GCN and graph-ag‐
nostic features abstracted from the MLP, as shown in (13).

O =MLP(H l
g‖f (sn

t ; θn )) (13)

where MLP(×) is the MLP function; ‖ denotes the vector 
concatenation; f is the MLP embedding function with param‐
eters θn; and O is the final output of the proposed frame‐
work of graph convolution-based actor-critic networks.

B. PD-PATD3

The proposed PD-PATD3 is a variant of twin delayed 
deep deterministic policy gradient (TD3) algorithm with the 
primal-dual approach to constrain a safe exploration and pa‐
rameterized action to facilitate discrete-continuous hybrid ac‐
tion space [28], [29]. For the primal-dual RL approach, the 
Lagrangian relaxation procedure is advocated to solve the 
CMDPs, which is shown in (14).

L(πλ)= J(π)-∑
i

λi (Jci
(π)- di ) (14)

where λ ={λ1λ2λm } is the set of Lagrangian multipliers. 
Under this condition, the constrained problem (14) is refor‐
mulated as the unconstrained dual problem, which is shown 
in (15).

(π*λ* )= arg min
λ ³ 0

max
π
L(πλ) (15)

where π* and λ* are the optimal policy and Lagrangian multi‐
plier, repsectively.

The parameterized action is generated via π(sn
t s

g
t ) and 

represented by ht ={ f (1)f (2)f (K)x}, where f (×) and x are 
the representations of discrete action and continuous action, 
respectively. Under this condition, the target discrete action 
is denoted as k = arg max

i
f (i). For evaluating the policy in 

terms of Q-value, TD3 is introduced to aggregate the state 
s t ={sn

t s
g
t } and hybrid action to calculate the Q-value via the 

graph convolution-based critic, which is shown in (16).

Lr (θr )=EDé
ë

ê
êê
ê ù

û

ú
úú
ú( )rt + γ min

j = 12
Q'rj( )s t + 1h

⌣
t + 1

-Qr (s tht )
2

(16a)

ì
í
î

ïï

ïïïï

h
⌣

t + 1 = π' (s t + 1 )+ ε
⌣

ε
⌣

~clip(N (0σ2 )-ςς)
(16b)

where Lr (×) is the loss function of critic network; D is the re‐

play buffer of transitions; ε
⌣

 is the policy noise and is 

clipped by the edge value ς; h
⌣

t + 1 is the clipped target action; 
Qr (×) and Q'rj (×) are the Q-function and target Q-function 
with parameters θrj and θ -

rj, respectively; N (0σ2 ) is the zero-
means Gaussan distribution with variance σ2; π' (×) is the tar‐
get actor; and clip(×) is the clip function with the limitions of 
-ς to ς.

For estimating the Q-value of the cost function, the cost 

value function is advocated to estimate its discount cumula‐
tive costs. The temporal difference error of the cost function 
is shown in (17).

Lci
(θci

)=ED [(zit-Qci
(s tht ))

2 ] ciÎ C (17)

where zit = ct + γQ'ci
(s t + 1π' (s t + 1 )) is the target of discount cu‐

mulative cost in terms of ciÎ C, and Q'ci
(×) is the target cost 

function with parameters θ -
ci
; and Qci

(×) is the cost function 

with parameters θci
.

The actor is updated by applying the policy gradient algo‐
rithm to improve the Lagrangian relaxation function L(πλ) 
regarding the parameters of the actor, which is shown 
in (18).

Ñθπ
=ED [Ñπ(θπ )L(πλ)Ñθπ

π(θπ )] (18)

where Ñ is the gradient operator; and θπ is the parameter of 
the actor to generate the policy π based on the state.

The Lagrangian multipliers are updated by using the sim‐
ple dual gradient ascent, which is shown in (19).

Ñλi
=ED [Qci

(s tht )- di ]
+ ciÎ C (19)

The target network is updated via the soft update ap‐
proach, and the formulation is shown in (20).

θrj¬ τθrj + (1 - τ)θ -
rj    j ={12} (20a)

θci
¬ τθci

+ (1 - τ)θ -
ci
    "ciÎ C (20b)

θπ¬ τθπ + (1 - τ)θ -
π (20c)

where τ is the soft parameter for target networks with τ 1; 
and θ -

π is the parameter of target actor network.
The pseudo-code of the proposed graph convolution-based 

PD-PATD3 is shown in Algorithm 1.

Initially, the DNO agent collects experiences by interact‐
ing with the ADNs and adding them to the replay buffer D. 
If the collected experience instances exceed the minimum 

Algorithm 1: graph convolution-based PD-PATD3

Initialize: θr1, θr2, θci
, θπ, α, βi, d, Nl, and D

for episode changing from 1 to E do

  Reset initial state s0

  for time slot t changing from 1 to T do

    ht  πθπ (st )+ εε N (0σ)

    Execute hybrid action ht and get new state st + 1, reward rt, and cost ct

    Store (sthtrtctst + 1 ) in D
    if Nl is larger than the batch size then

      Sample a mini-batch replay buffer {stlhtlrtlctlst + 1l }
Nl

l = 1 from D
      Update θr1 and θr2 via minimizing (16)

      Update θci
 via minimizing (17)

      if t mod d then

        Perform policy gradient to actor: θπ¬ θπ + αÑθπ

        Update Lagrangian multipliers via gradient ascent λi¬ λi + βiÑλi

        Update target network via (20)

      end

    end

  end

end
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batch size Nl, the temporal difference error is formulated to 
update the parameters of the critic and cost network by mini‐
mizing (16) and (17), respectively. The actor is updated via 
(18) with the policy gradient transmitted from the critic and 
cost network with learning rate α, while the Lagrangian mul‐
tipliers are updated via gradient ascent (19) after d steps of 
delay with learning rate βi. During the execution stage, the 
actor directly aggregates graph-agnostic states and graph-
based states. It is worth noting that the network models of 
actor, critic, and cost are all GCN, which can facilitate the 
proposed graph convolution-based PD-PATD3 to enable 
DOPF under the time-varying network topologies.

V. EXPERIMENTAL RESULTS 

In this section, the experimental results are provided to 
evaluate DOPF performance in ADNs with time-varying net‐
work topologies based on the proposed graph convolution-

based PD-PATD3. The algorithms are implemented in Py‐
torch and run on a PC with Intel(R) Core(TM) i9-10900X CPU.

A. Experimental Setup

The proposed graph convolution-based PD-PATD3 for 
DOPF is verified via a simplified UKGDS case, where the 
voltage and branch congestion constraints can be found in 
[30]. The original network topology is shown in Fig. 2(a) 
and it is varied every 24 hours. The network topologies for 
the next 5 days are shown in Fig. 2(b)-(f), respectively. The 
load profiles are the daily electricity consumptions of 100 
low-voltage end users randomly aggregated from [31], while 
the PV generation profile is sourced from [32]. The techni‐
cal parameters of ESSs are from [33] and the levelized oper‐
ational costs of DERs are 3 $/MWh for active power and 1 
$/Mvarh for reactive power, respectively [34]. The TOU 
price is selected from [35], while the levelized cost per tap 
of OLTCs is set to be $3 [36].

B. Performance Evaluation of Cumulative Rewards

To demonstrate the effectiveness of the proposed approach 
for implementing DOPF in ADNs, we consider other two 
graph-based safe RL approaches, that is, the reward-con‐
strained hybrid graph proximal policy optimation (RC-HGP‐
PO) [37] and primal-dual parametrized graph deep Q-net‐
work (PD-PGDQN) [38]. The hyperparameters of the pro‐
posed approach are summarized as follows. The hidden num‐
ber of the GCN-based actor-critic networks is 64. The learn‐
ing rates of Lagrange multipliers, actor, and critic are 5×
10-5, 1×10-4, and 2×10-4, respectively. The replay buffer and 
batch size are set to be 1×106 and 64, respectively. The stan‐

dard deviations of exploration noise ε and policy noise ε
⌣

 are 
0.1 and 0.2, respectively. The discount factor is 0.95, and 
the soft update parameter is 0.05. The hyperparameters of 
other two approaches are set to be the same values as those 
in the proposed approach. The evolution of mean cumulative 

rewards (line) and associated ranges (shadow) over 5 runs 
during the training stage is shown in Fig. 3. It is observed 
that the DNO agent initially receives a low reward because 
the initialized policy is insufficient to make decisions effec‐
tively for DOPF. However, the cumulative reward continu‐
ously increases, indicating that the DNO agents have suc‐
cessfully learned a policy to achieve higher rewards. Thanks 
to the GCN and parameterized action, the proposed approach 
can tackle non-stationary environments and non-convex 
mixed-integer programming problems in the ADN with time-
varying network topologies. Thus, the proposed approach 
converges to a higher cumulative reward than the other two 
approaches and simultaneously achieves the joint exploration 
of discrete and continuous actions. Furthermore, the RC-
HGPPO is an on-policy approach, which has drawbacks in 
reusing past experiences stored in a replay buffer. This could 
make it less data-efficient to achieve comparable perfor‐
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Fig. 2.　Original and time-varying network topologies of simplified UKGDS case. (a) Original network topology. (b) Network topology for the 1st day. (c) 
Network topology for the 2nd day. (d) Network topology for the 3rd day. (e) Network topology for the 4th day. (f) Network topology for the 5th day.
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mance and unstable learning convergence. The overestima‐
tion bias of the DQN-based approach results in the PD-PG‐
DQN encountering challenges in effectively estimating Q-
value and stable learning. Furthermore, the oscillations ob‐
served during the training phase are attributed to the diverse 
noise that is introduced to ensure a thorough exploration of 
the discrete-continuous hybrid action space.

The generalization ability of the proposed approach is 
evaluated on a randomly selected day in terms of cumulative 
reward and associated standard deviation, as shown in Table 
I. The simulation results exhibit behavior consistent with the 
training process, achieving the highest cumulative reward 
compared with other approaches, thereby highlighting that 
the proposed approach has the potential to implement DOPF 
in an unseen environment. Furthermore, it is worth noting 
that once the proposed approach is trained and the parame‐
ters are saved, the actor network can perform the implemen‐
tation of OPF in real-time, which highlights the efficient ap‐
plication of the RL-based approach in real-life data process‐
ing and analysis scenarios.

C. Performance Evaluation of Cumulative Cost

The cumulative cost is evaluated by accumulating viola‐
tions of constraints using a Lagrangian multiplier, as shown 
in (21). This formula is a variant of (10b) to quantify the to‐
tal penalty for violating operational constraints. The lower 
cumulative cost indicates that the policy is safer and more 
compliant with the imposed constraints. The evolution of 
mean cumulative costs (line) and associated ranges (shadow) 
over 5 runs during the training stage is shown in Fig. 4.

Ct =∑
ciÎ C

λi [Jci
(π)- di ]

+
(21)

It is observed that the initialization policy yields high cu‐
mulative costs, indicating that it is insufficient for safe opera‐
tion. As the evolution of policy iteration progresses, a more 
effective policy is derived, resulting in lower cumulative 
costs. Thanks to the accurate estimation of Q-values for 
state-action pairs provided by the twin critic network and the 
parameterized action space, the advocated primal-dual mech‐
anism guarantees a safe policy for DOPF within the ADNs.

The generalization ability of the derived safe policy is 
evaluated on a randomly selected network topology and dai‐
ly load profile by analyzing the cumulative costs and associ‐
ated standard deviations, as shown in Table II.

Specifically, the lower cumulative cost means a safer poli‐
cy. It is observed that the proposed approach exhibits the 
lowest cumulative costs compared with other approaches, un‐
derscoring the derived safe policy in implementing DOPF 
under a time-varying network topology.

D. Performance Evaluation of GCN-based Actor-critic Net‐
works

To further evaluate the effectiveness of the GCN-based ac‐
tor-critic network in handling time-varying network topolo‐
gies, an ablation study with a fully-connected PD-PATD3 is 
conducted to emphasize the importance of integrating graph-
based structures within the actor-critic framework, which is 
shown in Table III. The simulation results reveal a 1.73% 
gap in cumulative reward, but a 609.92% gap is observed in 
terms of cumulative cost, underscoring the critical role of 
graph-based structures in neural networks for handling non-
stationary environments.
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TABLE II
CUMULATIVE COSTS AND STANDARD DEVIATIONS

Approach

RC-HGPPO

PD-PGDQN

Proposed

Cumulative cost

14.70

26.95

4.94

Standard deviation

1.75

2.97

1.61
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Fig. 3.　Evolution of mean cumulative rewards and associated ranges over 
5 runs.

TABLE I
CUMULATIVE REWARDS AND ASSOCIATED STANDARD DEVIATIONS ON 

TESTING DAY

Approach

RC-HGPPO

PD-PGDQN

Proposed

Cumulative reward ($)

-6981.9

-7012.5

-6745.5

Standard deviation ($)

37.26

29.29

25.97

257



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 14, NO. 1, January 2026

The distribution of the nodal voltage and the apparent 
power of line under time-varying network topologies is illus‐
trated in Fig. 5. This box plot presents the variation in volt‐
age and apparent power at specific buses or lines over the 
time horizon. It is observed that the proposed approach effec‐
tively manages the nodal voltage and the apparent power of 
line within safe limits, even under time-varying network to‐
pologies. In contrast, the fully-connected PD-PATD3 leads to 
network feasibility violations, highlighting the importance of 
integrating graph-based structures in scenarios with topology 
changes.

E. Performance Evaluation of Lagrangian-based Safe RL

To evaluate the performance of safe explorations in ADNs 
with discrete-continuous hybrid action spaces, another abla‐
tion study is conducted using the fixed penalty approach. 
This study aims to highlight the significance of incorporat‐

ing the Lagrangian relaxation procedure in addressing 
CMDP, which is shown in Table IV, where ADN constraint 
adherence means the percentage of not violating operational 
constraints among all operational constraints. It is worth not‐
ing that while the competitors employing fixed penalty val‐
ues shares a similar mathematical formulation to that of La‐
grangian multipliers, the proposed approach offers a straight‐
forward and effective mechanism for determining these La‐
grangian multipliers. The simulation results demonstrate that 
the proposed approach effectively manages the trade-off be‐
tween cumulative rewards and associated costs while rigor‐
ously adhering to operational constraints of ADN. In con‐
trast, the fixed penalty approach either prioritizes maximiz‐
ing cumulative rewards in scenarios with small penalty val‐
ues or focuses exclusively on ensuring safe operation in sce‐
narios with large penalty values.

VI. CONCLUSION 

In this paper, a graph-based safe RL approach is proposed 
to address the implementation of DOPF in ADNs with time-
varying network topologies and hybrid action space. Specifi‐
cally, a graph convolution-based PD-PATD3 is proposed, 
which adopts: ① the GCO to tackle non-stationary environ‐
ments; ② parameterized action for addressing discrete-con‐
tinuous action spaces; and ③ primal-dual mechanisms to en‐
sure a safe policy. Experimental results demonstrate the ef‐
fectiveness of the proposed approach for implementing 
DOPF and superior performance in terms of cumulative re‐
ward and cumulative cost compared with other PGSRL ap‐
proaches. Specifically, the proposed approach shows at least 
a 3.50% improvement in cumulative reward and a remark‐
able 197.57% improvement in cumulative cost compared 
with other graph-based safe RL approaches. The simulation 
results indicate that the proposed approach enables economi‐
cally efficient operation while avoiding potential risks of vio‐
lating operational constraints of ADN.

The potential extension of the proposed work is to: ① ex‐
plore model-based RL to model spatial-temporal correlations 
with source-load for improving the sampling efficiency; and ② investigate cyber-physical attack and defense to secure 
the operation of ADNs.
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