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Multi-objective Stochastic Optimal
Configuration for Device Capacities in Carbon
Capture and Power to Gas in Offshore-onshore

Integrated Energy System

Shunjiang Lin, Xuan Sheng, Yue Pan, Weikun Liang, and Mingbo Liu

Abstract—The offshore-onshore integrated energy system
(OOIES) comprises offshore gas production platforms, wind
farms, and onshore gas-fired combined heat and power plants,
facilitating the integrated operation of multiple energy sources.
To address the challenge of optimally configuring the device ca-
pacities in carbon capture and power to gas (CC-P2G) amid sto-
chastic fluctuations in offshore gas and wind power outputs,
this study proposes a multi-objective approximate dynamic pro-
gramming algorithm. This algorithm solves the multi-objective
stochastic optimal configuration for the device capacities in CC-
P2G in OOIES by simultaneously optimizing investment and
operation costs, wind power curtailment, and carbon emissions.
By leveraging value function matrices for multiple objectives to
solve the extended Bellman equation, the multi-objective multi-
period model is decomposed into a series of multi-objective sin-
gle-period optimization problems, which are solved recursively.
Additionally, a weighted Chebyshev function is introduced to
obtain the compromise optimal solution for multi-objective opti-
mization model during each period. A case study of an OOIES
confirms the effectiveness and efficiency of the proposed algo-
rithm.

Index Terms—Capacity configuration, carbon capture, power
to gas, multi-objective stochastic optimization, integrated ener-
gy system, weighted Chebyshev function, approximate dynamic
programming.

1. INTRODUCTION

N response to carbon emission peak and carbon neutrality
goals and mandatory emission reduction policies in Chi-
na, energy systems are facing increasing pressure to reduce
carbon emissions. The rapid expansion of renewable energy
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sources, particularly wind and solar power, has introduced
considerable uncertainty in energy supply, posing challenges
to the secure and economic operation of energy systems. Fur-
thermore, achieving a cost-effective balance between invest-
ment costs and carbon reduction targets remains a significant
economic challenge for industries. To address these issues,
the integration of a carbon capture and power to gas (CC-
P2G) setup presents a promising solution. The CC-P2G sys-
tem comprises electrolyzer cells (ECs), hydrogen storage
tanks (HSTs), hydrogen fuel cells (HFCs), methanation reac-
tors (MRs), and carbon capture (CC) cells. The ECs electro-
lyze water to convert electric energy into hydrogen, while
the CC cells capture CO,, which, together with hydrogen,
are used in the MRs to synthesize synthetic natural gas
(SNG). This process facilitates the conversion of electric
power into gaseous fuel (hydrogen and SNG) and captures
CO,, improving the integration of electric power and gas sys-
tems, supporting wind power utilization, and reducing CO,
emissions. Several actual CC-P2G projects in operation or in
planning around the world are listed in Table I.

TABLE I
SEVERAL EXISTING OR PLANNED CC-P2G PROJECTS

Project Location gaopza((:ti/t;/egrf) Opc;r:;ion
George olah plant Grindavik, Iceland 4500 2009
Audi e-gas Werlte, Germany 2800 2013
Solar methanol Augusta, Australia 15000 2023
Madoqua synfuels Pataias, Portugal 500000 2023

In the shift toward low-carbon energy and efficient re-
source use in onshore-offshore regions [1], the offshore-
onshore integrated energy system (OOIES) integrates various
offshore and onshore energy resources, which enhances cas-
cade utilization of the energy. In an OOIES, onshore gas-
fired combined heat and power plants (GCHPPs), offshore
gas production platforms (OGPPs), offshore wind farms
(OWFs), electric power loads, heat loads, gas loads and hy-
drogen loads connect with each other via electric cables and
gas/hydrogen/heat pipelines, with CC-P2G systems serving
as the central components for energy conversion and multi-
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energy collaboration in the OOIES. Flexible conversion is
valid among electricity, heat, gas, and hydrogen, which of-
fers better renewable energy utilization, lower carbon emis-
sion, and higher economic benefits. Optimal configuration
for device capacities (OCDC) in CC-P2G can significantly
enhance the low-carbon and cost-effective operation of the
OOIES. However, the uncertain energy outputs from OWFs
and OGPPs affect the energy supply and the process of the
OOIES, which presents challenges in determining the con-
figuration for device capacities in CC-P2G [2].

Current research on the OCDC in integrated energy sys-
tems (IESs) is extensive. In [3], a two-stage operation model
for power to gas (P2G) devices is proposed, analyzing the ef-
fect of carbon trading mechanisms on the optimal capacity
configuration in P2G devices of IES. In [4], the OCDC for
energy storage systems in IES is addressed using the cat
swarm optimization algorithm. However, [3] and [4] focus
on a single optimization objective, neglecting the need for
multiple optimization objectives that balance the economy
and low carbon emissions. In [5], a multi-objective optimiza-
tion model is introduced to optimize gas turbine capacity in
energy hubs. Similarly, a multi-objective OCDC of IES mod-
el is developed in [6], which employs the heat-determined
electricity principle and applies a non-dominated sorting ge-
netic algorithm to obtain the Pareto optimal solution (POS).
In [7], a novel multi-objective optimization framework is
proposed for uncertain IES planning with demand response,
using a coevolutionary algorithm for efficient problem-solv-
ing. Additionally, [8] employs a preference selection mecha-
nism to improve the solution for large-scale, discrete, multi-
objective bi-layer OCDC. Despite these advancements, no
studies have specifically addressed the OCDC in CC-P2G,
which is crucial in linking onshore and offshore subsystems
in an OOIES. The OCDC in CC-P2G of OOIES must ac-
count for multiple conflicting objectives, such as investment
costs, carbon emissions, and renewable energy integration.
Furthermore, due to the uncertain energy outputs from
OGPPs and OWFs, the OCDC in CC-P2G of OOIES should
be treated as a multi-objective stochastic optimization (MO-
SO) problem, which presents significant challenges in find-
ing an efficient solution.

Current solution methods for MOSO problems have been
extensively researched, encompassing both MOSO algo-
rithms [9]-[12] and multi-objective robust optimization (MO-
RO) algorithms [13]-[15]. For MOSO algorithms, [9] intro-
duces an unscented transformation-based mean-standard mod-
el to account for uncertainties in wind and solar power in
IES using multiple scenarios. In [10], an MOSO model for
microgrids is developed based on the chance-constrained pro-
gramming method, using a membership function to deter-
mine the optimal weights for the multi-objective problem. In
[11], multi-objective interval variables are used, and a group
search optimization method is introduced to finalize unit siz-
ing. In [12], dynamic Bayesian networks are used to model
gas price fluctuations, and the epsilon constraint method is
applied to solve the MOSO problem of IES. However, MO-
SO algorithms are computationally demanding and time-in-
tensive. In contrast, MORO algorithms, such as the multi-ob-
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jective bi-level robust optimization model based on the confi-
dence gap decision theory [13], efficiently address renewable
energy uncertainties. Another study proposes OCDC combin-
ing fuzzy decision-making with two-stage adaptive robust op-
timization to convert the multi-objective problem into a sin-
gle-objective one [14]. In [15], economic cost, carbon emis-
sions, and energy supply reliability are considered, leading
to the development of an MORO model for the OCDC in
IES. However, MORO, much like robust optimization, em-
phasizes the extreme case of uncertainty, frequently leading
to cautious decision-making. Additionally, the existing MO-
SO algorithms require solving numerous discrete POSs to de-
termine the compromise optimal solution (COS), which low-
ers computational efficiency and produces an incomplete Pa-
reto frontier, thus reducing the quality of the COS. Thus, fur-
ther research is needed to address the limitations of MOSO
and MORO and develop more reliable and efficient methods
for obtaining a high-quality multi-objective COS.

The OCDC in CC-P2G of OOIES is a multi-objective
multi-period optimization problem involving stochastic vari-
ables. Based on the Bellman’s principle of optimality [16],
approximate dynamic programming (ADP) enables the de-
composition of a multi-period decision problem into sequen-
tial single-period subproblems [17], which can then be
solved recursively. This method mitigates the inefficiency
typically caused by large-scale decision spaces in multi-ob-
jective multi-period optimization problems [18]. By account-
ing for the transition probabilities of stochastic variables be-
tween periods, the precision of decision-making can be im-
proved. While ADP has been increasingly applied to stochas-
tic optimization problems in IES [19]-[21], there has been
no research exploring the use of the multi-objective ADP
(MOADP) algorithm for solving the multi-objective stochas-
tic OCDC (MOSOCDC) problem in CC-P2G.

To efficiently solve the MOSOCDC problem, this study
proposes an MOADP algorithm based on a weighted Cheby-
shev function. The key contributions are as follows.

1) An MOSOCDC model in CC-P2G of OOIES is devel-
oped, accounting for the stochastic fluctuations in OWF pow-
er and associated gas (AG) outputs. The model optimizes in-
vestment and operation costs, wind power curtailment, and
carbon emissions simultaneously.

2) An MOADP algorithm is introduced to solve the MO-
SOCDC model. Using the matrix form of the Bellman equa-
tion, the multi-objective multi-period optimization problem
is decoupled into single-period problems and solved recur-
sively with the approximate value function (AVF) matrix.
The algorithm leverages the weighted Chebyshev function to
quickly solve multi-objective single-period optimization prob-
lems. The solution with the smallest Chebyshev distance to
the utopia point is identified from the feasible domain as the
COS.

The remainder of this paper is arranged as follows. Sec-
tion II presents the MOSOCDC model in CC-P2G of OO-
IES. Section III introduces the MOADP algorithm for solv-
ing the COS of the MOSOCDC model. Section IV offers a
case study on an OOIES. Section V outlines the findings of
this study.
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II. MOSOCDC MODEL IN CC-P2G ofF OOIES

The components and energy flows of an OOIES are illus-
trated in Fig. 1. The OOIES consists of OGPPs, OWFs, and
GCHPPs, each performing specific functions.

1) OGPP is equipped with diesel generators and extracts
AG, some of which are stored in the associated gas storage
(AGS) while the rest are processed into gas. The gas is sup-
plied to gas-fired generators, gas boilers, and gas loads.

2) OWF is installed with an electric hydrogen production
unit (EHPU), where FCs supply power to the OGPP. Hydro-
gen produced by ECs is sent to heat storage (HS), hydrogen
loads, and MR in the GCHPP via pipelines.

3) GCHPP contains gas-fired generators converting gas in-
to electricity, with waste heat and gas boilers providing heat
to the heat loads. In addition, CO, emissions from the gas-
fired generators are absorbed by CC, which reacts with H,
in the MR to produce SNG, completing the utilization pro-
cess of CC-P2G energy.

OGPP (offshore) OWF (offshore)
AGS | |Gas well|| Dieset
generator
t f {
ccp2G [T
| R I p— P2G T "
: - T = 1 o A \ A v o \ "
| | — 1]
. €C = MR .1 FC 8 HS SpE EC S
|| Ps :
Gas-fired PUb,EC
Gas | | generator Gas l gr
Joad 1 boiler Electric
oa Waste heat load Hydrogen
boiler load
Heat load GCHPP
(onshore)

—> Electric flow; —> Hydrogen flow; —> Heat flow; Gas flow

—> CO, flow; | ) Devices to be configured

Fig. 1. Components and energy flows of an OOIES.

In an OOIES, the CC-P2G, comprising the EHPU, MR,
and CC, serves as the key link for energy conversion and
carbon emission reduction. Therefore, the OCDC in CC-P2G
is fundamental to the coordinated dispatch of multiple ener-
gy sources. To achieve this, the OCDC problem must ad-
dress the stochastic fluctuations in offshore energy produc-
tion.

A. Objective Functions

The decision variables for the MOSOCDC model in CC-
P2G of OOIES comprise device capacities: the maximum in-
put power of EC Py, the highest storage energy of HS E\q,
the maximum power output of FC Py, as well as the maxi-
mum input power for both the MR P,;; and CC device P,
as shown in (1). To account for the economic and environ-
mental benefits of the system, three optimization objectives
are defined: minimizing daily equivalent investment and op-

eration costs, reducing carbon emissions, and minimizing
wind power curtailment. The first objective f; focuses on
economic efficiency, comprising the daily equivalent invest-
ment cost of devices C,,,, daily maintenance costs of devices
C,, and daily energy sale profit C.. C,,, is dependent on de-
vice capacities, discount rate r, and service life L,. For the
HS system, the operating power of device z P_, =@y ,+ @py0
where ¢, ;. and ¢, ,, are the input and output flow rates of
HSTs, respectively. Considering the higher load levels and
stochastic fluctuations in summer, the load and energy pro-
duction curves of a typical day in summer are used to esti-
mate C,, and C..

EQ:[PEC’EHS’PFC’PMR’PCC] (1)
T T
minf,=C,,+ > C, At — > C, At
t=1 t=1
r(l +r)L“
C. = k. E——"—| /M,
inv z;)|: inv,z~z (1 +I")L“— 1 :|/ S (2)
Cm,t: zkmezpz,t
zeQ

Cs,t:CelePele,t+ cgfL,t+ cHﬁﬂ.t

where ¢ and 7 are the index and number of time periods, re-
spectively; £ is the set of devices to be configured; c,, is
the electricity price per unit of electric energy; c, is the gas
price; k. and k _ are the unit investment and maintenance
costs of device z in CC-P2G, respectively; At is the time pe-
riod, i.e., 1 hour; M is the number of days per year, i.e.,
365 days; E. is the configured capacity of device z; P, is
the active power output to the public grid; f; , is the gas load
demand; ¢, is the hydrogen price; and f,,, is the hydrogen
load demand.

The second objective f, is to minimize carbon emissions
from diesel generators, gas boilers, and gas-fired generators
that are not captured by the CC.

r
minf, = Z[dGBfGB,r+dDGPDG,t+(1 —n)ucPq At (3)
P

where P, is the active power output of gas-fired generators;
P, is the active power output of diesel generator; d,; and
dpg are the carbon emission factors of gas boilers and diesel
generators, respectively; ug is the carbon emission intensity
of gas-fired generators; and f;;, is the input gas flow rate of
the gas boiler.
The third objective f; is to minimize the total wind power
curtailment in OOIES.
T
min ;= 21 29 (P~ P A )
i=lieQ,
where i is the index of buses; Q, is the set of OWF buses;
and P, and P, are the maximum available and actual ac-
tive power outputs of the OWF, respectively.

B. Operation Constraints of Energy Source Output

1) Uncertain Gas Source and OWF Output
The forecasting errors of the extraction mass flow rate of
AG from OGPP gas wells Af,,, and the OWF power output

AP, , are influenced by small and random factors such as
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measurement inaccuracies and short-term fluctuations, which
are often assumed to obey a Gaussian distribution [22].
Thus, the mass flow rate of AG f,,, and P, are described
as stochastic variables, as modeled in (5) and (6).

f;ig.t:f;ig(),t—‘r Af(:ig.,t Af;ig,ZNNorm(luf,t’ a.l%t )
P, .., +AP AP

wp, !

)
(6)

where the subscript 0 indiacates the forecasted value; x, and
o, are the mean and standard deviations of the forecasting
error of extracted mass flow rate of AG, respectively;
Norm() denotes the norm distribution; and u«,, and o,, are
the mean value and standard deviations of the forecasting er-
rors of the maximum available active power output of
OWF's, respectively.
2) GCHPP Output

The energy generation devices in the GCHPP consist of
gas-fired generators, waste heat boilers, and gas boilers [23].
The operation constraints for gas-fired generators are out-
lined in (7). The waste heat from these generators is cap-
tured to meet heat loads, with the waste heat boiler output
¢, calculated using (8). The gas boiler generates heat power
using gas, with its heat output ¢, computed in (9).

R GAI<Pg ,—Pg, SR AL
nG,t:Ca+ch(ty,t+cc(Pé.t)2+Cd(Pé,t)3

f — PG,lpgas
o nG,tqgas

— 2
Pwp,l_ wp0, ¢ wp,lNNorm(lup,l’o-p,z)

(7

where ¢, ¢, ¢, and ¢, are the efficiency factors of gas-fired
generators; R, and R, are the maximum ramping up and
down rates of gas-fired generators, respectively; f;, and 7,
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are the input gas flow rate and efficiency of gas-fired genera-
tor, respectively; p,, is the gas density; and g, is the hydro-
gen calorific value.

P,
On, =Nwplw T -Pg, (3

G,t
where a,, and 7y, are the waste heat ratio and operation effi-
ciency of waste heat boilers, respectively.

qgas
pgdSAt

‘/’GB.z:”GBfGB,z 9)

where 745 is the efficiency of gas boiler.
3) Diesel Generators

To ensure the safe operation of the OGPP, diesel genera-
tors provide power for AG extraction. Operation constraints
for these generators are detailed in [24].

C. Operation Constraints of CC-P2G Devices

The operation of the CC-P2G system, as shown in Fig. 2,
involves an EHPU, which includes the EC, HS, and FC. The
EC converts electric power into hydrogen by electrolyzing
water. Hydrogen is then partially stored in the HS for future
use and partially directed to the FC for power generation,
with the remainder of hydrogen sent to the MR for gas syn-
thesis. The CC cell manages post-combustion CO,: flue gas
from gas-fired generators is routed into an absorption tower
where it mixes with an amine solution. CO, is then separat-
ed and transferred to the MR for gas production [25]. The
model in [26] focuses on the energy conversion relationship
of CC-P2G, which is applied in the proposed MOSOCDC
model.

| Exhaust gas CcC

I

I

| Pregnant

| solution €O,

: separator
I

I

I

Heat
exchanger

Jan

— Electricity;

Fig. 2. Schematic of CC-P2G system.

Equation (10) details the constraints for energy conversion
of ECs and FCs [23]. The MR produces SNG through the
chemical reaction of CO, and hydrogen. The operation con-
straints include both flow rate limitations of SNG derived

Gas; —> Hydrogen; —> CO,; D Compressor

from chemical equations and power consumption restriction
(12) [23], where 4/11 and 11/2 are the constants obtained
from the mass conservation in the chemical equation of syn-
thesizing SNG.
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Mhyo,t:rlelpei,t (10)
Peo.t:”fcMhyi,l
where M, , and P, are the hydrogen mass flow rate and

electric power input of electrolyzers, respectively; M, ;, and
P, are the hydrogen mass flow rate and electric power out-
put of FC, respectively; and #,, and 7, are the electro-hydro-
gen conversion factors of electrolyzers and FCs, respectively.

(011 0, At
Ehy,t+1:Ehy,t(l_”hy)+¢hyi,trlhyiAt_ -
”hyo
Ehy():EhyT
Ehy.minSEhy,tSEHS

Mhin,t: 7]tr2 (Dhyo,t

Phyimin < Phyir S Phyi max

(11)

(ohyo. min < (phyo,t < whyo, max

Jud
Phyi.e = Mier| Mo, = My, = ph}:A];

where 7, and 7, are the input and output hydrogen effi-
ciencies of HSTs, respectively; ¢,,, and ¢, , are the input
power and output power of hydrogen storage, respectively;
1. and 7, are the efficiencies of hydrogen transfer between
electrolyzer to HSTs and HSTs to FC, respectively; 7, is the
hydrogen storage loss rate; M, , is the input hydrogen pow-
er of MR; p, is the hydrogen density; ¢, is hydrogen calorif-
ic value; and E, , is the remaining hydrogen in HSTs. The
parameters with subscripts max and min indicate the upper
and lower bounds of the variable.

4
fSNG,z: ﬁfc,z”sm}

11
fC,t= Tth
Pmr,t :féNG,t#mr

where x,, is the electric power consumption factor of MR;
Nsng 18 the operation efficiency of MR; f., is the CO, flow
rate captured by CC; f, is the input hydrogen flow rate of
MR; and fg\q, is the output gas flow rate of MR.

Hydrogen energy is expressed in MWh to align with elec-
tric power units. The energy conversion rule is that 1 m’ of
hydrogen at 0 °C and one standard atmospheric pressure
have an approximate energy equivalent of 2.95 kWh.

The configuration for CC devices in the GCHPP is essen-
tial for reducing carbon emissions from gas-fired generators.
The power consumed by CC devices P, , includes the elec-
tricity used for CO, capture and the constant intrinsic power
requirements of the device. fi., and CO, released into the at-
mosphere f,., , are calculated using (13) [23].

Pcc,t:pCefC,t+PCb
Jei=ncucPa,
fem,::,“GPG.z_fc,,:

where p., is the electric power consumption factor of CO,
capture; P, is the constant term of electric power consump-
tion of CC system; and 7. is the CO, capture ratio of CC

(12)

(13)
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system.

The allowable maximum and minimum configured device
capacity limits for the CC-P2G of OOIES are given in (14).
The elements of vector E, are shown in (1).

E, ..<E,<E (14)
D. Operation Constraints of Energy Storage Devices and En-
ergy Supply Networks

1) AGS

AGS, constructed from decommissioned gas wells, pro-
vides AG to meet load demands when the gas supply ex-
ceeds the demand. Maintaining AGS operation requires elec-
tric power, as shown in (15) and (16).

Q,min Q, max

E ) A f ;\goetAt
ag t+1 7~ ag.t+ ”agif;gi,t r—
n ago
E ag0 = E agl ( 1 )
5
Eag. min < Eag.t < Eag, max
.f;igi. min g.f‘agi,l Sf;igi. max
Frgomin < Jagos <
ago, min —/ ago, 7 =/ ago, max
Pag,tzkag(fexgi,t+ ago‘t) (16)
where E, , is the remaining gas in AGS; f,,, and f,,,, are

the input and output mass flow rates of AG, respectively;
N, and 7, are the input and output gas efficiencies of
AGSs, respectively; and k,, is the electric power consump-
tion factor of AGS.
2) HSTs

HSTs are used to manage discrepancies between heat pro-
duction and demand. The operation constraints are similar to
the 1%, 2", and 4" line formulae in (11), with the subscript
modified from “hyi/hyo/hy” to “hi/ho/h”. Note that the pow-
er network [27] and gas network [28] are described in Sup-
plementary Material A.
3) Heat Network

The operation constraints for the heat network include
models for nodal thermal power, pipeline temperature, fluid
mixing at nodes with multiple branches, and electric power
consumed by circulating pumps [28].
4) Upper and Lower Operation Bound Constraints

During the OOIES operation, all device outputs are con-
strained to operate within their capacity bounds. These
boundary conditions are specified by:

ymin Sytsymax
Y :[Pele,ﬂ Qele,t’PW,t’fGB,t’ph,t’ PG,tv N I/j,t’ Hj,tﬂ kat’
Trk,/’P P P Pcc.t]

ei,t*® eo, >t mrt®

an

where Q
and T,

wk, ¢

e 1s the reactive power output to the public grid;

and T, , are the supply and return water tempera-
tures of node k, respectively. For the variables P, P, ,
P... and P, the corresponding upper limits in y,, are
Prc, P, Pyg, and P, respectively, while their lower limits
in y,., are all 0.

Equations (2)-(17) and Supplementary Material A (Al)-
(AS) define an MOSOCDC model in CC-P2G of OOIES.
Due to the stochastic variations in P, and f,, , this model
is a complex multi-objective mixed-integer non-linear pro-

(o2

wp, ¢
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gramming challenge with stochastic variables. An MOADP
algorithm is presented in this study, which simplifies the
original multi-objective multi-period model by decomposing
it into multiple single-period subproblems that can be solved
recursively. Additionally, a method based on the weighted
Chebyshev function is proposed to obtain the COS of each
multi-objective single-period optimization problem.

For this three-objective optimization problem, it is crucial
to acknowledge the conflicts between the objectives. Reduc-
ing wind power curtailment often requires investing in addi-
tional CC-P2G devices, which can increase economic costs.
Similarly, minimizing carbon emissions typically necessitates
more CC-P2G devices, further raising costs. Conversely,
minimizing economic costs might involve fewer CC-P2G de-
vices and greater reliance on fossil fuels, which contradicts
the objectives of reducing wind power curtailment and car-
bon emissions. Therefore, it is essential to optimize the three
objectives by using a coordinated method. POSs can effec-
tively represent this coordinated optimization across multiple
objectives.

III. SOLUTION METHODOLOGY

A. Solution of COS Based on Weighted Chebyshev Function

In multi-objective optimization, many POSs are typically
computed first, from which the COS is selected. This pro-
cess can be time-consuming due to the need to solve these
POSs. The challenge lies in efficiently obtaining the COS
across multiple objectives. A common method is the refer-
ence point method, which involves finding a vector that min-
imizes the distance to a predefined reference point. By mini-
mizing the weighted Chebyshev function w(-), as shown in
(18), the COS with a high degree of overall optimization
can be achieved by:

y(Vor.B)= max (B,[r—V,|) (18)

where V is the value function (VF) vector; r is the reference
point vector, typically set as the utopia point; f is the positive
weight vector; f, is the weight of the g™ objective function;

and ‘ r=V, ‘ is the Euclidean distance between the two vectors.

The structure of the w-objective optimization model is de-
fined in (19). Initially, o single-objective optimization
(SOO) solutions are solved individually. Let V; represent the
optimal objective function values for the p™ SOO solution and
V" signify its value for the ¢" objective function. The @ x @
dimension payment matrix is constructed as shown in (20). r
is defined as r=[V,V,,...V,], V, is defined as ¥V =

q

vy, ...V .. VY], and the nadir point @ is a vector
defined as a=(max(V,” ). max(V,)"), ..., max(V,"")).
min {f; V)., (V). - f,, W)} (19)
HOTY LG £, v:op yor
LGP L0 £, _ vy yer
HOT) L) o [0 v, Ve ..V,
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B, is calculated as:

u
ﬁq: :

o @1

q*
P max Vp

p=1.2....0
where p, is the standard weight for the g™ objective. If u , 18
equal for all objectives, a longer distance between the utopia
and nadir points results in a smaller f,, indicating a lower
weight of that objective.

The effect of the distance of nadir point from objective
weights is considered in (21), enhancing decision-making ac-
curacy. Figure 3 presents the schematic diagram of solving
COS using weighted Chebyshev function. When g, is equal
for all objectives, the COS is the intersection of the line con-
necting a and r with the Pareto frontier surface, representing
the projection of r onto the Pareto frontier surface along the
direction of a, yielding the smallest weighted Chebyshev dis-
tance from the utopia point. Adjusting x, modifies the projec-
tion direction to obtain different COSs, e.g., the yellow and
green points. Therefore, any COS can be found by minimiz-
ing the weighted Chebyshev function with an appropriate
u, [29].

/s Nadir bound
Feasible region L

Optimal
. ~
point of f|

Pareto surface
composed of non-
dominant solutions

Optimal
point of f;

Optimal
point of f,
COS

A
Schematic diagram of solving COS using weighted Chebyshev

Fig. 3.
function.

B. Multi-objective VF Matrix and Markov Decision Process
(MDP)

Constructing VFs is essential for applying the ADP algo-
rithm to solve multi-period stochastic optimization problems.
A set of stochastic scenarios reflecting the uncertainties
(Afoer AP, ) is generated using the Latin hypercube sam-
pling technique. By solving the deterministic optimization
(DO) problem for each stochastic scenario, the VFs for each
period can be obtained. In multi-objective multi-period sto-
chastic optimization, VF matrices must be defined, extend-
ing the VFs from one-dimensional to multi-dimensional cal-
culations [30]. The VF matrix v, is geven as:

v=V' V3. .. V..., V]
t tl t , t t ; (22)
Vi=[V v . Vvh, L VA

where the superscript pg denotes the value of the g™ objec-

tive function corresponding to the solution that minimizes

the p™ objective function; and ¥/ is the ¢™ VF vector of v,.
Applying the ADP algorithm allows the multi-period MO-

SOCDC model to be decomposed into multiple single-period
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DO problems that can be addressed recursively. As shown in
(23), the ADP-based integration with multi-objective optimi-
zation employs an extended Bellman equation derived from
the optimality principle [23], where the second term on the
right-hand side represents the expected value. v,., (S, IS,
represents the conditional VF for the state S, , of the next
period, incorporating how the current action @, and state S,
influence the future states S, for k=¢+1,¢+2,...,T.

v,(S,)= H}lin I:Ct(st7at)+ zPr(w,+1|w,)«(vM (St+1 )|St)]
S=[R.w,]

Rt:[Eh.t’Ehy,t’Eag,t]

wl:[Pwp,/’.f;tg,z]

at:[whyi,t’ whyoit’ g”hi,t’ who,t’fz;giit’f;igoel’PG,t, PDG,[’ Pmr,t’ Pcc,t]

(23)

where Pr(w,,,|w,) is the transition probability function for
stochastic quantities moving from w, to w,;; C,(S,.a,) is
the multi-objective cost matrix for a,; and .S, includes stor-
age variables R, and stochastic variables w, To implement
the MOADP algorithm, the MOSOCDC model is trans-
formed into a multi-objective MDP (MMDP). The MMDP
extends the traditional MDP [31] and is characterized by a
four-element model {S,,a,,C,,T,}, as shown in Fig. 4, where
T, is the vector of state transition functions. In this MO-
SOCDC model, the state S, includes storage capacity and sto-
chastic variables. The optimization is performed by decou-
pling the periods, and the final optimal configured E, is de-
termined as the maximum E,, value across all periods. The
obtained E, can meet the constraints across all periods de-
spite stochastic fluctuations in P, and f,, . For instance, if
the configured power is P, the final optimal configured
power is Py =max{Pyg |, Pyg,» - Pyur 7). Additionally, the
VF for the current period is derived from the instant cost of
the current period and the VF of the next period. Since C,,
in f; is independent of ¢, it is necessary to adjust the VF cal-
culations. Specifically, to align the VFs of the first period
with fi-f;, the investment cost should be expressed as C, /T

in C, (S,.a,) for VF calculations during each period.

Multi-objective instant cost Multi-objective instant cost

C(Sola,. Sy) Cr(Sqlar-y, Sry)
t 1
CAha Al A A s ] A
Ch G G CirN /G /G

Y

Decisionu
Y —
:

State State transition State State transition | State
function function
T.(Sla;, S)) T.(S7lary, 7))
Fig. 4. MMDP.

Each column of v, in (22) corresponds to the values of an
optimization objective. Consequently, the multi-objective in-
stant cost matrix can be expressed as in (24), with identical
instant costs in each column. The values C,(S,.a,),
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C,(S.a,), and C,(S,,a,) are calculated as given in (25)-
(27). T, is shown in (28).
Cl‘z(stva/) CZ.t(s/’at) C3,/(st’at)

C(S.a)=|C(S.a,) C,(S.a) C,,(S.a,)| (24)
C.,(S.a) C,,(S.a) C;/(S.a,)

C..(S8,a)=C,/T+C_ ,—-C,, (25)

C, (S, a,)=dgp [+ dpe P+ do =1 )P, (26)

C,,(S,.a,)= 29 (Pypii—Poir) 27)

R, ,=T.(R,a,w)=R,+EAR, (a,)w,) (28)

where E() denotes the expectation; and C, , C,,, and C;, are
the elements of matrix C,

C. MOADP Algorithm Based on Weighted Chebyshev Func-
tion

To address the low computational efficiency of traditional
multi-objective optimization algorithms while accounting for
stochastic fluctuations, an MOADP algorithm is proposed
for solving the multi-period MOSOCDC problem. The
MOADP algorithm leverages the extended Bellman equation
to derive the analytical AVF expression for each period and
objective. This allows the stochastic multi-period model to
be decoupled into a series of single-period models, which
are solved recursively. For solving the COS of each multi-
objective single-period optimization problem, the weighted
Chebyshev function is used, which quantifies the weighted
Chebyshev distance between each AVF vector and the utopia
point. The point with the smallest weighted Chebyshev dis-
tance in each period is selected as the COS for that period.
Unlike the weighted sum method, which only considers the
weights of individual objectives, the weighted Chebyshev
function also considers the distance between the utopia and
nadir points, providing a more comprehensive measure of op-
timization.

By traversing all periods through this process, the COS of
the proposed MOSOCDC model can be efficiently obtained,
significantly enhancing computational efficiency while ensur-
ing accuracy.

1) Generation of Typical State Space and Sampling VF Vec-
tors

To simplify the MOSOCDC calculation, a year is divided
into three seasonal periods: summer, winter, and transitional
season. Three representative days from three seasons are se-
lected for the analysis. Utilizing the Latin hypercube sam-
pling technique, stochastic scenarios are derived from the
normal distributions of P, and f,,, distributed across sea-
sons as a./4 for the winter scenarios, a /4 for the summer
scenarios, and a,/2 for the transitional period scenarios. The
mean values are P, and f,,, while the standard devia-
tions are 0.2P,, and 0.15f,, . For each scenario of w, a
single-objective DO model is solved for each objective, re-
sulting in a typical states and corresponding sampling VF
matrices v, t=12,..,Tand j=1,2,...,a,) for the three ob-

jectives, where the ¢" vector is V. =[V', V21, V¥ and g=
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1,2,3. Additionally, the corresponding sampling instant costs
before normalization C”" (S,.a,) (p=1,2,3) are obtained by
solving the DO model for each period, objective, and typical
state. These sampling instant costs must then be normalized
as:

Cr(S,a)-f,

tmin

cr (S a,)=
o -fqtmax f;]tmin
f;j,tmax_ maX Cpq (Stj’a ) (29)
./: 1~,2A,...A,a‘_
Jymn = min, Cri(s, .a,)
j=12 .0

where f, .. and f, ., are the maximum and minimum in-
stant cost values for the g™ objective within the typical state
space, respectively. All terms related to the optimization ob-
jectives in (30), (31), and (33)-(36) are expressed as normal-
ized values.

The transition probability of Pr(w,, |w,) can be derived
from historical data using the method in [24]. P, and f,,,
are divided into N, and N,, intervals, respectively, for analy-
sis.

2) Computation of Analytical Expressions of AVF Under
Three Objectives

The Bellman equation for solving the single-objective sto-
chastic OCDC model by transforming it into the single-ob-
jective single-period optimization model is given in (30), in
which the number of divided intervals of stochastic variables
is N.=N_N,, [24]. The AVF for time period 7 is obtained by
minimizing the weighted sum of the instant cost during time

period ¢ and the AVF for time period ¢+1 i, i.e., V2 (S,,,).
prcs, )= | ™| O Gepa 2Pr(w,+1 OV (S 1)
s.t. (7)-A7)
(30)

To compute the AVFs corresponding to the o, typical
states for the three objectives, AVFs are determined through
a backward recursive process starting from the final period
and moving toward the first, by utilizing the analytical ex-
pressions of the AVFs for the subsequent period. By solving
(30), o, sets of S, ;= V! (S,;) samples are obtained. The least
squares method is applied to fit the data using a cubic poly-
nomial as the fitting function, as shown in (31). The coeffi-
cients 4,,, B,,,, ¢,., €,,, are determined by minimizing the
fitting residuals, as shown in (32). Assume that elements in
S,., are S.,S,,....S,, and the expression of §/ , can refer

n’

o [23].
1 1
Vzpfl (S,.)=— 6 S/oA S+ 2St—I:#]Bt+lSt+]+ct+lSt+l+et+]
(1)
arg l’nll’l z“ t+1/ t+1’Bt+l7 t+1’et+17St+1j) t+1]|| (32)

The computation of AVFs starts by assigning the sampling
VFs to the a, typical states in the final time period 7. Subse-

quently, the analytical expressions of AVFs are derived using
(31) and (32). To simplify the process, the midpoints of N,
divided intervals of w;, for n=1,2,...,N_ are substituted in-
to Pr(w;|w;_)). By minimizing (30), the corresponding
AVFs V74, (S;_, ;) are derived. This method continues recur-
sively through periods 7-1, 7-2, etc., back to time period 1.
For a three-objective optimization problem, (30) is solved
nine times per period. The result provides the AVF matrices
for a typical states and the analytical AVF expressions for
each objective across all periods (p=1,2,3, ¢=1,2,3, and =
1,2,...,7).
3) Solution of COS and Optimal Configuration Scheme

Once the analytical AVF expressions for each period are
obtained, the multi-objective single-period optimization mod-
el (33) is solved, which provides the COS along with the
corresponding optimal configuration scheme.

N,
a,=argmin | C,,(S.a,)+ > PrOw,., [w)d,,,(S,.,) @3)
! n=1

st (7)-(17)

Through the weighted Chebyshev calculation in Supple-
mentary Material A, the optimization problem in (33) is con-
verted into a min-max bi-level optimization problem with
both decision variables a,. The auxiliary variable ¢ is intro-
duced to simplify (33) into a single-layer minimization prob-
lem, as shown in (34).

N,
a,=argmin C,,(S,.a,) > Pr(w,., /w,)¢
‘ n=1
1
st ¢2l - |l"— Vt+1(‘sr+1)|
3 ‘VHI (St+1 ) t+1 (St+1 )|
LU ACH (34)
¢ 2 24"
3 SL)=VA S
>] |l‘— t+l(St+l)|
$= 33 3q"
|V I(St+l) V I(St+l)|
(M-A7)

Finally, the optimal decision a, is determined by solving
the optimization problem in (34) from the first period to the
last. The detailed calculation steps are as follows.

Step I: initialize S, and set each component in R, to be
half of the total storage quantity, so for t=1, S,=8,(R,,w),).

Step 2: assume the current time period is #; compare the
results of AVF calculations numerically to determine the objec-
tives ¢', ¢", and ¢'" (¢', ¢", and q 'can be 1, 2, or 3) that maxi-
mize the values of Vt+l (St+l) t+1 (SHI) and V, z+1 (St+1 )9 re-
spectively; and substitute them into (34).

Step 3: substitute the midpoints of N, divided intervals
of w,,, (n=12,...N,), the analytical AVF expression
Ve (S,.,) (p=1,2,3 and ¢=1,2,3), and R, from the previ-
ous period into (34), and minimize the optimization model
in (34) to obtain a, and C,(S,.a,) for the current time period.

Step 4: increase t=t+1 and repeat Steps 2 and 3 until all
periods are processed. Determine the optimal configuration
scheme, i.e., the optimal values of the components in E, us-
ing the solution method outlined in Section III-B.
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IV. CASE STUDY

Figure 5 illustrates the wiring diagram of an actual OO-
IES. The OGPP and OWF are positioned in the South China
Sea, whereas the GCHPP is positioned in Zhongshan City,
China. The power network consists of 17 buses, both the
heat and gas networks include nine nodes, and the OGPP
has three gas wells. Each wind turbine has an installed ca-
pacity of 5.5 MW. The year is divided into 365 days, with
178 days in the transitional season, 95 days in summer, and
92 days in winter. The divided intervals are set with N,,=5
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and N, =5. Power, heat, gas, and hydrogen load curves for 3
typical days are illustrated in Supplementary Material A Fig.
SAl. The forecasted f,,, and P, on these days are shown
in Supplementary Mterial A Figs. SA2. Investment and main-
tenance costs for CC-P2G, along with other system parame-
ters, are detailed in Supplementary Mterial A Tables SAI and
SAII, respectively. All simulations are conducted on a com-
puter equipped with an Intel® Xeon™ E3-1270 CPU @ 3.60
GHz and 32 GB of RAM, utilizing MATLAB R2019a and
GAMS win64 24.5.3. The SBB solver is employed to handle
the single-period DO problems formulated in (30) and (34).

16@ |14

Diesel ! |
generator |6 kV i i
Gas <: ) | |
AGS | |
well 12 _@_ | " | ' : :
8 7 : E I n T M M !
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y 2 1| H0 —phogl b !
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| 2 |
I (0.YO.) 1
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Devices to be configured; Gas supply network; —— Heat network; —— Hydrogen pipeline

— Power supply network; —— Cooling network; —— CO, pipeline; @ Water pump; ﬂ Compressor; ,i\ Wind turbine

Fig. 5. Wiring diagram of an actual OOIES.

A. Analysis of Multi-objective Optimization Results

1) AVF Matrix Under Three Objectives

a,=40 stochastic scenarios (including three typical fore-
casting scenarios) are generated using the Latin hypercube
sampling method. The 40 sampled scenarios for total OWF
power output and mass flow rates of gas wells are displayed
in Supplementary Mterial A Fig. SA3. By solving (30) recur-
sively from the last period to the first, the AVFs for each pe-
riod are computed. These calculations produce normalized
AVF matrices corresponding o, to the 40 typical states dur-
ing each period, as illustrated in Fig. 6, where colored marks

respresent different stochastic scenarios. Moreover, the re-
sults indicate that when optimizing a single objective p, the
AVF for that objective p is obviously smaller than those for
optimizing the other two objectives. This phenomenon oc-
curs due to SOO focusing exclusively on the selected objec-
tive while neglecting the optimization of the other objectives.
2) Computation Results of Multi-objective Optimization

The ADP algorithm from [23] is used to determine the
OCDC results for the three SOO models with objectives in
(2)-(4). By using Chebyshev standard weights as u, =x,=u;=
1/3, the OCDC results for the proposed MOSOCDC model
are obtained and presented in Table II.
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The OCDC results for each SOO model differ, reflecting
the conflict among the three objectives. Specifically, objec-
tive 1 focuses on economic efficiency and yields smaller
configured device capacities due to the proportional relation-
ship between investment costs and device capacities. In con-
trast, objectives 2 and 3 yield larger configured device capac-
ities, as increasing the device capacities in CC-P2G helps re-
duce carbon emissions and wind power curtailment. A com-
parison between SOO and MOO results is provided in Table
II.

The results indicate that when minimizing the total costs,
the obtained carbon emissions increase due to less config-
ured device capacities in CC-P2G. When the carbon emis-
sions are minimized, the obtained total costs are higher be-
cause OOIES requires greater configured device capacities
in CC-P2G. When minimizing the wind curtailment, the ob-
tained total costs rise because OOIES needs additional sys-
tem flexibility to balance the wind power fluctuation, further
increasing the system operation costs. The weighted Cheby-
shev distance of the MOO model is the smallest, indicating
that it is closer to the utopia point than the three SOO mod-
els. Therefore, the COS of the MOO model demonstrates a
higher degree of comprehensive optimization than the indi-
vidual SOO models.

In the proposed MOSOCDC model, by initially setting the
Chebyshev standard weights to u=u,=u,=1/3 and adjusting
them to values u,={0,1/6,2/6, ..., 1}, 1,={0,1/6,2/6, ..., 1-u,},
and u;=1-u,—u,, 49 POSs are obtained for each combina-
tion of weight values.

TABLE 11
SINGLE-OBJECTIVE AND MULTI-OBJECTIVE OPTIMAL CONFIGURATION
RESULTS

Device capacity Average daily

Objective  Device configuration (MW/MWh)  investment cost (¥)
EC 12.84 1528.728
HS 31.54 6823.451
min f, FC 14.34 1728.564
MR 4.80 12828.586
CcC 9.14 18261.649
EC 31.76 2528.208
HS 52.53 8154.918
min f, FC 25.42 2707.846
MR 11.34 23791.455
CcC 15.48 26846.945
EC 27.64 2264.646
HS 56.84 8754.618
min f, FC 32.61 3597.025
MR 12.65 26151.090
CcC 15.64 27136.949
EC 23.51 1871.479
HS 39.15 7131.071
MOO FC 16.47 2037.716
MR 6.48 14581.625
CcC 13.62 21561.005
TABLE III

SINGLE-OBJECTIVE AND MULTI-OBJECTIVE OPTIMIZATION RESULTS

Solution LH®» 0) f; (MWh)  Chebyshev distance
min f| 100482.607 54.710 16.582 1.018

min f, 172180.481 19.930 22.420 1.239

min f 180147.251 63.093 1.564 1.324

COS 127851.652 40.933 6.568 0.948

The corresponding Pareto frontier using weighted Cheby-
shev function is plotted in Fig. 7. The red point on the plot
represents the COS, which is closest to the utopia point with
standard weights u,, u,, and p, being 1/3, 1/2, and 1/6, re-
spectively. The purple points indicate other POSs obtained
through the proposed MOADP algorithm. The COS is nearer
to the utopia point than the other POSs.

Fig. 7. Pareto frontier using weighted Chebyshev function.
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3) Analysis of MOSOCDC Model

To assess the necessity of configuring CC-P2G devices in
the OOIES, the MOSOCDC model is solved using the pro-
posed MOADP algorithm, and the solution results are com-
pared with the optimal results of the case excluding CC-P2G
devices. The optimization model of this case does not in-
clude C,, and C, in the objective functions, and the CC-
P2G related constraints in (11)-(14) and the second formula
of (10) are excluded. In this scenario, only the ECs of CC-
P2G are used to supply hydrogen loads, and the results are
presented in Table IV. The optimal configuration for CC-
P2G devices increases f; by 14.47% compared with the un-
configured method. However, the proposed MOSOCDC
model significantly reduces f, and f; by 69.68% and 81.73%,
respectively. Therefore, configuring CC-P2G devices increas-
es energy utilization, lowers carbon emissions, and improves
the operation flexibility of the OOIES in coordinating multi-
ple energy operations.

TABLE IV
COMPARISON OF RESULTS OF UNCONFIGURED AND CONFIGURED CC-P2G
DEVICES
CC-P2G device Cow ® fi® H©® f; (MWh)
Unconfigured 111686.349 135.024 35.944
Configured 49803.160 127851.652 40.933 6.568

The configured CC-P2G devices enable energy conversion
among electricity, hydrogen, and gas. To analyze the relation-
ship between the configured device capacities in CC-P2G
and energy prices, it is assumed that the gas price varies
from 2 to 3.8 ¥/(N-m*) and the hydrogen price varies from
3.3 to 6.3 ¥(N'm®). As the gas price rises to 3.0 ¥/(N-m?),
profits from gas sales increase, driving a significant boost in
configured device capacities. Beyond this price unit, further
increases in configured device capacities become uneconomi-
cal. As the hydrogen price rises between 3.3 and 5.1
¥/(N'm*), the configured device capacities increase, enhanc-
ing economic returns. However, when the hydrogen price
reaches 5.1-6.3 ¥/(N-m*), the configured device capacities re-
main relatively stable. This outcome is observed because the
gas price significantly influences the profitability of SNG
produced by the MR. For other devices, particularly ECs in-
volved in hydrogen production, increasing the configured de-
vice capacities boosts the profitability of hydrogen sales.
However, the associated investment costs rise alongside the
increase of device capacities, leading to minimal changes in
device capacities when the prices surpass certain thresholds.

B. Energy and Carbon Dispatch Under OCDC in CC-P2G

On a representative summer day, OCDC in CC-P2G
linked to the COS is input into the proposed MOSOCDC
model to derive the optimal dispatch strategy for the OO-
IES. Figure 9(a) illustrates the power dispatch scheme. The
OWF output meets the power demand for the OGPP, while
any shortfall is supplemented by the DG and FC. During
low-demand periods, the EC converts power into hydrogen,
which helps to increase renewable energy usage.
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The amount of SNG produced by the MR is directly
linked to the CO, captured by the CC, resulting in a positive
correlation between the CC and MR power consumption.
Figure 9(b) shows the gas dispatch scheme, where the gas
supply of OOIES mainly consists of the extracted gas from
OGPP and the SNG. The MR produces 865.94 t of SNG in
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the 1-day cycle. Figure 9(c) reveals that the CC captures
74.89% of the total CO, emissions from gas-fired generators.
Lastly, Fig. 9(d) demonstrates that hydrogen demand is met
by the EC during production periods, while the stored hydro-
gen satisfies hydrogen demand during other time periods.

Based on the analysis above, the processes of hydrogen
production via water electrolysis, power generation through
the FC, CC by MR, and gas storage demonstrate the system
ability to facilitate energy conversion and transfer. Excess en-
ergy is converted and redirected to meet various energy de-
mands through conversion devices. For instance, surplus
wind power is fed into the EC, where it is converted into
SNG to supply gas loads. This collaborative optimization
strategy effectively reduces CO, emissions and increases the
accommodation of renewable energy, validating the efficacy
of the obtained OCDC in CC-P2G through the proposed al-
gorithm.

C. Comparison of Different MOSO Algorithms

In traditional algorithms for solving MOSO problems, the
weighted sum method is commonly used to transform an
MOO problem into SOO problem, and the scenario algo-
rithm is typically used to convert stochastic optimization
problems into DO problems. As shown in Table V, the pro-
posed MOADP algorithm demonstrates improved computa-
tional efficiency. In the weighted sum algorithm, 10 discrete
points are selected within [0,1] for the weight of each objec-
tive, generating a POS set from which the COS is chosen.
Table V highlights the low computational efficiency of the
scenario algorithm, where the computational time grows as
the number of scenarios o, increases.

TABLE V
COMPARATIVE RESULTS OF FOUR DIFFERENT MOSO ALGORITHMS

. . . . Computational
Algorithm o, i ® L ®  fs MWh) time (s)
Weighted 40 128158.419  41.531 6.754 4788.067
sum + sce- 60 128358.643  41.519 6.743 8592.946

nario 80 Overflow
Chebyshev 40 127989.117  40.967 6.590 3986.584
function + 60 127958.594  40.959 6.711 6568.620
scenario 80 Overflow
40 128096.240  41.397 6.723 1325.629

Weighted
sum 1 ADP 60 127984.151  41.329 6.748 2487.013
80 128016.045 41.286 6.737 3629.177
Chebyshev 40 127851.652  40.933 6.568 869.640
function + 60 127782.260  40.919 6.610 1129.541
ADP 80 127755.484  41.055 6.526 1640.694

Similarly, the weighted sum algorithm suffers from ineffi-
ciency, as it requires calculating numerous discrete POSs be-
fore determining the COS. When a,=40, the proposed
MOADP algorithm reduces computational time by 81.84%,
78.19%, and 34.40% compared with the other three algo-
rithms. When a,=60, time is reduced by 86.86%, 82.81%,
and 54.58%. When a,=80, the weighted sum + scenario and
Chebyshev function + scenario algorithms experience RAM

overflow due to the large scenario scale, preventing optimiza-
tion results. Compared with the weighted sum + ADP algo-
rithm, the proposed MOADP algorithm reduces computation-
al time by 54.79%. These results demonstrate the superior
computational efficiency of the proposed MOADP algorithm
based on the weighted Chebyshev function.

The quality of the optimal solutions is higher in the multi-
objective optimization algorithm based on the weighted Che-
byshev function, as its COS values for each objective are
smaller than those obtained using the weighted sum algo-
rithm. This phenomenon occurs because the weighted Cheby-
shev function considers the COS distance from both the uto-
pia and nadir points, resulting in a more optimal COS. In
contrast, the weighted sum algorithm often produces an un-
even distribution of POSs in the obtained Pareto frontier,
which can result in a less desirable COS. Therefore, the pro-
posed algorithm demonstrates a clear advantage in producing
high-quality COS outcomes.

V. CONCLUSION

An MOSO algorithm for optimizing the device capacities
in CC-P2G of OOIES is introduced, accounting for the sto-
chastic fluctuations in OWF power and AG output. A case
study on an actual OOIES validates the effectiveness and ef-
ficiency of the proposed MOADP algorithm. The OCDC in
CC-P2G obtained from the proposed MOSODCD model in-
creases the total cost by 14.47% but reduces carbon emis-
sions by 69.68% and wind power curtailment by 81.73%
compared with the optimal operation of the system before
configuration. By incorporating the effect of the solution dis-
tance from the nadir point on the objective weights, the
MOADP algorithm achieves a COS with a high degree of
comprehensive optimization across all objectives. Additional-
ly, the MOADP algorithm reduces CPU time by more than
34.40% compared with other MOSO algorithms, which sig-
nificantly boosts computational efficiency in solving MOSO
problems.

This study introduces the MOADP algorithm to address
the three-objective optimization problem for the OCDC in
CC-P2G of OOIES. Future work will explore extending this
algorithm to handle MOSO problems involving more than
three objectives, particularly when factoring in objectives
such as the secure and reliable operation of OOIES under
contingencies.
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