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Multi-kernel Collaborative Graph Convolution
Neural Network for Operational Reliability
Assessment Considering Varying Topologies

Xinyu Liu, Maosheng Gao, Juan Yu, Zhifang Yang, and Wenyuan Li

Abstract—Operational reliability assessment (ORA), which
evaluates the risk level of power systems, is hindered by accu-
mulated computational burdens and thus cannot meet the de-
mands of real-time assessment. Recently, data-driven methods
with fast calculation speeds have emerged as a research focus
for online ORA. However, the diverse contingencies of trans-
formers, power lines, and other components introduce numer-
ous topologies, posing significant challenges to the learning ca-
pabilities of neural networks. To this end, this paper proposes a
multi-kernel collaborative graph convolution neural network
(GCNN) for ORA considering varying topologies. Specifically, a
physics law-informed graph convolution kernel derived from
the Gaussian-Seidel iteration is introduced. It effectively aggre-
gates node features across different topologies. By integrating
additional advanced graph convolution kernels with a novel self-
attention mechanism, the multi-kernel collaborative GCNN is
constructed, which enables the extraction of diverse features
and the construction of representative node feature vectors,
thereby facilitating high-precision reliability assessments. Fur-
thermore, to enhance the robustness of multi-kernel collabora-
tive GCNN, the inherent pattern of the load-shedding model is
analyzed and utilized to design a specialized supervised loss
function, which allows the neural network to explore a broader
feature space. Compared with the existing data-driven methods,
the multi-kernel collaborative GCNN, combined with super-
vised exploration, can accommodate a wider range of contingen-
cies and achieve superior assessment accuracy.

Index Terms—Reliability assessment, multi-kernel collabora-
tive design, self-attention graph convolution neural network
(GCNN), topology.

Manuscript received: November 21, 2024; revised: February 21, 2025; accept-
ed: April 23, 2025. Date of CrossCheck: April 23, 2025. Date of online publica-
tion: August 22, 2025.

This work was supported by the National Natural Science Foundation of Chi-
na (No. 52377076).

This article is distributed under the terms of the Creative Commons Attribu-
tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

X. Liu is with Tsinghua University, Beijing 100084, China, and he is also
with Chongqing Electric Power Company of State Grid Corporation of China,
Chongging 400015, China (e-mail: 1162573948@qq.com ).

M. Gao (corresponding author), J. Yu, Z. Yang, and W. Li are with the State
Key Laboratory of Power Transmission Equipment Technology, College of Elec-
trical Engineering, Chongging University, Chongqing 400044, China (e-mail:
maoshenggao@outlook.com; 148454745@qq.com; zfyang@cqu.edu.cn; wenyu-

an.li@ieee.org).
;1
MPCE

DOI: 10.35833/MPCE.2024.001249

1. INTRODUCTION

OPERATIONAL reliability assessment (ORA) is a vital
tool to evaluate operational risk and carry out early
warning in the power system [1]. In the context of develop-
ing renewable energy worldwide, the power system faces sig-
nificant uncertainties due to the intermittent and stochastic
characteristics of wind and solar [2]. It is necessary to imple-
ment the ORA in real time [3]. Thus, in China, the National
Energy Administration is actively promoting the establish-
ment of a power system reliability management framework,
which would facilitate the real-time collection of vital power
equipment reliability data and foster the development of rap-
id and intelligent ORA methodologies for future advance-
ments.

However, with the increasing collection of abundant reli-
ability data for vital power equipment, conventional numeri-
cal and data-driven ORA methods face significant challeng-
es. On the one hand, the traditional numerical ORA meth-
ods, such as the Monte Carlo simulation method, require iter-
atively solving load-shedding optimization problems under a
vast number of system states. This results in high computa-
tional complexity, which is particularly time-consuming for
large-scale power systems and hinders real-time reliability as-
sessment due to the accumulated computational burden. On
the other hand, with the availability of extensive data on crit-
ical power equipment, it is necessary to simulate more com-
plex and diverse system states, which introduces various sys-
tem topologies. This, in turn, poses a significant challenge to
the effective learning capability of neural networks em-
ployed in data-driven ORA methods.

The conventional ORA methods can be categorized into
two types: analytical method and simulation method. Accord-
ing to the probabilistic model of uncertainty and contingency
probability of critical equipment, the analytical method di-
rectly derives an analytical formulation for computing the op-
erational reliability [4], [S]. This method performs effective-
ly for small-scale power systems with a limited number of
system states and manageable computational complexity.
However, when dealing with complex operational conditions
and a large number of severe events in large-scale power sys-
tems, the analytical method becomes overly intricate, which
may fail to account for certain operational scenarios. In con-
trast, the simulation method, which treats the problem as a
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series of experiments and subsequently calculates operational
reliability indices, does not suffer from these limitations [6].
It can simulate not only the operational conditions, contin-
gency events, and uncertainties but also the non-electrical
system factors, such as reservoir operational conditions and
weather effects, which are typically beyond the scope of the
analytical method. However, one drawback that impedes the
real-time application of simulation methods is the cumula-
tive computational burden [7]. Since the simulation method
needs to simulate all the operational conditions and solve the
load-shedding problem to compute the operational reliability
indices, it often fails to complete within the operational time
window, such as 5 min, making it unsuitable for online as-
sessment of power systems. To address this computational
burden issue associated with traditional numerical simulation
methods, data-driven ORA methods have been proposed in
recent years.

The data-driven method is a further improvement on the
traditional simulation method. Its essence lies in leveraging
the rapid computational capabilities of neural networks to ex-
pedite ORA. For example, neural networks can be employed
to swiftly classify success states [8], [9], substitute for solv-
ing load-shedding problems [10], [11], or directly predict the
reliability indices [12]. Those neural networks, characterized
by their robust classification and approximation abilities, can
precisely determine the success/failure states, the load curtail-
ment amounts, and even the reliability indices while account-
ing for the stochastic nature of renewable energy and load
fluctuations. Moreover, their applications extend beyond
ORA problems. The exceptional computational speed and in-
telligent decision-making capabilities of neural networks
have been extensively explored in other power system opti-
mization challenges, such as optimal power flow calcula-
tions, economic dispatch, and unit commitment solutions
[13]. Regarding the ORA, neural networks aim to approxi-
mate the non-linear and non-convex mapping from those
continuous features to the success/failure states or the load
curtailment amounts. However, ORA encompasses not only
continuous features but also discrete features, which typical-
ly arise from topology changes in the power grid, such as
contingencies in power equipment. This dynamic topology
characteristic complicates the load-shedding mapping and
poses significant challenges to neural network learning.

To cope with this issue in the data-driven ORA method,
two strategies can be employed to handle the discrete topolo-
gy features: feature engineering and application of graph con-
volutional neural networks (GCNNs).

Feature engineering involves constructing a representative
feature vector that indicates topology changes, enabling neu-
ral networks to effectively utilize topology information for
approximating target outputs (including load curtailments).
For instance, the diagonal element of the susceptance matrix
[14], the magnitude and angle of the diagonal element of the
admittance matrix [15], or the upper triangular part of the
susceptance matrix [12] have been used as the topology fea-
ture vector. Besides, based on the power flow model, differ-
ences in voltage magnitude and branch power flow between
the original and new topology are also regarded as represen-

tative topology features [16], [17]. However, due to the con-
sideration of the input feature dimension, feature engineering
often incurs feature loss to maintain an acceptable input di-
mensionality. Furthermore, while encoding topology into a
feature vector, feature engineering may overlook the correla-
tion between topology and node features.

On the contrary, the application of GCNNs can effectively
address this issue. By constructing a GCNN with a structure
analogous to that of the power grid, both node features
(such as loads and renewable energy generation) and topolo-
gy features (including interconnections between nodes,
branch susceptance and conductance, and contingency sce-
narios) can be seamlessly integrated into the neural network
without concerns about scale explosion. This method ensures
compatibility with the evolving scale and structure of the
power grid at both input and output stages [18], [19]. As a
result, GCNN has been widely applied in various aspects of
power systems, including optimization [20], state estimation
[21], [22], and forecasting [23], [24]. Moreover, it is an ide-
al tool for ORA, particularly when handling varying topolo-
gies. There are three types of GCNNs with different graph
convolution kernels that can be applied to the ORA problem.
Firstly, the standard graph convolution kernel derived from
the Laplacian matrix based on the spectral graph theory is
utilized for load-shedding calculation problems [25], which
embeds the topology of the power grid into the forward
propagation of neural networks, thereby enhancing the adapt-
ability for varying topologies. The second type of graph con-
volution kernel refers to the impedance matrix in power sys-
tems. It is an impedance-based Gaussian kernel for graph
convolution [26], [27], which makes the weight in the convo-
lution kernel correlate with the branch impedance and fur-
ther improves the ability of GCNN to extract topology fea-
tures. The third type of graph convolution kernel is designed
in accordance with the power flow model [28], regarding
power flow equations as the neighborhood aggregation func-
tion and forcing the neural network to extract the complex
physics features. Currently, the GCNNs with the power flow
model embedded are more suitable for addressing varying to-
pologies in the ORA problem.

Although the advanced GCNNs with the power flow mod-
el embedded make it possible to predict the load curtail-
ments under varying topologies, there is still room for poten-
tial improvements. Specifically, during the derivation of the
forward propagation function in those GCNNS, the variables,
e. g., voltage magnitude and phase angle, are partially as-
signed to the preceding graph convolution layer and partially
assigned to the subsequent one. This separation violates the
physics laws and may result in insufficient or inaccurate
physics feature extraction. Besides, the three types of graph
convolution kernels help the neural network pay more atten-
tion to different features in the power system individually. In-
tegrating different graph convolution kernels may compel
neural networks to extract more representive features. Conse-
quently, this would enhance the accuracy and robust topolo-
gy adaptability of the data-driven ORA method. To this end,
a multi-kernel collaborative GCNN is proposed for the
ORA, specifically addressing the varying topologies. By inte-
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grating multiple kernels, including spectral graph convolu-
tion kernel, impedance-based Gaussian kernel, power flow
model embedded graph convolution kernel, and the proposed
physics law-informed graph convolution kernel, this GCNN
can effectively handle complex scenarios involving changing
topologies and achieve more accurate ORAs. Additionally, a
new learning strategy is developed based on the inherent pat-
tern of the ORA model to improve the robustness of neural
networks. The main contributions are summarized as follows:

1) A novel physics law-informed graph convolution kernel
is constructed. Different from the variable assumption, this
kernel is rooted in the Gaussian-Seidel iteration of the com-
plex power flow equations, which can efficiently aggregate
graph node features in a manner consistent with physical
laws such as Kirchhoff’s current law (KCL) and Kirch-
hoft’s voltage law (KVL).

2) A multi-kernel collaborative GCNN is designed. By le-
veraging the feature extraction capabilities of various ad-
vanced graph convolution kernels, this GCNN aggregates
node features effectively while incorporating a novel self-at-
tention mechanism to construct a highly representative node
feature vector. This updated vector encompasses both global
topology and physical law-associated features, which lays
the foundation for high-precision solving of load-shedding
problems by capturing essential data characteristics.

3) An inherent pattern-guided learning strategy is pro-
posed to strengthen the robustness of the multi-kernel collab-
orative GCNN. Specifically, an inherent pattern between the
load and its curtailment is derived, enabling direct calcula-
tion of the load curtailment amount without iterative solving.
Thus, a specialized supervised learning loss function based
on such an inherent pattern is constructed, which makes it
possible to add random disturbances to the load during the
training process without label concerns. As a result, the neu-
ral network can explore a broader feature space, thereby en-
hancing the robustness of neural networks.

The rest of the paper is organized as follows. In Section
II, the conventional ORA method and proposed ORA meth-
od are introduced. The architecture of multi-kernel collabora-
tive GCNN is presented in Section III. Section IV presents
the inherent pattern-guided learning. Section V presents the
case study. Section VI presents the discussion. And the con-
clusion is given in Section VII.

II. CONVENTIONAL ORA METHOD AND PROPOSED ORA
METHOD

A. Conventional ORA Method

The conventional ORA method of power systems is the
Monte Carlo simulation method. Its main steps can be con-
cluded as follows.

1) System State Sampling

The system states are usually sampled based on the proba-
bilistic distribution of loads and renewable energy and the
failure probability of vital power equipment.

2) System State Analysis

After obtaining the system states, the next step is deter-

mining whether the power system can operate safely. So, the

power flow calculation is implemented to check whether any
violation exists. If it is true, optimize the load-shedding prob-
lem. The load-shedding problem is to minimize the load cur-
tailment under the practical constraints of power systems,
such as power flow constraints and generator ramping limita-
tions. The mathematical formulation of the load-shedding
problem is shown in (1)-(10).

min z Pri (CPi+inCQi)

ieSy (1)
Peit;= Pyt Cp=V, > V,(G, cos 0,+ B, sin 0, )
! ijeS,
Ogitt;—Opi + CQi: Viz Vj (Gij sin eij_Bij cos Hij)
J
(2
PGi—PGiSF(; i€Sg 3)
PGi_PGi,lasISPGi,rampup i€ SG (4)
PGi,lasl_PGiSPGi,rampdown iG SG (5)
&SQGI'SQ—GI' i€Sg (6)
0<C, <P, i€S, (7
0<Cqp, <0y, €S, (8)
V,SV,SV, ieS, )
P, .=VV|G, cos0 +B, sin0, | -VG,
L.ij /( i i ij J) i i,jESB (10)

P, <P_,<P.,

where C,; and C, are the active and reactive load curtail-
ments at bus i, respectively; p,; and p, are the cost coeffi-
cients at bus i; P, and Q, are the active and reactive power
demands at bus i, respectively; P and Qg are the active
and reactive power generations of generator i, respectively;
V. and 0, are the voltage magnitude and phase angle at bus 7,
respectively; 0, is the phase angle difference between buses
i and j; G; and B are the elements of the conductance and
susceptance matrices in the i™ row and ;™ column, respective-
ly; P is the active branch power between buses i and j;
P, gy 18 the power generation of generator i in the last time-
Step; Pgiampypy A4 P rumpgown ar€ the maximum and mini-
mumn ramping amounts of generator i, respectively; and _
denote the upper and lower limits, respectively; and Sg, S,
and S, are the index sets of generators, buses, and branches,
respectively.
3) Reliability Index Calculation

The basis indices of operational reliability are the adequa-
cy indices, e.g., probability of load curtailment (PLC), and
expected demand not supplied (EDNS). The PLC and EDNS
are calculated in this paper after obtaining the load curtail-
ment under different system states, as shown in (11)
and (12).

PLC= qu,- (11)
EDNS= "> p.Cy, (12)
ieSjeS,
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where p, is the probability of system state 7; S is the set of
system states where load curtailment occurs; and Cy,; is the
load curtailment amount at bus j under system state i.
4) Convergence Criterion

When implementing the Monte Carlo simulation method,
it is necessary to determine when to stop. Two mainstream
convergence criteria are the maximum sample number and
the variance of reliability indices. In this paper, both the
maximum sample number and the variance of PLC and
EDNS are used.

B. Framework of ORA Method

According to the Monte Carlo simulation method, it is re-
quired to solve the load-shedding problem (1)-(10) while giv-
ing different system states. Usually, thousands of system
states would be sampled and analyzed. However, the Monte
Carlo simulation method cannot be applied in real-time sce-
narios due to its significant computational burden. To ad-
dress this issue, the data-driven ORA method leverages the
neural network with fast computational speed. Nevertheless,
its computational accuracy has been a concern, particularly
when numerous contingencies that alter the topology of pow-
er system are considered.

This paper improves the neural network structure and
learning strategy to address the varying topologies in the da-

ta-driven ORA method, referred to as the proposed ORA
method. For better clarity, the framework of the proposed
ORA method is illustrated in Fig. 1. The proposed ORA
method still follows the data-driven simulation structure but
exploits the neural networks to solve the load-shedding prob-
lem when given different system states or features. At the of-
fline phase, a neural network agent is constructed to accu-
rately predict the minimum load curtailment under various
contingencies. At the online phase, this agent predicts load
curtailments under different system states and evaluates the
operational reliability of the power system. This paper
makes two distinct contributions to effectively training a neu-
ral network for adapting to varying topologies. First, we de-
sign the GCNN structure by proposing a physics law-in-
formed graph convolution kernel and integrating it with oth-
er advanced kernels to construct a multi-kernel collaborative
GCNN. Second, we develop an inherent pattern-guided learn-
ing strategy by deriving an inherent pattern from the load-
shedding model and designing a supervised learning loss
function. This enables the neural network to explore a broad-
er feature space during training. Consequently, by applying
the neural network architecture and learning strategy, the to-
pology adaptability of the proposed ORA method can be en-
hanced, leading to more accurate reliability assessments.

Neural network agent construction
GCNN structure Continuous features Discrete features Pattgrn—guided
o  Wind power Contingenc learning strategy
VIR L eneration curve ‘ ! y :
informed graph & . « Equipment Load-shedding
; * Photovoltaic power . . model
convolution kernel . maintenance unit
generation curve
= « Load curve start/step status
Offline phase Power flow model
embedded kernel U U Inherent pattern
e— + — ‘ Multi-kernel collaborative GCNN -
mpedance-base
kernel Build Train
@ Supervised learning
+ loss function
Spectral graph keme]‘ Load curtailments
Online phase System states — ORA agent — Reliability indices

Fig. 1. Framework of proposed ORA method.

III. ARCHITECTURE OF MULTI-KERNEL COLLABORATIVE
GCNN

In the conventional ORA method, the repeated calculation
of the highly complex and time-consuming load-shedding
model (1)-(10) hinders its online practical application. If a
neural network can solve the load-shedding model quickly,
the ORA will be fundamentally accelerated. In the load-shed-
ding model, equipment failures and other factors will change
the system topology, making it more difficult for the neural
network to learn. Effectively extracting the impact of topolo-
gy changes on power flow distribution is one of the strate-
gies to make the data-driven ORA method more practical.

Graph neural network is an effective tool for dealing with to-
pology changes in the proposed ORA method by embedding
the topology into the forward propagation of the neural net-
work and performing feature aggregation calculations based
on the input topology. However, in the load-shedding model,
the nonlinear and complex power flow model makes it diffi-
cult for graph neural networks to extract important features
that affect the assessment results accurately. To this end, this
section focuses on how to accurately consider the impact of
the power flow model in the load-shedding model in graph
convolution and designs a multi-kernel collaborative GCNN
architecture for ORA. Next, we introduce some existing
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graph convolution methods and propose a physics law-in-
formed graph convolution kernel. Finally, the design scheme
of a multi-kernel collaborative GCNN is introduced.

A. Brief Introduction to GCNN

GCNN is a kind of neural network designed to handle
graph-structured data. Generally, there are two operations in
the forward propagation of GCNNSs: aggregation and convo-
lution [29]. The aggregation operation collects features from
the neighborhoods and combines them with their features to
form new node feature vectors. Then, the convolution opera-
tion would update the node features with convolution param-
eters.

xﬁﬂ szONV(fAGGRE(x_/]"j € N(i))7H) (13)

where x'*! is the feature of node 7 in the (/+1)" layer; N (i)
is the set of adjacent nodes and itself for node i; f,\; and
Sfacore are the convolution and aggregation operation func-
tions, respectively; and H is the convolution parameter.

To reduce the scale of trainable parameters in GCNNSs,
most f,qgee functions merely have known parameters, and
how to determine the f;.z; function becomes a significant
task in constructing GCNNs. The f, ;- function of the stan-
dard GCNN is constructed based on the adjacent matrix A4 to
consider the internal effects of the neighborhoods based on
the spectral graph theory. Its mathematical formulation in
matrix form is:

(14)

where X' e R"** is the matrix of input features with n nodes
and k-dimensional features; and A and D are the normalized
adjacent matrix and degree matrix based on the re-normaliza-
tion ticks, respectively [30].

In the applications of GCNN in power systems, the phys-
ics parameters and physics model that can describe the inter-
nal effects of neighborhood nodes are exploited, e.g., branch
impedance and power flow model. Hence, some physics-in-
formed GCNNs in power systems are proposed. First, the
branch impedance is utilized to construct the aggregation
weights of neighborhood features. This kind of GCNN

1 o ._L
fAGGREl(X[) =D 24D *X'

Zjj

2
adopts a Gaussian kernel Wl.]:exp( —-K ), where x is a

scaling factor [26]; and z, is the impedance of the power
line connecting nodes i and ;. In different power systems, x
is adjusted to ensure that the weights of power lines are in a
reasonable range, and no power line is ignored due to too
small weight. The aggregation function of this GCNN can
be indicated as:

fAGGREz(Xl) =wx' (15)
where W is the weight adjacent matrix calculated using the
branch impedance.

To further improve the feature aggregation ability, the pro-
cessing strategy based on the re-normalization tricks is also

implemented in the impedance-based aggregation W. The ag-
gregation function is:

1 1

fAGGRE}( XI) = IX?WIA)W?X[

W=Ww+I, (16)

lﬂ)w:diag( Wé./.)
j=1

where I, is the identity matrix, whose diagonal elements are
1 and other elements are 0; and /¥, is the i" row and ;" col-
umn element of W.

In addition, the power flow model in the Cartesian coordi-
nate system, indicated in (17), is also embedded into the ag-
gregation function to enhance the feature extraction ability
of GCNNs [31], which sets e,=V,cos8; and f,=V;sin0, as
the coupled node feature in the graph and takes advantage of
the power flow model (17) as the aggregation function to up-
date them. Assume that the features of the central node i are
unknown and updated by its neighborhoods. Then, the ele-
ments in (17) including e; or f; are kept on the right-hand
side and the other elements are moved to the left-hand side.
By solving e; and f; in the reformulated power flow equa-
tions, the node feature aggregation function could be de-
rived, as shown in (18).

Poi=Ppi= z[ef(Gifej_Bijfj) +ﬁ(GUﬁ+Bzyej)]

J€Sy

(17)
Oci=Oni= ZS {fi(G,jej—B,.ij.) - ei(Ga’fj"'Ba’ej)}
J €Sy
o | oy 00a—A0p
fAGGRE4(e S ) = aOa+fOf s
Pl €)= OB +10a (18)
AGGRE4 2, - aOa+ﬂOﬂ
a= Gndiagel_Bndiagfl (19)
ﬂ: Gndiugfl+Bndiagel (20)
0=-P,— ('Ce'+f'0f")G,, (3))
1=-0,- (e'Oe'+f'0f") B, (22)

where e’ and f' are the coupled node feature vectors of the
1™ layer; fioores and floopee are the node feature aggregation
functions by embedding the power flow equations, respec-
tively; P, and Q,, are the active and reactive power vectors,
respectively; © is the Hadamard (entry-wise) product; G,
and B, are the admittance and susceptance matrices with-
out diagonal elements, respectively; and G,,, and B, are
the diagonal elements of the admittance and susceptance ma-
trices, respectively.

Although aggregation methods in the GCNN help extract
the topology and physical features, the assumption in the der-
ivation violates the law of power flow. While iterating sever-
al times, node features could diverge [31]. Therefore, there
are still potential improvements to design a well-performed
aggregation function and physics law-informed GCNN in
power systems.

B. Physics Law-informed GCNN
To follow the physics law in the feature aggregation opera-
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tion, there must be no assumptions in the derivation based
on the power flow model. The Gaussian-Seidel iteration is
an ideal tool, which does not break the initial equations, and
the physical property can be well preserved. Besides, the
Gaussian-Seidel iteration is applied to solve the power flow
equations. Therefore, referring to the process of solving the
power flow equation by Gaussian-Seidel iteration, this sub-
section mainly introduces how to embed the Gaussian-Seidel
iteration of power flow equations into the graph convolution.
The power flow model in complex form is:

Yyw=1
I=[S/V]

where Y is the admittance matrix; V is the voltage vector in
complex form; I is the injection current vector in complex
form; and S is the power injection vector in complex form.

When decomposing the matrix Y into its diagonal form,
denoted as ¥, and the off-diagonal form Y., (23) can be
reformulated as (24). Hence, the Gaussian-Seidel iteration
function of V, in the (/+1)" iteration can be formularized as
shown in (25).

(23)

V= Ydmg(l Y0V )

ndiag

EY v
j=1

row and jt column of ¥; and S, is the i™

24

yitt= (25)

where Y, is the i
element of S.

It can be observed that (25) is an aggregation function to
update V using the system state (power injection vector .S)
and the grid parameters (conductance and susceptance matri-
ces G and B). There are no assumptions and the physics
laws (like KCL and KVL) are still satisfied. Thus, we take
(25) as the aggregation function and design a new graph con-
volution method. However, all the elements in (25) are com-
plex values, and it is difficult to exploit directly in the for-
ward propagation of neural networks. Rewriting it in the Car-
tesian coordinate system to decouple node features where V=
e+]f, the aggregation function could be:

{+l o '.I+]= P+JQ1 _
' (G, +_]B )(el+if!)
Z(Gl]ﬂBlj) e+1f)

i j=

) 6)
where P, and Q, are the real and imaginary parts of S,, re-
spectively.

Then, decoupling the real and imaginary parts in (26), the
aggregation function can be written as:

I+1_ a/G; BB,
! G:+B: G +B:
o wp @)
I+1 _ i _ z i
- G:+B: G +B:

1

where e!*! and f*' are the node feature elements in the

(1+1)" iteration. o and B! can be written as:

al= 7+Qfl icy e+ zB,jfl

()
z f/fl ZBU/

€= P, f :
(el + (£1)
2 2 .

In (27) and (28), G2+ B2 and (e!) + (f) are in the de-
nominator. G+ B is a nonzero constant for different nodes
in a given topology. e/ and f;' may have zero elements in the
hidden layers and cause a calculation error in the neural net-
work. To avoid this situation, a small constant J is added to

(e’.)2+ (1! )2. The aggregation function of this GCNN can be

i

(28)
B [':

written as shown in (29)-(31) in matrix form.

aIGde +ﬁ,OBdta
fAGGRES(e f ) degOGdLaZ dtaggédtag
-a'OB,, +ﬂ’OGd (29
fAGGREs(e S ) G. OG e @;g
diag dzag dzag diag
. POe+Q0Of'
a= eleel+fl®fl+5 - Gndiagel+Bndiagfl (30)
r_ QOe]_POfl
ﬂ - elOel‘f‘flOf/‘i‘é _Gndiagfl_Bndiagel (31)

where P and Q are the active and reactive power injection
vectors, respectively; and fcps and fioores are the physics
law-informed node feature aggregation functions.

Eventually, using this aggregation function (29), a new
GCNN preserved the physics law can be obtained as:

et :fcoNV(fAeGGRES(el’fI)’H")
fl+1 :fcow(]F/{;SGREs(el’fl)’Hf)

where H, and H, are the trainable parameters in the convolu-
tion layer.

The physics law-informed GCNN directly incorporates the
Gaussian-Seidel iteration process into the node feature aggre-
gation mechanism. Unlike conventional methods that approx-
imate or simplify power flow equations, it retains the struc-
ture of the original equations during the aggregation of fea-
tures, thereby avoiding distortions of the underlying physics
laws. Although fixed-step unrolling does not theoretically
guarantee convergence, this design ensures that the aggrega-
tion process adheres to the power flow equations at each iter-
ation step. Therefore, there are two benefits as follows. First,
by embedding the Gaussian-Seidel-based aggregation, the
model explicitly captures the interdependencies between
neighboring nodes governed by power flow equations, en-
abling more accurate feature propagation and aggregation,
which improves the ability to learn the load-shedding model
that respects grid physics. Second, the direct integration of
power flow constraints reduces the complexity of learning
the mapping between grid states and the minimum load-shed-
ding values.

C. Multi-kernel Collaborative GCNN

Different from convolution in matrices or images, graph
convolution decomposes convolutions into aggregation and

(32)
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node convolution operations to handle the node degree dis-
unity in a graph. However, the design of fixed parameters in
aggregation operations leads to the limitation of the feature
extraction capability of graph neural networks. Recent re-
search works mainly discover an aggregation operation meth-
od that can effectively extract graph features and further add
attention mechanisms to weigh the node features [32]. The
aforementioned aggregation operations and GCNNs are grad-
ually improved to extract the topology and physical features
in the power systems. But those GCNNs still exploit a sin-
gle aggregation operation, which results in extracting fea-
tures from neighborhoods primarily focusing on a fixed
form. It is difficult for neural networks to accurately approxi-
mate the complex nonlinear and non-convex mapping of
load-shedding problems using such extracted features in a
fixed form. Hence, the feature extraction ability of the aggre-
gation operation in GCNNs needs to be further improved. To
this end, this paper proposes an architecture of multi-kernel
collaborative GCNN, as shown in Fig. 2, where ¢ is the acti-
vation function.

Calculation process of a sample layer

[Node feature: [P, Q, e, f ]]
[P, 0, ¢, 1], (G, B]

Graph feature: [G, B]

Multi-kernel graph
convolution layer 1

! 1 1 !
[AGGRE,| [AGGRE,| [AGGRE,| |[AGGRE;|
alf dlf dls el
’Attention‘ ’Attention‘ ’Attemion‘ ’Attention‘

Multi-kernel graph
convolution layer 2

e l | af £l el af £l penl|l af £ geoll af £
ajey|alf, ases|ajfs ajeyaif; ases|alf;

Multi-kernel graph
convolution layer 3

’ Concatenate operation (35) ‘

Pooling layer !
| ’ Convolution operation (36) ‘
Fully connected layer 1 ]
! Activation operation:
Fully connected layer 2 &=l = o(f"h

!
[P, Q. ", f1],[G, B]

Fig. 2. Architecture of multi-kernel collaborative GCNN.

Specifically, there are two improvements in the multi-ker-
nel collaborative GCNN. One is that the multiple aforemen-
tioned aggregation operations, e.g., (15), (16), (18), and (29),
are utilized in the graph convolution layer to break feature
extraction limitations with a single aggregation method. The
other is that a self-attention mechanism is integrated into the
multi-kernel graph convolution layer to determine the atten-
tion for extracted features by different aggregation operation
methods. Regarding €'.f' € R™* as the coupled features of
all node inputs to the /™ graph convolution layer, the aggre-
gation features e..f) € R™ of the s type of aggregation
methods can be indicated by:

ei =ffGGREs( e lvf 1)
£l =Floonel € f")

In this paper, the aggregation methods in (15), (16), (18),
and (29) are integrated in the multi-kernel collaborative
GCNN, and therefore s={2,3,4,5}. In (15) and (16), the

(33)
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coupled relationship of node representations e and f is not
considered and therefore e’ and f' are used individually to
calculate the aggregated node representations e’ and f.
Since different aggregation methods extract different types
of features, concatenating them together can enrich represen-
tations of node features and further improve prediction accu-
racy. However, uniformly concatenating the node representa-
tions e’ and £ calculated by different aggregation methods
may add redundant or unimportant features, resulting in im-
portant features that affect prediction accuracy not being fo-
cused on. To this end, a weight (observed as a kind of atten-
tion) is multiplied by e’ and f! to scale the feature values. If
the aggregated node representations have a significant im-
pact on the output of neural networks, the weight could be
large. Otherwise, it could be a small value. Different from
the attention mechanism in [32] and [33], we employ a glob-
al pooling layer and a fully connected layer to determine it,
denoting it as (34). It is noted that there are two fully con-
nected layers used for e and f, respectively.

@ =f( fromel€!))
& =11 S 1))

where a¢ and &’ are the attentions of the node features in the
s type of aggregations; f,,,;,.(+) is the global pooling calcula-

(34

tion and its output dimension is 1x4; and £,(-) and f,[() rep-
resent two fully connected layers and the output dimension
is 1x1.

Eventually, the aggregation operation of the coupled fea-
ture and the forward propagation function of neural net-
works in the /™ graph convolution layer can be represented
by (35) and (36). Combining the pooling layer and fully con-
nected layers, the complete architecture of multi-kernel col-
laborative GCNN can be constructed.

e'=asel|aser|laselases
fr=d, 1, £\, £l f]
e =fCONV(el” He)

le :fCONV( flrvH/)

where || denotes the concatenation of different features; and
e and f" are the aggregated coupled node features.

In Fig. 2, regarding node feature representation, P and Q
are the system states, which change with the sampling of
system states during the ORA process. For node voltages e
and f, we give 1 and O in the initial state. In the forward
propagation of the neural network layer by layer, they
change with the distribution of power injections. The core of
the multi-kernel collaborative GCNN is to accurately extract
the feature representation of node voltages e and f at the in-
jected power, which can be used as a basis for load-shed-
ding judgment.

(35)

(36)

IV. INHERENT PATTERN-GUIDED LEARNING STRATEGY

A. Inherent Pattern Derivation

The load-shedding problem is to reduce the minimum
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loads so that all the operational constraints are not violated.
The outputs are highly relative to the loads. Is there a load
perturbation strategy that can directly calculate the load cur-
tailment without changing other optimization variables under
the KKT condition? Intuitively, if the load needs to be re-
duced on a certain node, it means that the node is overload-
ed. If we continue to increase the load on this node, the in-
creased load will also need to be reduced. If the load curtail-
ment on the node is not sufficient, it does not need to be re-
duced. This rule can be written as:

CPf"'APf:f[(PD["'APn ) Cpi>0,Cp+4,>0  (37)

where A,, is the load changing amount on node i; and f;(+) is
the function of the load-shedding model from input features
to load curtailments on node i. According to the optimality
and feasibility analysis, the above pattern can be directly
proved. The details are shown in the Supplementary Material
A. Under this circumstance, the load curtailment can be di-
rectly calculated, and if this pattern is applied in the train-
ing, neural network learning would not be limited to the giv-
en training data.

B. Analysis of Inherent Pattern-guided Learning Strategy

The learning of neural network is to optimize the trainable
parameter. The typical learning is the supervised learning
with sample labels, which minimizes the loss functions L, as
shown in (38). However, it demands a lot of samples so that
the neural network can be trained over the entire feature
space. In data-driven load-shedding computation, due to com-
plicated non-linearity and the combinatorial explosion of to-
pology, training a load-shedding calculation neural network
would require hundreds of thousands or even more samples.
We construct a new learning strategy that can automatically
add perturbed samples and reduce the training sample de-
manded.

1 M N

L= 4SS Chow-cL)

k=1i=1

(38)

where Cy, and Cy ., are the i" outputs of neural networks
and the corresponding labels for the k™ sample, respectively;
M is the training data number; and N is the output dimen-
sion.

According to the inherent pattern of the load-shedding
model, a perturbation can be added to the loads and their
curtailments, and the optimality and feasibility do not
change if the initial load curtailment is not zero. Thus, we
add perturbations to all the samples with nonzero load cur-
tailment to generate more training data. The loss function
can be rewritten as (39), and A, is in (-1, 1}.

M N

S (ChowiChi) +

1 i

L=

<[-

k
M

¥ A 2
S [~ CLO(1+4,,)]

k=1 i

(39)

<[=

where Cf ., is the load curtailment of the i output of neu-
ral networks when the load is input; and p is the weight and
set to be 0.1.

According to the gradient analysis shown in the Supple-

mentary Material A, this new loss function can explore a
wider feature space and thereby alleviate the imbalance with
the load-shedding sample. Eventually, the inherent pattern-
guided learning strategy is formulated as shown in Supple-
mentary Material A Algorithm SA1, which generates the per-
turbation samples first and then trains the neural networks
with the original samples from the training dataset.

V. CASE STUDY

In this section, the proposed ORA method is implemented
in several power systems to demonstrate its effectiveness,
considering varying topologies.

A. Case Setting

The ORA in power systems usually involves load fluctua-
tions, stochastic renewable energy generations, and outages
of vital power equipment. As for load fluctuations, we as-
sume they follow normal distribution with the default value
as the means and 0.3 as the standard deviation. Wind power
and photovoltaic power are considered in the simulations.
We assume the wind speed and the solar irradiance follow
the Wei-bull distribution and Beta distribution, respectively.
The details of the distribution are identical to [28]. We inte-
grate several wind farms and photovoltaic stations in differ-
ent buses so that the penetration of renewable energy is
more than 20%. For instance, in the IEEE 39-bus system,
four wind farms with 200 MW capacity and four photovolta-
ic stations with 200 MW capacity are randomly integrated in-
to the power system. The penetration of renewable energy is
20.26%. To reduce the imbalance of training data, we sam-
ple the N—1 and N—2 contingencies to cover all situations
for training. At the assessment stage, we utilize a 1% failure
probability for the reliability assessment. 20000 and 10000
samples are generated for training and testing.

To demonstrate the effectiveness of the proposed ORA
method, the conventional ORA method (MO) and nine data-
driven ORA methods (M1-M9) are compared, as shown in
Table 1.

Those methods and relative descriptions are introduced in
the following. All neural networks are constructed and
trained in the PyTorch framework on a PC with Intel®™
Core™ i7-10700K CPU @ 3.80 GHz, 16 GB RAM, and NI-
VIDIA GeForce RTX 2080Ti. The Adam optimizer is used
with a 0.001 learning rate.

1) MO: conventional ORA method uses the interior point
method to solve the load-shedding problem, which is the
benchmark of data-driven ORA method.

2) M1: the data-driven ORA method exploits the typical
GCNN to solve the load-shedding problems, whose graph
convolution kernel is derived from the Laplacian matrix fol-
lowing the spectral graph theory [25].

3) M2: it is identical to M1 except for the graph convolu-
tion kernel. The impedance-based Gaussian kernel is utilized
as the graph convolution kernel [26].

4) M3: it is identical to M1, but the power flow model-
embedded graph convolution kernel is exploited [31].

5) M4: it is identical to M1, but the proposed physics law-
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informed graph convolution kernel is utilized.

6) MS: it is identical to M1, but the design of multi-ker-
nel collaboration GCNN is applied to the graph convolution
layer.

7) Mé6: it has the identical neural network structure and
graph convolution method, but the proposed inherent pattern-
guided learning strategy is applied.

8) M7: the existing data-driven ORA method uses the
tacked denoising auto-encoder to solve the load-shedding
problem [11].

9) MS: the existing data-driven ORA method uses deep
neural networks to filter the normal system states [16].

10) M9: the data-driven ORA method uses convolution
neural networks to calculate the load-shedding problem [15].

TABLE I
PURPOSE OF COMPARISON METHODS

Comparison method Purpose

M1, M2, M3 Demonstrate the effectiveness of multi-
M4, M5 kernel collaborative GCNN
M5, M6 Demonstrate the eff‘ectlveness. of inherent
pattern-guided learning
MO, M6, M7 Compare the assessment accuracy and
Mg, M9 speed of different ORA methods

The mean absolute errors MAE and the related errors
€.aeq e utilized to measure the performance of different
methods. The mathematical formulations are:

Nu
MAE= 5~ v- (40)
D i=1
|
Vbase
where y is the load curtailment calculated by solving the
load-shedding model using the numerical method; y’ is the
prediction load curtailment using neural networks; N, is the
number of testing data; and y,,. is the reference value. As

for operational reliability indicators, the accurate value evalu-
ated by MO is the reference value.

(41)

e

related —

B. Validation of Proposed Multi-kernel Collaborative GCNN

MI1-M5 are simulated and compared in this subsection to
demonstrate the effectiveness of the design of multi-kernel
collaborative GCNN. First, we implement M1-M5 in the
IEEE 39-bus system. The 0 in M4 and M5 is set to be 0.1.
The five methods are trained for 2000 epochs, and the mean
absolute errors of training data and testing data in different
epochs are shown in Figs. 3 and 4, respectively. It can be ob-
served that M1 and M2 converge in several epochs but with
the largest mean validation errors. The convergences are lim-
ited. Fortunately, in M3, the power flow model-embedded
design effectively reduces the training error of neural net-
works. When changing M3 to M4, the training and testing
errors could further decrease. The K-fold cross-validation
and related results are introduced in the Supplementary Mate-
rial A, which shows that M5 can obtain the smallest errors and
standard deviations. Besides, to understand why M5 can
achieve the best results, the attention analysis and the computa-

tional complexity analysis are also included in the Supplemen-
tary Material A.
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Fig. 3. Mean absolute errors of training data when different methods are
tested in training process.
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Fig. 4. Mean absolute errors of testing data when different methods are
tested in training process.

To demonstrate the effectiveness of the inherent pattern-
guided learning strategy, M5 and M6 are implemented with
different numbers of training samples. After training for
1000 epochs with a learning rate of 0.001 using the Adam
optimizer, all the neural networks are tested in 10000 testing
samples, and the corresponding mean absolute errors of load
curtailments in M5 and M6 are plotted in Fig. 5. It can be
observed that the testing errors of M6 are always smaller
than those of M5 under different numbers of training data.
Besides, with the decrease in training samples, the error of
M5 increases dramatically, especially when the amount of
training data is less than 6000. On the contrary, the errors in
M6 increase slowly and only begin to rise when the amount
of data is less than 1000. The reason is that the inherent pat-
tern-guided learning strategy is not limited to the given train-
ing data, and it can exploit those known samples to generate
more load-shedding samples. It can not only overcome the
unbalanced problem of load-shedding samples but also re-
duce the dependence of neural networks on large numbers of
training samples. The effectiveness of the inherent pattern-
guided learning strategy is verified.

Further, the trained neural networks in M1-M6 are used to
evaluate the operational reliability of the IEEE 39-bus sys-
tem, where the contingency probability of vital equipment is
set to be 1%. The maximum iteration number is 30000. The
corresponding reliability indices and relative errors of MO-
M6 are listed in Table II. It can be observed that M1, with
the typical aggregation method derived based on the adja-
cent matrix, has the largest assessment errors Eppys.
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Fig. 5. Mean absolute errors of load curtailments for neural networks
trained with different numbers of training sample.

When gradually constructing the aggregation method in-
formed by the physics variables, e.g., line impedance, and
physics model, the assessment errors decrease, but errors of
PLC Ey; are still larger than 10%, which is mainly caused
by the unbalanced load-shedding samples. Fortunately, the in-
herent pattern-guided learning strategy can faster expand the
load-shedding samples during the training process. It is help-
ful to overcome the effects of unbalanced training data. As a
result, £, . is further reduced to 4.82%, and the effective-
ness of the proposed multi-kernel collaborative GCNN is
demonstrated. Considering the small difference in M5 and
M6, additional paired #-tests and Wilcoxon signed-rank tests
are implemented to establish the statistical difference in pre-
dicting MAEs of load curtailments. The statistical tests yield
vanishingly small p-values (effectively zero), strongly reject-
ing the null hypothesis that the differences between M5 and
M6 are due to random chance. Furthermore, the 95% confi-
dence intervals of the MAEs for M5 and M6 are (0.0022,
0.0025) and (0.0015, 0.0018), respectively. The non-overlap-
ping provides additional evidence that the observed differenc-
es are statistically significant.

TABLE 11
RELIABILITY INDICES AND RELATIVE ERRORS OF M0-M6 IN IEEE 39-BuUS
SYSTEM
Method PLC Eyc (%) EDNS (MW) Erpns (%)
MO 0.04479 9.900
Ml 0.01912 57.31 3.098 68.71
M2 0.03211 28.30 7.397 25.28
M3 0.03356 25.06 7.142 27.85
M4 0.03551 20.71 7.923 19.96
M5 0.04932 10.11 10.158 2.61
M6 0.04263 4.82 10.035 1.36

In conclusion, the proposed multi-kernel collaborative
GCNN can enhance the feature extraction ability of neural
networks so that their convergences and robustness can out-
perform other GCNNs. Besides, the inherent pattern-guided
learning strategy can expand the load-shedding sample in the
training process and explore a broader feature space. There-
fore, the scale of training data can be reduced, and operation-

al reliability can be evaluated to achieve higher accuracy.

C. Comparison with Existing Data-driven ORA Methods

To further demonstrate the effectiveness of the proposed
ORA method, it is compared with three data-driven ORA
methods in four power systems. There are 20000 samples
generated for training, and the number of assessment system
states is 30000. The assessment results of different methods
in different power systems are listed in Table III.

TABLE 111
RELIABILITY RESULTS OF DIFFERENT METHODS IN DIFFERENT POWER
SYSTEMS

Epc EDNS Eppns  Assessment

System  Method  PLC %) (MW) (%) time (s)
MO 0.04479 9.900 353.00

IEEE M6  0.04260 4.82  10.035 1.36 1.63
39-bus M7 0.03090 30.98 4967 49.85 0.55
system M8  0.03670 16.62 9.039 8.74 241.00
M9 0.03590 18.39 2073 79.06 1.23

MO 0.25495 4.162 819.00

IEEE M6 025106  1.42 4136 0.1 3.17
57-bus M7 0.19560 23.25 2303  44.65 0.55
system M8  0.19580 23.20 4008  3.70 612.33
M9 0.17410 31.69 2.643  36.48 1.75

MO 0.09970 2712 571.00

IEEE M6  0.10056  0.64 2714 0.07 2.02
118-bus M7 0.12623 2551 2345 13.53 0.36
system M8  0.09410 5.72 2331 14.05 388.83
M9  0.08210 17.68 2079 2334 0.54

MO 036710 363.340 35472.50

Provincial M6 038530 496 366430 085 46.47
661-bus M7 044960 2245 167.410 53.92 0.86
system M8 033294 932 302830 16.65  24659.20
M9  0.17400 52.50 176.770 5135 233

As for the benchmark method MO, there are five threads
utilized to solve the load-shedding problem with different
system states. All the neural networks in M6-M9 are imple-
mented on a GPU. It can be observed that M6 outperforms
M7-M9 in the simulations where 1% failure probability of
power lines and generators is used. In the IEEE 39-bus sys-
tem, the benchmarks of PLC and EDNS are 0.04479 and
9.90 MW, respectively, and the relative errors of M6 are less
than 5%, which is 4.82% for E},; . and 1.36% for E, re-
spectively. However, in other data-driven ORA methods, the
relative errors are all larger than 15%. Under this circum-
stance, the topology changes in different system states, and
the mapping of the load-shedding problem becomes discrete
and complicated. Besides, abnormal system states are much
fewer than the normal ones, even in the training data where
all the N—1 contingencies of power lines and generators are
included. But M6 can still achieve a relative error of less
than 5%. In the IEEE 57-bus and 118-bus systems, PLC in-
creases, which means there are more load-shedding samples
in the training data, and the training data are less unbal-
anced. £, of M6 is decreased to 1.42%. But in the provin-
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cial 661-bus system, £ increases due to the complexity of
power systems, and M6 is still the best one compared with
other methods. Therefore, M6 with the multi-kernel collabor-
ative GCNN and inherent pattern-guided learning strategy
can calculate more accurate results and achieve a relative er-
ror of less than 5% under the varying topology circumstanc-
es, which outperforms many other existing methods.

Regarding the assessment time, M6, M7, and M9 can
complete the reliability assessment within a few seconds in
the IEEE testing system. However, MO and M8 require sev-
eral hundred seconds. As the size of the power system in-
creases, it would take even more time for MO and M8. Spe-
cifically, in the provincial 661-bus system, it takes 35472 s
to complete the reliability assessment. The longer duration
for solving load-shedding issues is attributed to the larger
scale of the power system. Nevertheless, M6 still manages
to evaluate within a mere 46 s, demonstrating the efficiency
of the proposed multi-kernel collaborative GCNN.

In the case study, we primarily utilize power line and
N—-1 and N-2 contingency data of the unit for training the
neural network. However, actual scenarios involve more intri-
cate failures. The graph neural network is compatible with
changes in topology, and the graph convolution method with
physics model embedded design can better extract physical
features and promote the learning of neural networks. More-
over, employing a learning method guided by inherent pat-
terns can further enhance the performance of neural net-
works. Therefore, training the neural network with various
complex scene data in reality can make it more adaptable to
the operation scenarios of the power grid and realize accu-
rate online ORA.

VI. DISCUSSION

The proposed multi-kernel collaborative GCNN aims to
enhance the adaptability of existing data-driven ORA meth-
ods to complex topology changes. It integrates conventional
aggregation methods with physics law-informed aggregation
methods to improve feature extraction capabilities. Addition-
ally, an inherent pattern-guided learning strategy is construct-
ed, leveraging the consistent properties of the load-shedding
model. The proposed multi-kernel collaborative GCNN can
consider a broader range of contingencies and achieve im-
proved assessment accuracy.

However, when applying the proposed multi-kernel collab-
orative GCNN in practice, there are still several challenges
and limitations. Even though the proposed inherent pattern-
guided learning strategy can reduce the training data demand-
ed, it still requires a basic training dataset. How to efficient-
ly generate training data or generalize it to a sufficient and
representative base dataset also challenges the data-driven
ORA application. Additionally, the utilization of multiple ker-
nels and the associated self-attention mechanism adds to the
computational cost. Even though the sparse technique is ap-
plied, advanced computers or servers are still required to
complete the training for large-scale power systems. It is cru-
cial to quantify the contribution of each kernel to the overall
performance improvement relative to the computational cost
and finally simplify the graph convolution calculation. Thus,

further research is needed to simplify the structure of neural
networks and realize the actual application of practical engi-
neering.

VII. CONCLUSION

This paper proposes a multi-kernel collaborative GCNN
for ORA considering varying topologies. There are three
main contributions in the paper. First, a physics law-in-
formed graph convolution kernel rooted in the Gaussian-Se-
idel iteration is derived, which can effectively aggregate
node features under varying topologies. Second, a multi-ker-
nel GCNN is constructed by integrating other advanced
graph convolution kernels with a novel self-attention mecha-
nism. It can extract different features and build a representa-
tive node feature vector for high-precision assessment of reli-
ability. Last, to further enhance the robustness of GCNN, the
inherent pattern of the load-shedding model is derived and
used to construct the specialized supervised loss function so
that a wider feature space can be explored by neural net-
works. According to the simulation results in different power
systems, the GCNN with a multi-kernel design and special-
ized supervised exploration is capable of considering a
broader range of contingencies, achieving topology change
adaptation and improved assessment accuracy, which outper-
forms the existing data-driven ORA methods.

REFERENCES

[1] R. Billinton and W. Li, Reliability Assessment of Electric Power Sys-
tems Using Monte Carlo Methods. New York: Springer Science &
Business Media, 2013.

[2] A. F. Zobaa and S. A. Aleem, Uncertainties in Modern Power Sys-
tems. Cambridge: Academic Press, 2020.

[3] Z. Dong, B. Li, J. Li et al., “Online reliability assessment of energy
systems based on a high-order extended-state-observer with applica-
tion to nuclear reactors,” Renewable and Sustainable Energy Reviews,
vol. 158, p. 112159, Apr. 2022.

[4] A. Tabares, G. Munoz-Delgado, J. F. Franco et al., “An enhanced alge-
braic approach for the analytical reliability assessment of distribution
systems,” [EEE Transactions on Power Systems, vol. 34, no. 4, pp.
2870-2879, Jul. 2019.

[5] Z. Li, W. Wu, B. Zhang et al., “Analytical reliability assessment meth-
od for complex distribution networks considering post-fault network re-
configuration,” /EEE Transactions on Power Systems, vol. 35, no. 2,
pp. 1457-1467, Mar. 2020.

[6] R. A. Gonzalez-Fernandez, A. M. L. da Silva, L. C. Resende et al.,
“Composite systems reliability evaluation based on Monte Carlo simu-
lation and cross-entropy methods,” [EEE Transactions on Power Sys-
tems, vol. 28, no. 4, pp. 598-606, Nov. 2013.

[71 Z. Zhu and X. Du, “Reliability analysis with Monte Carlo simulation
and dependent kriging predictions,” Journal of Mechanical Design,
vol. 138, no. 12, p. 121403, Dec. 2016.

[8] D. Urgun and C. Singh, “A hybrid Monte Carlo simulation and multi-
label classification method for composite system reliability evalua-
tion,” IEEE Transactions on Power Systems, vol. 34, no. 2, pp. 908-
917, Mar. 2019.

[91 A. M. L. da Silva, L. C. de Resende, L. A. da F. Manso ef al., “Com-

posite reliability assessment based on monte carlo simulation and artifi-

cial neural networks,” IEEE Transactions on Power Systems, vol. 22,

no. 3, pp. 1202-1209, Aug. 2007.

M. Kamruzzaman, N. Bhusal, and M. Benidris, “A convolutional neu-

ral network-based approach to composite power system reliability

evaluation,” International Journal of Electrical Power & Energy Sys-

tems, vol. 135, p. 107468, Feb. 2022.

Z. Dong, K. Hou, H. Meng et al., “Data-driven power system reliabil-

ity evaluation based on stacked denoising auto-encoders,” Energy Re-

ports, vol. 8, pp. 920-927, Apr. 2022.

[12] Y. Zhu and C. Singh, “Assessing bulk power system reliability by end-

[10]

[11]



198

(13

—

[14]

[15]

[16]

[17

—

(18]

[19]

[20]

[21]

[22]

[23

—

[24]

[25]

[26]

(27]

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 14, NO. 1, January 2026

to- end line maintenance-aware learning,” IEEE Access, vol. 11, pp.
49639-49649, May 2023.

Q. Zhang, J. Ling, W. Luo ef al., “Policy-assisted graph reinforcement
learning for real-time economic dispatch,” Journal of Modern Power
Systems and Clean Energy, vol. 13, no. 6, pp. 1896-1908, Nov. 2025.
Y. Du, F. Li, J. Li et al., “Achieving 100x acceleration for N—1 con-
tingency screening with uncertain scenarios using deep convolutional
neural network,” IEEE Transactions on Power Systems, vol. 34, no. 4,
pp. 3303-3305, Jul. 2019.

Y. Zhou, W.-J. Lee, R. Diao et al., “Deep reinforcement learning
based real-time ac optimal power flow considering uncertainties,”
Journal of Modern Power Systems and Clean Energy, vol. 10, no. 5,
pp. 1098-1109, Sept. 2022.

Y. Yang, J. Yu, Z. Yang ef al., “A trustable data-driven framework for
composite system reliability evaluation,” IEEE Systems Journal, vol.
16, no. 4, pp. 6697-6707, Dec. 2022.

M. Xiang, J. Yu, Z. Yang et al., “Probabilistic power flow with topol-

ogy changes based on deep neural network,” International Journal of

Electrical Power & Energy Systems, vol. 117, p. 105650, May 2020.
A. Donon, F. Cubelier, E. Karangelos et al., “Topology-aware rein-
forcement learning for tertiary voltage control,” Electric Power Sys-
tems Research, vol. 234, p. 110658, Sept. 2024.

Y. Zhu, Y. Zhou, L. Yan et al., “Scaling graph neural networks for
large-scale power systems analysis: empirical laws for emergent abili-
ties,” IEEE Transactions on Power Systems, vol. 39, no. 6, pp. 7445-
7448, Nov. 2024.

A. Owerko, F. Gama, and A. Ribeiro, “Unsupervised optimal power
flow using graph neural networks,” in Proceedings of ICASSP 2024-
2024 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Soul, Korea, Apr. 2024, pp. 6885-6889.

Q.-H. Ngo, B. L. Nguyen, T. V. Vu et al., “Physics-informed graphical
neural network for power system state estimation,” Applied Energy,
vol. 358, p. 122602, Mar. 2024.

R. Madbhavi, B. Natarajan, and B. Srinivasan, “Graph neural network-
based distribution system state estimators,” [EEE Transactions on In-
dustrial Informatics, vol. 19, no. 12, pp. 11630-11639, Dec. 2023.

Z. Wang, X. Liu, Y. Huang et al., “A multivariate time series graph
neural network for district heat load forecasting,” Energy, vol. 278, p.
127911, Sept. 2023.

Y. Huo, Z. Chen, Q. Li et al., “Graph neural network based column
generation for energy management in networked microgrid,” Journal
of Modern Power Systems and Clean Energy, vol. 12, no. 5, pp. 1506-
1519, Sept. 2024.

C. Kim, K. Kim, P. Balaprakash et al., “Graph convolutional neural
networks for optimal load shedding under line contingency,” in Pro-
ceedings of 2019 IEEE PES General Meeting, Atlanta, USA, Aug.
2019, pp. 1-5.

D. Owerko, F. Gama, and A. Ribeiro, “Optimal power flow using
graph neural networks,” in Proceedings of ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), online conference, May 2020, pp. 5930-5934.

D. Wang, K. Zheng, Q. Chen et al., “Probabilistic power flow solution
with graph convolutional network,” in Proceedings of 2020 IEEE PES
Innovative Smart Grid Technologies Europe (ISGT-Europe), Hague,

Netherlands, Oct. 2020, pp. 650-654.

M. Gao, J. Yu, Z. Yang, et al., “Physics embedded graph convolution
neural network for power flow calculation considering uncertain injec-
tions and topology,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 35, no. 11, pp. 15467-15478, Jul. 2024.

K. Xu, W. Hu, J. Leskovec er al. (2018, Oct.). How powerful are
graph neural networks? [Online]. Available: https://arxiv. org/abs/
1810.00826v3

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proceedings of 5th International Confer-
ence on Learning Representations, Toulon, France, Apr. 2017, pp. 1-6.
M. Gao, J. Yu, Z. Yang et al., “A physics-guided graph convolution
neural network for optimal power flow,” IEEE Transactions on Power
Systems, vol. 39, no. 1, pp. 380-390, Jan. 2024.

P. Velickovic, G. Cucurull, A. Casanova et al., “Graph attention net-
works,” in Proceedings of 5th International Conference on Learning
Representations, Toulon, France, Apr. 2017, pp. 1-6.

Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you need,” in
Proceedings of 31st Annual Conference on Neural Information Pro-
cessing Systems (NIPS), Long Beach, USA, Dec. 2017, pp. 1-5.

[28]

[29]

[30]

[31]

(321

[33]

Xinyu Liu received the M.S. degree in electrical engineering from Sichuan
University, Chengdu, China, in 2002. Currently, he is pursuing the Ph.D. de-
gree in electrical engineering at Tsinghua University, Beijing, China, and is
employed by Chonggqing Electric Power Company of State Grid Corporation
of China, Chongqing, China. His research interests include optimal dispatch,
stability analysis, and artificial intelligence application in power systems.

Maosheng Gao received the B.S. degree from the Chongging University-
University of Cincinnati Joint Co-op Institute, Chongqing, China, in 2020.
Currently, he is pursuing the Ph.D. degree in electrical engineering at the
School of Electrical Engineering, Chongqing University, Chongqing, China.
His research interests include deep learning and its applications in power
and energy systems.

Juan Yu received the Ph.D. degree in electrical engineering from Chongg-
ing University, Chongqing, China, in 2007. Currently, she is a Full Profes-
sor at Chongqing University. Her research interests include big data analyt-
ics and power system analysis.

Zhifang Yang received the Ph.D. degree in electrical engineering from Tsin-
ghua University, Beijing, China, in 2018. He is now a Full Professor at
Chongqing University, Chongqing, China. His research interests include
power system optimization and electricity market.

Wenyuan Li received the B.S. degree from Tsinghua University, Beijing,
China, in 1968, and the M.S. and Ph.D. degrees from Chongqing Universi-
ty, Chongging, China, in 1982 and 1987, respectively, all in electrical engi-
neering. He is currently a Professor with Chongqing University. He is a For-
eign Member of the Chinese Academy of Engineering and a Fellow of the
Canadian Academy of Engineering. His research interests include power sys-
tem planning, operation, optimization, and reliability assessment.



