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Abstract——Integrated energy system (IES) integrates various 
energy subsystems such as electricity, natural gas, heat, and the 
dynamic characteristics of different energy networks differ sig‐
nificantly. To realize the coordinated operation of heterogeneous 
energy flow network of electricity, natural gas, and heat, in this 
paper, a multi-spatial-temporal-scale coordinated optimal sched‐
uling method of IES considering frequency support ability is 
presented. The method divides the IES into three layers on the 
spatial scale and divides IES optimal scheduling into three stag‐
es: day-ahead, intra-day and real-time on the temporal scale. In 
the day-ahead stage, the most economical day-ahead scheduling 
plan is developed. In the intra-day stage, considering the differ‐
ent response characteristics of the device, the slow, medium, 
and fast subsystem layers are divided for control, and the de‐
vice output related to cold, heat, electricity, and natural gas is 
controlled hierarchically based on distributed model predictive 
control. In the real-time stage, the supporting effect of IES on 
power grid frequency is fully explored, and an IES active-fre‐
quency-support control method considering frequency regula‐
tion cost is proposed. Case studies show that the devices can be 
fully utilized with different response ability to perform the 
scheduling plans of each layer, effectively reducing the system 
operation cost and improving the frequency quality.

Index Terms——Integrated energy system (IES), multi-spatial-
temporal-scale, optimal scheduling, model predictive control, 
frequency support.

I. INTRODUCTION

AS fossil fuel reserves dwindle and environmental pollu‐
tion worsens, establishing a clean, efficient, and multi-

energy coupling new energy system has become the key to 

addressing these challenges [1]. Though interacted and cou‐
pled with multiple energy sources, integrated energy system 
(IES) can improve energy utilization efficiency and solve en‐
ergy and environmental problems [2], [3]. The dynamic char‐
acteristics of electricity, natural gas, heat, and other energy 
flows in IES are different. The device control characteristics 
and network characteristics in each energy subsystem are al‐
so different [4], coupled with the inaccuracy of the renew‐
able energy source (RES) and load prediction, which make 
the scheduling of the system more difficult [5], [6]. There‐
fore, how to fully consider the differences in the control 
characteristics of each device and realize the cooperative 
scheduling between multiple energy systems is a critical 
problem that IES needs to address.

Currently, studies for coordinated optimal scheduling 
among multiple energy systems in IES have experienced the 
development from a single timescale to day-ahead-intraday 
multiple timescales [7], [8]. Reference [9] proposes a model 
predictive control (MPC)-based multi-timescale optimal sched‐
uling method for IES considering RES uncertainties, which 
can improve system operation economics and accurately track 
stochastic fluctuations of RES. In [10], a two-stage dual-loop 
optimization framework for MPC-based IES is proposed to 
achieve coordinated operation of different energy flows on 
different timescales. However, the aforementioned central‐
ized MPC method exhibits a high model order, substantial 
online computational demands, and poor scalability, thus 
making it impractical for the optimal scheduling of IES in‐
corporating multiple distributed units. Therefore, in [11], a 
coordinated multi-timescale optimal scheduling method 
based on distributed MPC (DMPC) is presented to improve 
the efficiency of optimization solution for multi-microgrids. 
In [12] and [13], the IES energy management strategy based 
on DMPC is proposed to tackle the energy management un‐
der multi-timescale frameworks.

The above multi-timescale divisions are only from the per‐
spective of improving prediction accuracy and do not consid‐
er the differences of energy response time [14], [15]. Howev‐
er, IES optimization, which lacks the difference in energy re‐
sponse time, cannot reflect the difference of control charac‐
teristics caused by the difference in response time of each 
energy flow, nor does it conform to the actual operation 
[16]. Therefore, energy response time differences must be 
considered in IES optimal scheduling to make the optimiza‐
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tion analysis process and the final generated output plan 
more reasonable [17]. Hence, in [18], considering the dynam‐
ic behavior of natural gas and thermal systems, an emergen‐
cy scheduling scheme based on the dynamic optimal energy 
flow for IES is proposed, which can reduce the energy loss‐
es during emergencies. In [19], the dynamic optimal energy 
flow model for IES with heat and electricity is established 
by combining the transient heat flow and steady-state power 
flow so that the system can retain the state information of 
the district heat network during the optimization. In [20], a 
day-ahead IES optimal scheduling method considering the 
dynamic characteristics of power-to-gas (P2G) units and nat‐
ural gas pipelines is proposed to reduce the operation cost of 
the whole system without increasing the computational bur‐
den. Reference [21] proposes a joint optimal scheduling strat‐
egy for electricity and natural gas systems, considering the 
slow dynamic characteristics of natural gas pipeline net‐
works.

In summary, existing studies have made some achieve‐
ments in IES optimal scheduling, but there are still some 
limitations to be addressed:

1) The current research on IES multi-timescale optimal 
scheduling does not consider both the system prediction er‐
ror and the differences in operation characteristics of multi‐
ple types of devices.

2) In IES optimal scheduling, which considers the differ‐
ences in device response characteristics, the scheduling peri‐
od of each device is usually fixed, i. e., it remains constant 
throughout the optimization process. If the scheduling period 
of the devices is able to adjust adaptively based on the oper‐
ation conditions of the system, it will help improve the quali‐
ty of system energy supply.

3) The IES supporting effect on power grid frequency is 
not fully explored under grid-connected operation. When the 
frequency changes greatly, e. g., when some nodes are con‐
nected to larger-capacity renewable energy power plants, if 
the supporting role of IES on frequency can be played, it 
will help improve the quality of power grid frequency.

To address the above limitations, this paper presents a 
multi-spatial-temporal-scale coordinated optimal scheduling 
method of IES considering the frequency support ability 
from both temporal and spatial perspectives, and the salient 
features of the proposed method are as follows.

1) Considering the device response characteristics, a multi-
spatial-temporal-scale coordinated optimal scheduling frame‐
work of IES is proposed. The proposed framework enables 
devices with different response characteristics to reasonably 
perform the scheduling plans of each layer, avoids frequent 
adjustments to the devices, and improves the IES operation 
economy.

2) In the intra-day stage (IDS), an IES intra-day rolling 
optimization method is proposed to adaptively adjust the de‐
vice scheduling period based on the errors of renewable ener‐
gy and load forecasting. The method considers the smooth‐
ness of device output and prediction accuracy and improves 
the quality of system energy supply and system operation 
stability.

3) In the real-time stage (RTS), an IES frequency support 

control method based on virtual synchronous generator 
(VSG) considering the frequency regulation cost is pro‐
posed. This method makes the IES a backup of the power 
grid, i.e., it realizes power self-balancing in the IES with op‐
timal operation cost when the power grid frequency remains 
within the acceptable range, and supports the power grid 
with active power when the frequency changes, which im‐
proves the power grid frequency quality.

II. MULTI-SPATIAL-TEMPORAL-SCALE COORDINATED 
OPTIMAL SCHEDULING FRAMEWORK OF IES 

A. IES Structure

The structure of IES is shown in Fig. 1. The inputs are 
connected to the external grid and the natural gas network, 
and the outputs are connected to cold, thermal, electric, and 
natural gas loads.

The IES is composed of the energy production unit, the 
energy conversion unit, and the energy storage unit. The en‐
ergy production unit includes photovoltaic (PV) and wind 
turbine (WT). The energy conversion unit includes gas tur‐
bine (GT), gas boiler (GB), waste heat boiler (HB), electric 
chiller (EC), absorption chiller (AC), fuel cell (FC), and 
P2G. The energy storage unit includes battery storage (BS) 
device, gas storage (GS) device, thermal storage (TS) de‐
vice, and cold storage (CS) device.

B. Multi-spatial-temporal-scale Coordinated Optimal Sched‐
uling Framework of IES

Considering the differences in the dynamic response char‐
acteristics of different energy units in the IES and the inaccu‐
racy of RES and load forecasting, the IES optimal schedul‐
ing is classified into day-ahead stage (DAS), IDS, and RTS 
from the time perspective. Further consideration of the spa‐
tial scale effectively alleviates the excessive computation 
caused by the shortened timescale. Therefore, a multi-spatial-
temporal-scale coordinated optimal scheduling framework of 
IES is presented, as shown in Fig. 2.
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Fig. 1.　Structure of IES.
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Figure 2 shows that IES is divided into the system, sub‐
system, and device layers from the spatial scale. In this 
framework, the timescale of DAS is 1 hour, and the schedul‐
ing period is 24 hours, which is mainly based on the day-
ahead RES and load forecasting data to formulate the day-
ahead scheduling plan and provide reference information for 
the all-day economy operation of the system. The spatial 
scale uses the entire IES system.

In IDS, considering that the response speeds of electric, 
natural gas, and cold/thermal energy are decreasing in se‐
quence, IDS is further divided into cold/thermal dispatch lay‐
er, natural gas dispatch layer, and electric dispatch layer. In 
this stage, according to the intra-day RES and load forecast‐
ing data, DMPC method is used to carry out rolling schedul‐
ing for different energy units in different timescales to 
achieve the objective of rolling correction of the day-ahead 
plan. The spatial scale uses the individual energy subsystem.

In RTS, considering that the minor changes under the sys‐
tem operation conditions do not affect the economy, IES is 
mainly used as a backup for the power grid. Power self-bal‐
ancing in the IES is realized when power grid frequency re‐
mains within the acceptable range with the lowest operation 
cost. When the frequency changes greatly, IES responds 
quickly to the frequency changes to provide the necessary ac‐
tive support for the power grid to improve the frequency 
quality. The spatial scale spans the device in the electrical 
subsystem.

III. OPTIMAL SCHEDULING MODEL FOR IES

A. DAS

1)　Objective Function
In the DAS, to ensure the economic operation of IES, the 

day-ahead scheduling plan is developed with a timescale of 
1 hour and a scheduling period of 24 hours, and the objec‐
tive function is set to minimize the IES operation cost Fr as:

min Fr =Fe +Fg +Fom (1)

where Fe, Fg, and Fom are the cost of purchased electricity, 
the cost of purchased natural gas, and the device operation 
cost of IES, respectively.
1)　Cost of purchased electricity

Fe =∑
t = 1

24

(cbt Pebt - cst Pest )Dt (2)

where t indicates the time index; cbt and cst are the purchased 

and sold prices of electricity, respectively; and Pebt and Pest 
are the purchased electricity and sold electricity, respectively.
2) Cost of purchased natural gas

Fg =∑
t = 1

24 (cgt

Ggast

LNG )Dt (3)

where cgt is the natural gas price; Ggast is the natural gas 
power purchased by IES from the gas network; and LNG is 
the low calorific value of natural gas, with a value of 9.78 
kWh/m3 [22].
3) Device operation cost

ì

í

î

ïïïï

ïïïï

Fom =Cgt (Pi )+Cbs (Pi )+Cfc (Pi )

Cgt (Pi )=∑
t = 1

24

(αi P
2
i + βi Pi + γi )Dt

(4)

where Cgt (Pi ), Cbs (Pi ), and Cfc (Pi ) are the operation cost 
functions of GT, BS, and FC, respectively; αi, βi, and γi are 
the corresponding cost fitting coefficients; and Pi is the out‐
put of the corresponding device.
2)　Constraints

The DAS constraints include power balance constraints, 
operation constraints for energy conversion unit and energy 
storage unit, output power limit constraints for energy unit, 
and purchased power constraints, which are described in 
[22] and will not be repeated in this paper.

The day-ahead optimal scheduling model is a typical 
mixed-integer linear programming model. Considering that 
the commercial solver Cplex combines the advantages of op‐
timization algorithms such as branch-and-bound and cut-
plane, it has the ability to quickly solve mixed-integer pro‐
gramming problems. Therefore, this paper utilizes Cplex to 
solve the day-ahead optimal scheduling model.

B. IDS

Accounting for the heterogeneity in dynamic response 
characteristics across different energy units, if each energy 
unit is optimally dispatched on the same timescale, it will 
cause large scheduling errors. Consequently, a hierarchical 
scheduling architecture comprising slow, medium, and fast 
time scale layers is implemented in IDS to conduct multi-
timescale rolling dispatch of heterogeneous energy units, 
thereby enabling the objective of rolling correction of the 
day-ahead plan. The time window for rolling scheduling is 
shown in Fig. 3.

In Fig. 3, the blue dashed line is the time window (blue 
block) of prediction horizon, i.e., the rolling scheduling peri‐
od, of the cold/thermal dispatch layer, which is 4 hours, and 
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Fig. 2.　Multi-spatial-temporal-scale coordinated optimal scheduling frame‐
work for IES.
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the timescale is 1 hour, which is updated every 2 hours. The 
red dashed line is the time window (red block) prediction hori‐
zon of the natural gas dispatch layer, which is 2 hours, and the 
timescale is 15 min, which is updated every 1 hour. The purple 
dashed line is the time window (purple block) prediction hori‐
zon of the electric dispatch layer, which is 1 hour, and the tim‐
escale is 5 min, which is updated every 30 min. In this paper, 
considering the differences in response speeds of different de‐
vices, the timescale of BS, GT, and FC is set to be 5 min, the 
timescale of P2G and GS is set to be 15 min, and the timescale 
of GB, EC, AC, TS, and CS is set to be 1 hour.

Figure 3 shows that the corresponding cold/thermal dis‐
patch layer is performed for 1 period, the natural gas dis‐
patch layer is performed for 2 periods, and the electric dis‐
patch layer is performed for 4 periods to end the first rolling 
schedule. At different dispatch layers, the RES output and 
load forecasting values on different timescales are updated. 
The new input values and the reference values of the day-
ahead plan are used to repeat the above steps and update 
them in a rolling manner, thus realizing the repeated revision 
of the intra-day plan. MPC consists of three components: 
prediction model, rolling optimization, and feedback correc‐
tion [23], [24], which is consistent with the rolling optimiza‐
tion characteristics of IDS. Through real-time feedback and 
rolling optimization strategies, MPC can continuously adjust 
the control inputs and effectively mitigate the impact of pre‐
diction error. Therefore, this paper uses MPC to solve the 
IDS. The basic framework of MPC is shown in Fig. 4.

1)　Prediction Model
MPC first needs to establish a prediction model, consider‐

ing the division of IES into three subsystems: electrical, nat‐
ural gas, and cold/thermal in IDS. Therefore, a DMPC meth‐
od is adopted. Then, we can use the following equations to 
develop the prediction model for different subsystems i and j.

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

x i (k + 1)=Aii x i (k)+Biiui (k)+Eid i (k)+

                   ∑
j = 1j ¹ i

n

(A ij x j (k)+Bijuj (k))

yi (k + 1)=Ci x i (k + 1)

(5)

where y, x, u, and d are the output, state, control, and pertur‐
bation variables, respectively; Aii, Bii, Ci, and Ei are the 
state, control, output, and disturbance matrices of subsystem 
i, respectively; and Aij and Bij are the coupling matrices be‐
tween subsystems i and j.

To obtain prediction models for each subsystem, based on 
the power balance equation of each subsystem and the itera‐
tive equation of the energy stored in the energy storage unit, 
the state of charge (SOC) of the BS serves the state variable 
for the electrical subsystem in (5). We select Pebt, Pest, the 

electric power Pgtt generated by GT, and the output power 
PFCt of FC as control variables, which are also referred to as 
output variables. We can establish the state space equation 
as the prediction model for the electrical subsystem by for‐
mulating electric power Pect consumed by EC and the elec‐
tric power PP2Gt consumed by P2G as coupling variables, 
along with the output electric power Ppvt of PV, the output 
electric power Pwtt of WT, and the electric load Pet as per‐
turbation variables.

To obtain the state space equation for electrical subsys‐
tem, the power balance equation of the electrical subsystem 
and the iterative equations of the energy stored in BS are 
first given as follows.

1) Power balance equation of electrical subsystem
Ppvt +Pwtt +Pgtt +Pebt +PFCt +PBSdt =Pect +Pest +
                                     PBSct +Pet +PP2Gt (6)

where PBSct and PBSdt are the charging and discharging pow‐
er of BS, respectively.

2) Iterative equations of energy stored in BS

ì

í

î

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

SOCt + 1 = SOCt + ( )ηbs.c PBSct -
PBSdt

ηbs.d

Dt

0 £PBSct £ νbsct PBScmax

0 £PBSdt £ νbsdt PBSdmax

νbsctÎ{01}

νbsdtÎ{01}

νbsctνbsdt = 0

(7)

where PBScmax and PBSdmax are the maximum charging and 
discharging power of the BS, respectively; ηbsc and ηbsd are 
the charging and discharging efficiency coefficients of the 
BS, respectively; vbsct and vbsdt are the charging and dis‐
charging states of the BS, respectively; and SOCt is the state 
of charge of the BS. Then, we substitute (6) into (7) to ob‐
tain state space equation for electrical subsystem as:

é

ë
êêêê

SOCt + 1

ηbs

ù

û
úúúú =

é

ë
êêêê

SOCt

ηbs

ù

û
úúúú +[-1-1]

é

ë

ê
êê
ê ù

û

ú
úú
úPect

PP2Gt
+[11-1]

é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

úPpvt

Pwtt

Pet

+

[1-111][vbt Pebtvst PestPgttPFCt ]
T

(8)
where vbt and vst are the power purchasing and selling 
states, respectively, then we have:

ηbs =
ì

í

î

ïïïï

ïïïï

ηbsc      vbsct = 1

-1
ηbsd

    vbsdt = 1
(9)

Similarly, the predictive model can be obtained for the nat‐
ural gas subsystem as:

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

é

ë

ê
êê
ê ù

û

ú
úú
úSOGt + 1

ηgs

=
é

ë

ê
êê
ê ù

û

ú
úú
úSOGt

ηgs

+[1][Ggast ]+[1-1]
é

ë

ê
êê
ê ù

û

ú
úú
úGP2Gt

GFCt
+

                         [-1][Ggt ]

ηgs =
ì

í

î

ïïïï

ïïïï

ηgsc       vgsc = 1

-1
ηgsd 

    vgsd = 1

(10)

Prediction
model 

Reference
trajectory

Predictive
output Rolling

optimization

Control
command for
next period Controlled

object
Output

+�

+

Fig. 4.　Basic framework of MPC.
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where vgsc and vgsd are the charging and discharging states 
of the GS, respectively; SOG is the state of natural gas of 
the GS; ηgs is the efficiency coefficient of the GS; ηgsc and 
ηgsd are the charging and discharging efficiency coefficients 
of the GS, respectively; GP2Gt and GFCt are the natural gas 
outputs of the P2G and FC, respectively; and Ggt is the natu‐
ral gas load.

The prediction model can be obtained for the cold/thermal 
subsystem as:
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ηtsc      vtsc = 1

-1
ηtsd

    vtsd = 1

ηcs =
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ηcsc      vcsc = 1

-1
ηcsd

    vcsd = 1

(11)

where SOH and SOI are the states of heat and ice, respec‐
tively; vtsc and vcsc are the charging states of TS and CS, re‐
spectively; vtsd and vcsd are the discharging states of TS and 
CS, respectively; ηts and ηcs are the efficiency coefficients of 
TS and CS, respectively; ηtsc and ηtsd are the charging and 
discharging efficiency coefficients of TS, respectively; ηcsc 
and ηcsd are the charging and discharging efficiency coeffi‐
cients of CS, respectively; Qgbt and Qhbt are the thermal 
power generated by GB and HB, respectively; QACt is the 
thermal power absorbed by AC; and CECt and CACt are the 
cold power generated by EC and AC, respectively.
2) Rolling Optimization

Since the system economy is already considered in DAS, 
in IDS, based on the intra-day RES and load forecasting da‐
ta, the results obtained in DAS are referenced to ensure that 
the output of different energy units tracks the day-ahead plan 
as closely as possible. Therefore, the optimization objective 
is to minimize the adjustment amount of IES energy units, 
and the objective functions of each subsystem min

UiM (k)
Ji (k) can 

be obtained as shown in (12). The first term in (12) is used 
to allow the device output to follow the reference value of 
DAS, and the second term in (12) is used to constrain the 
amplitude of the variation of the control variable. 

min
UiM (k)

Ji (k)=  Yip (k)-Y ref
ip (k)

2

Qi

+  DUiM (k)
2

Wi

(12)

where Qi and W i are the weight coefficient matrices of the 
subsystem output variables and control increments, respec‐
tively; Y ref

ip (k) is the output reference value, i. e., the device 
output obtained in DAS; and Y ip(k) and UiM(k) are the pre‐
dictive output variables and control sequences of subsystem 
i in the finite horizon at time k, respectively.

ì
í
î

ïï
ïï

Yip (k)=[y(k + 1|k)y(k + n|k)y(k +Np|k)]T

UiM (k)=[u(k|k)u(k + n|k)u(k +Nc - 1|k)]T
    (13)

where y(k +Np|k) is the predicted output of subsystem at k 
moments for the future k +Np moments; u(k +Nc - 1|k) is the 
control sequence of subsystem at k moments for the future 
k +Nc moments; and Np and Nc are the prediction horizon 
and control horizon, respectively. Y ip (k) can be obtained by 
recursion from (5).

According to the established state equation prediction 
model of the subsystem, since there is no coupling of state 
variables between each subsystem, we let:

 

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

--
Aii =

é
ë
êêêê ù

û
úúúúAii

0
--
Bii = diagNc

(B ii )

B͂ ij = ∑
j = 1j ¹ i

n

Bij

-
Ci = diagNp

(C i )

(14)

Equation (5) is written as:

Y ip (k|k)= -Ci (
--
Aii x i (k|k)+ --

Bii DUiM (k|k)+

B͂ijDU(k - 1|k - 1)+Eid i (k)) (15)

We let:
ì

í

î

ï
ïï
ï

ï
ïï
ï

-
Ci

--
Aii =

----
Aii

-
Ci

--
Bii =

----
Bii

-
Ci B͂ ij =

--
B͂ij

(16)

Then, (15) can be written as:

Y ip (k | k)= --
Aii x i (k|k)+ --

Bii DUi (k|k)+

B͂ijDU(k - 1|k - 1)+ -Ci E id i (k) (17)

According to (17), the model predictive output of subsys‐
tem i is related to itself and the coupled subsystems.

By solving (12), the optimal solution of each subsystem 
can be obtained, i.e., the output of the energy unit. However, 
the objective functions of each subsystem in (12) only con‐
sider the optimization of respective subsystems, and the ob‐
tained solution may not be optimal. Therefore, when solving 
the subsystem optimization problem, it is necessary to con‐
sider both the input effect of the subsystem itself and the in‐
fluence of coupling subsystems. Therefore, the improved ob‐
jective function of the subsystem is:

min
UiM (k)

Ji (k)= Ji (k)+ ∑
j = 1j ¹ i

n

Jj (k)=  Yip (k)-Y ref
ip (k)

2

Qi

+

          DUiM (k)
2

Wi

+ ∑
j = 1j ¹ i

n é
ë
êêêê

ù
û
úúúú Yjp (k)-Y ref

jp (k)
2

Qj

+  DUjM (k)
2

Wj

    (18)

In (18), for subsystem i, the improved objective function 
includes objective function and the objective functions of the 
coupled subsystems, thus obtaining a globally optimal solu‐
tion. In IDS, the detailed steps based on the DMPC algo‐
rithm are as follows:

Step 1: at time k, predict the initial values of each subsys‐
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tem. Assuming that the optimal solutions of each subsystem 
have been obtained at the previous moment, and each sub‐
system has sent its optimal solution UjM (k - 1) to all other as‐
sociated subsystems.

Step 2: each subsystem solves the optimal solution based 
on (16) and obtains the optimal solution U *

iM (k) for this iter‐
ation.

Step 3: according to the iterative convergence condition, if 

|U *(l)
iM (k)-U *(l- 1)

iM (k) | £ εn, where εn is the given precision, and 

l is the number of iterations, then the iteration ends and goes 
to the next step. Otherwise, it is necessary to set UiM (k)=
wiU

*(l)
iM + (1 -wi )U

l - 1
iM wiÎ(01) and return to Step 2.

Step 4: when calculating the instantaneous control law 
Dui (k)=[100]UiM (k) for each subsystem at the current 
time, apply ui (k)= ui (k - 1)+Dui (k) to each subsystem.

Step 5: roll to time k + 1, then go back to Step 1, and the 
above process is repeated until the entire system optimiza‐
tion is completed.
2)　Adaptive Adjustment of Device Scheduling Period Based 
on DMPC

In this paper, the scheduling period of the device is Np in 
DMPC. The control performance of DMPC is dependent on 
Np and Nc. In general, there is Nc £Np for MPC. In this pa‐
per, we let Nc =Np, i.e., Nc and Np are synchronously changed. 
If Np is too large, the influence of the uncertainty of the re‐
newable energy and load forecasting on the optimal schedul‐
ing of the system will increase, and the computation time of 
optimization will also increase. If Np is too small, the predic‐
tive information available for optimization may not be suffi‐
cient to fully consider the system state. Therefore, this part 
proposes a DMPC method that adaptively adjusts Np based 
on errors of renewable energy and load forecasting. The 
adaptive Np is shown in Fig. 5.

In Fig. 5, t is the current time; Np0 is the initial prediction 
horizon step of DMPC, which is adjusted based on the sum 
of forecasting errors g1t for RES and load; and h1 is a piece‐
wise function about g1t.

ì

í

î

ïïïï

ï
ïï
ï

g1t =∑
i = 1

n |

|

|
||
|
|
||

|

|
||
|
|
| P P

it -P A
it

P A
it

´ 100%

Npt =Np0 - h1 (g1t )

(19)

h1 (g1t )=

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

0               0 < g1t £ g11

1                g11 < g1t £ g12

                      
Np0 - 1    g1t > g1n

(20)

where P P
it and P A

it are the forecasted and actual power of re‐
newable energy and load, respectively; and g11g12...g1n are 
the intervals and g1t is located, and the size of the intervals 

is related to the impact of g1t on the optimization results. 
When g1t has a significant impact on the optimization re‐
sults, the corresponding intervals are relatively small. Other‐
wise, they are relatively large. The size of the intervals can 
be determined by selecting different Np for multiple sets of 
tests under different g1t.

When g1t is in different intervals, the value of h1 is differ‐
ent. When g1t is small, h1 will decrease accordingly, and Npt 
will increase accordingly, i. e., in the case of small g1t, Np 
can be appropriately relaxed to consider the state of the sys‐
tem more comprehensively. On the contrary, Np will be short‐
ened to enhance prediction accuracy and optimize computa‐
tion time.

C. RTS

Considering that the economy and reliability of IES opera‐
tion are guaranteed in DAS and IDS, the frequency support 
of IES to the power grid is considered in RTS. Therefore, a 
frequency support method of IES based on VSG control is 
proposed. When the frequency changes, GT, FC, and BS 
with fast regulation ability are used, and the frequency regu‐
lation cost is considered to provide the necessary power sup‐
port to the power grid to smooth out the frequency fluctua‐
tion. Here, VSG control is adopted in GT, FC, and BS.
1)　Principle of VSG

VSG has the rotor inertia and damping characteristics of 
the synchronous generator (SG) by simulating the rotor oper‐
ation characteristics of traditional SG. Since this paper focus‐
es on frequency regulation, only the equation for the relation‐
ship between active power and frequency of VSG is given. 
The active frequency control equation of VSG can be ob‐
tained [25], [26] by referencing the SG rotor equation:

ì

í

î

ïïïï

ï
ïï
ï

dθm

dt
=ωm

Jωn

dωm

dt
=Pm -Pf -Dp (ωm -ωn )

(21)

where J is the rotational inertia; θm is the rotor angle; ωm is 
the rotor angle velocity; ωn is the rated angular velocity; Dp 
is the virtual damping coefficient; and Pm and Pf are the me‐
chanical power and output electric power, respectively. 
Based on the primary frequency regulation method of SG, 
Pm can be determined by the set power Pref of VSG and its 
automatic frequency regulation output power DP.

Pm =Pref +DP =Pref +Kp (ωn -ωm ) (22)

where Kp is the active regulation factor. According to (19) 
and (22), the frequency of VSG at a steady state can be ob‐
tained as:

ωm -ωn =
Pref -Pf

Kp +Dp
(23)

2)　Optimization Model
When VSG supports power grid frequency regulation, 

most of the traditional methods do not consider the cost of 
frequency regulation, so this part proposes a VSG frequency 
support method that considers the cost of frequency regula‐
tion. The method optimizes the VSG power setpoint to 

... ...
t t+1 t+Np,0�h1 t+Np,0 Time

Prediction horizon Initial prediction horizon

Fig. 5.　Adaptive Np.
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achieve rational active power distribution and reduce fre‐
quency regulation costs. Based on the cost function in (4), 
the IES optimization model for supporting grid frequency 
regulation can be established as:

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

min Fom = ∑
iÎ{gtbsFC}

Ci (Pi )

s.t.  ∑
iÎ{gtbsFC}

DPi =DPD    Pimin £Pi £Pimax

(24)

where Pimin and Pimax are the minimum and maximum val‐
ues of VSG output power, respectively; DPi is the output 
power variation of GT, FC, and BS participating in frequen‐
cy regulation; and DPD is the variation of load power. Obvi‐
ously, the optimal solution of the model in (24) represents 
the cost-optimized power setpoint for the VSG.

The Lagarange multiplier method is utilized to obtain the 
optimization solution of (24). Let λ represent the Lagrange 
multiplier corresponding to equality constraints. When in‐
equality constraints are not considered, the optimization 
problem of (4) can be transformed into:

min Fom =∑
i = 1

n

Ci (Pi )+ λ ( )DPD -∑
i = 1

n

Pi (25)

By taking the partial derivative of (25), we can obtain:

ì

í

î

ï
ïï
ï

ï
ïï
ï

¶Fom

¶Pi

=
¶Ci (Pi )
¶Pi

+ λ = 0

¶Fom

¶λ
=DPD -∑

i = 1

n

Pi = 0
(26)

where ¶Ci (Pi )/¶Pi is the marginal cost of each device. Ac‐
cording to (26), it can be obtained as:

¶C1 (P1 )
¶P1

=
¶C2 (P2 )
¶P2

= =
¶Ci (Pi )
¶Pi

=-λ (27)

From (27), the optimal solution of the (25) is solved when 
the marginal costs of the devices are consistent. In this part, 
the distributed consistency algorithm is introduced first and 
used to solve (25).
3)　Solution Strategies Based on Distributed Consistency Al‐
gorithms

The first-order consistency algorithm is introduced here, 
whose discrete iterative equation is:

xi (k + 1)=∑
j = 1

n

aij xj (k)    i = 12...n (28)

where xi and xj are the elements of x; and aij is the weight 
between nodes i and j. Under the coordination of the com‐
munication network, each node exchanges information with 
its neighboring nodes. Driven by the distributed consensus 
algorithm, the discrepancy between the consensus variable 
values of each node and those of its neighbors continuously 
diminishes until consensus is achieved as:

x1 = x2 = x3 = = xn (29)

Since (29) is a typical convex optimization problem, the 
marginal cost of each unit can be used as a consistency vari‐
able. The optimal solution of (25) can be iteratively con‐
verged through distributed consensus algorithms to obtain 

the optimal power setting value for VSG. The solving steps 
of the distributed consistency algorithm are as follows:

1) Calculate the consistency variables for each device:

-λi =
¶Ci (Pi )
¶Pi

= 2αi Pi + βi (30)

2) Based on the information at time k, update and calcu‐
late the consistency variable at time k + 1:

λi (k + 1)=∑
j = 1

n

αij λj (k) (31)

To make the optimal power setting value of each VSG sat‐
isfy the power balance constraint in (24) after the conver‐
gence of distributed consistency iteration calculation, a feed‐
back term is introduced into the consistency algorithm 
shown in (31), and the consistency variable updating formu‐
la is:

ì

í

î

ïïïï

ïïïï

λi (k + 1)=∑
j = 1

n

αij λj (k) + εDfi (k)

Dfi (k)= f0 - fi (k)
(32)

where ε is the convergence coefficient related to the conver‐
gence speed of the distributed control algorithm; f0 is the rat‐
ed frequency; fi (k) is the measured value of the grid frequen‐
cy; and Dfi (k) is the frequency deviation.

3) The power of the device is adjusted according to the 
consistency variable updated at moment k + 1.

From (30), the output power of the device at moment 
k + 1 should be updated as:

Pi (k + 1)=
-λi (k + 1)- βi

2αi
(33)

Upon each adjustment of the device power output, it is 
necessary to judge whether the power exceeds the limit ac‐
cording to inequality constraints and make corrections.

Pi (k + 1)=

ì

í

î

ï

ï
ïïï
ï

ï

ï

ï

ï
ïïï
ï

ï

ï

-λi (k + 1)- βi

2αi

    Pimin £
-λi (k + 1)- βi

2αi

£Pimax 

Pimin                    
-λi (k + 1)- βi

2αi

£Pimin 

Pimax                   
-λi (k + 1)- βi

2αi

³Pimax 

(34)

From (34), to minimize the system frequency regulation 
cost, the marginal costs of the devices in the power range 
need to be consistent, while the output power of devices 
reaching their limits should maintain the boundary value. Af‐
ter several iterations, the marginal cost of each VSG con‐
verges to be consistent, i.e., the optimal power setting value 
of VSG is obtained.

IV. CASE STUDIES

A. Description of Device Parameters of IES

To validate the feasibility of the proposed multi-spatial-
temporal-scale coordinated optimal scheduling method, IES 
shown in Fig. 1 is simulated and analyzed. The parameters 
of each device in the IES can be found in [4]. Tables I and 
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II show the information of electricity and natural gas prices 
in IES, respectively.

Figure 6 shows the power curve of RES and loads.

B. Results and Discussion

1)　Analysis of Optimization Results for DAS
Figure 7 shows the results of the day-ahead optimal sched‐

uling, where Ccsc and Ccsd are the charging and discharging 
cold power generated by CS, respectively; Ggsc and Ggsd are 
the charging and discharging natural gas outputs generated 
by GS, respectively; and Qtsc and Qtsd are the charging and 
discharging thermal power generated by TS, respectively. 
During the low price period of electricity, IES purchases a 
large amount of electricity from the grid, part of which is 
supplied to the electric load, and the remaining electricity is 
stored through BS for power supply when the electricity 
price is high. During the low price period of natural gas, 

IES mainly supplies the natural gas load by purchasing the 
natural gas and stores the excess natural gas. The thermal 
load is mainly supplied by HB and GB, while the cold load 
is mainly supplied by EC.

During high price period of electricity, IES stops or reduc‐
es purchasing electricity from the grid, and BS starts dis‐
charging. Since the natural gas price is lower than the elec‐
tricity price at this time, FC starts working, and GT assists 
in supplying electricity and sells the excess electricity to the 
grid to reduce the operation cost of the system. During high 
price period of natural gas, IES reduces the amount of natu‐
ral gas purchased from the natural gas network. Since the 
electricity price is low relative to the natural gas price at this 
time, the natural gas load is supplied by P2G and GS dis‐
charge. When the natural gas price is high, the outputs of 
GB and GT will be reduced, while TS discharges heat to 
supply the head load, and AC supplies the cold load.

During the flat price period of electricity and natural gas, 
IES mainly supplies electric load by purchasing electricity. 
Since natural gas prices are slightly lower than electricity 
prices, the FC output assists in supplying the electric load. 
Natural gas load is mainly supplied by IES through natural 

TABLE II
INFORMATION OF NATURAL GAS PRICES

Period

Peak

Flat

Valley

Time interval

11:00-13:00

17:00-19:00

05:00-10:00

14:00-16:00

24:00-04:00

Natural gas price (¥/kWh)

1.21

0.65

0.45

TABLE I
INFORMATION OF ELECTRICITY PRICES

Period

Peak

Flat

Valley

Time interval

08:00-12:00

19:00-23:00

12:00-19:00

23:00-08:00

Electricity price (¥/kWh)

1.12

0.84

0.35
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Fig. 6.　Power curve of RES and loads. (a) Output power of PV and WT. 
(b) Load power.
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Fig. 7.　Results of day-ahead optimal scheduling. (a) Electric power. (b) 
Thermal power. (c) Cold power. (d) Natural gas power.
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gas purchased from the natural gas network, thermal load is 
mainly supplied by GB, and cold load is mainly supplied by 
AC and EC.

2)　Analysis of Optimal Results for IDS
Figure 8 presents the optimal results of the cold/thermal 

dispatch layer in IDS.

At the cold/thermal dispatch layer, the output power of 
each energy unit is adjusted on a timescale of 1 hour. There 
are some differences between the output power of each de‐
vice and the DAS, but the overall trend is roughly the 
same.

Figure 9 presents the optimal results of the natural gas dis‐
patch layer in IDS.
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Fig. 9.　Optimal results of natural gas dispatch layer in IDS. (a) GS. (b) 
Purchased natural gas power. (c) P2G.

At the natural gas dispatch layer, the output of each de‐
vice is adjusted on a 15-min timescale. Taking Ggas in Fig. 9(b) 
as an example, IES buys a large amount of natural gas from 
the natural gas network to satisfy the natural gas load during 
the low price period of natural gas and reduces the amount 
of purchased natural gas during the flat price period of natu‐
ral gas as well as during the peak price period of natural 
gas, i.e., the state of the purchased natural gas in IES accu‐
rately follows DAS. Although Ggas varies during different pe‐
riods, the whole trend of the variation is the same. The re‐
sults demonstrate that IDS effectively aligns with the sched‐
uling outcomes of DAS, while also closely adhering to the 
output power requirements of the device, significantly sup‐
porting the preservation of the economic operation efficiency 
of the system.

Figure 10 presents the optimal results of the electric dis‐
patch layer in IDS. At the electric dispatch layer, the output 
of each device is adjusted on a 5-min timescale. Taking BS 
in Fig. 10(a) as an example, the operation state of BS com‐
pared with DAS does not change during low price, flat 
price, and peak price periods, which avoids frequent switch‐
ing of the operation state of BS and contributes to the pro‐
longation of the BS lifetime. In addition, the BS output devi‐
ates from that of DAS during some periods. In IDS, the pre‐
diction accuracy of RES and loads is further improved com‐
pared with that of DAS, and the predicted power is different 
from that of DAS, resulting in a certain fluctuation degree of 
power balance, which is then required to stabilize the power 
fluctuation induced by BS.
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Fig. 8.　Optimal results of cold/thermal dispatch layer in IDS. (a) EC. (b) AC. (c) GB. (d) HB. (e) TS. (f) CS.
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3)　Advantage Analysis of Proposed Multi-spatial-temporal-
scale Method

To illustrate the advantages of the proposed multi-spatial-
temporal-scale method, the following three cases are set up 
for comparative analysis. Table III shows the operation costs 
in three cases.

1) Case 1: set IDS timescale as 15 min.
2) Case 2: set IDS timescale as 5 min.
3) Case 3: the intra-day stage is divided into the cold/ 

thermal, natural gas, and electric dispatch layers.

In DASs of cases 1-3, a 24-hour scheduling plan for the 
next day is formulated based on the timescale of 1 hour. 
Case 3 is the proposed method. Table III shows that the total 
operation cost of case 1 and case 2 is higher than that of 
case 3, which is mainly because of the increase in the num‐
ber of device adjustments in IDS, i. e., the frequent adjust‐
ments of the device increase the operation and maintenance 

costs and the adjustment costs, thus increasing the total oper‐
ation cost.

To intuitively reflect the device adjustment, the adjustment 
of each device in IDS is reflected by introducing the indica‐
tor of the number of device adjustments, which refers to the 
number of adjustments of the device relative to DAS plan 
during a scheduling period. The number of device adjust‐
ments in IDS is shown in Table IV.

Table IV shows that under the single timescale operation 
mode of case 1 and case 2, the number of device adjust‐
ments will increase as the timescale decreases. In case 3, un‐
der the same timescale, the number of adjustments for the 
same device is reduced by using the multi-timescale opera‐
tion method compared with the single-timescale operation 
method, since case 3 considers the differences in the opera‐
tion characteristics of the device in the different subsystems. 
The hierarchical optimization of the different energy subsys‐
tems can avoid all device being optimized as variables, 
which reduces the number of frequent adjustments of the de‐
vice. For instance, due to the slow response characteristics 
of AC and EC units, frequent adjustments to their outputs 
will not notably enhance the quality of the cold/thermal sup‐
ply of the system. Instead, such adjustments will keep the 
system in a continuous state of transient change, thereby 
complicating operation optimization. Therefore, AC and EC 
units are not scheduled for optimization on finer timescales.

In summary, the proposed method can carry out hierarchi‐
cal optimization management of device, fully considering the 
characteristics of device response time, so that each device 
can effectively perform the intra-day adjustment plan on the 
corresponding timescale, reduce the number of device adjust‐
ments, and then reduce the system operation costs.
4)　Comparative Analysis of Adaptive Np and Fixed Np

To verify the superiority of the adaptive adjustment of the 
device scheduling period, this part first analyses the influ‐
ence of the values of Np on the optimal scheduling. Taking 
GB and P2G as examples, different Np are chosen for simu‐
lation and the results obtained are presented in Fig. 11.

Figure 11(a) represents the predicted power error of GB, 
denoted as egb, under different Np. The results indicate that 
as Np increases, egb also increases. Figure 11(b) is the con‐
trol increment of GB under different Np, and the results indi‐
cate that the control increment of GB decreases as Np in‐
creases, indicating that the GB output is more stable. Figure 
11(c) and (d) presents the power error and control increment 
of P2G under different Np, and the same conclusion can be 
drawn in agreement with GB, which will not be repeated 
here. The above results show that the values of Np will af‐
fect the optimal scheduling of the system.

TABLE IV
NUMBER OF DEVICE ADJUSTMENTS

Case

Case 1

Case 2

Case 3

Number of device adjustments

AC

46

103

17

EC

61

115

19

GB

50

83

16

GS

56

123

44

FC

41

109

83

GT

43

98

88
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Fig. 10.　Optimal results of electric dispatch layer in IDS. (a) Battery stor‐
age. (b) Purchased electric power. (c) Gas turbine. (d) Fuel cell.

TABLE III
OPERATION COSTS IN THREE CASES

Case

Case 1

Case 2

Case 3

Energy purchase and 
device operation cost (¥)

37054

40103

36487

Device adjust‐
ment cost (¥)

10274.0

46847.0

5235.8

Total opera‐
tion cost (¥)

47328.0

86950.0

41722.8
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Figure 12 shows the comparison results of GB under adap‐
tive Np and fixed Np. At 11:00, 14:00, and 17:00, the power 
error gres of renewable energy and load forecasting is 
large.

Figure 12(a) shows that when gres is large, fixed Np makes 
egb larger, whereas the method of adaptive adjustment of Np 
is able to adaptively adjust Np according to gres, i.e., decreases 
Np in the case of large gres, and thus reduces egb. Figure 12(b) 
shows that egb is reduced by decreasing Np when gres is 
large, which causes the increase of control increment of GB 
at that time. However, during other periods where gres is 
small, the control increment of GB is reduced by increasing 
Np, i.e., the output power of GB is smoother.

The above results show that adaptive Np can consider both 
the smoothness of device output and prediction accuracy 
compared with fixed Np, which improves the control perfor‐
mance of DMPC.

5)　Analysis of Frequency Support Ability
When the power grid frequency f varies greatly, IES can 

respond to the frequency change and provide the necessary 
active support for the power grid. To verify the supporting 
effect of IES on f, this paper compares IES without support‐
ing f (denoted as method 1 i.e., the benchmark), IES support‐
ing f without considering the frequency regulation cost (de‐
noted as method 2), and the proposed method (denoted as 
method 3).

Assuming that f is in the normal range at the initial time, 
when t = 1 s, f drops to 0.3 Hz, and when t = 2 s, f returns to 
the rated value. Figure 13(a)-(c) shows the simulation results 
under method 3. Figure 13 shows that at the initial time, 
since f is in the normal range, IES only serves as a hot 
standby for the power grid. Hence, the exchanged power Pg 
at the grid point is approximately zero, as shown in Fig. 13
(c), and the generation and consumption of power are self-
balanced within IES. When t = 1 s, f drops to 0.3 Hz, as 
shown by the blue line in Fig. 13(a). At this time, IES out‐
puts 180 kW active power to the grid under the effect of fre‐
quency regulation, and f slowly drops to 49.84 Hz, as shown 
by the red line in Fig. 13(a). f is effectively suppressed after 
a short drop, indicating that IES can support f and reduce 
the drop of f. When t = 2 s, f is restored, Pg is gradually re‐
stored to zero, and the output power of each unit within IES is 
gradually restored to the original state, as shown in Fig. 13(b). 
At this time, the power within IES self-balances and contin‐
ues to serve as a hot standby for the power grid.

Figure 13(d)-(f) shows the simulation results under meth‐
od 2, and the results show that method 2 can also support 
the power grid frequency. However, method 2 only considers 
the energy unit to share the load disturbance power accord‐
ing to its capacity without considering the frequency regula‐
tion cost. The increased frequency regulation cost under 
method 2 is calculated to be $3619.1, while under the pro‐
posed method, the frequency regulation cost is $3020.5, i.e., 
the proposed method considers the frequency regulation cost 
when supporting the power grid frequency, and the system 
economy is better.
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V. CONCLUSION

In this paper, a multi-spatial-temporal-scale coordinated 
optimal scheduling method of IES considering the frequency 
support ability is proposed, and the simulation results demon‐
strate the effectiveness of the proposed method. The main 
conclusions can be summarized as follows:

1) The proposed method considers the response time char‐
acteristics of the device so that the device with different re‐
sponse abilities can effectively perform the intra-day adjust‐
ment plan, which improves the IES operation economy and 
is more in line with the actual operation of the IES.

2) The proposed method of adaptively adjusting the sched‐
uling period of device considers the smoothness of device 

output and prediction accuracy, which improves the quality 
of system energy supply and the stability of system opera‐
tion.

3) When the power grid frequency changes greatly, the 
proposed method can support the frequency, reducing the 
drop in frequency and improving the frequency quality.
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