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Abstract——The offshore-onshore integrated energy system 
(OOIES) comprises offshore gas production platforms, wind 
farms, and onshore gas-fired combined heat and power plants, 
facilitating the integrated operation of multiple energy sources. 
To address the challenge of optimally configuring the device ca‐
pacities in carbon capture and power to gas (CC-P2G) amid sto‐
chastic fluctuations in offshore gas and wind power outputs, 
this study proposes a multi-objective approximate dynamic pro‐
gramming algorithm. This algorithm solves the multi-objective 
stochastic optimal configuration for the device capacities in CC-
P2G in OOIES by simultaneously optimizing investment and 
operation costs, wind power curtailment, and carbon emissions. 
By leveraging value function matrices for multiple objectives to 
solve the extended Bellman equation, the multi-objective multi-
period model is decomposed into a series of multi-objective sin‐
gle-period optimization problems, which are solved recursively. 
Additionally, a weighted Chebyshev function is introduced to 
obtain the compromise optimal solution for multi-objective opti‐
mization model during each period. A case study of an OOIES 
confirms the effectiveness and efficiency of the proposed algo‐
rithm.

Index Terms——Capacity configuration, carbon capture, power 
to gas, multi-objective stochastic optimization, integrated ener‐
gy system, weighted Chebyshev function, approximate dynamic 
programming.

I. INTRODUCTION

IN response to carbon emission peak and carbon neutrality 
goals and mandatory emission reduction policies in Chi‐

na, energy systems are facing increasing pressure to reduce 
carbon emissions. The rapid expansion of renewable energy 

sources, particularly wind and solar power, has introduced 
considerable uncertainty in energy supply, posing challenges 
to the secure and economic operation of energy systems. Fur‐
thermore, achieving a cost-effective balance between invest‐
ment costs and carbon reduction targets remains a significant 
economic challenge for industries. To address these issues, 
the integration of a carbon capture and power to gas (CC-
P2G) setup presents a promising solution. The CC-P2G sys‐
tem comprises electrolyzer cells (ECs), hydrogen storage 
tanks (HSTs), hydrogen fuel cells (HFCs), methanation reac‐
tors (MRs), and carbon capture (CC) cells. The ECs electro‐
lyze water to convert electric energy into hydrogen, while 
the CC cells capture CO2, which, together with hydrogen, 
are used in the MRs to synthesize synthetic natural gas 
(SNG). This process facilitates the conversion of electric 
power into gaseous fuel (hydrogen and SNG) and captures 
CO2, improving the integration of electric power and gas sys‐
tems, supporting wind power utilization, and reducing CO2 
emissions. Several actual CC-P2G projects in operation or in 
planning around the world are listed in Table I. 

In the shift toward low-carbon energy and efficient re‐
source use in onshore-offshore regions [1], the offshore-
onshore integrated energy system (OOIES) integrates various 
offshore and onshore energy resources, which enhances cas‐
cade utilization of the energy. In an OOIES, onshore gas-
fired combined heat and power plants (GCHPPs), offshore 
gas production platforms (OGPPs), offshore wind farms 
(OWFs), electric power loads, heat loads, gas loads and hy‐
drogen loads connect with each other via electric cables and 
gas/hydrogen/heat pipelines, with CC-P2G systems serving 
as the central components for energy conversion and multi-

TABLE I
SEVERAL EXISTING OR PLANNED CC-P2G PROJECTS

Project

George olah plant

Audi e‑gas

Solar methanol

Madoqua synfuels

Location

Grindavík, Iceland

Werlte, Germany

Augusta, Australia

Pataias, Portugal

Capacity of 
CO2 (t/year)

4500

2800

15000

500000

Operation 
year

2009

2013

2023

2023
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energy collaboration in the OOIES. Flexible conversion is 
valid among electricity, heat, gas, and hydrogen, which of‐
fers better renewable energy utilization, lower carbon emis‐
sion, and higher economic benefits. Optimal configuration 
for device capacities (OCDC) in CC-P2G can significantly 
enhance the low-carbon and cost-effective operation of the 
OOIES. However, the uncertain energy outputs from OWFs 
and OGPPs affect the energy supply and the process of the 
OOIES, which presents challenges in determining the con‐
figuration for device capacities in CC-P2G [2].

Current research on the OCDC in integrated energy sys‐
tems (IESs) is extensive. In [3], a two-stage operation model 
for power to gas (P2G) devices is proposed, analyzing the ef‐
fect of carbon trading mechanisms on the optimal capacity 
configuration in P2G devices of IES. In [4], the OCDC for 
energy storage systems in IES is addressed using the cat 
swarm optimization algorithm. However, [3] and [4] focus 
on a single optimization objective, neglecting the need for 
multiple optimization objectives that balance the economy 
and low carbon emissions. In [5], a multi-objective optimiza‐
tion model is introduced to optimize gas turbine capacity in 
energy hubs. Similarly, a multi-objective OCDC of IES mod‐
el is developed in [6], which employs the heat-determined 
electricity principle and applies a non-dominated sorting ge‐
netic algorithm to obtain the Pareto optimal solution (POS). 
In [7], a novel multi-objective optimization framework is 
proposed for uncertain IES planning with demand response, 
using a coevolutionary algorithm for efficient problem-solv‐
ing. Additionally, [8] employs a preference selection mecha‐
nism to improve the solution for large-scale, discrete, multi-
objective bi-layer OCDC. Despite these advancements, no 
studies have specifically addressed the OCDC in CC-P2G, 
which is crucial in linking onshore and offshore subsystems 
in an OOIES. The OCDC in CC-P2G of OOIES must ac‐
count for multiple conflicting objectives, such as investment 
costs, carbon emissions, and renewable energy integration. 
Furthermore, due to the uncertain energy outputs from 
OGPPs and OWFs, the OCDC in CC-P2G of OOIES should 
be treated as a multi-objective stochastic optimization (MO‐
SO) problem, which presents significant challenges in find‐
ing an efficient solution.

Current solution methods for MOSO problems have been 
extensively researched, encompassing both MOSO algo‐
rithms [9]-[12] and multi-objective robust optimization (MO‐
RO) algorithms [13]- [15]. For MOSO algorithms, [9] intro‐
duces an unscented transformation-based mean-standard mod‐
el to account for uncertainties in wind and solar power in 
IES using multiple scenarios. In [10], an MOSO model for 
microgrids is developed based on the chance-constrained pro‐
gramming method, using a membership function to deter‐
mine the optimal weights for the multi-objective problem. In 
[11], multi-objective interval variables are used, and a group 
search optimization method is introduced to finalize unit siz‐
ing. In [12], dynamic Bayesian networks are used to model 
gas price fluctuations, and the epsilon constraint method is 
applied to solve the MOSO problem of IES. However, MO‐
SO algorithms are computationally demanding and time-in‐
tensive. In contrast, MORO algorithms, such as the multi-ob‐

jective bi-level robust optimization model based on the confi‐
dence gap decision theory [13], efficiently address renewable 
energy uncertainties. Another study proposes OCDC combin‐
ing fuzzy decision-making with two-stage adaptive robust op‐
timization to convert the multi-objective problem into a sin‐
gle-objective one [14]. In [15], economic cost, carbon emis‐
sions, and energy supply reliability are considered, leading 
to the development of an MORO model for the OCDC in 
IES. However, MORO, much like robust optimization, em‐
phasizes the extreme case of uncertainty, frequently leading 
to cautious decision-making. Additionally, the existing MO‐
SO algorithms require solving numerous discrete POSs to de‐
termine the compromise optimal solution (COS), which low‐
ers computational efficiency and produces an incomplete Pa‐
reto frontier, thus reducing the quality of the COS. Thus, fur‐
ther research is needed to address the limitations of MOSO 
and MORO and develop more reliable and efficient methods 
for obtaining a high-quality multi-objective COS.

The OCDC in CC-P2G of OOIES is a multi-objective 
multi-period optimization problem involving stochastic vari‐
ables. Based on the Bellman’s principle of optimality [16], 
approximate dynamic programming (ADP) enables the de‐
composition of a multi-period decision problem into sequen‐
tial single-period subproblems [17], which can then be 
solved recursively. This method mitigates the inefficiency 
typically caused by large-scale decision spaces in multi-ob‐
jective multi-period optimization problems [18]. By account‐
ing for the transition probabilities of stochastic variables be‐
tween periods, the precision of decision-making can be im‐
proved. While ADP has been increasingly applied to stochas‐
tic optimization problems in IES [19] - [21], there has been 
no research exploring the use of the multi-objective ADP 
(MOADP) algorithm for solving the multi-objective stochas‐
tic OCDC (MOSOCDC) problem in CC-P2G.

To efficiently solve the MOSOCDC problem, this study 
proposes an MOADP algorithm based on a weighted Cheby‐
shev function. The key contributions are as follows.

1) An MOSOCDC model in CC-P2G of OOIES is devel‐
oped, accounting for the stochastic fluctuations in OWF pow‐
er and associated gas (AG) outputs. The model optimizes in‐
vestment and operation costs, wind power curtailment, and 
carbon emissions simultaneously.

2) An MOADP algorithm is introduced to solve the MO‐
SOCDC model. Using the matrix form of the Bellman equa‐
tion, the multi-objective multi-period optimization problem 
is decoupled into single-period problems and solved recur‐
sively with the approximate value function (AVF) matrix. 
The algorithm leverages the weighted Chebyshev function to 
quickly solve multi-objective single-period optimization prob‐
lems. The solution with the smallest Chebyshev distance to 
the utopia point is identified from the feasible domain as the 
COS.

The remainder of this paper is arranged as follows. Sec‐
tion II presents the MOSOCDC model in CC-P2G of OO‐
IES. Section III introduces the MOADP algorithm for solv‐
ing the COS of the MOSOCDC model. Section IV offers a 
case study on an OOIES. Section V outlines the findings of 
this study.
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II. MOSOCDC MODEL IN CC-P2G OF OOIES

The components and energy flows of an OOIES are illus‐
trated in Fig. 1. The OOIES consists of OGPPs, OWFs, and 
GCHPPs, each performing specific functions.

1) OGPP is equipped with diesel generators and extracts 
AG, some of which are stored in the associated gas storage 
(AGS) while the rest are processed into gas. The gas is sup‐
plied to gas-fired generators, gas boilers, and gas loads.

2) OWF is installed with an electric hydrogen production 
unit (EHPU), where FCs supply power to the OGPP. Hydro‐
gen produced by ECs is sent to heat storage (HS), hydrogen 
loads, and MR in the GCHPP via pipelines.

3) GCHPP contains gas-fired generators converting gas in‐
to electricity, with waste heat and gas boilers providing heat 
to the heat loads. In addition, CO2 emissions from the gas-
fired generators are absorbed by CC, which reacts with H2 
in the MR to produce SNG, completing the utilization pro‐
cess of CC-P2G energy.

In an OOIES, the CC-P2G, comprising the EHPU, MR, 
and CC, serves as the key link for energy conversion and 
carbon emission reduction. Therefore, the OCDC in CC-P2G 
is fundamental to the coordinated dispatch of multiple ener‐
gy sources. To achieve this, the OCDC problem must ad‐
dress the stochastic fluctuations in offshore energy produc‐
tion.

A. Objective Functions

The decision variables for the MOSOCDC model in CC-
P2G of OOIES comprise device capacities: the maximum in‐
put power of EC PEC, the highest storage energy of HS EHS, 
the maximum power output of FC PFC, as well as the maxi‐
mum input power for both the MR PMR and CC device PCC, 
as shown in (1). To account for the economic and environ‐
mental benefits of the system, three optimization objectives 
are defined: minimizing daily equivalent investment and op‐

eration costs, reducing carbon emissions, and minimizing 
wind power curtailment. The first objective f1 focuses on 
economic efficiency, comprising the daily equivalent invest‐
ment cost of devices Cinv, daily maintenance costs of devices 
Cm, and daily energy sale profit Cs. Cinv is dependent on de‐
vice capacities, discount rate r, and service life Lu. For the 
HS system, the operating power of device z Pzt = φhyit + φhyot, 
where φhyit and φhyot are the input and output flow rates of 
HSTs, respectively. Considering the higher load levels and 
stochastic fluctuations in summer, the load and energy pro‐
duction curves of a typical day in summer are used to esti‐
mate Cm and Cs.

EΩ =[PECEHSPFCPMRPCC ] (1)
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(2)

where t and T are the index and number of time periods, re‐
spectively; Ω is the set of devices to be configured; cele is 
the electricity price per unit of electric energy; cg is the gas 
price; kinvz and kmz are the unit investment and maintenance 
costs of device z in CC-P2G, respectively; Dt is the time pe‐
riod, i. e., 1 hour; Ms is the number of days per year, i. e., 
365 days; Ez is the configured capacity of device z; Pelet is 
the active power output to the public grid; fLt is the gas load 
demand; cH is the hydrogen price; and fhlt is the hydrogen 
load demand.

The second objective f2 is to minimize carbon emissions 
from diesel generators, gas boilers, and gas-fired generators 
that are not captured by the CC.

min f2 =∑
t = 1

T

[dGB fGBt + dDG PDGt + (1 - ηt )μG PGt ]Dt (3)

where PGt is the active power output of gas-fired generators; 
PDGt is the active power output of diesel generator; dGB and 
dDG are the carbon emission factors of gas boilers and diesel 
generators, respectively; μG is the carbon emission intensity 
of gas-fired generators; and fGBt is the input gas flow rate of 
the gas boiler.

The third objective f3 is to minimize the total wind power 
curtailment in OOIES.

min f3 =∑
t = 1

T ∑
iÎΩw

(Pwpit -Pwit )Dt (4)

where i is the index of buses; Ωw is the set of OWF buses; 
and Pwpit and Pwit are the maximum available and actual ac‐
tive power outputs of the OWF, respectively.

B. Operation Constraints of Energy Source Output

1) Uncertain Gas Source and OWF Output
The forecasting errors of the extraction mass flow rate of 

AG from OGPP gas wells Dfagt and the OWF power output 
DPwpt are influenced by small and random factors such as 

Electric flow; Heat flow; Gas flowHydrogen flow;
CO2 flow; Devices to be configured

P2G

Gas well

Gas-fired
generator Gas

boiler

HS
 

MR

AGS

ECFC

OGPP (offshore)

CC-P2G

OWF (offshore)
Diesel

generator

Waste heat
boiler

HS

PG

Heat load

Electric
load

Public
grid

Gas
load

GCHPP
(onshore)

Hydrogen
load

Wind turbine

CC

Fig. 1.　Components and energy flows of an OOIES.
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measurement inaccuracies and short-term fluctuations, which 
are often assumed to obey a Gaussian distribution [22]. 
Thus, the mass flow rate of AG fagt and Pwpt are described 
as stochastic variables, as modeled in (5) and (6).

fagt = fag0t +Dfagt    Dfagt~Norm(μftσ
2
ft ) (5)

Pwpt =Pwp0t +DPwpt    DPwpt~Norm(μptσ
2
pt ) (6)

where the subscript 0 indiacates the forecasted value; μft and 
σft are the mean and standard deviations of the forecasting 
error of extracted mass flow rate of AG, respectively; 
Norm(·) denotes the norm distribution; and μpt and σpt are 
the mean value and standard deviations of the forecasting er‐
rors of the maximum available active power output of 
OWFs, respectively.
2) GCHPP Output

The energy generation devices in the GCHPP consist of 
gas-fired generators, waste heat boilers, and gas boilers [23]. 
The operation constraints for gas-fired generators are out‐
lined in (7). The waste heat from these generators is cap‐
tured to meet heat loads, with the waste heat boiler output 
φht calculated using (8). The gas boiler generates heat power 
using gas, with its heat output φGBt computed in (9).
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(7)

where ca, cb, cc, and cd are the efficiency factors of gas-fired 
generators; RuG and RdG are the maximum ramping up and 
down rates of gas-fired generators, respectively; fft and ηGt 

are the input gas flow rate and efficiency of gas-fired genera‐
tor, respectively; ρgas is the gas density; and qgas is the hydro‐
gen calorific value.

φht = ηWBαw( )PGt

ηGt
-PGt (8)

where αw and ηWB are the waste heat ratio and operation effi‐
ciency of waste heat boilers, respectively.

φGBt = ηGB fGBt

qgas

ρgasDt (9)

where ηGB is the efficiency of gas boiler.
3) Diesel Generators

To ensure the safe operation of the OGPP, diesel genera‐
tors provide power for AG extraction. Operation constraints 
for these generators are detailed in [24].

C. Operation Constraints of CC-P2G Devices

The operation of the CC-P2G system, as shown in Fig. 2, 
involves an EHPU, which includes the EC, HS, and FC. The 
EC converts electric power into hydrogen by electrolyzing 
water. Hydrogen is then partially stored in the HS for future 
use and partially directed to the FC for power generation, 
with the remainder of hydrogen sent to the MR for gas syn‐
thesis. The CC cell manages post-combustion CO2: flue gas 
from gas-fired generators is routed into an absorption tower 
where it mixes with an amine solution. CO2 is then separat‐
ed and transferred to the MR for gas production [25]. The 
model in [26] focuses on the energy conversion relationship 
of CC-P2G, which is applied in the proposed MOSOCDC 
model.

Equation (10) details the constraints for energy conversion 
of ECs and FCs [23]. The MR produces SNG through the 
chemical reaction of CO2 and hydrogen. The operation con‐
straints include both flow rate limitations of SNG derived 

from chemical equations and power consumption restriction 
(12) [23], where 4/11 and 11/2 are the constants obtained 
from the mass conservation in the chemical equation of syn‐
thesizing SNG.
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Fig. 2.　Schematic of CC-P2G system.
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ì
í
î

ïïMhyot = ηel Peit

Peot = ηfcMhyit
(10)

where Mhyot and Peit are the hydrogen mass flow rate and 
electric power input of electrolyzers, respectively; Mhyit and 
Peot are the hydrogen mass flow rate and electric power out‐
put of FC, respectively; and ηel and ηfc are the electro-hydro‐
gen conversion factors of electrolyzers and FCs, respectively.
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(11)

where ηhyi and ηhyo are the input and output hydrogen effi‐
ciencies of HSTs, respectively; φhyit and φhyot are the input 
power and output power of hydrogen storage, respectively; 
ηtr1 and ηtr2 are the efficiencies of hydrogen transfer between 
electrolyzer to HSTs and HSTs to FC, respectively; ηhy is the 
hydrogen storage loss rate; Mhymt is the input hydrogen pow‐
er of MR; ρh is the hydrogen density; qh is hydrogen calorif‐
ic value; and Ehyt is the remaining hydrogen in HSTs. The 
parameters with subscripts max and min indicate the upper 
and lower bounds of the variable.
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where μmr is the electric power consumption factor of MR; 
ηSNG is the operation efficiency of MR; fCt is the CO2 flow 
rate captured by CC; fHt is the input hydrogen flow rate of 
MR; and fSNGt is the output gas flow rate of MR.

Hydrogen energy is expressed in MWh to align with elec‐
tric power units. The energy conversion rule is that 1 m3 of 
hydrogen at 0 ℃ and one standard atmospheric pressure 
have an approximate energy equivalent of 2.95 kWh.

The configuration for CC devices in the GCHPP is essen‐
tial for reducing carbon emissions from gas-fired generators. 
The power consumed by CC devices Pcct includes the elec‐
tricity used for CO2 capture and the constant intrinsic power 
requirements of the device. fCt and CO2 released into the at‐
mosphere femt are calculated using (13) [23].
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Pcct = pCe fCt +PCb

fCt = ηC μG PGt

femt = μG PGt - fCt

(13)

where pCe is the electric power consumption factor of CO2 
capture; PCb is the constant term of electric power consump‐
tion of CC system; and ηC is the CO2 capture ratio of CC 

system.
The allowable maximum and minimum configured device 

capacity limits for the CC-P2G of OOIES are given in (14). 
The elements of vector EΩ are shown in (1).

EΩmin £EΩ £ΕΩmax (14)

D. Operation Constraints of Energy Storage Devices and En‐
ergy Supply Networks

1) AGS
AGS, constructed from decommissioned gas wells, pro‐

vides AG to meet load demands when the gas supply ex‐
ceeds the demand. Maintaining AGS operation requires elec‐
tric power, as shown in (15) and (16).
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(15)

Pagt = kag ( fagit + fagot ) (16)

where Eagt is the remaining gas in AGS; fagit and fagot are 
the input and output mass flow rates of AG, respectively; 
ηagi and ηago are the input and output gas efficiencies of 
AGSs, respectively; and kag is the electric power consump‐
tion factor of AGS.
2) HSTs

HSTs are used to manage discrepancies between heat pro‐
duction and demand. The operation constraints are similar to 
the 1st, 2nd, and 4th line formulae in (11), with the subscript 
modified from “hyi/hyo/hy” to “hi/ho/h”. Note that the pow‐
er network [27] and gas network [28] are described in Sup‐
plementary Material A.
3) Heat Network

The operation constraints for the heat network include 
models for nodal thermal power, pipeline temperature, fluid 
mixing at nodes with multiple branches, and electric power 
consumed by circulating pumps [28].
4) Upper and Lower Operation Bound Constraints

During the OOIES operation, all device outputs are con‐
strained to operate within their capacity bounds. These 
boundary conditions are specified by:
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        TrktPeitPeotPmrtPcct ]
(17)

where Qelet is the reactive power output to the public grid; 
and Twkt and Trkt are the supply and return water tempera‐
tures of node k, respectively. For the variables Peit, Peot, 
Pmrt, and Pcct, the corresponding upper limits in ymax are 
PEC, PFC, PMR, and PCC, respectively, while their lower limits 
in ymin are all 0.

Equations (2) - (17) and Supplementary Material A (A1) -
(A5) define an MOSOCDC model in CC-P2G of OOIES. 
Due to the stochastic variations in Pwpt and fagt, this model 
is a complex multi-objective mixed-integer non-linear pro‐
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gramming challenge with stochastic variables. An MOADP 
algorithm is presented in this study, which simplifies the 
original multi-objective multi-period model by decomposing 
it into multiple single-period subproblems that can be solved 
recursively. Additionally, a method based on the weighted 
Chebyshev function is proposed to obtain the COS of each 
multi-objective single-period optimization problem.

For this three-objective optimization problem, it is crucial 
to acknowledge the conflicts between the objectives. Reduc‐
ing wind power curtailment often requires investing in addi‐
tional CC-P2G devices, which can increase economic costs. 
Similarly, minimizing carbon emissions typically necessitates 
more CC-P2G devices, further raising costs. Conversely, 
minimizing economic costs might involve fewer CC-P2G de‐
vices and greater reliance on fossil fuels, which contradicts 
the objectives of reducing wind power curtailment and car‐
bon emissions. Therefore, it is essential to optimize the three 
objectives by using a coordinated method. POSs can effec‐
tively represent this coordinated optimization across multiple 
objectives.

III. SOLUTION METHODOLOGY

A. Solution of COS Based on Weighted Chebyshev Function

In multi-objective optimization, many POSs are typically 
computed first, from which the COS is selected. This pro‐
cess can be time-consuming due to the need to solve these 
POSs. The challenge lies in efficiently obtaining the COS 
across multiple objectives. A common method is the refer‐
ence point method, which involves finding a vector that min‐
imizes the distance to a predefined reference point. By mini‐
mizing the weighted Chebyshev function ψ(·), as shown in 
(18), the COS with a high degree of overall optimization 
can be achieved by:

ψ(Vrβ)= max
q

(βq| r -Vq |) (18)

where V is the value function (VF) vector; r is the reference 
point vector, typically set as the utopia point; β is the positive 
weight vector; βq is the weight of the qth objective function; 

and || r -Vq  is the Euclidean distance between the two vectors.

The structure of the ω-objective optimization model is de‐
fined in (19). Initially, ω single-objective optimization 
(SOO) solutions are solved individually. Let V *

p  represent the 
optimal objective function values for the pth SOO solution and 
V q*

p  signify its value for the qth objective function. The ω ´ω 
dimension payment matrix is constructed as shown in (20). r 
is defined as r =[V *

1 V
*

2 V *
ω ], Vq is defined as Vq =

[V q*
1 V q*

2 V q*
p V q*

ω ], and the nadir point a is a vector 
defined as a = (max(V 1*

p )max(V 2*
p )max(V ω*

p )).

min { f1 (y)f2 (y)fω (y)} (19)
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(20)

βq is calculated as:

βq =
μq

|
|
|||||

|
||||V *

q - max
p = 12ω

V q*
p

(21)

where μq is the standard weight for the qth objective. If μq is 
equal for all objectives, a longer distance between the utopia 
and nadir points results in a smaller βq, indicating a lower 
weight of that objective.

The effect of the distance of nadir point from objective 
weights is considered in (21), enhancing decision-making ac‐
curacy. Figure 3 presents the schematic diagram of solving 
COS using weighted Chebyshev function. When μq is equal 
for all objectives, the COS is the intersection of the line con‐
necting a and r with the Pareto frontier surface, representing 
the projection of r onto the Pareto frontier surface along the 
direction of a, yielding the smallest weighted Chebyshev dis‐
tance from the utopia point. Adjusting μq modifies the projec‐
tion direction to obtain different COSs, e.g., the yellow and 
green points. Therefore, any COS can be found by minimiz‐
ing the weighted Chebyshev function with an appropriate 
μq [29].

B. Multi-objective VF Matrix and Markov Decision Process 
(MDP)

Constructing VFs is essential for applying the ADP algo‐
rithm to solve multi-period stochastic optimization problems. 
A set of stochastic scenarios reflecting the uncertainties 
(Dfagt, DPwpt) is generated using the Latin hypercube sam‐
pling technique. By solving the deterministic optimization 
(DO) problem for each stochastic scenario, the VFs for each 
period can be obtained. In multi-objective multi-period sto‐
chastic optimization, VF matrices must be defined, extend‐
ing the VFs from one-dimensional to multi-dimensional cal‐
culations [30]. The VF matrix vt is geven as:

ì
í
î

ïïvt =[V 1
t V

2
t V q

t V ω
t ]

V q
t =[V 1q

t V 2q
t V pq

t V ωq
t ]T (22)

where the superscript pq denotes the value of the qth objec‐
tive function corresponding to the solution that minimizes 
the pth objective function; and V q

t  is the qth VF vector of vt.
Applying the ADP algorithm allows the multi-period MO‐

SOCDC model to be decomposed into multiple single-period 

r
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composed of non-
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Nadir bound
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point of  f1

Fig. 3.　 Schematic diagram of solving COS using weighted Chebyshev 
function.
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DO problems that can be addressed recursively. As shown in 
(23), the ADP-based integration with multi-objective optimi‐
zation employs an extended Bellman equation derived from 
the optimality principle [23], where the second term on the 
right-hand side represents the expected value. vt + 1 (S t + 1)|St 
represents the conditional VF for the state St + 1 of the next 
period, incorporating how the current action a t and state St 
influence the future states Sk for k = t + 1t + 2T.
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vt (S t )= min
at

[ ]C t (S ta t )+∑Pr(wt + 1|wt )×(vt + 1 (S t + 1 )|St )

S t =[Rtwt ]

Rt =[EhtEhytEagt ]

wt =[Pwptfagt ]

at =[φhyitφhyotφhitφhotfagitfagotPGtPDGtPmrtPcct ]

(23)

where Pr(wt + 1|wt ) is the transition probability function for 
stochastic quantities moving from wt to wt + 1; Ct (S ta t ) is 
the multi-objective cost matrix for a t; and St includes stor‐
age variables Rt and stochastic variables wt. To implement 
the MOADP algorithm, the MOSOCDC model is trans‐
formed into a multi-objective MDP (MMDP). The MMDP 
extends the traditional MDP [31] and is characterized by a 
four-element model {S ta tCtTr }, as shown in Fig. 4, where 
Tr is the vector of state transition functions. In this MO‐
SOCDC model, the state St includes storage capacity and sto‐
chastic variables. The optimization is performed by decou‐
pling the periods, and the final optimal configured EΩ is de‐
termined as the maximum EΩt value across all periods. The 
obtained EΩ can meet the constraints across all periods de‐
spite stochastic fluctuations in Pwpt and fagt. For instance, if 
the configured power is PMRt, the final optimal configured 
power is PMR =max{PMR1PMR2PMRT }. Additionally, the 
VF for the current period is derived from the instant cost of 
the current period and the VF of the next period. Since Cinv 
in f1 is independent of t, it is necessary to adjust the VF cal‐
culations. Specifically, to align the VFs of the first period 
with f1-f3, the investment cost should be expressed as Cinv/T 
in C1t(S ta t ) for VF calculations during each period.

Each column of vt in (22) corresponds to the values of an 
optimization objective. Consequently, the multi-objective in‐
stant cost matrix can be expressed as in (24), with identical 
instant costs in each column. The values C1t(S ta t ), 

C2t(S ta t ), and C3t(S ta t ) are calculated as given in (25) -
(27). Tr is shown in (28).
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C1t (S ta t )=Cinv /T +Cmt -Cst (25)

C2t (S ta t )= dGB fGBt + dDG PDGt + dG (1 - ηt )μG PGt (26)

C3t (S ta t )= ∑
iÎΩw

(Pwpit -Pwit ) (27)

Rt + 1 =Tr (Rta twt )=Rt +E(DRt (at )|wt ) (28)

where E(×) denotes the expectation; and C1t, C2t, and C3t are 
the elements of matrix Ct.

C. MOADP Algorithm Based on Weighted Chebyshev Func‐
tion

To address the low computational efficiency of traditional 
multi-objective optimization algorithms while accounting for 
stochastic fluctuations, an MOADP algorithm is proposed 
for solving the multi-period MOSOCDC problem. The 
MOADP algorithm leverages the extended Bellman equation 
to derive the analytical AVF expression for each period and 
objective. This allows the stochastic multi-period model to 
be decoupled into a series of single-period models, which 
are solved recursively. For solving the COS of each multi-
objective single-period optimization problem, the weighted 
Chebyshev function is used, which quantifies the weighted 
Chebyshev distance between each AVF vector and the utopia 
point. The point with the smallest weighted Chebyshev dis‐
tance in each period is selected as the COS for that period. 
Unlike the weighted sum method, which only considers the 
weights of individual objectives, the weighted Chebyshev 
function also considers the distance between the utopia and 
nadir points, providing a more comprehensive measure of op‐
timization.

By traversing all periods through this process, the COS of 
the proposed MOSOCDC model can be efficiently obtained, 
significantly enhancing computational efficiency while ensur‐
ing accuracy.
1) Generation of Typical State Space and Sampling VF Vec‐
tors

To simplify the MOSOCDC calculation, a year is divided 
into three seasonal periods: summer, winter, and transitional 
season. Three representative days from three seasons are se‐
lected for the analysis. Utilizing the Latin hypercube sam‐
pling technique, stochastic scenarios are derived from the 
normal distributions of Pwpt and fagt, distributed across sea‐
sons as αs /4 for the winter scenarios, αs /4 for the summer 
scenarios, and αs /2 for the transitional period scenarios. The 
mean values are Pwp0t and fag0t, while the standard devia‐
tions are 0.2Pwp0t and 0.15fag0t. For each scenario of wt, a 
single-objective DO model is solved for each objective, re‐
sulting in αs typical states and corresponding sampling VF 
matrices vtj (t = 12T and j = 12αs ) for the three ob‐
jectives, where the qth vector is V q

tj =[V 1q
tj V

2q
tj V

3q
tj ]T and q =

State transition
function
Tr(S2|a1, S1)
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Multi-objective instant cost
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Fig. 4.　MMDP.
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123. Additionally, the corresponding sampling instant costs 
before normalization Ĉ pq

tj (S tja t ) (p = 123) are obtained by 
solving the DO model for each period, objective, and typical 
state. These sampling instant costs must then be normalized 
as:
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C pq
tj (S tja t )=

Ĉ pq
tj (S tja t )- fqt min

fqt max - fqt min

fqt max = max
p = 123

j = 12...αs

Ĉ pq
tj (S tja t )

fqt min = min
p = 123

j = 12...αs

Ĉ pq
tj (S tja t )

(29)

where fqt max  and  fqt min are the maximum and minimum in‐
stant cost values for the qth objective within the typical state 
space, respectively. All terms related to the optimization ob‐
jectives in (30), (31), and (33)-(36) are expressed as normal‐
ized values.

The transition probability of Pr(wt + 1|wt ) can be derived 
from historical data using the method in [24]. Pwpt and fagt 
are divided into Nw and Nag intervals, respectively, for analy‐
sis.
2) Computation of Analytical Expressions of AVF Under 
Three Objectives

The Bellman equation for solving the single-objective sto‐
chastic OCDC model by transforming it into the single-ob‐
jective single-period optimization model is given in (30), in 
which the number of divided intervals of stochastic variables 
is Ne =Nw Nag [24]. The AVF for time period t is obtained by 
minimizing the weighted sum of the instant cost during time 
period t and the AVF for time period t + 1 i, i.e., V̄ pq

t + 1 (S t + 1 ).

V pq
tj (S tj )=
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C pq
tj (S tja t )+∑

n = 1

Ne

Pr(wt + 1n|wt )V̄
pq

t + 1 (S t + 1 )

s.t.  (7)-(17)
  (30)

To compute the AVFs corresponding to the αs typical 
states for the three objectives, AVFs are determined through 
a backward recursive process starting from the final period 
and moving toward the first, by utilizing the analytical ex‐
pressions of the AVFs for the subsequent period. By solving 
(30), αs sets of Stj -V pq

tj (S tj ) samples are obtained. The least 
squares method is applied to fit the data using a cubic poly‐
nomial as the fitting function, as shown in (31). The coeffi‐
cients At + 1, Bt + 1, ct + 1, et + 1 are determined by minimizing the 
fitting residuals, as shown in (32). Assume that elements in 
St + 1 are S1S2Sn, and the expression of S't + 1 can refer 
to [23].

V̄ pq
t + 1 (S t + 1 )=

1
6

S′t + 1 A t + 1 S t + 1 +
1
2

S T
t + 1 B t + 1 S t + 1 + cT

t + 1 S t + 1 + et + 1

(31)

arg min
At + 1Bt + 1
ct + 1et + 1

∑
j = 1

λs

||V̄ pq
t + 1j (A t + 1Bt + 1ct + 1et + 1St + 1j )-V pq

t + 1j||   (32)

The computation of AVFs starts by assigning the sampling 
VFs to the αs typical states in the final time period T. Subse‐

quently, the analytical expressions of AVFs are derived using 
(31) and (32). To simplify the process, the midpoints of Ne 
divided intervals of wTn for n = 12Ne are substituted in‐
to Pr(wTn|wT - 1). By minimizing (30), the corresponding 
AVFs V pq

T - 1j (ST - 1j ) are derived. This method continues recur‐
sively through periods T−1, T−2, etc., back to time period 1. 
For a three-objective optimization problem, (30) is solved 
nine times per period. The result provides the AVF matrices 
for αs typical states and the analytical AVF expressions for 
each objective across all periods (p = 123, q = 123, and t =
12T).
3) Solution of COS and Optimal Configuration Scheme

Once the analytical AVF expressions for each period are 
obtained, the multi-objective single-period optimization mod‐
el (33) is solved, which provides the COS along with the 
corresponding optimal configuration scheme.
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Cct (S ta t )+∑
n = 1

Ne

Pr(wt + 1n|wt )dt + 1 (S t + 1 )

s.t.  (7)-(17)

(33)

Through the weighted Chebyshev calculation in Supple‐
mentary Material A, the optimization problem in (33) is con‐
verted into a min-max bi-level optimization problem with 
both decision variables a t. The auxiliary variable ϕ is intro‐
duced to simplify (33) into a single-layer minimization prob‐
lem, as shown in (34).
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at = arg min
at

Cct (S ta t )∑
n = 1

Ne

Pr(wt + 1n|wt )ϕ

s.t.  ϕ ³
1
3

|r -V 1
t + 1 (S t + 1 )|

|V̄ 11
t + 1 (S t + 1 )- V̄ 1q′

t + 1 (S t + 1 )|

       ϕ ³
1
3

|r -V 2
t + 1 (S t + 1 )|

|V̄ 22
t + 1 (S t + 1 )- V̄ 2q″

t + 1 (S t + 1 )|

       ϕ ³
1
3

|r -V 3
t + 1 (S t + 1 )|

|V̄ 33
t + 1 (S t + 1 )- V̄ 3q‴

t + 1 (S t + 1 )|

       (7)-(17)

(34)

Finally, the optimal decision a t is determined by solving 
the optimization problem in (34) from the first period to the 
last. The detailed calculation steps are as follows.

Step 1: initialize St and set each component in R1 to be 
half of the total storage quantity, so for t = 1, St = S1 (R1w1 ).

Step 2: assume the current time period is t; compare the 
results of AVF calculations numerically to determine the objec‐
tives q', q'', and q''' (q', q'', and q''' can be 1, 2, or 3) that maxi‐
mize the values of V̄ 1q

t + 1 (S t + 1 ), V̄ 2q
t + 1 (S t + 1 ), and V̄ 3q

t + 1 (S t + 1 ), re‐
spectively; and substitute them into (34).

Step 3: substitute the midpoints of Ne divided intervals 
of wt + 1n (n = 12Ne ), the analytical AVF expression 
V̄ pq

t + 1 (S t + 1 ) (p = 123 and q = 123), and Rt from the previ‐
ous period into (34), and minimize the optimization model 
in (34) to obtain a t and Ct (S ta t ) for the current time period.

Step 4: increase t = t + 1 and repeat Steps 2 and 3 until all 
periods are processed. Determine the optimal configuration 
scheme, i.e., the optimal values of the components in EΩ us‐
ing the solution method outlined in Section III-B.
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IV. CASE STUDY

Figure 5 illustrates the wiring diagram of an actual OO‐
IES. The OGPP and OWF are positioned in the South China 
Sea, whereas the GCHPP is positioned in Zhongshan City, 
China. The power network consists of 17 buses, both the 
heat and gas networks include nine nodes, and the OGPP 
has three gas wells. Each wind turbine has an installed ca‐
pacity of 5.5 MW. The year is divided into 365 days, with 
178 days in the transitional season, 95 days in summer, and 
92 days in winter. The divided intervals are set with Nag = 5 

and Nw = 5. Power, heat, gas, and hydrogen load curves for 3 
typical days are illustrated in Supplementary Material A Fig. 
SA1. The forecasted fagt and Pwpt on these days are shown 
in Supplementary Mterial A Figs. SA2. Investment and main‐
tenance costs for CC-P2G, along with other system parame‐
ters, are detailed in Supplementary Mterial A Tables SAI and 
SAII, respectively. All simulations are conducted on a com‐
puter equipped with an Intel(R) Xeon(R) E3-1270 CPU @ 3.60 
GHz and 32 GB of RAM, utilizing MATLAB R2019a and 
GAMS win64 24.5.3. The SBB solver is employed to handle 
the single-period DO problems formulated in (30) and (34).

A. Analysis of Multi-objective Optimization Results

1) AVF Matrix Under Three Objectives
αs = 40 stochastic scenarios (including three typical fore‐

casting scenarios) are generated using the Latin hypercube 
sampling method. The 40 sampled scenarios for total OWF 
power output and mass flow rates of gas wells are displayed 
in Supplementary Mterial A Fig. SA3. By solving (30) recur‐
sively from the last period to the first, the AVFs for each pe‐
riod are computed. These calculations produce normalized 
AVF matrices corresponding αs to the 40 typical states dur‐
ing each period, as illustrated in Fig. 6, where colored marks 

respresent different stochastic scenarios. Moreover, the re‐
sults indicate that when optimizing a single objective p, the 
AVF for that objective p is obviously smaller than those for 
optimizing the other two objectives. This phenomenon oc‐
curs due to SOO focusing exclusively on the selected objec‐
tive while neglecting the optimization of the other objectives.
2) Computation Results of Multi-objective Optimization 

The ADP algorithm from [23] is used to determine the 
OCDC results for the three SOO models with objectives in 
(2)-(4). By using Chebyshev standard weights as μ1 = μ2 = μ3 =
1/3, the OCDC results for the proposed MOSOCDC model 
are obtained and presented in Table II. 
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The OCDC results for each SOO model differ, reflecting 
the conflict among the three objectives. Specifically, objec‐
tive 1 focuses on economic efficiency and yields smaller 
configured device capacities due to the proportional relation‐
ship between investment costs and device capacities. In con‐
trast, objectives 2 and 3 yield larger configured device capac‐
ities, as increasing the device capacities in CC-P2G helps re‐
duce carbon emissions and wind power curtailment. A com‐
parison between SOO and MOO results is provided in Table 
III. 

The results indicate that when minimizing the total costs, 
the obtained carbon emissions increase due to less config‐
ured device capacities in CC-P2G. When the carbon emis‐
sions are minimized, the obtained total costs are higher be‐
cause OOIES requires greater configured device capacities 
in CC-P2G. When minimizing the wind curtailment, the ob‐
tained total costs rise because OOIES needs additional sys‐
tem flexibility to balance the wind power fluctuation, further 
increasing the system operation costs. The weighted Cheby‐
shev distance of the MOO model is the smallest, indicating 
that it is closer to the utopia point than the three SOO mod‐
els. Therefore, the COS of the MOO model demonstrates a 
higher degree of comprehensive optimization than the indi‐
vidual SOO models.

In the proposed MOSOCDC model, by initially setting the 
Chebyshev standard weights to μ = μ2 = μ3 = 1/3 and adjusting 
them to values μ1 ={01/62/61}, μ2 ={01/62/61−μ1 }, 
and μ3 = 1−μ1−μ2, 49 POSs are obtained for each combina‐
tion of weight values. 

The corresponding Pareto frontier using weighted Cheby‐
shev function is plotted in Fig. 7. The red point on the plot 
represents the COS, which is closest to the utopia point with 
standard weights μ1, μ2, and μ3 being 1/3, 1/2, and 1/6, re‐
spectively. The purple points indicate other POSs obtained 
through the proposed MOADP algorithm. The COS is nearer 
to the utopia point than the other POSs.
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Fig. 7.　Pareto frontier using weighted Chebyshev function.

TABLE II
SINGLE-OBJECTIVE AND MULTI-OBJECTIVE OPTIMAL CONFIGURATION 

RESULTS

Objective

min f1

min f2

min f3

MOO

Device

EC

HS

FC

MR

CC

EC

HS

FC

MR

CC

EC

HS

FC

MR

CC

EC

HS

FC

MR

CC

Device capacity 
configuration (MW/MWh)

12.84

31.54

14.34

4.80

9.14

31.76

52.53

25.42

11.34

15.48

27.64

56.84

32.61

12.65

15.64

23.51

39.15

16.47

6.48

13.62

Average daily 
investment cost (¥)

1528.728

6823.451

1728.564

12828.586

18261.649

2528.208

8154.918

2707.846

23791.455

26846.945

2264.646

8754.618

3597.025

26151.090

27136.949

1871.479

7131.071

2037.716

14581.625

21561.005

TABLE III
SINGLE-OBJECTIVE AND MULTI-OBJECTIVE OPTIMIZATION RESULTS

Solution

min f1

min f2

min f3

COS

f1 (¥)

100482.607

172180.481

180147.251

127851.652

f2 (t)

54.710

19.930

63.093

40.933

f3 (MWh)

16.582

22.420

1.564

6.568

Chebyshev distance

1.018

1.239

1.324

0.948
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3) Analysis of MOSOCDC Model
To assess the necessity of configuring CC-P2G devices in 

the OOIES, the MOSOCDC model is solved using the pro‐
posed MOADP algorithm, and the solution results are com‐
pared with the optimal results of the case excluding CC-P2G 
devices. The optimization model of this case does not in‐
clude Cinv and Cm in the objective functions, and the CC-
P2G related constraints in (11)-(14) and the second formula 
of (10) are excluded. In this scenario, only the ECs of CC-
P2G are used to supply hydrogen loads, and the results are 
presented in Table IV. The optimal configuration for CC-
P2G devices increases f1 by 14.47% compared with the un‐
configured method. However, the proposed MOSOCDC 
model significantly reduces f2 and f3 by 69.68% and 81.73%, 
respectively. Therefore, configuring CC-P2G devices increas‐
es energy utilization, lowers carbon emissions, and improves 
the operation flexibility of the OOIES in coordinating multi‐
ple energy operations.

The configured CC-P2G devices enable energy conversion 
among electricity, hydrogen, and gas. To analyze the relation‐
ship between the configured device capacities in CC-P2G 
and energy prices, it is assumed that the gas price varies 
from 2 to 3.8 ¥/(N·m3 ) and the hydrogen price varies from 
3.3 to 6.3 ¥/(N·m3 ). As the gas price rises to 3.0 ¥/(N·m3 ), 
profits from gas sales increase, driving a significant boost in 
configured device capacities. Beyond this price unit, further 
increases in configured device capacities become uneconomi‐
cal. As the hydrogen price rises between 3.3 and 5.1 
¥/(N·m3 ), the configured device capacities increase, enhanc‐
ing economic returns. However, when the hydrogen price 
reaches 5.1-6.3 ¥/(N·m3 ), the configured device capacities re‐
main relatively stable. This outcome is observed because the 
gas price significantly influences the profitability of SNG 
produced by the MR. For other devices, particularly ECs in‐
volved in hydrogen production, increasing the configured de‐
vice capacities boosts the profitability of hydrogen sales. 
However, the associated investment costs rise alongside the 
increase of device capacities, leading to minimal changes in 
device capacities when the prices surpass certain thresholds.

B. Energy and Carbon Dispatch Under OCDC in CC-P2G

On a representative summer day, OCDC in CC-P2G 
linked to the COS is input into the proposed MOSOCDC 
model to derive the optimal dispatch strategy for the OO‐
IES. Figure 9(a) illustrates the power dispatch scheme. The 
OWF output meets the power demand for the OGPP, while 
any shortfall is supplemented by the DG and FC. During 
low-demand periods, the EC converts power into hydrogen, 
which helps to increase renewable energy usage. 

The amount of SNG produced by the MR is directly 
linked to the CO2 captured by the CC, resulting in a positive 
correlation between the CC and MR power consumption. 
Figure 9(b) shows the gas dispatch scheme, where the gas 
supply of OOIES mainly consists of the extracted gas from 
OGPP and the SNG. The MR produces 865.94 t of SNG in 

TABLE IV
COMPARISON OF RESULTS OF UNCONFIGURED AND CONFIGURED CC-P2G 

DEVICES

CC-P2G device

Unconfigured

Configured

Cinv (¥)

49803.160

f1 (¥)

111686.349

127851.652

f2 (t)

135.024

40.933

f3 (MWh)

35.944

6.568
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Fig. 8.　Influence of gas and hydrogen prices on configured device capaci‐
ties. (a) Gas price. (b) Hydrogen price.
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the 1-day cycle. Figure 9(c) reveals that the CC captures 
74.89% of the total CO2 emissions from gas-fired generators. 
Lastly, Fig. 9(d) demonstrates that hydrogen demand is met 
by the EC during production periods, while the stored hydro‐
gen satisfies hydrogen demand during other time periods.

Based on the analysis above, the processes of hydrogen 
production via water electrolysis, power generation through 
the FC, CC by MR, and gas storage demonstrate the system 
ability to facilitate energy conversion and transfer. Excess en‐
ergy is converted and redirected to meet various energy de‐
mands through conversion devices. For instance, surplus 
wind power is fed into the EC, where it is converted into 
SNG to supply gas loads. This collaborative optimization 
strategy effectively reduces CO2 emissions and increases the 
accommodation of renewable energy, validating the efficacy 
of the obtained OCDC in CC-P2G through the proposed al‐
gorithm.

C. Comparison of Different MOSO Algorithms

In traditional algorithms for solving MOSO problems, the 
weighted sum method is commonly used to transform an 
MOO problem into SOO problem, and the scenario algo‐
rithm is typically used to convert stochastic optimization 
problems into DO problems. As shown in Table V, the pro‐
posed MOADP algorithm demonstrates improved computa‐
tional efficiency. In the weighted sum algorithm, 10 discrete 
points are selected within [0,1] for the weight of each objec‐
tive, generating a POS set from which the COS is chosen. 
Table V highlights the low computational efficiency of the 
scenario algorithm, where the computational time grows as 
the number of scenarios αs increases. 

Similarly, the weighted sum algorithm suffers from ineffi‐
ciency, as it requires calculating numerous discrete POSs be‐
fore determining the COS. When αs = 40, the proposed 
MOADP algorithm reduces computational time by 81.84%, 
78.19%, and 34.40% compared with the other three algo‐
rithms. When αs = 60, time is reduced by 86.86%, 82.81%, 
and 54.58%. When αs = 80, the weighted sum + scenario and 
Chebyshev function + scenario algorithms experience RAM 

overflow due to the large scenario scale, preventing optimiza‐
tion results. Compared with the weighted sum + ADP algo‐
rithm, the proposed MOADP algorithm reduces computation‐
al time by 54.79%. These results demonstrate the superior 
computational efficiency of the proposed MOADP algorithm 
based on the weighted Chebyshev function.

The quality of the optimal solutions is higher in the multi-
objective optimization algorithm based on the weighted Che‐
byshev function, as its COS values for each objective are 
smaller than those obtained using the weighted sum algo‐
rithm. This phenomenon occurs because the weighted Cheby‐
shev function considers the COS distance from both the uto‐
pia and nadir points, resulting in a more optimal COS. In 
contrast, the weighted sum algorithm often produces an un‐
even distribution of POSs in the obtained Pareto frontier, 
which can result in a less desirable COS. Therefore, the pro‐
posed algorithm demonstrates a clear advantage in producing 
high-quality COS outcomes.

V. CONCLUSION

An MOSO algorithm for optimizing the device capacities 
in CC-P2G of OOIES is introduced, accounting for the sto‐
chastic fluctuations in OWF power and AG output. A case 
study on an actual OOIES validates the effectiveness and ef‐
ficiency of the proposed MOADP algorithm. The OCDC in 
CC-P2G obtained from the proposed MOSODCD model in‐
creases the total cost by 14.47% but reduces carbon emis‐
sions by 69.68% and wind power curtailment by 81.73% 
compared with the optimal operation of the system before 
configuration. By incorporating the effect of the solution dis‐
tance from the nadir point on the objective weights, the 
MOADP algorithm achieves a COS with a high degree of 
comprehensive optimization across all objectives. Additional‐
ly, the MOADP algorithm reduces CPU time by more than 
34.40% compared with other MOSO algorithms, which sig‐
nificantly boosts computational efficiency in solving MOSO 
problems.

This study introduces the MOADP algorithm to address 
the three-objective optimization problem for the OCDC in 
CC-P2G of OOIES. Future work will explore extending this 
algorithm to handle MOSO problems involving more than 
three objectives, particularly when factoring in objectives 
such as the secure and reliable operation of OOIES under 
contingencies.
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