158 JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 14, NO. 1, January 2026

Detection and Mitigation of False Data Injection
Attacks Against Wind Farm Active Power
Controllers in Power Grids

Mostafa Ansari, Mohsen Ghafouri, Amir Ameli, Senior Member, IEEE, Ulas Karaagac, and
IThan Kocar, Senior Member, IEEE

Abstract—The recent growing integration of wind farms
(WFs), particularly variable speed wind turbines (WTs), results
in several operational challenges to power grids integrated with
WFs, such as low grid inertia and the reduced performance of
measurement-based fast frequency response. To deal with such

NOMENCLATURE

A. Subscripts

challenges, grid operators use WF active power controllers CIG Converter interfaced generator
(WFAPCs) to enhance frequency control support from WTs and  FL Flexible load
improve the frequency stability of the grid. However, the opera-
tion of WFAPC relies on measurements received through com- GG Governor
munication networks and cyber layers of WFs, which conse- GS Steam turbine generator
uently makes them prone to cyber threats, e.g., false data in- .
jection (FDI). On this basis, firstly, this paper amalyzes the cy. 07 Gas turbine generator
bersecurity vulnerabilities of WFAPCs and the possible impacts Index of wind farm (WF)
of exploiting cybersecurity vulnerabilities on the frequency re-
sponse of WF and frequency stability of the grid. Then, based R/ Reheater
on the knowledge of intruders, two attacks, i.e., white-box and g7 Steam turbine
black-box FDI attacks, are developed against WFAPCs. After- . .
wr Wind turbine

ward, to detect these attacks, a novel bi-level detection and miti-
gation technique based on support vector machine (SVM)-based
technique and long short-term memory (LSTM) -based tech-
nique is developed, which is implemented at the control center
of the WF (primary detector) and at the dispatch center of the

B. Variables

a

and Parameters

Weight of frequency nadir ratio (FNR)

power grid (secondary detector), respectively. These detectors a0 Auxiliary time-variant function
classify real-time measurements into attack and normal opera- ¢, Normal distribution with zero mean
tion. Additionally, a hierarichical mitigation technique is pro- A .
posed to counter the developed cyber attacks by replacing the Forgetting factor
active power reference signal of WF with new values obtained 4 Penalty factor
based on the droop control theory. The impacts of the attacks tanh . . . .
and the effectiveness of the proposed bi-level technique are eval- '@ Sigmoid and hyperbolic tangent functions
uated using the modified 39-bus benchmark. Ty Ty Limits for training and testing time
Index Terms—Wind turbine (WT), wind farm (WF), cyberse- 7 Attack start time
curity, active power controller, attack detection, attack mitiga- Aw ..
tion, frequency stability, false data injection (FDI), machine Rotor speed variation
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Frequency

Initial frequency

Activation vector of forget gate
Manipulated frequency
Frequency deviation

Estimated Af

Measured Af

Frequency deadband

Under- and over-frequency deadbands

Frequency threshold of first-step load-shedding
Over-frequency limit

Under-frequency limit

Nominal frequency of grid

Frequency threshold

Frequency threshold deviation

Frequency of sample

Fraction of high-pressure power in steam tur-
bine

Cell input activation vector

Hidden state vector

Grid inertia

Wind turbine inertia

Activation vector of input gate

Index of time step

Proportional-integral (PI) controller parame-
ters of automatic generation control (AGC)
system

Participation factor of each frequency service
provider X

Constant factor

Defined dependency index
Number of sampling time interval 7,
Activation vector of output gate
Active power variation
Electromagnetic power

Load peak

Active power setpoint of WF
Power output of WF

Estimated value of P,
Reference of P,

Deviation of P}

Estimated values of AP} from primary level
and secondary level

Active power droop of each frequency service
provider X

Rate of change of frequency
Manipulated RoCoF

RoCoF
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X
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The maximum RoCoF

The maximum communication delay in receiv-
ing data and sending commands

Time window length

Index of time

Support time

Training time and testing time

Time constant of frequency response of each
frequency service provider X

Moving window length of frequency measure-
ments

Electromagnetic torque

Time window of mechine learning classifica-
tion

Mechanical torque

Voltage reference of rotor-side converter (RSC)

Measured voltage and current of rotor of dou-
bly-fed induction generator (DFIG)

Input vector to
(LSTM) unit

State vector of power grid

long short-term memory

Z-transform variable

State matrix of power grid

State matrix of reduced-order power grid
Estimated state matrix

Input matrix of power grid

Input matrix of reduced-order power grid
Estimated input matrix

Output matrix of power grid

Output matrix of reduced-order power grid
Estimated output matrix

Kalman gain vector

Observer gain vector

Error covariance matrix

Bryson’s cost function matrices
Recurrent weight matrix

Bryson’s solution matrix

1. INTRODUCTION

VER the last decade, the total installed wind power ca-
pacity has grown annually by 17.5% in Canada and
21.1% globally [1]. Additionally, grid reliance on wind ener-
gy is becoming a new trend, e.g., on April 27, 2020, wind
energy supplied 72% of the electricity demand in the South-
west Power Pool, Little Rock, USA, while only about 22%

of its generation capacity is wind energy [2].

Therefore,

even a relatively small share of wind energy can play a criti-
cal role at key moments in power grids.
Among various wind energy generation technologies, dou-
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bly-fed induction generator (DFIG) has been widely used in
power grids due to its low cost and capability to harvest the
maximum energy at different wind speeds [3]. However, the
interfacing converters between the generator and the grid de-
couple DFIGs from the rest of the system, reducing the iner-
tia of the entire grid. For example, the inertia of the Europe-
an power grid in 2016 has been reduced by around 20%
compared with that in 1996, primarily due to the integration
of grid-decoupled renewable energy sources (RESs), most of
which are DFIGs [4]. The inertia reduction makes the fre-
quency stability of the grid more vulnerable to frequency-re-
lated events, e.g., load changes and generator trips. To tackle
this problem, grid codes in power grids with considerable
wind energy share, e.g., National Grid Code in UK [5], have
enforced large-scale wind farms (WFs) to participate in load
frequency control (LFC) schemes [3]. Although the integra-
tion of DFIGs leads to a reduction in the grid inertia, they
possess the capability to offer fast frequency support. To pro-
vide such services by WFs, the techniques proposed in [6]-
[13] can be classified into two major groups: installing auxil-
iary devices in the grid close to WFs [6]-[8] and modifying
WF control schemes [9]-[13]. Using the second group of
techniques, WFs can operate in primary frequency support
mode (PFSM) to arrest the frequency changes after a distur-
bance. The techniques used in PFSM rely on supervisory
control and data acquisition (SCADA) systems and commu-
nication links to take control actions and transfer data/com-
mand [14].

In a WF, communication protocols used to transfer data/
command, e.g., IEC 61400-25 [15], are designed for fast da-
ta exchanges and do not include security features, such as
encryption, as highlighted by the U.S. Department of Energy
[16]. Therefore, the important communications are prone to
various forms of cyber attacks. Such attacks should be differ-
entiated from threats against conventional generators and
handled separately since WFs (1) are spread across remote ar-
eas with limited physical security and numerous remote data
transfers, resulting in an extensive attack surface; (2) have
unique cyber layers and protocols designed without security
consideration; and (3) exhibit fast and unique transient behav-
iors and stability issues that can quickly affect grid opera-
tions.

Over the past decade, adversaries have exploited existing
vulnerabilities in WFs, leading to several events with consid-
erable wind turbine (WT) outages. For instance, in March
2019, a denial-of-service (DoS) attack is launched against
the communication between the control center and WFs in
Utah, U.S., which results in unexpected reboots of the devic-
es after exploiting the vendor firewall [16]. Another attack in
Germany in February 2022 results in an outage of 5800 WTs
[17]. Based on the above discussions, the security analysis
of the WFs is of paramount importance, particularly when
WTs are used for sensitive applications such as frequency
control.

Despite the importance, only a limited number of studies
focus on security analysis of the WFs. In [18], the cyber-
physical model of WF is analyzed, and various scenarios are
studied in which the attacker sends false shutdown com-
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mands to the WTs. In [19], manipulation of WT setpoints is
considered as the attacker target, and the consequences of
such attacks on the WTs operation are investigated. In [20],
the sub-synchronous damping controller for series-compen-
sated DFIG is targeted by attackers in various scenarios. At-
tacks that result in the disconnection of turbines are detected
in [21] using time series data of WF power generation in the
long term. Moreover, mitigation techniques for delay and
DOS cyber attacks against WTs are studied in [22] and [23].
Although the cybersecurity of LFC is extensively studied in
[24], only limited studies focus on the potential impacts of
cyber attacks targeting WFs in the LFC scheme. For in-
stance, a cyber attack against measured frequency is dis-
cussed in [25], which aims to trigger load-shedding schemes.
However, the diagnosis and mitigation framework proposed
in [25] overlooks critical grid operation aspects, such as
LFC response, frequency limits (e.g., deadband and rate of
change of frequency (RoCoF)), and time limitations of the
PFSM. Consequently, the anomaly-based intrusion detection
and diagnosis system relies on unrealistic model residuals,
potentially leading to inaccurate decision-making. In addi-
tion, cyber vulnerabilities of WF active power controller
(WFAPC) in PFSM and their impacts on the frequency sta-
bility of grid have not been studied in the literatures yet.

Based on the above discussion, in this paper, the cyberse-
curity vulnerabilities of WFAPC in PFSM are analyzed and
effective solutions are proposed to enhance the security of
WFs against the developed attacks. First, using a cyber-phys-
ical model of DFIG-based WFs, the entry points of the at-
tacker are identified and two types of attacks, i.e., black-
box and white-box false data injection (FDI) attacks, are de-
veloped based on the attacker’s knowledge. In the white-box
FDI attack, the attackers have sufficient knowledge about
the grid parameters, whereas, in the black-box FDI attack,
their information is limited to the historical data of the grid.
Then, a bi-level detection and mitigation technique is pro-
posed to maintain the grid security, offering superior perfor-
mance compared with existing techniques. At the control
center of the WF (primary detector), a support vector ma-
chine (SVM)-based technique is employed with the help of a
well-tailored observer to detect and mitigate adverse mea-
surement manipulations. At the dispatch center of the power
grid (secondary detector), an long short-term memory
(LSTM)-based technique is developed, employing frequency
measurements, WF generation, and their respective rates of
change to identify the attacks. Finally, to mitigate the at-
tacks, the primary detector replaces the manipulated signal
with an estimated one, whereas when the primary detector is
not able to mitigate the attack, the secondary detector may
rebuild the active power reference signal of WF based on
frequency deviation and droop control theory. The contribu-
tions of this paper can be summarized as follows.

1) This paper identifies novel cybersecurity vulnerabilities
of WFAPC, specifically focusing on their impact on frequen-
cy stability of power grid, and develops two FDI attacks tai-
lored to varying levels of the attacker’s knowledge.

2) A bi-level detection and mitigation technique is pro-
posed to effectively identify the developed FDI attacks, em-
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ploying an SVM-based technique at the control center of the
WF as the primary detector and an LSTM-based technique
at the dispatch center of the power grid as the secondary de-
tector.

3) A hierarchical mitigation technique is presented, utiliz-
ing a tailored observer at the control center of the WF for
initial response and a novel backup technique at the dispatch
center of the power grid that bypasses compromised WF con-
trols by directly replacing the active power reference signal.

II. LFC AND CYBER-PHYSICAL MODEL OF WFS

A. Participation of WFs in LFC

Three distinct periods during an under-frequency (UF)
event in the grid are classified as: () the inertial frequency
response of all rotating masses; (2 the primary frequency re-
sponse of generators and load damping; and 3 automatic
generation control (AGC) operation (secondary and tertiary
frequency responses) [26]-[33]. WFs can provide all these

frequency supports if they are empowered and enabled by
WFAPC. Figure | presents a taxonomy of wind-based fre-
quency support techniques, categorized by their underlying
mechanisms and control strategies. While Fig. 1 illustrates
the broader landscape of frequency support, the primary fo-
cus of this paper is specifically on inertial and primary fre-
quency responses. This emphasis stems from the practical ad-
vantages of implementing such techniques without relying
on auxiliary devices, which ultimately translates into lower
system costs. To clarify the connection, Fig. 1 highlights the
branches of the taxonomy directly related to inertial and pri-
mary frequency responses. These branches demonstrate how
WTs can contribute to frequency stability by emulating syn-
chronous generator inertia and providing rapid power injec-
tions in response to frequency drops. These techniques are
crucial for maintaining frequency stability, which is the cen-
tral theme explored in this paper. Additionally, among these
techniques, de-loading mechanisms may result in wind ener-
gy curtailment. Thus, similar to many studies, we use power
unreserved control mechanism [9]-[11].

With auxiliary

Energy storage system [6] ‘

device

Conventional generator [26] ‘

Fig. 1. Taxonomy of wind-based frequency support techniques.

B. Communication System of SCADA System

The SCADA system of a WF is often composed of moni-
toring and control mechanisms and a communication system.
Monitoring and control mechanisms are often deployed at
three levels [3], [21]: bottom level (WT level), middle level
(WF level), and top level (grid level). In addition, the com-
munication system of the SCADA system can be divided in-
to five sub-networks to transfer data/commands, as shown in
Fig. 2, and is explained in Supplementary Material A [21].
In Fig. 2, LAN is short for local area network; WAN is
short for wide-area network; SCU is short for substation con-
trol unit; GDA is short for grid data acquisition; PDI is short
for process data interface; VCS is short for voltage control
system; IED is short for intelligent electronic device; WTCP
is short for WT control panel; Meteo is short for meteorolog-
ical station; ICCP is short for inter-control center communi-
cations protocol; SL is short for substation level; PL is short
for process level; BL is short for by level; LN is short for

Inertial and
| primary Power Inertia control H Torque control [27] ‘
frequency unreserved
responses M control Fixed droop [11] ‘
Without auxiliary | | mechanism Temporar?/ Adaptive droop [28] ‘
device overproduction
Frequency | | - - Time variable droop [10] ‘
support # De-loading mechanism [29] ‘
With auxiliary M{ Energy storage system [7] ‘
Secondary device -
|| and tertiary # Conventional generator [8], [30] ‘
frequency -
responses Without auxiliary | | De-loading Pich control [31] ‘
device mechanism Over-/under-speed control [32] ‘

logical node; FC denotes function corresponding to an LN;
DO is short for data object; and DA is short for data attribute.

C. Model of WF

1) Model of WT

The model of captured mechanical wind power P, and
the active power reference of the DFIG P,,,, are adopted
from [34]. Accordingly, the drive-train system (containing
the shaft and the gearbox) is modeled as a single-mass block
with inertia A, which can be expressed as:

1,32 _1 7,
dr
P
T,="n
= (1)
r= L
w

Due to the fast dynamics of the back-to-back converter in
DFIG, P, can be considered to follow P,,p, [10].
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Fig. 2. Communication system of SCADA system.

2) Model of WFAPC

In this paper, a time-variable droop strategy [10], which is
enhanced by an adaptive recovery time technique, is used to
emulate frequency response and also alleviate secondary fre-
quency dip.

The active power control scheme of WT, which is also the
model of WFAPC, is shown in Fig. 3 and explained in Sup-
plementary Material B, where MPPT is short for maximum
power point tracking.

Fig. 3.

Active power control scheme of WT.

D. Model of Power Grid Integrated with WF's

The frequency response model of the power grid is gener-
ally built neglecting nonlinearities and all relatively small
time constants, which is a common assumption in the stud-
ies related to LFC [35]. An approximate model for the fre-
quency stability study in a single-area power grid following
an active power disturbance AP, is proposed in Fig. 4. In
Fig. 4, the model of WT includes WFAPC and DFIG drive-
train dynamics during and after the support time. The distur-
bance can be either a sudden loss of a load (AP,,>0) or a
generating unit (AP ,,<0). In this model, all the frequency
service providers are divided into five categories, which are
as follows.

1) WT: dynamic behaviors of WTs are characterized by
the PFSM and the drive-train response with the time con-
stant 7, Assuming the mechanical power is constant
(AP,,=0), impacts of WTs on system frequency during and

after the support period are considered in the model pro-
posed in [10] and [11].

2) Steam turbine: the fraction of steam turbine power gen-
erated by high-pressure section is represented by F,,, [35].

3) Gas turbine: the transfer function of combined cycle
and open cycle gas turbines has two considerable time con-
stants including 7', and T [35].

4) Flexible load (FL): as emerging frequency service pro-
viders, FL can be modeled by their time constant 7.

5) Converter interfaced generator (CIG): the transfer func-
tion of CIGs that provide virtual frequency response, except
WTs, can be modeled considering the time constant 7
[36]. In Fig. 4, the AGC system is modeled as a proportion-
al-integral (PI) controller (k, and k), and the transfer func-
tion of power grid is characterized by the grid equivalent in-
ertia H and the load damping coefficient D. The considered
load-shedding scheme includes four steps depending on the
frequency deviation [37]. The model in Fig. 4 can be de-
scribed in state-space form as:

x=Ax+ By
y=Cx=[Af]
v=[AP ]

@)

III. ATTACK MODELING

Communication networks and cyber components, which
belong to the bottom, middle, and top levels, can be targeted
by different types of cyber attacks. However, in this paper,
FDI attacks against WFAPC that exploit the top level of WF
are investigated.

A. FDI Attack Against WFAPC

The attackers can manipulate measurement signals (e. g.,
grid frequency) by launching different types of FDI attacks.
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Fig. 4. Approximate model for frequency stability study in single-area power grid following active power disturbance.
Figure 5 illustrates an exemplary FDI attack path. The at- \Stepl Step2 Step3,___________.
tacker may take the following steps [38], [39]. w . B8 SZVrslear @_.!"aﬁ_. :eCrS:r B GpA Ssiﬁgfii
Step I: bypass the firewall of the web server control cen- 3 @ E l Step 4 Ei
ter. . . . . 3 LAN of WF control center : _ }Ylfé??_ | :3
This step aims to establish initial access to the internal net- A S II I
. el . Attacker
work. Attackers may exploit known vulnerabilities in web - —
. L. E Firewal
server softwares (e.g., Apache, Nginx) or web applications o
(e.g., SCADA monitoring interfaces). Fig. 5. Exemplary FDI attack path.

Step 2: bypass the firewall of the ICCP server and access
LAN of the WF control center. This step focuses on lateral
movement within the network to gain access to the SCADA
system. Techniques such as port scanning, exploiting trust re-
lationship, creating tunnels, or leveraging stolen credentials
and pass-the-hash attacks may be employed.

Step 3: log into SCADA server. Adversaries may utilize
the methods such as exploiting SCADA software vulnerabili-
ties and credential theft (e.g., through phishing emails, social
engineering, and malware installation). Persistent access may
also be achieved by installing backdoors on compromised
systems [38].

Step 4: Manipulate targeted data. Manipulating targeted da-
ta requires understanding the SCADA protocols used by the
GDA module (e.g., Modbus and DNP3) to map data objects
(DOs) to their corresponding physical parameters within the
WF [38]. By analyzing communication traffic between the
SCADA server and the GDA module, attackers can identify
and manipulate targeted data attributes (DAs).

In this paper, the objective of the attacker is to drive the
actual grid frequency beyond the thresholds f,, defined by
grid codes [40], e.g., 59.1 Hz.

Under such a condition, load-shedding schemes may be
activated to avoid frequency instability. If the frequency
drop is not captured by activation of load-shedding steps, ro-
tating generators may begin to disconnect to avoid physical
damage, which results in system collapse. For instance, in
the FDI attack model proposed in this paper, the attackers
can force the WFs to decline their power output by sending
a fake over-frequency signal to WFAPC. This may immedi-
ately cause a power generation deficit in the power grid.
Thus, the target of the attacker is WFAPC, and the attack
vector includes the frequency measurement received by the
control center of the WF.

In a non-stealthy FDI attack, 7 (k) can be chosen arbitrari-
ly by the attacker at any time step ., but there is a high
chance of being ineffective or even being detected ecasily.
Note that, & is in milliseconds and k €{0,7,,,,1.> 2L pic> -+ T }-
To launch a stealthy FDI attack, the attack variables should
at least satisfy the following constraints.

f min Sf (k) anom - Af DB

~ 3)
oom A pp S (B) <fnax
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“)
)

In the rest of this paper, only stealthy FDI attacks are con-
sidered due to their severity.

Equation (3) indicates that f (k) should be out of the fre-
quency deadband Af,; to keep the WFAPC in frequency sup-
port mode (FSM). Moreover, if the frequency goes lower or
higher than f,,, and f, ., respectively, the corresponding re-
lays, which are much faster than WFAPC, may isolate the
WEF. Therefore, f (k) out of the frequency deadband is disre-
garded as bad data by WFAPC. Using the same logic, (4)
puts constraint on the RoCoF of f(k) (e.g., +2.00 Hz/s for
500 ms moving-average window, £1.50 Hz/s for 1000 ms
moving-average window, and £1.25 Hz/s for 2000 ms mov-
ing-average window [41]). In addition, the time constraint of
frequency support is imposed by (5). After passing 7, the
WF may again be in MPPT mode even if there are any fre-
quency deviations. The trajectory of f(k) is depicted in Fig.
6. When 7 (k) is sent to WFAPC, its output may deviate from
the accurate value by A’\ﬁ, as shown in (6). The aim of the at-
tacker is to create enough AP to cross ., and ultimately trig-
ger load-shedding schemes.

RoCoF (k)<RoCoF,,. Yk

T<k<t,, +7

ax’

hr

~ Ky oz N
AP(2)=T WTE j (f@)=Soom) (6)

z—¢e Twr

ftky

.fmax ~ k _

RoCo Fmax f ( )7ﬁnax
% J)=fy RoCoF (k%)
: ety T, k

"""RoCoF,

max

Fig. 6. Trajectory off'(k).

Two different stealthy FDI attack models based on the lev-
el of the attacker’s knowledge about the grid parameters are
discussed in the next subsections. The attackers may know
the exact values of parameters mentioned in Fig. 4, i.e., the
white-box FDI attack, or they have to estimate the parame-
ters based on historical data, i.e., the black-box FDI attack.

B. White-box FDI Attack Model

In the white-box FDI attack model, we assume that the at-
tackers have enough knowledge about the grid parameters,
ie., H, D, Fyp, Ky, Ry, and T,. Thus, using model (2) and
applying f(k), they can predict the frequency changes follow-
ing AP.

Figure 7 shows the flow chart of the algorithm for the at-
tacker to launch white-box FDI attack considering the load
and generation profile. This algorithm can be time-wise di-
vided into three stages:

Stage 1: long-term stage. The adversaries predict P, (d)
and the maximum P, (d) using historical data. Then, they
find the day on which the maximum dependency of the pow-
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er grid on wind energy occurs (day d”). We measure this de-
pendency using index LDWI(d) as:

Py(d) ™
P (d)=Py(d)

The higher the value of LDWI, the higher the chance of a
successful attack. Additionally, employing this index can re-
duce the risk of the attacker being detected during unauthor-
ized access to the LAN of WF control center. Attack detec-
tion and critical vulnerability patching can take organizations
tens to hundreds of days, with longer detection time for
more sophisticated threats [42], [43].

Stage 2: short-term stage. On day d", the required grid pa-
rameters should be updated every minute. Then, the matrices
A, B, and C, and Py (f) are computed accordingly. Next, at-
tackers need to calculate the value of the needed active pow-
er disturbance AP, to achieve Af=Af,, assuming that the
initial frequency f, is the nominal frequency. Moreover, they
should calculate the value of the needed frequency deviation
Af" after the decline of P,,(f). In other words, attackers aim
to answer two key questions: what is the frequency drop
caused by the WFs shutdown, and what active power short-
age is needed to violate the frequency threshold?

Stage 3: real-time stage. The attackers have access to the
measured f(k) and P, (k). The attack will be successful if
one of the two following conditions is met: first,
AP, <P, (k); second, f(k)—Af"<f,,. Otherwise, go to the
next time step in stage 2.

LDWI(d)= vd e[l,365]

1 ) |

| Stage | | Predict Pyd)and Py(d) |

. long-term 7 }

1 stage | Calculate LDWI(d) and find d* |
P
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Fig. 7. Flow chart of algorithm for attacker to launch white-box FDI at-

tack.

C. Black-box FDI Attack Model

Contrary to the white-box FDI attack, in this subsection,
the attackers do not have access to the accurate system pa-
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rameters. Accordingly, stages 1 and 3 are the same as those
shown in Fig. 7, but they have to employ a system identifica-
tion method to estimate the parameters in stage 2, which are
described in Fig. 8. In the first step, the attackers use the his-
torical discrete form of WF power changes AP (z) and the
grid frequency variations Af(z), which can be obtained by
compromising the historian server. Then, a Z-transform tech-
nique is applied to find the amount of disturbance in power
grid at time step k e[k]. The procedure to calculate AP, and
Af" is detailed in Supplementary Material C.

| Input historical data: {LDWI', Af(z), APy(2). A, B, C} |

| Calculate disturbance: e[k]=Z\(E(z)) |

el

| Predict disturbance |

Stage 2:
ort-term é l

stage | Identify parameters: {4, B, C} |

=

I
I
|
I
I
I
|
I
!
1S
I
I
I
I
I
I
I
I
I

| Estimate targets: AP, and Af”

| Launch FDI attack |

End

Fig. 8. Model of black-box FDI.

IV. ATTACK DETECTION AND MITIGATION

The standard intrusion detection systems (IDSs) are ill-
equipped to detect the designed FDI attacks against frequen-
cy measurements of WFs due to several key factors: the
stealthy nature of the attacks, the lack of power grid context
of the IDS, the complexity of relevant communication proto-
cols, the time-sensitive nature of frequency data, potential
weaknesses in encryption, and the absence of specialized at-
tack signatures. Therefore, it is preferable to detect and miti-
gate any cyber attacks where and when they occur before
their propagation. Therefore, WFs should be outfitted with
suitable cybersecurity measures, i.e., the primary detector. It
must be able to operate based on an approximate model
since the accurate model is not accessible to the operator/
owner of the WF.

However, a secondary detector at the dispatch center of
the power grid is warranted due to (D) the potential for unde-
niable errors in the output of the primary detector as a result
of the constantly evolving grid model, and @ the recogni-
tion that the operator of the grid retains responsibility for the
security of the grid and has access to redundant measure-
ments. The secondary detector serves to defend against po-
tential undetected attacks bypassing the primary detector.
Considering the limitations of sampling rates and communi-
cation delays in wide-area power grids, and to maintain coor-
dination between the primary and secondary security layers,
the secondary detector is designed to operate at a slower
pace compared with the primary detector.

A generic diagram of the proposed bi-level detection and
mitigation technique is depicted in Fig 9. Machine learning
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(ML)-based techniques are deployed as part of the proposed
bi-level technique due to their capability to effectively cap-
ture uncertain patterns in noisy data and flexibility and adapt-
ability in handling different wind conditions and grid opera-
tion scenarios. Accordingly, ML-based techniques are widely
employed as the core of anomaly and attack detection in the
context of frequency stability of the power grid [44]. At the
control center of WF (primary level), the primary detector
employs an observer to estimate the grid frequency, as
shown in Fig 9. This estimation is then compared with the
value received from the SCADA system using an SVM-
based technique. At the dispatch center of the power grid
(secondary level), a well-tailored LSTM-based technique is
deployed to classify the data streams. Subsequently, a new
power setpoint is commanded to the affected WFs.

Dispatch center of
power grid

Control center of WF ;,,ﬁ?,cgr}fiﬁrz,l?}/fl,)ﬁ,}
(primary level) i Bad data i
o eem| s
| | | elimination
% Classifier 3 The j* 3 -
3 Primary i 7 LVF | —= 1 Amheml.c i
| detecior % APy, APy . |data detection | |
peeteetor Af 3 and skip !
g |

Fig. 9. Generic diagram of proposed bi-level detection and mitigation tech-
nique.

A. Algorithm of Primary Level

The model of the proposed bi-level technique is shown in
Fig. 10. The primary detector works based on an approxi-
mate model of the power grid to estimate the frequency (cor-
responds to Af in Fig. 10). Hence, the estimated frequency
might contain an error. Thus, ML-based techniques are em-
ployed to recognize error behavior under various operation
conditions in the training stage. Therefore, the trained ML-
based techniques are utilized instead of applying a fixed
threshold. To this end, the primary detector (SVM-based
technique) is employed at the control center of the WF to
compare the acquired measured value rA\fwith the estimated
value Af.

1) Observer Design

As shown in Fig. 10, the power disturbance # is estimated
by a predefined constant coefficient y due to the linear rela-
tionship between frequency derivation and the power distur-
bance. Then, Af is calculated using a reduced-order model
and a linear quadratic regulator (LQR) observer applying the
following steps.

Step 1: a full-order linearized model of the power grid is
extracted.

Step 2: the Hankel singular values of the power grid are
calculated.

Step 3: the reduced-order model is obtained by keeping
the appropriate number of the largest Hankel singular values
and neglecting the rest.
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Fig. 10. Model of proposed bi-level technique.

Step 4: to cover the operation range of interest, three oper-
ation points determined by different WF instantaneous levels
of integration (10%, 25%, and 50% of the power grid load)
are considered.

Step 5. the Bode diagrams of the full-order and the ap-
proximated models are compared in these three operation
points. The preferred approximated model exhibits minimal
error, particularly within the frequency range of less than 10°
rad/s in the Bode diagrams.

Step 6: the reduced-order model is considered to represent
the system dynamics, whose matrices are indicated by A4,
B, and C,.

Step 7: Bryson’s method [45] is applied to adjust symmet-
ric weighting matrices (Q,>0 and R, >0) in the quadratic
cost function.

Step 8: the observer gain vector L is calculated as L=
R:'B'S, where § is the solution to (8).

A'S+SA.—~SB.R'B'S+Q.=0 (®)
Step 9: grid frequency is estimated as:
AM=Cx
€)

x=(A4,—LC,)%+B i+ LAf

2) Design of ML-based Technique at Primary Level

The steps taken to train an efficient ML-based technique
for classification at the primary level are explained in Sup-
plementary Material D.
3) Mitigation at Primary Level

The primary detector replaces the measured value Xfwith
the estimated value Af.

Scenario No.  RoCoPy, <0 RoCoPy, =0 RoCoPy, >0 :
A Attack/OK  Attack/OK |
Attack/OK  Attack/OK

B

Attack/OK
Attack/OK

B. Algorithm of Secondary Level

As shown in Fig. 10, the dispatch center of the power
grid takes over from the control center of the WF when the
primary detector fails.

1) Design of ML-based Technique at Secondary Level

The LSTM-based technique can extract information from
past data streams, forget less informative ones, and update
learnable weights, i.e., the input weight matrix W, the recur-
rent weight matrix R, and the bias matrix b. Therefore,
LSTM-based technique is employed for attack detection at
the secondary level due to the time-dependency of the data
in the underlying system. The design of ML-based technique
at the secondary level is explained in the Supplementary Ma-
terial E.

2) Mitigation at Secondary Level

At first, the dispatch center of the power grid receives se-
cure Py, and f from the ™ WF and from the power grid, re-
spectively. Then, the data go through a filtering process to
detect and eliminate bad data (outliers). Also, in order to
lessen the computational burden, authentic sample detection
and skip are done based on the logic illustrated in Fig. 10
(bottom tables). Based on the healthy frequency dynamic,
the following cases are recognized as authentic samples: (D
frequency is within the deadband (f,% <f<f,%); @ under
the over-frequency condition (f>f,%), the RoCoF is nega-
tive; 3 under the under-frequency condition (f<f,.F), the
RoCoF is positive; ) under the over-frequency condition (f>
"91), the RoCoF is non-negative but the rate of change of ac-
tive power of the ;" WF RoCoP ; is negative; and & under
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the under-frequency condition (f<f,s), the RoCoF is non-
positive but RoCoPy,; is positive, which means the WF is
supporting the grid frequency.
3) Time Coordination

As the measured values (signals) are continuous data
streams, due to the high sampling rate of IEDs, a moving
window is adopted to segregate the input data into smaller
segments. Using this technique, the maximum allowable re-
sponse time of LSTM-based technique can be extended,
which may result in achieving higher accuracy. Once the
LSTM-based technique detects a cyber attack against the ;™
WF, the dispatch center of the power grid sends an FSM
turn-on command (status is 1) to the /" WF and replaces the

corrupted reference value (signal) AP;;’I with the alternative

value (signal) AP}/, =R,).(f,,,—f). Note that the compro-
mised WFAPC is bypassed by the dispatch center of the
power grid to avoid malfunctions. That means the secondary
detector command is superior to the primary one in case of
conflict.

It is worth noting that the grid operators should have an
estimation of the maximum response time. Thus, the attack
should be mitigated before activation of the load-shedding
scheme. Equation (10) shows the minimum time of first-step
load-shedding activation ¢}5;,. In addition, we set f,, and

Jfrsm to be 59.8 Hz and 59.1 Hz, respectively.

tmin — Aj[LShl
LS RoCoF,

AfLSM :f DLz/;F _fLShl

A constraint that should not be violated to have a timely
response is given as:

(10)

min

tLShl - tdelay - TWT 2 tML + tn

et n (11)

n sample =
f;‘ample

where t]r €[400, 500]ms; Laeray €[10,100]ms; 7' €[50, 200]ms;
tyr €[0,10]ms; and ¢, €[90,440]ms [46].

Hence, it is recommended to consider the sampling rate,
the number of samples, the communication delay, and the
minimum time to trigger the load-shedding scheme in param-
eter tuning.

V. PERFORMANCE EVALUATION

In this section, numerical results are carried out to assess
the consequences of cyber attacks against WFAPC in FSM,
as well as the effectiveness of the proposed bi-level tech-
nique. For this purpose, the modified 39-bus New England
system is studied, where generators connected to buses 30,
37, and 38 are replaced by three WFs, respectively, each in-
cluding 330, 670, and 670 WTs of GEl.5xle [47]. In order
to model the wind speed, the Weibull distribution of Penas-
cal Wind Power Site, Texas, USA is utilized and extracted
based on 7 years of measured data (2007-2013) [48]. More-
over, it is assumed that 70% of the power generation includ-
ing WFs, are providing frequency support, i.e., total partici-
pation factor K=0.7 [35]. The generators connected to bus
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39 are equipped with gas turbine, and the generators connect-
ed to buses 33 and 34 are equipped with steam turbine. Al-
so, the load connected to bus 7 is considered to be an FL.
Additionally, IEEE RTS load profile is adopted in this study,
with an annual peak load of 8300 MW [49]. The AGC sys-
tem controls the load reference of the conventional genera-
tors. Additionally, the load-shedding scheme is designed
based on Western Electric Coordinating Council (WECC)
grid code [40]. MATLAB simulations for the case studies
are conducted on a computational platform featuring an Intel
Xeon W-1370 CPU operating at 2.90 GHz and 32 GB of
memory.

A. FDI Attack Consequence

It is assumed that the FDI attack is launched at =1 s.
The frequency and load-shedding caused by FDI attack are
depicted in Fig. 11, where “WF: 0.100 p.u.—Load shedding:
0.053 p.u.” denotes the WF capacity is 0.100 p.u. in the
power grid and the cyber attack against it leads to 0.053 p.u.
load-shedding in the power grid. Figure 11 shows that the
FDI attack causes frequency instability when the instanta-
neous WF capacity is 0.450 p.u. or greater, even though full
steps of load-shedding are done. In such circumstances, gen-
erators begin to disconnect from the grid, and islanding
schemes may even occur. Moreover, even a relatively low
share of compromised WFs, e.g. 0.150 p.u., can trigger the
load-shedding scheme.

< 60.0
59.5
59.0
58.5
58.0
57.5
57.0

Grid frequency (H

0O 2 4 6 8 10 12 14 16 18 20
Time (s)

— WF: 0.100 p.u. — Load-shedding:
---WF: 0.150 p.u. — Load-shedding:
— WF: 0.200 p.u. — Load-shedding:
---WF: 0.250 p.u. — Load-shedding:
WEF: 0.300 p.u. — Load-shedding:
WEF: 0.350 p.u. — Load-shedding:
— WF: 0.400 p.u. — Load-shedding:
-- - WF: 0.450 p.u. — Load-shedding:
— WF: 0.500 p.u. — Load-shedding:

0.053 p.u.
0.053 p.u.
0.177 p.u.
0.177 p.u.
0.244 p.u.
0.244 p.u.
0.311 p.u.
0.311 p.u.
0.311 p.u.

Fig. 11. Frequency and load-shedding caused by FDI attack.

In Fig. 12, the frequency nadir and load-shedding for dif-
ferent values of power grid inertia H, power grid stiffness
D+R', and participation factor K in FDI attack against
WFAPC are depicted. Results show that power grid stiffness
changes have the greatest impact on frequency nadir and
load-shedding value. A decrease in stiffness from 10.0 p.u.
to 6.5 p.u. doubles the frequency nadir. In realistic power
grids, stiffness may change from 6.00 p.u. to 16.50 p.u. [35].
Therefore, the FDI attack may result in system collapse
when P,>0.35 p.u. and stiffness is less than 7.50 p.u.. Addi-
tionally, though H plays an undeniable role in the RoCoF
right after the event, it has a limited impact on the frequency
nadir. Moreover, frequency stability is improved significantly
at K=77%.
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Fig. 12. Sensitivity analysis of frequency nadir and load-shedding for different values of power grid inertia, stiffness, and participation factor in FDI attack

against WFAPC. (a) Frequency nadir v.s. H. (b) Frequency nadir v.s. D+R~
D+R". (f) Load-shedding v.s. K.

1) White-box FDI Attack

In white-box FDI attacks, adversaries can go through the
algorithm shown in Fig. 7 and select the best attack time.
The results of the modified IEEE 39-bus system is illustrat-
ed in Fig. 13.

Wind power

100

50 150 200

Time (day)

250 300 365

Fig. 13. Results of modified IEEE 39-bus system.

Inspired by [42] and [43], if an intruder remains undetect-
ed within the LAN of the control center of the WF, there is
a high probability of launching a maximally effective attack
during the identified 80-day period (dashed red line), leading
to power grid collapse. Figure 13 shows that LDWI can even
reach 80% at d =69 although the installed capacity of WFs
accounts for approximately 15% of the total system genera-
tion capacity and the rated WF generation is about 30% of
the annual peak load.

The results of FDI attacks considering different WF capac-
ities are shown in Table 1. In Table I, the best day and the
best moment are found by the “long-term stage” and “short-
term and real-time stages”, respectively. In addition, random
day/moment refers to skipping the corresponding stage. A
Monte Carlo simulation is employed and the average result
is reported for a random day/moment. For instance, if no ca-

!. (¢) Frequency nadir v.s. K. (d) Load-shedding v.s. H. (¢) Load-shedding v.s.

pacity is applied, choosing the best day by the attackers may
result in system collapse. However, if a random day is
picked, the power grid may survive, but it suffers from
0.244 p.u. load-shedding for the best moment or 0.177 p.u.
load-shedding for a random moment. Even if a WF capacity
of 40% is applied, the attack on the best day may result in
system collapse. In case the WF capacity is 30%, the attack
at the best day and moment may result in 0.311 p.u. load-
shedding while a random attack results in only 0.053 p.u.
load-shedding.

Comparing Fig. 11, Fig. 13, and Table I, we observe that
an FDI attack compromising approximately 3% of the WF
capacity can trigger load-shedding, while exceeding 15% of
the WF capacity leads to a rapid collapse of the power grid.
2) Black-box FDI Attack

As detailed in Section III-C, black-box FDI attacks, which
rely on historical data, are susceptible to estimation errors.
Here, the effects of the attacker estimation error on the suc-
cess of attackers are investigated. To this end, a sensitivity
analysis is conducted to determine the relationship between
the successful attack and variations in relevant parameters.
Specifically, the analysis aims to identify the parameters
whose estimation accuracy significantly influences the suc-
cessful attack and to quantify the tolerable error margins.

The partial correlation matrix of the black-box FDI attack
is shown in Table II, where system and generator parameters
are set as inputs; and frequency nadir and load-shedding are
set as outputs.

Output power of WF varies from 10% to 60% of the pow-
er grid demand, with the corresponding adjustments to K.
In addition, the attack is designed based on the known pa-
rameters. Then, parameters D, H, K, Fyp, Ty Try» and R
are changed from —10% to 10% with the 1nterval of 0.1%
one by one. Finally, the attack is applied to calculate fre-
quency nadir and load-shedding. The obtained results in Ta-
ble II show that K, and R, have the most considerable ef-
fect on the outputs.
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TABLE I
RESULTS OF FDI ATTACKS

WF capacity (%) Day LDWI Moment Load-shedding (p.u.) Af i (H2z) Result
Best 0.311 Null Collapse
Best 0.744
0 Random 0.311 8.418 Collapse
Best 0.240 1.530 Load-shedding
Random 0.361 .
Random 0.170 1.354 Load-shedding
Best 0.311 Null Collapse
Best 0.667
10 Random 0.311 4.066 Collapse
Best 0.244 1.524 Load-shedding
Random 0.357 .
Random 0.177 1.353 Load-shedding
Best 0.311 1.726 Load-shedding
Best 0.429 .
30 Random 0.244 1.512 Load-shedding
Best 0.177 1.364 Load-shedding
Random 0.293 .
Random 0.053 1.313 Load-shedding
TABLE 11 ,?100 ¢ 4 0 0 0 0 0 0 0 0 0 0 0
PARTIAL CORRELATION MATRIX OF BLACK-BOX FDI ATTACK < 75 .
5 . Error 13\16%
=) : - *
- - E 0.45% /
Parameter Frequency nadir (Hz) Load-shedding (p.u.) o 25 rroris ’ D o7
2 : o MR
Kyr 0.985 0.980 *é 0 Error is 0.65% —s N ’\Error is 10.5%
D ~0.154 ~0.228 5 -25 .+ * " Erroris 0.70%
H -0.148 ~0.156 = 50 P , , ;
’ ' 0.470 0475 0480 0.485 0490 0.495 0.500
R 0.802 0.775 Ky
Tru 0.042 0.028 *D; o H
Fpp -0.062 -0.038 Fig. 14. Impact of estimation error on correct prediction of power grid col-
Ty 0.018 0.004 lapse.
Ts 0.006 0.008
Tor 0.058 0.021 B. Evaluation of Proposed Bi-level Technique
Teo 0.022 0.014 1) Primary Detector

Note that R™ is set based on grid code requirements [3],
and attackers do not face troubles in estimating it. Addition-
ally, among all turbine-governor parameters, Fp, Tsp and
Ty have relatively bigger partial correlation values but may
be lower than those of D and H. Hence, the attackers can
use typical values for turbine-governor parameters. It should
be noted that a proper estimation of H and D is required to
design a successful attack.

However, they are contingent upon the dynamic behavior
of aggregated generators and loads, which are subject to in-
herent uncertainties stemming from load variations and gen-
erator dispatch schemes.

In Fig. 14, the impact of estimation error on the correct
prediction of the power grid collapse is depicted from the
perspective of the attacker for different WF participation fac-
tor K,,. For instance, when K,,=0.491, which means the
WFs are providing 49% of the frequency support, the estima-
tion error may not affect the attack result if estimation errors
of D and H are less than 10.5% and 36%, respectively. In ad-
dition, within a specific narrow bound for K, from 0.484
to 0.487, the accurate values of D and H are needed. As a re-
sult, in the black-box FDI attack, perfect knowledge about
K is required, and D and H need to be estimated carefully
depending on K ;.

To construct the required dataset, the following operation
ranges are considered: wind speed range is [3.5, 11.5]m/s
and load deviation range is £0.3 p.u., which encompass the
specified period depicted in Fig. 13. To simulate the distur-
bances, a three-phase short circuit lasting three cycles is ran-
domly applied to nearby buses in 50% of the benign sam-
ples. Consequently, the attack initiation time is randomly se-
lected within this highlighted period. A total of 120000 sam-
ples are generated, comprising 60000 benign samples (with
and without short circuits) and 60000 FDI attack samples,
equally divided into 50% black-box and 50% white-box FDI
attacks. The dataset is divided into training, validation, and
test sets with ratios of 70%, 15%, and 15%, respectively.
The training process is conducted offline using a reliable da-
taset. The load-shedding sensitivity to communication laten-
cy is shown in Table III, where the WF capacities are cho-
sen as 0.35, 0.40, 0.45, 0.50, and 0.55 p.u.. Based on the re-
sults, SVM-based technique shows the highest performance
as the primary detector in the proposed bi-level technique.
SVM-based technique employs a radial basis function ker-
nel, which is selected due to its effectiveness in capturing
nonlinear relationships inherent in cyber-physical measure-
ments. The key hyperparameters are determined via cross-
validation: the regularization parameter is set as C'=50, and
the kernel coefficient is set as y=0.15. To compensate for
any potential class imbalance in the dataset, the class weight
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parameter is set to be balanced. Note that the grid parame-
ters are the same in all samples and are equal to the system
parameters used in the observer design. The impacts of er-
rors in turbine-governor parameters and power grid parame-
ters within range of £50% are investigated in Fig. 15. As
shown in Fig. 15, the classification accuracy of the primary
detector may downgrade following the grid parameter chang-
es. Therefore, the secondary detector is proposed in this pa-
per to back up the primary detector.

TABLE III
LOAD-SHEDDING SENSITIVITY TO COMMUNICATION LATENCY
Communica- Load-shedding (p.u.)
tion delay () 035 pu. 040 pu. 045pu. 050 pu.  0.55 p.u.
0.01 0 0 0 0 0
0.05 0 0 0 0 0.053
0.10 0 0 0.053 0.053 0.053
0.15 0 0 0.053 0.053 0.053
0.20 0 0 0.053 0.053 0.117
0.25 0 0.053 0.053 0.117 0.117

As the primary detector uses data from IEC 61400-25
compatible protocols, it is inherently prone to communica-
tion delays.

S
>
3
3
3 . 65.1
< —o— LSTM-based technique :

60 - —o— CNN-based technique 60.9

—o— SVM-based technique 55.3
DT-based technique
50 L L L L L )
0 5 10 20 30 40 50
Error (%)
Fig. 15. Classification accuracy of primary detector.

The classification performance of the SVM-based tech-
nique is compared with CNN-based and DT-based tech-
niques. Table IV demonstrates the detector classification per-
formances. The time constant of WT and the moving win-
dow length are 0.15 s and 0.5 s, respectively. Specifically,
with a WF capacity of 0.45 p.u., a 100-ms latency results in
a one-step load-shedding response (0.053 p.u.). This high-
lights that as WF capacity increases, the influence of commu-
nication latency on the attack mitigation technique becomes
a critical concern, necessitating careful consideration in con-
trol system design.

TABLE IV
DETECTOR CLASSIFICATION PERFORMANCES

Detector Indicator LSTM-based technique SVM-based technique CNN-based technique DT-based technique
Accuracy (%) 97.9500 98.9900 97.9000 91.1000
. Frequency nadir ratio (FNR) 0.0210 0.0016 0.0120 0.0800
Only primary
FPR 0.0200 0.0186 0.0300 0.0980
Fl-score 0.9795 0.9900 0.9792 0.9118
Accuracy (%) 99.1100 93.8800 96.8000 89.1100
FNR 0.0016 0.0424 0.0240 0.0598
Only secondary
FPR 0.0162 0.0800 0.0400 0.1580
F1-score 0.9911 0.9399 0.9683 0.8962

Figure 16 depicts the grid frequency after FDI attack with
and without the mitigation technique at the best day and best
moment for varying levels of WF capacity. Figure 16(a)
shows the isolated performance of the primary detector,
while Fig. 16(b) demonstrates the performance of the second-
ary detector when the primary detector is deactivated. Figure
16(a) shows that the mitigation technique effectively main-
tains frequency without any load-shedding in all cases with
different levels of WF capacity. However, without the mitiga-
tion, the FDI attack can lead to load-shedding or even power
grid collapse. If WF capacity is 0.350 p.u. and 0.400 p.u.,
the LFC maintains the grid frequency after load-shedding of
0.244 p.u. and 0.311 p.u., respectively. Yet, when WF capaci-
ty is 0.450 p.u., the grid frequency becomes unstable follow-
ing the attack, and even four steps of load-shedding (0.311
p.u.) fail to stabilize it. However, the mitigation technique
prevents power grid collapse in this scenario and maintains
frequency without any load-shedding.

2) Secondary Detector

The dataset for training and testing of the secondary detec-
tor is generated considering the following operation ranges:
(D wind speed: [3.5,11.5]m/s; @ load deviations: +0.3 p.u.;
@ turbine-governor parameters: +10%; and @ power grid
parameters: £10%, which are the same as the primary detec-
tor. The assumed values of parameters in hyperparameter tun-
ing process of the LSTM-based technique are given as fol-
lows: a=0.8, Af,5,=0.7 Hz, 7,=5 min, ¢4, =470 ms, 7,=
3.5s, 14, =80 ms, u=10, ¢,,,=20 ms, RoCoF,, =1.5 Hz/s
(over 1 s window), #,=10 s, T};=150 ms, and n,,,=10.
The optimization model (20) in Supplementary Material D is
applied to tune hyperparameters of the LSTM-based tech-
nique as follows: (D the number of hidden units is 100; 2
the initial learning rate is 0.001; 3 the rate of learning rate
dropout is 0.2; @ the learning rate drop period is 10 s; &)
the maximum value of epochs is 180; (© the minimum batch
size is 80; (D the validation frequency is 20 Hz; and @) the
solver is root mean square propagation.
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Fig. 16. Grid frequency after FDI attack with and without mitigation tech-
nique. (a) Primary detector. (b) Secondary detector.

Based on the simulation results, 7,, falls within 4-7 ms.
Based on the results, LSTM-based technique shows the high-
est classification performance, since it is particularly effec-
tive at capturing and recognizing patterns in sequential data.

The grid frequency and load-shedding after the FDI attack
applying the secondary detector are illustrated in Fig. 16(b).
It shows that the mitigation technique maintains frequency
without any load-shedding in all cases. The slower response
of the secondary detector compared with that of the primary
detector causes a slightly larger frequency nadir.

The classification performance of the mitigation technique
at the secondary level is assessed for different time window
lengths ¢,, and the results are presented in Table V, where
the WF capacities are chosen as 0.35, 0.40, and 0.45 p.u.. It
shows that the FDI attack is mitigated efficiently when ¢, <
0.5 s. However, the bigger ¢, is, the larger the load-shedding
required to maintain the frequency. For instance, in the case
that 7,=1 s, e.g., n=20 and 7, =50 ms, the secondary detec-
tor can not prevent load-shedding at any levels of WF capacity.
3) Proposed Bi-level Technique

The performance of the proposed bi-level technique
against FDI attacks is investigated. Using the same dataset
as Section V-A and applying the trained SVM-based tech-
nique and LSTM-based technique as the primary and second-
ary detectors, respectively, the obtained classification perfor-
mances include accuracy of 99.88%, FNR of 0.0004, FPR of
0.002, and F1-score of 0.998.

TABLE V
LOAD-SHEDDING IN DIFFERENT TIME WINDOW LENGTHS

Load shedding (p.u.)

Time window length (s)

0.35 p.u. 0.40 p.u. 0.45 p.u.
0.2 0 0 0
0.4 0 0 0
0.5 0 0 0
0.6 0 0 0.053
0.8 0 0.053 0.053
0.9 0.053 0.053 0.053
1.0 0.053 0.053 0.117
1.4 0.117 0.117 0.244
2.0 0.117 0.244 0.311
2.4 0.244 0.311 0.311
Without mitigation 0.244 0.311 0.311

Thus, the proposed bi-level technique can significantly im-
prove the security of WFs. The detection accuracy of the
proposed bi-level technique is compared against existing
techniques in Table VI. The results demonstrate that the pro-
posed bi-level technique achieves superior performance, and
a lower rate of false alarms.

TABLE VI
DETECTION ACCURACY COMPARISON BETWEEN PROPOSED BI-LEVEL
TECHNIQUE AND EXISTING TECHNIQUES

Technique Accuracy (%)  FNR FPR  Fl-score
Technique in [50] 95.26 0.0984 0.058 0.957
Technique in [51] 76.38 0.1947 0.291 0.795
Technique in [52] 87.86 0.1071  0.138 0.889
Technique in [53] 94.24 0.0588  0.057 0.948

Proposed bi-level technique 99.88 0.0004  0.002 0.998

VI. CONCLUSION

The development and integration of converter-based and
renewable energy resources in modern power grids cause a
lack of inertia and may threaten the frequency stability. Addi-
tionally, dispersed WTs are monitored and controlled from a
control center via widespread cyber networks, which intro-
duces vulnerabilities to cyber threats. In this paper, the vul-
nerabilities of WF to cyber threats in PFSM are investigated.
The FDI attacks are designed based on the WF communica-
tion architecture, protocols, and grid code specifications. It is
shown that FDI attacks on LAN of the WF control center
can destroy the frequency stability of the entire power grid
even if the installed WF capacity in the power grid is rela-
tively low (e.g., 15%). Moreover, the impacts of knowledge
of adversaries about the power grid parameters on the severi-
ty of the FDI attacks are discussed. In addition, a bi-level de-
tection and mitigation technique is proposed, which is evalu-
ated using a modified New England 39-bus system. The re-
sults show that attackers can shut down WTs without access-
ing the HMI and sending direct commands, which is more
detectable. The investigated cyber attack in this paper is
stealthy, indirect, and capable of causing severe damage, po-
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tentially leading to system collapse. At the same time, the
proposed bi-level technique can ensure the power grid fre-
quency remains stable within the valid range even under the
condition of high wind energy integration.
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