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Multi-spatial-temporal-scale Coordinated
Optimal Scheduling of Integrated Energy
System Considering Frequency Support Ability

Yi Yang, Ping Tang, Can Wang, Nan Yang, Hui Ma, and Zhuoli Zhao

Abstract—Integrated energy system (IES) integrates various
energy subsystems such as electricity, natural gas, heat, and the
dynamic characteristics of different energy networks differ sig-
nificantly. To realize the coordinated operation of heterogeneous
energy flow network of electricity, natural gas, and heat, in this
paper, a multi-spatial-temporal-scale coordinated optimal sched-
uling method of IES considering frequency support ability is
presented. The method divides the IES into three layers on the
spatial scale and divides IES optimal scheduling into three stag-
es: day-ahead, intra-day and real-time on the temporal scale. In
the day-ahead stage, the most economical day-ahead scheduling
plan is developed. In the intra-day stage, considering the differ-
ent response characteristics of the device, the slow, medium,
and fast subsystem layers are divided for control, and the de-
vice output related to cold, heat, electricity, and natural gas is
controlled hierarchically based on distributed model predictive
control. In the real-time stage, the supporting effect of IES on
power grid frequency is fully explored, and an IES active-fre-
quency-support control method considering frequency regula-
tion cost is proposed. Case studies show that the devices can be
fully utilized with different response ability to perform the
scheduling plans of each layer, effectively reducing the system
operation cost and improving the frequency quality.

Index Terms—Integrated energy system (IES), multi-spatial-
temporal-scale, optimal scheduling, model predictive control,
frequency support.

[. INTRODUCTION

S fossil fuel reserves dwindle and environmental pollu-
tion worsens, establishing a clean, efficient, and multi-
energy coupling new energy system has become the key to
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addressing these challenges [1]. Though interacted and cou-
pled with multiple energy sources, integrated energy system
(IES) can improve energy utilization efficiency and solve en-
ergy and environmental problems [2], [3]. The dynamic char-
acteristics of electricity, natural gas, heat, and other energy
flows in IES are different. The device control characteristics
and network characteristics in each energy subsystem are al-
so different [4], coupled with the inaccuracy of the renew-
able energy source (RES) and load prediction, which make
the scheduling of the system more difficult [5], [6]. There-
fore, how to fully consider the differences in the control
characteristics of each device and realize the cooperative
scheduling between multiple energy systems is a critical
problem that IES needs to address.

Currently, studies for coordinated optimal scheduling
among multiple energy systems in IES have experienced the
development from a single timescale to day-ahead-intraday
multiple timescales [7], [8]. Reference [9] proposes a model
predictive control (MPC)-based multi-timescale optimal sched-
uling method for IES considering RES uncertainties, which
can improve system operation economics and accurately track
stochastic fluctuations of RES. In [10], a two-stage dual-loop
optimization framework for MPC-based IES is proposed to
achieve coordinated operation of different energy flows on
different timescales. However, the aforementioned central-
ized MPC method exhibits a high model order, substantial
online computational demands, and poor scalability, thus
making it impractical for the optimal scheduling of IES in-
corporating multiple distributed units. Therefore, in [11], a
coordinated multi-timescale optimal scheduling method
based on distributed MPC (DMPC) is presented to improve
the efficiency of optimization solution for multi-microgrids.
In [12] and [13], the IES energy management strategy based
on DMPC is proposed to tackle the energy management un-
der multi-timescale frameworks.

The above multi-timescale divisions are only from the per-
spective of improving prediction accuracy and do not consid-
er the differences of energy response time [14], [15]. Howev-
er, I[ES optimization, which lacks the difference in energy re-
sponse time, cannot reflect the difference of control charac-
teristics caused by the difference in response time of each
energy flow, nor does it conform to the actual operation
[16]. Therefore, energy response time differences must be
considered in IES optimal scheduling to make the optimiza-
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tion analysis process and the final generated output plan
more reasonable [17]. Hence, in [18], considering the dynam-
ic behavior of natural gas and thermal systems, an emergen-
cy scheduling scheme based on the dynamic optimal energy
flow for IES is proposed, which can reduce the energy loss-
es during emergencies. In [19], the dynamic optimal energy
flow model for IES with heat and electricity is established
by combining the transient heat flow and steady-state power
flow so that the system can retain the state information of
the district heat network during the optimization. In [20], a
day-ahead IES optimal scheduling method considering the
dynamic characteristics of power-to-gas (P2G) units and nat-
ural gas pipelines is proposed to reduce the operation cost of
the whole system without increasing the computational bur-
den. Reference [21] proposes a joint optimal scheduling strat-
egy for electricity and natural gas systems, considering the
slow dynamic characteristics of natural gas pipeline net-
works.

In summary, existing studies have made some achieve-
ments in IES optimal scheduling, but there are still some
limitations to be addressed:

1) The current research on IES multi-timescale optimal
scheduling does not consider both the system prediction er-
ror and the differences in operation characteristics of multi-
ple types of devices.

2) In IES optimal scheduling, which considers the differ-
ences in device response characteristics, the scheduling peri-
od of each device is usually fixed, i.e., it remains constant
throughout the optimization process. If the scheduling period
of the devices is able to adjust adaptively based on the oper-
ation conditions of the system, it will help improve the quali-
ty of system energy supply.

3) The IES supporting effect on power grid frequency is
not fully explored under grid-connected operation. When the
frequency changes greatly, e.g., when some nodes are con-
nected to larger-capacity renewable energy power plants, if
the supporting role of IES on frequency can be played, it
will help improve the quality of power grid frequency.

To address the above limitations, this paper presents a
multi-spatial-temporal-scale coordinated optimal scheduling
method of IES considering the frequency support ability
from both temporal and spatial perspectives, and the salient
features of the proposed method are as follows.

1) Considering the device response characteristics, a multi-
spatial-temporal-scale coordinated optimal scheduling frame-
work of IES is proposed. The proposed framework enables
devices with different response characteristics to reasonably
perform the scheduling plans of each layer, avoids frequent
adjustments to the devices, and improves the IES operation
economy.

2) In the intra-day stage (IDS), an IES intra-day rolling
optimization method is proposed to adaptively adjust the de-
vice scheduling period based on the errors of renewable ener-
gy and load forecasting. The method considers the smooth-
ness of device output and prediction accuracy and improves
the quality of system energy supply and system operation
stability.

3) In the real-time stage (RTS), an IES frequency support
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control method based on virtual synchronous generator
(VSG) considering the frequency regulation cost is pro-
posed. This method makes the IES a backup of the power
grid, i.e., it realizes power self-balancing in the IES with op-
timal operation cost when the power grid frequency remains
within the acceptable range, and supports the power grid
with active power when the frequency changes, which im-
proves the power grid frequency quality.

II. MULTI-SPATIAL-TEMPORAL-SCALE COORDINATED
OPTIMAL SCHEDULING FRAMEWORK OF IES

A. IES Structure

The structure of IES is shown in Fig. 1. The inputs are
connected to the external grid and the natural gas network,
and the outputs are connected to cold, thermal, electric, and
natural gas loads.
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Fig. 1. Structure of IES.

The IES is composed of the energy production unit, the
energy conversion unit, and the energy storage unit. The en-
ergy production unit includes photovoltaic (PV) and wind
turbine (WT). The energy conversion unit includes gas tur-
bine (GT), gas boiler (GB), waste heat boiler (HB), electric
chiller (EC), absorption chiller (AC), fuel cell (FC), and
P2G. The energy storage unit includes battery storage (BS)
device, gas storage (GS) device, thermal storage (TS) de-
vice, and cold storage (CS) device.

B. Multi-spatial-temporal-scale Coordinated Optimal Sched-
uling Framework of IES

Considering the differences in the dynamic response char-
acteristics of different energy units in the IES and the inaccu-
racy of RES and load forecasting, the IES optimal schedul-
ing is classified into day-ahead stage (DAS), IDS, and RTS
from the time perspective. Further consideration of the spa-
tial scale effectively alleviates the excessive computation
caused by the shortened timescale. Therefore, a multi-spatial-
temporal-scale coordinated optimal scheduling framework of
IES is presented, as shown in Fig. 2.
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Fig. 2. Multi-spatial-temporal-scale coordinated optimal scheduling frame-

work for IES.

Figure 2 shows that IES is divided into the system, sub-
system, and device layers from the spatial scale. In this
framework, the timescale of DAS is 1 hour, and the schedul-
ing period is 24 hours, which is mainly based on the day-
ahead RES and load forecasting data to formulate the day-
ahead scheduling plan and provide reference information for
the all-day economy operation of the system. The spatial
scale uses the entire [ES system.

In IDS, considering that the response speeds of electric,
natural gas, and cold/thermal energy are decreasing in se-
quence, IDS is further divided into cold/thermal dispatch lay-
er, natural gas dispatch layer, and electric dispatch layer. In
this stage, according to the intra-day RES and load forecast-
ing data, DMPC method is used to carry out rolling schedul-
ing for different energy units in different timescales to
achieve the objective of rolling correction of the day-ahead
plan. The spatial scale uses the individual energy subsystem.

In RTS, considering that the minor changes under the sys-
tem operation conditions do not affect the economy, IES is
mainly used as a backup for the power grid. Power self-bal-
ancing in the IES is realized when power grid frequency re-
mains within the acceptable range with the lowest operation
cost. When the frequency changes greatly, IES responds
quickly to the frequency changes to provide the necessary ac-
tive support for the power grid to improve the frequency
quality. The spatial scale spans the device in the electrical
subsystem.

III. OPTIMAL SCHEDULING MODEL FOR IES

A. DAS

1) Objective Function

In the DAS, to ensure the economic operation of IES, the
day-ahead scheduling plan is developed with a timescale of
1 hour and a scheduling period of 24 hours, and the objec-
tive function is set to minimize the IES operation cost F, as:

minF,,=F8+Fg+F0m )

where F,, F,, and F,, are the cost of purchased electricity,

the cost of purchased natural gas, and the device operation
cost of IES, respectively.
1) Cost of purchased electricity

24
Fez z(cbetpeb.t_c.nrpes,t)At (2)
t=1

where ¢ indicates the time index; ¢,, and c, are the purchased
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and sold prices of electricity, respectively; and P,,, and P, ,
are the purchased electricity and sold electricity, respectively.
2) Cost of purchased natural gas

& Ggax t
F,=>lc,, At
t=1

LNG

3)

where ¢, , is the natural gas price; G, is the natural gas
power purchased by IES from the gas network; and L, is
the low calorific value of natural gas, with a value of 9.78
kWh/m® [22].
3) Device operation cost

F,=Cp(P)+Cp (P)+Cr(P))

2 4)
Cgt(Pi): z(aiPi2+ﬁiPi+yi)At
=1

where C,(P;), Cy(P,;), and C,(P,) are the operation cost
functions of GT, BS, and FC, respectively; a,, B, and y, are
the corresponding cost fitting coefficients; and P, is the out-
put of the corresponding device.

2) Constraints

The DAS constraints include power balance constraints,
operation constraints for energy conversion unit and energy
storage unit, output power limit constraints for energy unit,
and purchased power constraints, which are described in
[22] and will not be repeated in this paper.

The day-ahead optimal scheduling model is a typical
mixed-integer linear programming model. Considering that
the commercial solver Cplex combines the advantages of op-
timization algorithms such as branch-and-bound and cut-
plane, it has the ability to quickly solve mixed-integer pro-
gramming problems. Therefore, this paper utilizes Cplex to
solve the day-ahead optimal scheduling model.

B. IDS

Accounting for the heterogeneity in dynamic response
characteristics across different energy units, if each energy
unit is optimally dispatched on the same timescale, it will
cause large scheduling errors. Consequently, a hierarchical
scheduling architecture comprising slow, medium, and fast
time scale layers is implemented in IDS to conduct multi-
timescale rolling dispatch of heterogeneous energy units,
thereby enabling the objective of rolling correction of the
day-ahead plan. The time window for rolling scheduling is
shown in Fig. 3.
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00:00 01:00 02:00 24:00 ¢
Er T T T [ Electric dispatch layer
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00:00 00:30 01:00 24:00 ¢

Fig. 3. Time window for rolling scheduling.

In Fig. 3, the blue dashed line is the time window (blue
block) of prediction horizon, i.e., the rolling scheduling peri-
od, of the cold/thermal dispatch layer, which is 4 hours, and
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the timescale is 1 hour, which is updated every 2 hours. The
red dashed line is the time window (red block) prediction hori-
zon of the natural gas dispatch layer, which is 2 hours, and the
timescale is 15 min, which is updated every 1 hour. The purple
dashed line is the time window (purple block) prediction hori-
zon of the electric dispatch layer, which is 1 hour, and the tim-
escale is 5 min, which is updated every 30 min. In this paper,
considering the differences in response speeds of different de-
vices, the timescale of BS, GT, and FC is set to be 5 min, the
timescale of P2G and GS is set to be 15 min, and the timescale
of GB, EC, AC, TS, and CS is set to be 1 hour.

Figure 3 shows that the corresponding cold/thermal dis-
patch layer is performed for 1 period, the natural gas dis-
patch layer is performed for 2 periods, and the electric dis-
patch layer is performed for 4 periods to end the first rolling
schedule. At different dispatch layers, the RES output and
load forecasting values on different timescales are updated.
The new input values and the reference values of the day-
ahead plan are used to repeat the above steps and update
them in a rolling manner, thus realizing the repeated revision
of the intra-day plan. MPC consists of three components:
prediction model, rolling optimization, and feedback correc-
tion [23], [24], which is consistent with the rolling optimiza-
tion characteristics of IDS. Through real-time feedback and
rolling optimization strategies, MPC can continuously adjust
the control inputs and effectively mitigate the impact of pre-
diction error. Therefore, this paper uses MPC to solve the
IDS. The basic framework of MPC is shown in Fig. 4.

Reference
trajectory Control
Predictive+ command for
Prediction| output Rolling | next period |Controlled| Output
model - optimization| l object

Fig. 4. Basic framework of MPC.

1) Prediction Model
MPC first needs to establish a prediction model, consider-
ing the division of IES into three subsystems: electrical, nat-
ural gas, and cold/thermal in IDS. Therefore, a DMPC meth-
od is adopted. Then, we can use the following equations to
develop the prediction model for different subsystems i and j.
x;(k+1)=A;x,(k)+Bu;(k)+E.d,(k)+

n

Z (A;x; (k)+ B u; (k)

J=Lj#i

y;(k+1)=Cx;(k+1)

®)

where y, x, u, and d are the output, state, control, and pertur-
bation variables, respectively; A, B, C, and E, are the
state, control, output, and disturbance matrices of subsystem
i, respectively; and A4, and B, are the coupling matrices be-
tween subsystems i and j.

To obtain prediction models for each subsystem, based on
the power balance equation of each subsystem and the itera-
tive equation of the energy stored in the energy storage unit,
the state of charge (SOC) of the BS serves the state variable
for the electrical subsystem in (5). We select P, ,, P, , the

i

es, 1’

electric power P, , generated by GT, and the output power
P, of FC as control variables, which are also referred to as
output variables. We can establish the state space equation
as the prediction model for the electrical subsystem by for-
mulating electric power P, , consumed by EC and the elec-
tric power Pp,;, consumed by P2G as coupling variables,
along with the output electric power P, , of PV, the output
electric power P,,, of WT, and the electric load P,, as per-
turbation variables.

To obtain the state space equation for electrical subsys-
tem, the power balance equation of the electrical subsystem
and the iterative equations of the energy stored in BS are
first given as follows.

1) Power balance equation of electrical subsystem

P AP +Py+Py +Prc,+ Py =P, +P

pv.t wit, t gt.t eb,t
PBS.C,[+P€¢I+PPZG,I

+

es,t
(6)
where Py, and P, are the charging and discharging pow-
er of BS, respectively.
2) Iterative equations of energy stored in BS

P BS.d,t A ¢
bs.d

SOC,=SOC + | Ny, Pps...—

O Sf)BS,c,tS Vbs,c,tP

BS, ¢, max
0<Ppss,<VisarPpsimx 7
Vbs.,c,t 6{07 1}
Vis.ar €10, 1}

Vbs, c.tvbs, d,t = O

where Py, .. and Py, are the maximum charging and
discharging power of the BS, respectively; #,, . and 7, , are
the charging and discharging efficiency coefficients of the
BS, respectively; v, ., and v, ,, are the charging and dis-
charging states of the BS, respectively; and SOC, is the state
of charge of the BS. Then, we substitute (6) into (7) to ob-
tain state space equation for electrical subsystem as:

P
Pﬁ)(f pv-yt
|:S0Cf+lj|:|:SOCt:|+[_1,_1] ! +[1,1,-1] Pt
Mo Ny Py, P -
P PFC,t]T |

gLt

[17 _17 1’ ]][vb.tpeb,l’ v.ntpex,t’
®)

where v,, and v, are the power purchasing and selling
states, respectively, then we have:

nbs,c
Mps= -1

MNps.a

vbs,c,t: 1

©)

Visai=1

Similarly, the predictive model can be obtained for the nat-
ural gas subsystem as:

S0G, ., SOG, G
== +[JG s 1+[1, -1 +
{ - ] { 1 J G g 1+T ][Gm
(-G, ] (10)
”g.v.c vgs,c = 1
=) L,
ngs,d gnd
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where v, . and v, , are the charging and discharging states
of the GS, respectively; SOG is the state of natural gas of
the GS; 7, is the efficiency coefficient of the GS; 7, and
N4.q are the charging and discharging efficiency coefficients
of the GS, respectively; G,,;, and G, are the natural gas
outputs of the P2G and FC, respectively; and G, is the natu-
ral gas load.

The prediction model can be obtained for the cold/thermal
subsystem as:

SOH,, , SOH, 1 ng’
s _ M +[l 0 O:|C N
SOl., | |SOL,, | Lo 1 1]~
Mes L e Cace
1 —l:'_th,z +|:—1 0:| 0.
-0 0 QAC.[ 0 _l Cc,t
i (11)
ntx.c vts.czl
7//[&_ _1 Vv =1
nts,d d
nC.Y.C vCS.C = 1
,]L‘S: _1 chdzl
nz‘sed ’

where SOH and SOI are the states of heat and ice, respec-
tively; v, . and v, are the charging states of TS and CS, re-
spectively; v, , and v, , are the discharging states of TS and
CS, respectively; 7, and 7, are the efficiency coefficients of
TS and CS, respectively; #,, . and #, , are the charging and
discharging efficiency coefficients of TS, respectively; 7., .
and #, , are the charging and discharging efficiency coeffi-
cients of CS, respectively; O, and O,,, are the thermal
power generated by GB and HB, respectively; Q,., is the
thermal power absorbed by AC; and C,., and C,, are the
cold power generated by EC and AC, respectively.
2) Rolling Optimization

Since the system economy is already considered in DAS,
in IDS, based on the intra-day RES and load forecasting da-
ta, the results obtained in DAS are referenced to ensure that
the output of different energy units tracks the day-ahead plan
as closely as possible. Therefore, the optimization objective
is to minimize the adjustment amount of IES energy units,
and the objective functions of each subsystem ll;n:(l/}) J, (k) can

be obtained as shown in (12). The first term in (12) is used
to allow the device output to follow the reference value of
DAS, and the second term in (12) is used to constrain the
amplitude of the variation of the control variable.

min J, (0= |V, 00~ ¥y ® |+ |av, 0], 12)

where @, and W, are the weight coefficient matrices of the
subsystem output variables and control increments, respec-
tively; YI._";’ (k) is the output reference value, i.e., the device
output obtained in DAS; and Y, (k) and U, (k) are the pre-
dictive output variables and control sequences of subsystem

i in the finite horizon at time k, respectively.
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Y, (o) =[yk+1[k), ....y(k+n|k), ...,y(k+Np\k)]T

U, (k) =[u(klk), ....u(k+nlk), ..., u(k+N.— 1k)]" 13)

where y(k+N k) is the predicted output of subsystem at k
moments for the future k+ N, moments; u(k+N, - 1[k) is the
control sequence of subsystem at & moments for the future
k+N, moments; and N, and N, are the prediction horizon
and control horizon, respectively. ¥, (k) can be obtained by
recursion from (5).

According to the established state equation prediction
model of the subsystem, since there is no coupling of state
variables between each subsystem, we let:

0
B_ii = diagN( (B;)
y " (14)
B;= B,
j=Lj#i
C, =diag, (C,)

Equation (5) is written as:
Y., (k)= C, (A, x;(klk)+ B, AU, (ki) +

B,AU(k— 1|k 1)+ E.d, (k) (15)
We let:
CA, -1,
CB, =B, (16)
Cil}z/‘: B~_u
Then, (15) can be written as:
Y, (k|k)= 4, x,(k)+ B, AU, (k) +
B,AU(k—1]k-1)+ C.E,d (k) (17)

According to (17), the model predictive output of subsys-
tem 7 is related to itself and the coupled subsystems.

By solving (12), the optimal solution of each subsystem
can be obtained, i.e., the output of the energy unit. However,
the objective functions of each subsystem in (12) only con-
sider the optimization of respective subsystems, and the ob-
tained solution may not be optimal. Therefore, when solving
the subsystem optimization problem, it is necessary to con-
sider both the input effect of the subsystem itself and the in-
fluence of coupling subsystems. Therefore, the improved ob-
jective function of the subsystem is:

Lp

min 0=, > S0 ¥, 0~ D] +

jelj#i
|av, @, + Z[\I OIS FHOY I IO U;J
()

In (18), for subsystem i, the improved objective function
includes objective function and the objective functions of the
coupled subsystems, thus obtaining a globally optimal solu-
tion. In IDS, the detailed steps based on the DMPC algo-
rithm are as follows:

Step 1. at time k, predict the initial values of each subsys-
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tem. Assuming that the optimal solutions of each subsystem
have been obtained at the previous moment, and each sub-
system has sent its optimal solution U, ,,(k—1) to all other as-
sociated subsystems.

Step 2: each subsystem solves the optimal solution based
on (16) and obtains the optimal solution U, (k) for this iter-
ation.

Step 3: according to the iterative convergence condition, if
’U:,(Q (k)-UN" (k)’ <e,, where ¢, is the given precision, and
[ is the number of iterations, then the iteration ends and goes
to the next step. Otherwise, it is necessary to set U, (k)=
wU ) +(1—w)U/}/ . w; €(0,1) and return to Step 2.

Step 4: when calculating the instantaneous control law
Au,(k)=[1,0,...,0]U, (k) for each subsystem at the current
time, apply u;(k)=u,(k— 1)+ Au, (k) to each subsystem.

Step 5: roll to time k+ 1, then go back to Step I, and the
above process is repeated until the entire system optimiza-
tion is completed.

2) Adaptive Adjustment of Device Scheduling Period Based
on DMPC

In this paper, the scheduling period of the device is N, in
DMPC. The control performance of DMPC is dependent on
N, and N, In general, there is N.<N, for MPC. In this pa-
per, we let N,=N , i.e., N, and N, are synchronously changed.
If N, is too large, the influence of the uncertainty of the re-
newable energy and load forecasting on the optimal schedul-
ing of the system will increase, and the computation time of
optimization will also increase. If N, is too small, the predic-
tive information available for optimization may not be suffi-
cient to fully consider the system state. Therefore, this part
proposes a DMPC method that adaptively adjusts N, based
on errors of renewable energy and load forecasting. The
adaptive N, is shown in Fig. 5.

Prediction horizon Initial prediction horizon

~ ‘
t t+1 t+N, o=h, t+N,,  Time
Fig. 5. Adaptive N,,.

In Fig. 5, ¢ is the current time; N, , is the initial prediction
horizon step of DMPC, which is adjusted based on the sum
of forecasting errors g, , for RES and load; and #, is a piece-
wise function about g, ,.

e| PL-P,
g.,= Z . x 100% (19)
N, =N,,—h(g,)
0 0<g,,<gy,
=] SnTEwsE (20)
Np,o—l g.,>8u

where P/, and P/, are the forecasted and actual power of re-
newable energy and load, respectively; and g,,,g2....g;, are
the intervals and g,, is located, and the size of the intervals
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is related to the impact of g,, on the optimization results.
When g,, has a significant impact on the optimization re-
sults, the corresponding intervals are relatively small. Other-
wise, they are relatively large. The size of the intervals can
be determined by selecting different N, for multiple sets of
tests under different g, ,.

When g, is in different intervals, the value of 4, is differ-
ent. When g,  is small, 4, will decrease accordingly, and N,
will increase accordingly, i.e., in the case of small g, , N,
can be appropriately relaxed to consider the state of the sys-
tem more comprehensively. On the contrary, N, will be short-
ened to enhance prediction accuracy and optimize computa-
tion time.

C. RTS

Considering that the economy and reliability of IES opera-
tion are guaranteed in DAS and IDS, the frequency support
of IES to the power grid is considered in RTS. Therefore, a
frequency support method of IES based on VSG control is
proposed. When the frequency changes, GT, FC, and BS
with fast regulation ability are used, and the frequency regu-
lation cost is considered to provide the necessary power sup-
port to the power grid to smooth out the frequency fluctua-
tion. Here, VSG control is adopted in GT, FC, and BS.

1) Principle of VSG

VSG has the rotor inertia and damping characteristics of
the synchronous generator (SG) by simulating the rotor oper-
ation characteristics of traditional SG. Since this paper focus-
es on frequency regulation, only the equation for the relation-
ship between active power and frequency of VSG is given.
The active frequency control equation of VSG can be ob-
tained [25], [26] by referencing the SG rotor equation:

do,
dt ~On

o2y

dw,,

Jo, it

where J is the rotational inertia; 6, is the rotor angle; w,, is
the rotor angle velocity; w, is the rated angular velocity; D,
is the virtual damping coefficient; and P, and P, are the me-
chanical power and output electric power, respectively.
Based on the primary frequency regulation method of SG,
P, can be determined by the set power P, of VSG and its

m

automatic frequency regulation output power AP.
P,=P, +AP=P +K, (0,-o, ) (22)
where K, is the active regulation factor. According to (19)

and (22), the frequency of VSG at a steady state can be ob-
tained as:

=Pm_Pf_Dp(wm_wn)

o —w _ Py b

meon K,+D,

(23)

2) Optimization Model

When VSG supports power grid frequency regulation,
most of the traditional methods do not consider the cost of
frequency regulation, so this part proposes a VSG frequency
support method that considers the cost of frequency regula-
tion. The method optimizes the VSG power setpoint to
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achieve rational active power distribution and reduce fre-
quency regulation costs. Based on the cost function in (4),
the IES optimization model for supporting grid frequency
regulation can be established as:

minF = C.(P,)
ie{gt.bs. FC}
(24)
st. > AP,=AP, P, . <P,<P, .
ie{gt.bs.FC}
where P, . and P, are the minimum and maximum val-

i, min i, max

ues of VSG output power, respectively; AP, is the output
power variation of GT, FC, and BS participating in frequen-
cy regulation; and AP, is the variation of load power. Obvi-
ously, the optimal solution of the model in (24) represents
the cost-optimized power setpoint for the VSG.

The Lagarange multiplier method is utilized to obtain the
optimization solution of (24). Let A represent the Lagrange
multiplier corresponding to equality constraints. When in-
equality constraints are not considered, the optimization
problem of (4) can be transformed into:

AP D™ zP i)
i=1
By taking the partial derivative of (25), we can obtain:
a[70m — aCl(Pz) +/1:0

minF,, = zcl. (P,)+1 (25)
i=1

P, P,
(26)
oF,, 5
o =AP,- ;P, =0

where OC,(P,)/0P; is the marginal cost of each device. Ac-
cording to (26), it can be obtained as:
oC,(Py) _ 0C,(Py) _  _ 0Ci(P) _

op, ~ oP, T 0P, -

From (27), the optimal solution of the (25) is solved when
the marginal costs of the devices are consistent. In this part,
the distributed consistency algorithm is introduced first and
used to solve (25).

3) Solution Strategies Based on Distributed Consistency Al-
gorithms

The first-order consistency algorithm is introduced here,
whose discrete iterative equation is:

x(k+ D= Da,x;(k) i=1.2,...n
Jj=1

@7

(28)

where x; and x; are the elements of x; and a, is the weight
between nodes i and j. Under the coordination of the com-
munication network, each node exchanges information with
its neighboring nodes. Driven by the distributed consensus
algorithm, the discrepancy between the consensus variable
values of each node and those of its neighbors continuously
diminishes until consensus is achieved as:
X|=X,=X;=...=X (29)
Since (29) is a typical convex optimization problem, the
marginal cost of each unit can be used as a consistency vari-
able. The optimal solution of (25) can be iteratively con-
verged through distributed consensus algorithms to obtain

n
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the optimal power setting value for VSG. The solving steps
of the distributed consistency algorithm are as follows:

1) Calculate the consistency variables for each device:
oC,(P))
OP,

2) Based on the information at time k, update and calcu-
late the consistency variable at time £+ 1:

Ai(k+1)= iaij/lj (k)

—A,= =2a,P,+p, (30)

(€L

To make the optimal power setting value of each VSG sat-
isfy the power balance constraint in (24) after the conver-
gence of distributed consistency iteration calculation, a feed-
back term is introduced into the consistency algorithm
shown in (31), and the consistency variable updating formu-
la is:

2, (k+1)= ia[/lj(k) +eAf, (k)

A (K)=fy =/ (k)

where ¢ is the convergence coefficient related to the conver-
gence speed of the distributed control algorithm; f is the rat-
ed frequency; f; (k) is the measured value of the grid frequen-
cy; and Af; (k) is the frequency deviation.

3) The power of the device is adjusted according to the
consistency variable updated at moment £+ 1.

From (30), the output power of the device at moment
k+1 should be updated as:

(32)

—4,(k+ D)=
20,

i

Pi(k+1)= (33)
Upon each adjustment of the device power output, it is

necessary to judge whether the power exceeds the limit ac-

cording to inequality constraints and make corrections.

_ii(k+ 1)_ﬁi P < _ii(k+ 1)_ﬂi <p
20[,- i,min — zai - i, max
A, (k+1)-p,
Pi(k+ 1)= Ptlmin M SP: min (34)
s Zai 3
i, max 2 ai =+ i,max

From (34), to minimize the system frequency regulation
cost, the marginal costs of the devices in the power range
need to be consistent, while the output power of devices
reaching their limits should maintain the boundary value. Af-
ter several iterations, the marginal cost of each VSG con-
verges to be consistent, i.e., the optimal power setting value
of VSG is obtained.

IV. CASE STUDIES

A. Description of Device Parameters of IES

To validate the feasibility of the proposed multi-spatial-
temporal-scale coordinated optimal scheduling method, IES
shown in Fig. 1 is simulated and analyzed. The parameters
of each device in the IES can be found in [4]. Tables I and



YANG et al.: MULTI-SPATIAL-TEMPORAL-SCALE COORDINATED OPTIMAL SCHEDULING OF INTEGRATED ENERGY SYSTEM...

I show the information of electricity and natural gas prices
in IES, respectively.

TABLE I
INFORMATION OF ELECTRICITY PRICES

Period Time interval Electricity price (¥/kWh)
08:00-12:00
Peak 1.12
19:00-23:00
Flat 12:00-19:00 0.84
Valley 23:00-08:00 0.35
TABLE II
INFORMATION OF NATURAL GAS PRICES
Period Time interval Natural gas price (¥/kWh)
11:00-13:00
Peak 1.21
17:00-19:00
05:00-10:00
Flat 0.65
14:00-16:00
Valley 24:00-04:00 0.45

Figure 6 shows the power curve of RES and loads.
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Fig. 6. Power curve of RES and loads. (a) Output power of PV and WT.
(b) Load power.

B. Results and Discussion

1) Analysis of Optimization Results for DAS

Figure 7 shows the results of the day-ahead optimal sched-
uling, where C__ and C_, are the charging and discharging
cold power generated by CS, respectively; G, . and G, , are
the charging and discharging natural gas outputs generated
by GS, respectively; and Q, . and Q, , are the charging and
discharging thermal power generated by TS, respectively.
During the low price period of electricity, IES purchases a
large amount of electricity from the grid, part of which is
supplied to the electric load, and the remaining electricity is
stored through BS for power supply when the electricity
price is high. During the low price period of natural gas,
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IES mainly supplies the natural gas load by purchasing the
natural gas and stores the excess natural gas. The thermal
load is mainly supplied by HB and GB, while the cold load
is mainly supplied by EC.

During high price period of electricity, IES stops or reduc-
es purchasing electricity from the grid, and BS starts dis-
charging. Since the natural gas price is lower than the elec-
tricity price at this time, FC starts working, and GT assists
in supplying electricity and sells the excess electricity to the
grid to reduce the operation cost of the system. During high
price period of natural gas, IES reduces the amount of natu-
ral gas purchased from the natural gas network. Since the
electricity price is low relative to the natural gas price at this
time, the natural gas load is supplied by P2G and GS dis-
charge. When the natural gas price is high, the outputs of
GB and GT will be reduced, while TS discharges heat to
supply the head load, and AC supplies the cold load.
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Fig. 7. Results of day-ahead optimal scheduling. (a) Electric power. (b)

Thermal power. (c) Cold power. (d) Natural gas power.

During the flat price period of electricity and natural gas,
IES mainly supplies electric load by purchasing electricity.
Since natural gas prices are slightly lower than electricity
prices, the FC output assists in supplying the electric load.
Natural gas load is mainly supplied by IES through natural
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gas purchased from the natural gas network, thermal load is
mainly supplied by GB, and cold load is mainly supplied by
AC and EC.
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2) Analysis of Optimal Results for IDS
Figure 8 presents the optimal results of the cold/thermal
dispatch layer in IDS.
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Fig. 8.

At the cold/thermal dispatch layer, the output power of
each energy unit is adjusted on a timescale of 1 hour. There
are some differences between the output power of each de-
vice and the DAS, but the overall trend is roughly the
same.

Figure 9 presents the optimal results of the natural gas dis-
patch layer in IDS.
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Fig. 9. Optimal results of natural gas dispatch layer in IDS. (a) GS. (b)
Purchased natural gas power. (c¢) P2G.

Optimal results of cold/thermal dispatch layer in IDS. (a) EC. (b) AC. (¢) GB. (d) HB. (e) TS. (f) CS.

At the natural gas dispatch layer, the output of each de-
vice is adjusted on a 15-min timescale. Taking G, in Fig. 9(b)
as an example, IES buys a large amount of natural gas from
the natural gas network to satisfy the natural gas load during
the low price period of natural gas and reduces the amount
of purchased natural gas during the flat price period of natu-
ral gas as well as during the peak price period of natural
gas, i.e., the state of the purchased natural gas in IES accu-
rately follows DAS. Although G, varies during different pe-
riods, the whole trend of the variation is the same. The re-
sults demonstrate that IDS effectively aligns with the sched-
uling outcomes of DAS, while also closely adhering to the
output power requirements of the device, significantly sup-
porting the preservation of the economic operation efficiency
of the system.

Figure 10 presents the optimal results of the electric dis-
patch layer in IDS. At the electric dispatch layer, the output
of each device is adjusted on a 5-min timescale. Taking BS
in Fig. 10(a) as an example, the operation state of BS com-
pared with DAS does not change during low price, flat
price, and peak price periods, which avoids frequent switch-
ing of the operation state of BS and contributes to the pro-
longation of the BS lifetime. In addition, the BS output devi-
ates from that of DAS during some periods. In IDS, the pre-
diction accuracy of RES and loads is further improved com-
pared with that of DAS, and the predicted power is different
from that of DAS, resulting in a certain fluctuation degree of
power balance, which is then required to stabilize the power
fluctuation induced by BS.
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Fig. 10. Optimal results of electric dispatch layer in IDS. (a) Battery stor-
age. (b) Purchased electric power. (¢) Gas turbine. (d) Fuel cell.

3) Advantage Analysis of Proposed Multi-spatial-temporal-
scale Method

To illustrate the advantages of the proposed multi-spatial-
temporal-scale method, the following three cases are set up
for comparative analysis. Table III shows the operation costs
in three cases.

1) Case 1: set IDS timescale as 15 min.

2) Case 2: set IDS timescale as 5 min.

3) Case 3: the intra-day stage is divided into the cold/
thermal, natural gas, and electric dispatch layers.

TABLE III
OPERATION COSTS IN THREE CASES

Energy purchase and Device adjust- Total opera-

Case device operation cost (¥) ment cost (¥) tion cost (¥)
Case 1 37054 10274.0 47328.0
Case 2 40103 46847.0 86950.0
Case 3 36487 5235.8 41722.8

In DASs of cases 1-3, a 24-hour scheduling plan for the
next day is formulated based on the timescale of 1 hour.
Case 3 is the proposed method. Table III shows that the total
operation cost of case 1 and case 2 is higher than that of
case 3, which is mainly because of the increase in the num-
ber of device adjustments in IDS, i.e., the frequent adjust-
ments of the device increase the operation and maintenance
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costs and the adjustment costs, thus increasing the total oper-
ation cost.

To intuitively reflect the device adjustment, the adjustment
of each device in IDS is reflected by introducing the indica-
tor of the number of device adjustments, which refers to the
number of adjustments of the device relative to DAS plan
during a scheduling period. The number of device adjust-
ments in IDS is shown in Table I'V.

TABLE IV
NUMBER OF DEVICE ADJUSTMENTS

Number of device adjustments

Case

AC EC GB GS FC GT
Case 1 46 61 50 56 41 43
Case 2 103 115 83 123 109 98
Case 3 17 19 16 44 83 88

Table IV shows that under the single timescale operation
mode of case 1 and case 2, the number of device adjust-
ments will increase as the timescale decreases. In case 3, un-
der the same timescale, the number of adjustments for the
same device is reduced by using the multi-timescale opera-
tion method compared with the single-timescale operation
method, since case 3 considers the differences in the opera-
tion characteristics of the device in the different subsystems.
The hierarchical optimization of the different energy subsys-
tems can avoid all device being optimized as variables,
which reduces the number of frequent adjustments of the de-
vice. For instance, due to the slow response characteristics
of AC and EC units, frequent adjustments to their outputs
will not notably enhance the quality of the cold/thermal sup-
ply of the system. Instead, such adjustments will keep the
system in a continuous state of transient change, thereby
complicating operation optimization. Therefore, AC and EC
units are not scheduled for optimization on finer timescales.

In summary, the proposed method can carry out hierarchi-
cal optimization management of device, fully considering the
characteristics of device response time, so that each device
can effectively perform the intra-day adjustment plan on the
corresponding timescale, reduce the number of device adjust-
ments, and then reduce the system operation costs.

4) Comparative Analysis of Adaptive N, and Fixed N,

To verify the superiority of the adaptive adjustment of the
device scheduling period, this part first analyses the influ-
ence of the values of N, on the optimal scheduling. Taking
GB and P2G as examples, different N, are chosen for simu-
lation and the results obtained are presented in Fig. 11.

Figure 11(a) represents the predicted power error of GB,
denoted as e, under different N, The results indicate that
as N, increases, e, also increases. Figure 11(b) is the con-
trol increment of GB under different N, and the results indi-
cate that the control increment of GB decreases as N, in-
creases, indicating that the GB output is more stable. Figure
11(c) and (d) presents the power error and control increment
of P2G under different N, and the same conclusion can be
drawn in agreement with GB, which will not be repeated
here. The above results show that the values of N, will af-
fect the optimal scheduling of the system.
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Fig. 11. Optimal results of GB and P2G under different N,. (a) Predicted
power error of GB. (b) Control increment of GB. (c) Predicted power error
of P2G. (d) Control increment of P2G.

Figure 12 shows the comparison results of GB under adap-
tive N, and fixed N,. At 11:00, 14:00, and 17:00, the power
error g, of renewable energy and load forecasting is
large.

Figure 12(a) shows that when g, is large, fixed N, makes
e, larger, whereas the method of adaptive adjustment of N,
is able to adaptively adjust N, according to g,,,, i.¢., decreases
N, in the case of large g,,,, and thus reduces e,,. Figure 12(b)
shows that e, is reduced by decreasing N, when g, is
large, which causes the increase of control increment of GB
at that time. However, during other periods where g, is
small, the control increment of GB is reduced by increasing
N,, i.e., the output power of GB is smoother.

The above results show that adaptive N, can consider both
the smoothness of device output and prediction accuracy
compared with fixed N,, which improves the control perfor-
mance of DMPC.
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Fig. 12.  Comparison results of GB under adaptive N, and fixed N,. (a)
Predicted power error of GB. (b) Control increment of GB.

5) Analysis of Frequency Support Ability

When the power grid frequency f varies greatly, IES can
respond to the frequency change and provide the necessary
active support for the power grid. To verify the supporting
effect of IES on f, this paper compares IES without support-
ing f (denoted as method 1 i.e., the benchmark), IES support-
ing f without considering the frequency regulation cost (de-
noted as method 2), and the proposed method (denoted as
method 3).

Assuming that f'is in the normal range at the initial time,
when t=1 s, f drops to 0.3 Hz, and when 7=2 s, f returns to
the rated value. Figure 13(a)-(c) shows the simulation results
under method 3. Figure 13 shows that at the initial time,
since f is in the normal range, IES only serves as a hot
standby for the power grid. Hence, the exchanged power P,
at the grid point is approximately zero, as shown in Fig. 13
(c), and the generation and consumption of power are self-
balanced within IES. When ¢=1 s, f drops to 0.3 Hz, as
shown by the blue line in Fig. 13(a). At this time, IES out-
puts 180 kW active power to the grid under the effect of fre-
quency regulation, and f slowly drops to 49.84 Hz, as shown
by the red line in Fig. 13(a). f is effectively suppressed after
a short drop, indicating that IES can support f and reduce
the drop of /. When t=2 s, f'is restored, P, is gradually re-
stored to zero, and the output power of each unit within IES is
gradually restored to the original state, as shown in Fig. 13(b).
At this time, the power within IES self-balances and contin-
ues to serve as a hot standby for the power grid.

Figure 13(d)-(f) shows the simulation results under meth-
od 2, and the results show that method 2 can also support
the power grid frequency. However, method 2 only considers
the energy unit to share the load disturbance power accord-
ing to its capacity without considering the frequency regula-
tion cost. The increased frequency regulation cost under
method 2 is calculated to be $3619.1, while under the pro-
posed method, the frequency regulation cost is $3020.5, i.e.,
the proposed method considers the frequency regulation cost
when supporting the power grid frequency, and the system
economy is better.
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Fig. 13. Simulation results of frequency support ability. (a) System fre-
quency under methods 1 and 3. (b) Energy unit output power under method
3. (c) Power exchange at grid-connected point under method 3. (d) System
frequency under method 2. (e) Energy unit output power under method 2.
(f) Exchange power at grid-connected point under method 2.

V. CONCLUSION

In this paper, a multi-spatial-temporal-scale coordinated
optimal scheduling method of IES considering the frequency
support ability is proposed, and the simulation results demon-
strate the effectiveness of the proposed method. The main
conclusions can be summarized as follows:

1) The proposed method considers the response time char-
acteristics of the device so that the device with different re-
sponse abilities can effectively perform the intra-day adjust-
ment plan, which improves the IES operation economy and
is more in line with the actual operation of the IES.

2) The proposed method of adaptively adjusting the sched-
uling period of device considers the smoothness of device

output and prediction accuracy, which improves the quality
of system energy supply and the stability of system opera-
tion.

3) When the power grid frequency changes greatly, the
proposed method can support the frequency, reducing the
drop in frequency and improving the frequency quality.
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