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Abstract——Operational reliability assessment (ORA), which 
evaluates the risk level of power systems, is hindered by accu‐
mulated computational burdens and thus cannot meet the de‐
mands of real-time assessment. Recently, data-driven methods 
with fast calculation speeds have emerged as a research focus 
for online ORA. However, the diverse contingencies of trans‐
formers, power lines, and other components introduce numer‐
ous topologies, posing significant challenges to the learning ca‐
pabilities of neural networks. To this end, this paper proposes a 
multi-kernel collaborative graph convolution neural network 
(GCNN) for ORA considering varying topologies. Specifically, a 
physics law-informed graph convolution kernel derived from 
the Gaussian-Seidel iteration is introduced. It effectively aggre‐
gates node features across different topologies. By integrating 
additional advanced graph convolution kernels with a novel self-
attention mechanism, the multi-kernel collaborative GCNN is 
constructed, which enables the extraction of diverse features 
and the construction of representative node feature vectors, 
thereby facilitating high-precision reliability assessments. Fur‐
thermore, to enhance the robustness of multi-kernel collabora‐
tive GCNN, the inherent pattern of the load-shedding model is 
analyzed and utilized to design a specialized supervised loss 
function, which allows the neural network to explore a broader 
feature space. Compared with the existing data-driven methods, 
the multi-kernel collaborative GCNN, combined with super‐
vised exploration, can accommodate a wider range of contingen‐
cies and achieve superior assessment accuracy.

Index Terms——Reliability assessment, multi-kernel collabora‐
tive design, self-attention graph convolution neural network 
(GCNN), topology.

I. INTRODUCTION

OPERATIONAL reliability assessment (ORA) is a vital 
tool to evaluate operational risk and carry out early 

warning in the power system [1]. In the context of develop‐
ing renewable energy worldwide, the power system faces sig‐
nificant uncertainties due to the intermittent and stochastic 
characteristics of wind and solar [2]. It is necessary to imple‐
ment the ORA in real time [3]. Thus, in China, the National 
Energy Administration is actively promoting the establish‐
ment of a power system reliability management framework, 
which would facilitate the real-time collection of vital power 
equipment reliability data and foster the development of rap‐
id and intelligent ORA methodologies for future advance‐
ments.

However, with the increasing collection of abundant reli‐
ability data for vital power equipment, conventional numeri‐
cal and data-driven ORA methods face significant challeng‐
es. On the one hand, the traditional numerical ORA meth‐
ods, such as the Monte Carlo simulation method, require iter‐
atively solving load-shedding optimization problems under a 
vast number of system states. This results in high computa‐
tional complexity, which is particularly time-consuming for 
large-scale power systems and hinders real-time reliability as‐
sessment due to the accumulated computational burden. On 
the other hand, with the availability of extensive data on crit‐
ical power equipment, it is necessary to simulate more com‐
plex and diverse system states, which introduces various sys‐
tem topologies. This, in turn, poses a significant challenge to 
the effective learning capability of neural networks em‐
ployed in data-driven ORA methods.

The conventional ORA methods can be categorized into 
two types: analytical method and simulation method. Accord‐
ing to the probabilistic model of uncertainty and contingency 
probability of critical equipment, the analytical method di‐
rectly derives an analytical formulation for computing the op‐
erational reliability [4], [5]. This method performs effective‐
ly for small-scale power systems with a limited number of 
system states and manageable computational complexity. 
However, when dealing with complex operational conditions 
and a large number of severe events in large-scale power sys‐
tems, the analytical method becomes overly intricate, which 
may fail to account for certain operational scenarios. In con‐
trast, the simulation method, which treats the problem as a 
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series of experiments and subsequently calculates operational 
reliability indices, does not suffer from these limitations [6]. 
It can simulate not only the operational conditions, contin‐
gency events, and uncertainties but also the non-electrical 
system factors, such as reservoir operational conditions and 
weather effects, which are typically beyond the scope of the 
analytical method. However, one drawback that impedes the 
real-time application of simulation methods is the cumula‐
tive computational burden [7]. Since the simulation method 
needs to simulate all the operational conditions and solve the 
load-shedding problem to compute the operational reliability 
indices, it often fails to complete within the operational time 
window, such as 5 min, making it unsuitable for online as‐
sessment of power systems. To address this computational 
burden issue associated with traditional numerical simulation 
methods, data-driven ORA methods have been proposed in 
recent years.

The data-driven method is a further improvement on the 
traditional simulation method. Its essence lies in leveraging 
the rapid computational capabilities of neural networks to ex‐
pedite ORA. For example, neural networks can be employed 
to swiftly classify success states [8], [9], substitute for solv‐
ing load-shedding problems [10], [11], or directly predict the 
reliability indices [12]. Those neural networks, characterized 
by their robust classification and approximation abilities, can 
precisely determine the success/failure states, the load curtail‐
ment amounts, and even the reliability indices while account‐
ing for the stochastic nature of renewable energy and load 
fluctuations. Moreover, their applications extend beyond 
ORA problems. The exceptional computational speed and in‐
telligent decision-making capabilities of neural networks 
have been extensively explored in other power system opti‐
mization challenges, such as optimal power flow calcula‐
tions, economic dispatch, and unit commitment solutions 
[13]. Regarding the ORA, neural networks aim to approxi‐
mate the non-linear and non-convex mapping from those 
continuous features to the success/failure states or the load 
curtailment amounts. However, ORA encompasses not only 
continuous features but also discrete features, which typical‐
ly arise from topology changes in the power grid, such as 
contingencies in power equipment. This dynamic topology 
characteristic complicates the load-shedding mapping and 
poses significant challenges to neural network learning.

To cope with this issue in the data-driven ORA method, 
two strategies can be employed to handle the discrete topolo‐
gy features: feature engineering and application of graph con‐
volutional neural networks (GCNNs).

Feature engineering involves constructing a representative 
feature vector that indicates topology changes, enabling neu‐
ral networks to effectively utilize topology information for 
approximating target outputs (including load curtailments). 
For instance, the diagonal element of the susceptance matrix 
[14], the magnitude and angle of the diagonal element of the 
admittance matrix [15], or the upper triangular part of the 
susceptance matrix [12] have been used as the topology fea‐
ture vector. Besides, based on the power flow model, differ‐
ences in voltage magnitude and branch power flow between 
the original and new topology are also regarded as represen‐

tative topology features [16], [17]. However, due to the con‐
sideration of the input feature dimension, feature engineering 
often incurs feature loss to maintain an acceptable input di‐
mensionality. Furthermore, while encoding topology into a 
feature vector, feature engineering may overlook the correla‐
tion between topology and node features.

On the contrary, the application of GCNNs can effectively 
address this issue. By constructing a GCNN with a structure 
analogous to that of the power grid, both node features 
(such as loads and renewable energy generation) and topolo‐
gy features (including interconnections between nodes, 
branch susceptance and conductance, and contingency sce‐
narios) can be seamlessly integrated into the neural network 
without concerns about scale explosion. This method ensures 
compatibility with the evolving scale and structure of the 
power grid at both input and output stages [18], [19]. As a 
result, GCNN has been widely applied in various aspects of 
power systems, including optimization [20], state estimation 
[21], [22], and forecasting [23], [24]. Moreover, it is an ide‐
al tool for ORA, particularly when handling varying topolo‐
gies. There are three types of GCNNs with different graph 
convolution kernels that can be applied to the ORA problem. 
Firstly, the standard graph convolution kernel derived from 
the Laplacian matrix based on the spectral graph theory is 
utilized for load-shedding calculation problems [25], which 
embeds the topology of the power grid into the forward 
propagation of neural networks, thereby enhancing the adapt‐
ability for varying topologies. The second type of graph con‐
volution kernel refers to the impedance matrix in power sys‐
tems. It is an impedance-based Gaussian kernel for graph 
convolution [26], [27], which makes the weight in the convo‐
lution kernel correlate with the branch impedance and fur‐
ther improves the ability of GCNN to extract topology fea‐
tures. The third type of graph convolution kernel is designed 
in accordance with the power flow model [28], regarding 
power flow equations as the neighborhood aggregation func‐
tion and forcing the neural network to extract the complex 
physics features. Currently, the GCNNs with the power flow 
model embedded are more suitable for addressing varying to‐
pologies in the ORA problem.

Although the advanced GCNNs with the power flow mod‐
el embedded make it possible to predict the load curtail‐
ments under varying topologies, there is still room for poten‐
tial improvements. Specifically, during the derivation of the 
forward propagation function in those GCNNs, the variables, 
e. g., voltage magnitude and phase angle, are partially as‐
signed to the preceding graph convolution layer and partially 
assigned to the subsequent one. This separation violates the 
physics laws and may result in insufficient or inaccurate 
physics feature extraction. Besides, the three types of graph 
convolution kernels help the neural network pay more atten‐
tion to different features in the power system individually. In‐
tegrating different graph convolution kernels may compel 
neural networks to extract more representive features. Conse‐
quently, this would enhance the accuracy and robust topolo‐
gy adaptability of the data-driven ORA method. To this end, 
a multi-kernel collaborative GCNN is proposed for the 
ORA, specifically addressing the varying topologies. By inte‐
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grating multiple kernels, including spectral graph convolu‐
tion kernel, impedance-based Gaussian kernel, power flow 
model embedded graph convolution kernel, and the proposed 
physics law-informed graph convolution kernel, this GCNN 
can effectively handle complex scenarios involving changing 
topologies and achieve more accurate ORAs. Additionally, a 
new learning strategy is developed based on the inherent pat‐
tern of the ORA model to improve the robustness of neural 
networks. The main contributions are summarized as follows:

1) A novel physics law-informed graph convolution kernel 
is constructed. Different from the variable assumption, this 
kernel is rooted in the Gaussian-Seidel iteration of the com‐
plex power flow equations, which can efficiently aggregate 
graph node features in a manner consistent with physical 
laws such as Kirchhoff’s current law (KCL) and Kirch‐
hoff’s voltage law (KVL).

2) A multi-kernel collaborative GCNN is designed. By le‐
veraging the feature extraction capabilities of various ad‐
vanced graph convolution kernels, this GCNN aggregates 
node features effectively while incorporating a novel self-at‐
tention mechanism to construct a highly representative node 
feature vector. This updated vector encompasses both global 
topology and physical law-associated features, which lays 
the foundation for high-precision solving of load-shedding 
problems by capturing essential data characteristics.

3) An inherent pattern-guided learning strategy is pro‐
posed to strengthen the robustness of the multi-kernel collab‐
orative GCNN. Specifically, an inherent pattern between the 
load and its curtailment is derived, enabling direct calcula‐
tion of the load curtailment amount without iterative solving. 
Thus, a specialized supervised learning loss function based 
on such an inherent pattern is constructed, which makes it 
possible to add random disturbances to the load during the 
training process without label concerns. As a result, the neu‐
ral network can explore a broader feature space, thereby en‐
hancing the robustness of neural networks.

The rest of the paper is organized as follows. In Section 
II, the conventional ORA method and proposed ORA meth‐
od are introduced. The architecture of multi-kernel collabora‐
tive GCNN is presented in Section III. Section IV presents 
the inherent pattern-guided learning. Section V presents the 
case study. Section VI presents the discussion. And the con‐
clusion is given in Section VII.

II. CONVENTIONAL ORA METHOD AND PROPOSED ORA 
METHOD 

A. Conventional ORA Method

The conventional ORA method of power systems is the 
Monte Carlo simulation method. Its main steps can be con‐
cluded as follows.
1)　System State Sampling

The system states are usually sampled based on the proba‐
bilistic distribution of loads and renewable energy and the 
failure probability of vital power equipment.
2)　System State Analysis

After obtaining the system states, the next step is deter‐
mining whether the power system can operate safely. So, the 

power flow calculation is implemented to check whether any 
violation exists. If it is true, optimize the load-shedding prob‐
lem. The load-shedding problem is to minimize the load cur‐
tailment under the practical constraints of power systems, 
such as power flow constraints and generator ramping limita‐
tions. The mathematical formulation of the load-shedding 
problem is shown in (1)-(10).

min∑
iÎ SB

ρPi ( )CPi + ρQiCQi (1)

ì

í

î

ï
ïï
ï

ï
ïï
ï
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where CPi and CQi are the active and reactive load curtail‐
ments at bus i, respectively; ρPi and ρQi are the cost coeffi‐
cients at bus i; PDi and QDi are the active and reactive power 
demands at bus i, respectively; PGi and QGi are the active 
and reactive power generations of generator i, respectively; 
Vi and θi are the voltage magnitude and phase angle at bus i, 
respectively; θij is the phase angle difference between buses 
i and j; Gij and Bij are the elements of the conductance and 
susceptance matrices in the ith row and j th column, respective‐
ly; PLij is the active branch power between buses i and j; 
PGilast is the power generation of generator i in the last time-
step; PGirampup and PGirampdown are the maximum and mini‐
mumn ramping amounts of generator i, respectively; 

-
 and - 

denote the upper and lower limits, respectively; and SG, SB, 
and SL are the index sets of generators, buses, and branches, 
respectively.
3)　Reliability Index Calculation

The basis indices of operational reliability are the adequa‐
cy indices, e. g., probability of load curtailment (PLC), and 
expected demand not supplied (EDNS). The PLC and EDNS 
are calculated in this paper after obtaining the load curtail‐
ment under different system states, as shown in (11) 
and (12).

PLC =∑
iÎ S

pi (11)

EDNS =∑
iÎ S
∑
jÎ SB

piCPji (12)
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where pi is the probability of system state i; S is the set of 
system states where load curtailment occurs; and CPji is the 
load curtailment amount at bus j under system state i.
4)　Convergence Criterion

When implementing the Monte Carlo simulation method, 
it is necessary to determine when to stop. Two mainstream 
convergence criteria are the maximum sample number and 
the variance of reliability indices. In this paper, both the 
maximum sample number and the variance of PLC and 
EDNS are used.

B. Framework of ORA Method

According to the Monte Carlo simulation method, it is re‐
quired to solve the load-shedding problem (1)-(10) while giv‐
ing different system states. Usually, thousands of system 
states would be sampled and analyzed. However, the Monte 
Carlo simulation method cannot be applied in real-time sce‐
narios due to its significant computational burden. To ad‐
dress this issue, the data-driven ORA method leverages the 
neural network with fast computational speed. Nevertheless, 
its computational accuracy has been a concern, particularly 
when numerous contingencies that alter the topology of pow‐
er system are considered.

This paper improves the neural network structure and 
learning strategy to address the varying topologies in the da‐

ta-driven ORA method, referred to as the proposed ORA 
method. For better clarity, the framework of the proposed 
ORA method is illustrated in Fig. 1. The proposed ORA 
method still follows the data-driven simulation structure but 
exploits the neural networks to solve the load-shedding prob‐
lem when given different system states or features. At the of‐
fline phase, a neural network agent is constructed to accu‐
rately predict the minimum load curtailment under various 
contingencies. At the online phase, this agent predicts load 
curtailments under different system states and evaluates the 
operational reliability of the power system. This paper 
makes two distinct contributions to effectively training a neu‐
ral network for adapting to varying topologies. First, we de‐
sign the GCNN structure by proposing a physics law-in‐
formed graph convolution kernel and integrating it with oth‐
er advanced kernels to construct a multi-kernel collaborative 
GCNN. Second, we develop an inherent pattern-guided learn‐
ing strategy by deriving an inherent pattern from the load-
shedding model and designing a supervised learning loss 
function. This enables the neural network to explore a broad‐
er feature space during training. Consequently, by applying 
the neural network architecture and learning strategy, the to‐
pology adaptability of the proposed ORA method can be en‐
hanced, leading to more accurate reliability assessments.

III. ARCHITECTURE OF MULTI-KERNEL COLLABORATIVE 
GCNN 

In the conventional ORA method, the repeated calculation 
of the highly complex and time-consuming load-shedding 
model (1) - (10) hinders its online practical application. If a 
neural network can solve the load-shedding model quickly, 
the ORA will be fundamentally accelerated. In the load-shed‐
ding model, equipment failures and other factors will change 
the system topology, making it more difficult for the neural 
network to learn. Effectively extracting the impact of topolo‐
gy changes on power flow distribution is one of the strate‐
gies to make the data-driven ORA method more practical. 

Graph neural network is an effective tool for dealing with to‐
pology changes in the proposed ORA method by embedding 
the topology into the forward propagation of the neural net‐
work and performing feature aggregation calculations based 
on the input topology. However, in the load-shedding model, 
the nonlinear and complex power flow model makes it diffi‐
cult for graph neural networks to extract important features 
that affect the assessment results accurately. To this end, this 
section focuses on how to accurately consider the impact of 
the power flow model in the load-shedding model in graph 
convolution and designs a multi-kernel collaborative GCNN 
architecture for ORA. Next, we introduce some existing 

Multi-kernel collaborative GCNN

Continuous features Discrete features

Load curtailments

GCNN structure

Physics law-
informed graph

convolution kernel

Power flow model
embedded kernel

Spectral graph kernel

Impedance-based
kernel

Pattern-guided
learning strategy 

Load-shedding
model

Inherent pattern

Supervised learning
loss function

TrainBuild

System states Reliability indicesORA agent

Offline phase

Online phase

Neural network agent construction 

Wind power
   generation curve
Photovoltaic power
   generation curve
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Contingency
Equipment
   maintenance unit
   start/step status

Fig. 1.　Framework of proposed ORA method.
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graph convolution methods and propose a physics law-in‐
formed graph convolution kernel. Finally, the design scheme 
of a multi-kernel collaborative GCNN is introduced.

A. Brief Introduction to GCNN

GCNN is a kind of neural network designed to handle 
graph-structured data. Generally, there are two operations in 
the forward propagation of GCNNs: aggregation and convo‐
lution [29]. The aggregation operation collects features from 
the neighborhoods and combines them with their features to 
form new node feature vectors. Then, the convolution opera‐
tion would update the node features with convolution param‐
eters.

xl + 1
i = fCONV( fAGGRE( xl

j| jÎN ( )i ) H ) (13)

where xl + 1
i  is the feature of node i in the ( )l + 1

th
 layer; N ( )i  

is the set of adjacent nodes and itself for node i; fCONV and 
fAGGRE are the convolution and aggregation operation func‐
tions, respectively; and H is the convolution parameter.

To reduce the scale of trainable parameters in GCNNs, 
most fAGGRE functions merely have known parameters, and 
how to determine the fAGGRE function becomes a significant 
task in constructing GCNNs. The fAGGRE function of the stan‐
dard GCNN is constructed based on the adjacent matrix A to 
consider the internal effects of the neighborhoods based on 
the spectral graph theory. Its mathematical formulation in 
matrix form is:

fAGGRE1( X l ) = D̂
-

1
2 ÂD̂

-
1
2 X l (14)

where X lÎRn ´ k is the matrix of input features with n nodes 
and k-dimensional features; and Â and D̂ are the normalized 
adjacent matrix and degree matrix based on the re-normaliza‐
tion ticks, respectively [30].

In the applications of GCNN in power systems, the phys‐
ics parameters and physics model that can describe the inter‐
nal effects of neighborhood nodes are exploited, e.g., branch 
impedance and power flow model. Hence, some physics-in‐
formed GCNNs in power systems are proposed. First, the 
branch impedance is utilized to construct the aggregation 
weights of neighborhood features. This kind of GCNN 

adopts a Gaussian kernel Wij = exp ( - κ | zij |
2 ), where κ is a 

scaling factor [26]; and zij is the impedance of the power 
line connecting nodes i and j. In different power systems, κ 
is adjusted to ensure that the weights of power lines are in a 
reasonable range, and no power line is ignored due to too 
small weight. The aggregation function of this GCNN can 
be indicated as:

fAGGRE2( X l ) =WX l (15)

where W is the weight adjacent matrix calculated using the 
branch impedance.

To further improve the feature aggregation ability, the pro‐
cessing strategy based on the re-normalization tricks is also 
implemented in the impedance-based aggregation W. The ag‐
gregation function is:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

fAGGRE3( )X l = D̂
-

1
2

w ŴD̂
-

1
2

w X l

Ŵ =W + In

D̂w = diag ( )∑
j = 1

n

Ŵij

(16)

where In is the identity matrix, whose diagonal elements are 
1 and other elements are 0; and Ŵij is the ith row and j th col‐
umn element of Ŵ.

In addition, the power flow model in the Cartesian coordi‐
nate system, indicated in (17), is also embedded into the ag‐
gregation function to enhance the feature extraction ability 
of GCNNs [31], which sets ei =Vi cos θi and fi =Vi sin θi as 
the coupled node feature in the graph and takes advantage of 
the power flow model (17) as the aggregation function to up‐
date them. Assume that the features of the central node i are 
unknown and updated by its neighborhoods. Then, the ele‐
ments in (17) including ei or fi are kept on the right-hand 
side and the other elements are moved to the left-hand side. 
By solving ei and fi in the reformulated power flow equa‐
tions, the node feature aggregation function could be de‐
rived, as shown in (18).

ì

í

î

ï
ïï
ï

ï
ïï
ï

PGi -PDi =∑
jÎ SB

é
ë

ù
ûei( )Gijej -Bij fj + fi( )Gij fj +Bijej

QGi -QDi =∑
jÎ SB

é
ë

ù
ûfi( )Gijej -Bij fj - ei( )Gij fj +Bijej

(17)

ì

í

î

ï
ïï
ï

ï
ïï
ï

f e
AGGRE4( )elf l =

δα - λβ
αα + ββ

f f
AGGRE4( )elf l =

δβ + λα
αα + ββ

(18)

α =Gndiagel -Bndiag f l (19)

β =Gndiag f l +Bndiagel (20)

δ =-PD - (elel + f lf l )Gdiag (21)

λ =-QD - (elel + f lf l ) Bdiag (22)

where el and f l are the coupled node feature vectors of the 
l th layer; f e

AGGRE4 and f f
AGGRE4 are the node feature aggregation 

functions by embedding the power flow equations, respec‐
tively; PD and QD are the active and reactive power vectors, 
respectively;  is the Hadamard (entry-wise) product; Gndiag 
and Bndiag are the admittance and susceptance matrices with‐
out diagonal elements, respectively; and Gdiag and Bdiag are 
the diagonal elements of the admittance and susceptance ma‐
trices, respectively.

Although aggregation methods in the GCNN help extract 
the topology and physical features, the assumption in the der‐
ivation violates the law of power flow. While iterating sever‐
al times, node features could diverge [31]. Therefore, there 
are still potential improvements to design a well-performed 
aggregation function and physics law-informed GCNN in 
power systems.

B. Physics Law-informed GCNN

To follow the physics law in the feature aggregation opera‐
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tion, there must be no assumptions in the derivation based 
on the power flow model. The Gaussian-Seidel iteration is 
an ideal tool, which does not break the initial equations, and 
the physical property can be well preserved. Besides, the 
Gaussian-Seidel iteration is applied to solve the power flow 
equations. Therefore, referring to the process of solving the 
power flow equation by Gaussian-Seidel iteration, this sub‐
section mainly introduces how to embed the Gaussian-Seidel 
iteration of power flow equations into the graph convolution.

The power flow model in complex form is:

ì
í
î

YV = I

I = [ ]S/V
(23)

where Y is the admittance matrix; V is the voltage vector in 
complex form; I is the injection current vector in complex 
form; and S is the power injection vector in complex form.

When decomposing the matrix Y into its diagonal form, 
denoted as Ydiag, and the off-diagonal form Yndiag, (23) can be 
reformulated as (24). Hence, the Gaussian-Seidel iteration 
function of Vi in the (l + 1)th iteration can be formularized as 
shown in (25).

V =Y -1
diag( )I -YndiagV (24)

V l + 1
i =

1
Yii ( Si

V l
i

-∑
j = 1

n

YijV
l

j ) (25)

where Yij is the ith row and j th column of Y; and Si is the ith 
element of S.

It can be observed that (25) is an aggregation function to 
update V using the system state (power injection vector S) 
and the grid parameters (conductance and susceptance matri‐
ces G and B). There are no assumptions and the physics 
laws (like KCL and KVL) are still satisfied. Thus, we take 
(25) as the aggregation function and design a new graph con‐
volution method. However, all the elements in (25) are com‐
plex values, and it is difficult to exploit directly in the for‐
ward propagation of neural networks. Rewriting it in the Car‐
tesian coordinate system to decouple node features where V =
e + jf, the aggregation function could be:

el + 1
i + jf l + 1

i =
Pi + jQi

( )Gii + jBii ( )el
i + jf l

i

-

1
Gii + jBii

∑
j = 1

n ( )Gij + jBij ( )el
i + jf l

i (26)

where Pi and Qi are the real and imaginary parts of Si, re‐
spectively.

Then, decoupling the real and imaginary parts in (26), the 
aggregation function can be written as:
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el + 1
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ii
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f l + 1
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α'i Bii
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(27)

where el + 1
i  and f l + 1

i  are the node feature elements in the 

( )l + 1
th
 iteration. α'i and β'i can be written as:
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In (27) and (28), G2
ii +B2

ii and (el
i ) 2

+ ( f l
i ) 2

 are in the de‐
nominator. G2

ii +B2
ii is a nonzero constant for different nodes 

in a given topology. el
i and f l

i  may have zero elements in the 
hidden layers and cause a calculation error in the neural net‐
work. To avoid this situation, a small constant δ is added to 

(el
i ) 2

+ ( f l
i ) 2

. The aggregation function of this GCNN can be 
written as shown in (29)-(31) in matrix form.
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f e
AGGRE5( )elf l =

α'Gdiag + β'Bdiag

GdiagGdiag +BdiagBdiag

f f
AGGRE5( )elf l =

-α'Bdiag + β'Gdiag

GdiagGdiag +BdiagBdiag

(29)

α'=
Pel +Qf l

elel + f lf l + δ
-Gndiagel +Bndiag f l (30)

β'=
Qel -Pf l

elel + f lf l + δ
-Gndiag f l -Bndiagel (31)

where P and Q are the active and reactive power injection 
vectors, respectively; and f e

AGGRE5 and f f
AGGRE5 are the physics 

law-informed node feature aggregation functions.
Eventually, using this aggregation function (29), a new 

GCNN preserved the physics law can be obtained as:

ì
í
î

ïïïï

ïïïï

el + 1 = fCONV( )f e
AGGRE5( )elf l He

f l + 1 = fCONV( )f f
AGGRE5( )elf l Hf

(32)

where He and Hf are the trainable parameters in the convolu‐
tion layer.

The physics law-informed GCNN directly incorporates the 
Gaussian-Seidel iteration process into the node feature aggre‐
gation mechanism. Unlike conventional methods that approx‐
imate or simplify power flow equations, it retains the struc‐
ture of the original equations during the aggregation of fea‐
tures, thereby avoiding distortions of the underlying physics 
laws. Although fixed-step unrolling does not theoretically 
guarantee convergence, this design ensures that the aggrega‐
tion process adheres to the power flow equations at each iter‐
ation step. Therefore, there are two benefits as follows. First, 
by embedding the Gaussian-Seidel-based aggregation, the 
model explicitly captures the interdependencies between 
neighboring nodes governed by power flow equations, en‐
abling more accurate feature propagation and aggregation, 
which improves the ability to learn the load-shedding model 
that respects grid physics. Second, the direct integration of 
power flow constraints reduces the complexity of learning 
the mapping between grid states and the minimum load-shed‐
ding values.

C. Multi-kernel Collaborative GCNN

Different from convolution in matrices or images, graph 
convolution decomposes convolutions into aggregation and 
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node convolution operations to handle the node degree dis‐
unity in a graph. However, the design of fixed parameters in 
aggregation operations leads to the limitation of the feature 
extraction capability of graph neural networks. Recent re‐
search works mainly discover an aggregation operation meth‐
od that can effectively extract graph features and further add 
attention mechanisms to weigh the node features [32]. The 
aforementioned aggregation operations and GCNNs are grad‐
ually improved to extract the topology and physical features 
in the power systems. But those GCNNs still exploit a sin‐
gle aggregation operation, which results in extracting fea‐
tures from neighborhoods primarily focusing on a fixed 
form. It is difficult for neural networks to accurately approxi‐
mate the complex nonlinear and non-convex mapping of 
load-shedding problems using such extracted features in a 
fixed form. Hence, the feature extraction ability of the aggre‐
gation operation in GCNNs needs to be further improved. To 
this end, this paper proposes an architecture of multi-kernel 
collaborative GCNN, as shown in Fig. 2, where σ is the acti‐
vation function.

Specifically, there are two improvements in the multi-ker‐
nel collaborative GCNN. One is that the multiple aforemen‐
tioned aggregation operations, e.g., (15), (16), (18), and (29), 
are utilized in the graph convolution layer to break feature 
extraction limitations with a single aggregation method. The 
other is that a self-attention mechanism is integrated into the 
multi-kernel graph convolution layer to determine the atten‐
tion for extracted features by different aggregation operation 
methods. Regarding elf lÎRn ´ k as the coupled features of 
all node inputs to the l th graph convolution layer, the aggre‐
gation features el

sf
l

s ÎRn ´ k of the s type of aggregation 
methods can be indicated by:

ì
í
î

ïï

ïï

el
s = f e

AGGREs( )elf l

f l
s = f f

AGGREs( )elf l
(33)

In this paper, the aggregation methods in (15), (16), (18), 
and (29) are integrated in the multi-kernel collaborative 
GCNN, and therefore s = {2345}. In (15) and (16), the 

coupled relationship of node representations e and f is not 
considered and therefore el and f l are used individually to 
calculate the aggregated node representations el

s and f l
s . 

Since different aggregation methods extract different types 
of features, concatenating them together can enrich represen‐
tations of node features and further improve prediction accu‐
racy. However, uniformly concatenating the node representa‐
tions el

s and f l
s  calculated by different aggregation methods 

may add redundant or unimportant features, resulting in im‐
portant features that affect prediction accuracy not being fo‐
cused on. To this end, a weight (observed as a kind of atten‐
tion) is multiplied by el

s and f l
s  to scale the feature values. If 

the aggregated node representations have a significant im‐
pact on the output of neural networks, the weight could be 
large. Otherwise, it could be a small value. Different from 
the attention mechanism in [32] and [33], we employ a glob‐
al pooling layer and a fully connected layer to determine it, 
denoting it as (34). It is noted that there are two fully con‐
nected layers used for e and f, respectively.
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í
î

ïïïï

ïïïï

ae
s = f e

fc ( )fpooling( )el
s

a f
s = f f

fc( )fpooling( )f l
s

(34)

where ae
s and a f

s are the attentions of the node features in the 
s type of aggregations; fpooling( )×  is the global pooling calcula‐

tion and its output dimension is 1 ´ k; and f e
fc ( )×  and f f

fc( )×  rep‐

resent two fully connected layers and the output dimension 
is 1 ´ 1.

Eventually, the aggregation operation of the coupled fea‐
ture and the forward propagation function of neural net‐
works in the l th graph convolution layer can be represented 
by (35) and (36). Combining the pooling layer and fully con‐
nected layers, the complete architecture of multi-kernel col‐
laborative GCNN can be constructed.
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2el

2||a
e
3el

3||a
e
4el

4||a
e
5el

5

f l' = a f
2 f l
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3 f l
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4 f l
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(35)
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el + 1 = fCONV( )el'He

f l + 1 = fCONV( )f l'Hf

(36)

where || denotes the concatenation of different features; and 
el' and f l' are the aggregated coupled node features.

In Fig. 2, regarding node feature representation, P and Q 
are the system states, which change with the sampling of 
system states during the ORA process. For node voltages e 
and f, we give 1 and 0 in the initial state. In the forward 
propagation of the neural network layer by layer, they 
change with the distribution of power injections. The core of 
the multi-kernel collaborative GCNN is to accurately extract 
the feature representation of node voltages e and f at the in‐
jected power, which can be used as a basis for load-shed‐
ding judgment.

IV. INHERENT PATTERN-GUIDED LEARNING STRATEGY

A. Inherent Pattern Derivation

The load-shedding problem is to reduce the minimum 

Multi-kernel graph
convolution layer 1

Load curtailments

Multi-kernel graph
convolution layer 2

Multi-kernel graph
convolution layer 3

Pooling layer

Fully connected layer 1

Fully connected layer 2

Node feature: [P, Q, e, f ]
Graph feature: [G, B] [P, Q, el, f l], [G, B]

[P, Q, e l+1, f l+1], [G, B]

Convolution operation (36)

Concatenate operation (35)

AGGRE2 AGGRE3 AGGRE4 AGGRE5

Attention Attention Attention Attention
a2
ee2 a2

f f2 a3
ee3 a3

f f3 a4
ee4 a4

f f4 a5
ee5 a5

f f5

e2 f2 e3 f3 e4 f4 e5 f5

Activation operation:
el+1 = =, f l+1σ(e l+1) σ( f l+1)

l l

l l l l l l l l

l l l l l l

Calculation process of a sample layer

Fig. 2.　Architecture of multi-kernel collaborative GCNN.
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loads so that all the operational constraints are not violated. 
The outputs are highly relative to the loads. Is there a load 
perturbation strategy that can directly calculate the load cur‐
tailment without changing other optimization variables under 
the KKT condition? Intuitively, if the load needs to be re‐
duced on a certain node, it means that the node is overload‐
ed. If we continue to increase the load on this node, the in‐
creased load will also need to be reduced. If the load curtail‐
ment on the node is not sufficient, it does not need to be re‐
duced. This rule can be written as:

CPi +DPi = fi( )PDi +DPi     CPi > 0CPi +DPi > 0 (37)

where DPi is the load changing amount on node i; and fi( )×  is 
the function of the load-shedding model from input features 
to load curtailments on node i. According to the optimality 
and feasibility analysis, the above pattern can be directly 
proved. The details are shown in the Supplementary Material 
A. Under this circumstance, the load curtailment can be di‐
rectly calculated, and if this pattern is applied in the train‐
ing, neural network learning would not be limited to the giv‐
en training data.

B. Analysis of Inherent Pattern-guided Learning Strategy

The learning of neural network is to optimize the trainable 
parameter. The typical learning is the supervised learning 
with sample labels, which minimizes the loss functions L, as 
shown in (38). However, it demands a lot of samples so that 
the neural network can be trained over the entire feature 
space. In data-driven load-shedding computation, due to com‐
plicated non-linearity and the combinatorial explosion of to‐
pology, training a load-shedding calculation neural network 
would require hundreds of thousands or even more samples. 
We construct a new learning strategy that can automatically 
add perturbed samples and reduce the training sample de‐
manded.

L =
1
M∑k = 1

M∑
i = 1

N ( )C k
POuti -C k

Pi

2

(38)

where C k
Pi and C k

POuti are the ith outputs of neural networks 
and the corresponding labels for the k th sample, respectively; 
M is the training data number; and N is the output dimen‐
sion.

According to the inherent pattern of the load-shedding 
model, a perturbation can be added to the loads and their 
curtailments, and the optimality and feasibility do not 
change if the initial load curtailment is not zero. Thus, we 
add perturbations to all the samples with nonzero load cur‐
tailment to generate more training data. The loss function 
can be rewritten as (39), and DPi is in ](-11 .

L =
1
M∑k = 1

M∑
i

N ( )C k
POuti -C k

Pi

2
+

μ
M∑k = 1

M∑
i

N

[ ]Ĉ k
POuti -C k

Pi ( )1 +DPi

2

(39)

where Ĉ k
POuti is the load curtailment of the ith output of neu‐

ral networks when the load is input; and μ is the weight and 
set to be 0.1.

According to the gradient analysis shown in the Supple‐

mentary Material A, this new loss function can explore a 
wider feature space and thereby alleviate the imbalance with 
the load-shedding sample. Eventually, the inherent pattern-
guided learning strategy is formulated as shown in Supple‐
mentary Material A Algorithm SA1, which generates the per‐
turbation samples first and then trains the neural networks 
with the original samples from the training dataset.

V. CASE STUDY

In this section, the proposed ORA method is implemented 
in several power systems to demonstrate its effectiveness, 
considering varying topologies.

A. Case Setting

The ORA in power systems usually involves load fluctua‐
tions, stochastic renewable energy generations, and outages 
of vital power equipment. As for load fluctuations, we as‐
sume they follow normal distribution with the default value 
as the means and 0.3 as the standard deviation. Wind power 
and photovoltaic power are considered in the simulations. 
We assume the wind speed and the solar irradiance follow 
the Wei-bull distribution and Beta distribution, respectively. 
The details of the distribution are identical to [28]. We inte‐
grate several wind farms and photovoltaic stations in differ‐
ent buses so that the penetration of renewable energy is 
more than 20%. For instance, in the IEEE 39-bus system, 
four wind farms with 200 MW capacity and four photovolta‐
ic stations with 200 MW capacity are randomly integrated in‐
to the power system. The penetration of renewable energy is 
20.26%. To reduce the imbalance of training data, we sam‐
ple the N - 1 and N - 2 contingencies to cover all situations 
for training. At the assessment stage, we utilize a 1% failure 
probability for the reliability assessment. 20000 and 10000 
samples are generated for training and testing.

To demonstrate the effectiveness of the proposed ORA 
method, the conventional ORA method (M0) and nine data-
driven ORA methods (M1-M9) are compared, as shown in 
Table I. 

Those methods and relative descriptions are introduced in 
the following. All neural networks are constructed and 
trained in the PyTorch framework on a PC with Intel(R) 
Core(TM) i7-10700K CPU @ 3.80 GHz, 16 GB RAM, and NI‐
VIDIA GeForce RTX 2080Ti. The Adam optimizer is used 
with a 0.001 learning rate.

1) M0: conventional ORA method uses the interior point 
method to solve the load-shedding problem, which is the 
benchmark of data-driven ORA method.

2) M1: the data-driven ORA method exploits the typical 
GCNN to solve the load-shedding problems, whose graph 
convolution kernel is derived from the Laplacian matrix fol‐
lowing the spectral graph theory [25].

3) M2: it is identical to M1 except for the graph convolu‐
tion kernel. The impedance-based Gaussian kernel is utilized 
as the graph convolution kernel [26].

4) M3: it is identical to M1, but the power flow model-
embedded graph convolution kernel is exploited [31].

5) M4: it is identical to M1, but the proposed physics law-
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informed graph convolution kernel is utilized.
6) M5: it is identical to M1, but the design of multi-ker‐

nel collaboration GCNN is applied to the graph convolution 
layer.

7) M6: it has the identical neural network structure and 
graph convolution method, but the proposed inherent pattern-
guided learning strategy is applied.

8) M7: the existing data-driven ORA method uses the 
tacked denoising auto-encoder to solve the load-shedding 
problem [11].

9) M8: the existing data-driven ORA method uses deep 
neural networks to filter the normal system states [16].

10) M9: the data-driven ORA method uses convolution 
neural networks to calculate the load-shedding problem [15].

The mean absolute errors MAE and the related errors 
erelated are utilized to measure the performance of different 
methods. The mathematical formulations are:

MAE =
1

ND
∑
i = 1

ND

|| y - y′ (40)

erelated =
|| y′- y

ybase

(41)

where y is the load curtailment calculated by solving the 
load-shedding model using the numerical method; y′ is the 
prediction load curtailment using neural networks; ND is the 
number of testing data; and ybase is the reference value. As 
for operational reliability indicators, the accurate value evalu‐
ated by M0 is the reference value.

B. Validation of Proposed Multi-kernel Collaborative GCNN

M1-M5 are simulated and compared in this subsection to 
demonstrate the effectiveness of the design of multi-kernel 
collaborative GCNN. First, we implement M1-M5 in the 
IEEE 39-bus system. The δ in M4 and M5 is set to be 0.1. 
The five methods are trained for 2000 epochs, and the mean 
absolute errors of training data and testing data in different 
epochs are shown in Figs. 3 and 4, respectively. It can be ob‐
served that M1 and M2 converge in several epochs but with 
the largest mean validation errors. The convergences are lim‐
ited. Fortunately, in M3, the power flow model-embedded 
design effectively reduces the training error of neural net‐
works. When changing M3 to M4, the training and testing 
errors could further decrease. The K-fold cross-validation 
and related results are introduced in the Supplementary Mate‐
rial A, which shows that M5 can obtain the smallest errors and 
standard deviations. Besides, to understand why M5 can 
achieve the best results, the attention analysis and the computa‐

tional complexity analysis are also included in the Supplemen‐
tary Material A.

To demonstrate the effectiveness of the inherent pattern-
guided learning strategy, M5 and M6 are implemented with 
different numbers of training samples. After training for 
1000 epochs with a learning rate of 0.001 using the Adam 
optimizer, all the neural networks are tested in 10000 testing 
samples, and the corresponding mean absolute errors of load 
curtailments in M5 and M6 are plotted in Fig. 5. It can be 
observed that the testing errors of M6 are always smaller 
than those of M5 under different numbers of training data. 
Besides, with the decrease in training samples, the error of 
M5 increases dramatically, especially when the amount of 
training data is less than 6000. On the contrary, the errors in 
M6 increase slowly and only begin to rise when the amount 
of data is less than 1000. The reason is that the inherent pat‐
tern-guided learning strategy is not limited to the given train‐
ing data, and it can exploit those known samples to generate 
more load-shedding samples. It can not only overcome the 
unbalanced problem of load-shedding samples but also re‐
duce the dependence of neural networks on large numbers of 
training samples. The effectiveness of the inherent pattern-
guided learning strategy is verified.

Further, the trained neural networks in M1-M6 are used to 
evaluate the operational reliability of the IEEE 39-bus sys‐
tem, where the contingency probability of vital equipment is 
set to be 1%. The maximum iteration number is 30000. The 
corresponding reliability indices and relative errors of M0-
M6 are listed in Table II. It can be observed that M1, with 
the typical aggregation method derived based on the adja‐
cent matrix, has the largest assessment errors EEDNS. 

TABLE I
PURPOSE OF COMPARISON METHODS

Comparison method

M1, M2, M3
M4, M5

M5, M6

M0, M6, M7
M8, M9

Purpose

Demonstrate the effectiveness of multi-
kernel collaborative GCNN

Demonstrate the effectiveness of inherent 
pattern-guided learning

Compare the assessment accuracy and 
speed of different ORA methods

Er
ro
r

0 500 1000 1500 2000
Epoch

0.006
0.005

0.007
0.008
0.009
0.010
0.011
0.012

0.004

M5M4;M1; M2; M3;

Fig. 3.　Mean absolute errors of training data when different methods are 
tested in training process.
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r

M5M4;M1; M2; M3;

0.006
0.005

0.007
0.008
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0.010

0.004
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Epoch

Fig. 4.　Mean absolute errors of testing data when different methods are 
tested in training process.
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When gradually constructing the aggregation method in‐
formed by the physics variables, e. g., line impedance, and 
physics model, the assessment errors decrease, but errors of 
PLC EPLC are still larger than 10%, which is mainly caused 
by the unbalanced load-shedding samples. Fortunately, the in‐
herent pattern-guided learning strategy can faster expand the 
load-shedding samples during the training process. It is help‐
ful to overcome the effects of unbalanced training data. As a 
result, EPLC is further reduced to 4.82%, and the effective‐
ness of the proposed multi-kernel collaborative GCNN is 
demonstrated. Considering the small difference in M5 and 
M6, additional paired t-tests and Wilcoxon signed-rank tests 
are implemented to establish the statistical difference in pre‐
dicting MAEs of load curtailments. The statistical tests yield 
vanishingly small p-values (effectively zero), strongly reject‐
ing the null hypothesis that the differences between M5 and 
M6 are due to random chance. Furthermore, the 95% confi‐
dence intervals of the MAEs for M5 and M6 are (0.0022, 
0.0025) and (0.0015, 0.0018), respectively. The non-overlap‐
ping provides additional evidence that the observed differenc‐
es are statistically significant.

In conclusion, the proposed multi-kernel collaborative 
GCNN can enhance the feature extraction ability of neural 
networks so that their convergences and robustness can out‐
perform other GCNNs. Besides, the inherent pattern-guided 
learning strategy can expand the load-shedding sample in the 
training process and explore a broader feature space. There‐
fore, the scale of training data can be reduced, and operation‐

al reliability can be evaluated to achieve higher accuracy.

C. Comparison with Existing Data-driven ORA Methods

To further demonstrate the effectiveness of the proposed 
ORA method, it is compared with three data-driven ORA 
methods in four power systems. There are 20000 samples 
generated for training, and the number of assessment system 
states is 30000. The assessment results of different methods 
in different power systems are listed in Table III. 

As for the benchmark method M0, there are five threads 
utilized to solve the load-shedding problem with different 
system states. All the neural networks in M6-M9 are imple‐
mented on a GPU. It can be observed that M6 outperforms 
M7-M9 in the simulations where 1% failure probability of 
power lines and generators is used. In the IEEE 39-bus sys‐
tem, the benchmarks of PLC and EDNS are 0.04479 and 
9.90 MW, respectively, and the relative errors of M6 are less 
than 5%, which is 4.82% for EPLC and 1.36% for EEDNS, re‐
spectively. However, in other data-driven ORA methods, the 
relative errors are all larger than 15%. Under this circum‐
stance, the topology changes in different system states, and 
the mapping of the load-shedding problem becomes discrete 
and complicated. Besides, abnormal system states are much 
fewer than the normal ones, even in the training data where 
all the N - 1 contingencies of power lines and generators are 
included. But M6 can still achieve a relative error of less 
than 5%. In the IEEE 57-bus and 118-bus systems, PLC in‐
creases, which means there are more load-shedding samples 
in the training data, and the training data are less unbal‐
anced. EPLC of M6 is decreased to 1.42%. But in the provin‐

TABLE III
RELIABILITY RESULTS OF DIFFERENT METHODS IN DIFFERENT POWER 

SYSTEMS

System

IEEE 
39-bus 
system

IEEE 
57-bus 
system

IEEE 
118-bus 
system

Provincial 
661-bus 
system

Method

M0

M6

M7

M8

M9

M0

M6

M7

M8

M9

M0

M6

M7

M8

M9

M0

M6

M7

M8

M9

PLC

0.04479

0.04260

0.03090

0.03670

0.03590

0.25495

0.25106

0.19560

0.19580

0.17410

0.09970

0.10056

0.12623

0.09410

0.08210

0.36710

0.38530

0.44960

0.33294

0.17400

EPLC 
(%)

4.82

30.98

16.62

18.39

1.42

23.25

23.20

31.69

0.64

25.51

5.72

17.68

4.96

22.45

9.32

52.50

EDNS 
(MW)

9.900

10.035

4.967

9.039

2.073

4.162

4.136

2.303

4.008

2.643

2.712

2.714

2.345

2.331

2.079

363.340

366.430

167.410

302.830

176.770

EEDNS 
(%)

1.36

49.85

8.74

79.06

0.81

44.65

3.70

36.48

0.07

13.53

14.05

23.34

0.85

53.92

16.65

51.35

Assessment 
time (s)

353.00

1.63

0.55

241.00

1.23

819.00

3.17

0.55

612.33

1.75

571.00

2.02

0.36

388.83

0.54

35472.50

46.47

0.86

24659.20

2.33

M6
M5

0
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10

15

20
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Er
ro

r
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Number of training sample

Fig. 5.　 Mean absolute errors of load curtailments for neural networks 
trained with different numbers of training sample.

TABLE II
RELIABILITY INDICES AND RELATIVE ERRORS OF M0-M6 IN IEEE 39-BUS 

SYSTEM

Method

M0

M1

M2

M3

M4

M5

M6

PLC

0.04479

0.01912

0.03211

0.03356

0.03551

0.04932

0.04263

EPLC (%)

57.31

28.30

25.06

20.71

10.11

4.82

EDNS (MW)

9.900

3.098

7.397

7.142

7.923

10.158

10.035

EEDNS (%)

68.71

25.28

27.85

19.96

2.61

1.36
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cial 661-bus system, EPLC increases due to the complexity of 
power systems, and M6 is still the best one compared with 
other methods. Therefore, M6 with the multi-kernel collabor‐
ative GCNN and inherent pattern-guided learning strategy 
can calculate more accurate results and achieve a relative er‐
ror of less than 5% under the varying topology circumstanc‐
es, which outperforms many other existing methods.

Regarding the assessment time, M6, M7, and M9 can 
complete the reliability assessment within a few seconds in 
the IEEE testing system. However, M0 and M8 require sev‐
eral hundred seconds. As the size of the power system in‐
creases, it would take even more time for M0 and M8. Spe‐
cifically, in the provincial 661-bus system, it takes 35472 s 
to complete the reliability assessment. The longer duration 
for solving load-shedding issues is attributed to the larger 
scale of the power system. Nevertheless, M6 still manages 
to evaluate within a mere 46 s, demonstrating the efficiency 
of the proposed multi-kernel collaborative GCNN.

In the case study, we primarily utilize power line and 
N - 1 and N - 2 contingency data of the unit for training the 
neural network. However, actual scenarios involve more intri‐
cate failures. The graph neural network is compatible with 
changes in topology, and the graph convolution method with 
physics model embedded design can better extract physical 
features and promote the learning of neural networks. More‐
over, employing a learning method guided by inherent pat‐
terns can further enhance the performance of neural net‐
works. Therefore, training the neural network with various 
complex scene data in reality can make it more adaptable to 
the operation scenarios of the power grid and realize accu‐
rate online ORA.

VI. DISCUSSION 

The proposed multi-kernel collaborative GCNN aims to 
enhance the adaptability of existing data-driven ORA meth‐
ods to complex topology changes. It integrates conventional 
aggregation methods with physics law-informed aggregation 
methods to improve feature extraction capabilities. Addition‐
ally, an inherent pattern-guided learning strategy is construct‐
ed, leveraging the consistent properties of the load-shedding 
model. The proposed multi-kernel collaborative GCNN can 
consider a broader range of contingencies and achieve im‐
proved assessment accuracy.

However, when applying the proposed multi-kernel collab‐
orative GCNN in practice, there are still several challenges 
and limitations. Even though the proposed inherent pattern-
guided learning strategy can reduce the training data demand‐
ed, it still requires a basic training dataset. How to efficient‐
ly generate training data or generalize it to a sufficient and 
representative base dataset also challenges the data-driven 
ORA application. Additionally, the utilization of multiple ker‐
nels and the associated self-attention mechanism adds to the 
computational cost. Even though the sparse technique is ap‐
plied, advanced computers or servers are still required to 
complete the training for large-scale power systems. It is cru‐
cial to quantify the contribution of each kernel to the overall 
performance improvement relative to the computational cost 
and finally simplify the graph convolution calculation. Thus, 

further research is needed to simplify the structure of neural 
networks and realize the actual application of practical engi‐
neering.

VII. CONCLUSION

This paper proposes a multi-kernel collaborative GCNN 
for ORA considering varying topologies. There are three 
main contributions in the paper. First, a physics law-in‐
formed graph convolution kernel rooted in the Gaussian-Se‐
idel iteration is derived, which can effectively aggregate 
node features under varying topologies. Second, a multi-ker‐
nel GCNN is constructed by integrating other advanced 
graph convolution kernels with a novel self-attention mecha‐
nism. It can extract different features and build a representa‐
tive node feature vector for high-precision assessment of reli‐
ability. Last, to further enhance the robustness of GCNN, the 
inherent pattern of the load-shedding model is derived and 
used to construct the specialized supervised loss function so 
that a wider feature space can be explored by neural net‐
works. According to the simulation results in different power 
systems, the GCNN with a multi-kernel design and special‐
ized supervised exploration is capable of considering a 
broader range of contingencies, achieving topology change 
adaptation and improved assessment accuracy, which outper‐
forms the existing data-driven ORA methods.
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