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Abstract——The recent growing integration of wind farms 
(WFs), particularly variable speed wind turbines (WTs), results 
in several operational challenges to power grids integrated with 
WFs, such as low grid inertia and the reduced performance of 
measurement-based fast frequency response. To deal with such 
challenges, grid operators use WF active power controllers 
(WFAPCs) to enhance frequency control support from WTs and 
improve the frequency stability of the grid. However, the opera‐
tion of WFAPC relies on measurements received through com‐
munication networks and cyber layers of WFs, which conse‐
quently makes them prone to cyber threats, e.g., false data in‐
jection (FDI). On this basis, firstly, this paper analyzes the cy‐
bersecurity vulnerabilities of WFAPCs and the possible impacts 
of exploiting cybersecurity vulnerabilities on the frequency re‐
sponse of WF and frequency stability of the grid. Then, based 
on the knowledge of intruders, two attacks, i.e., white-box and 
black-box FDI attacks, are developed against WFAPCs. After‐
ward, to detect these attacks, a novel bi-level detection and miti‐
gation technique based on support vector machine (SVM)-based 
technique and long short-term memory (LSTM) -based tech‐
nique is developed, which is implemented at the control center 
of the WF (primary detector) and at the dispatch center of the 
power grid (secondary detector), respectively. These detectors 
classify real-time measurements into attack and normal opera‐
tion. Additionally, a hierarichical mitigation technique is pro‐
posed to counter the developed cyber attacks by replacing the 
active power reference signal of WF with new values obtained 
based on the droop control theory. The impacts of the attacks 
and the effectiveness of the proposed bi-level technique are eval‐
uated using the modified 39-bus benchmark.

Index Terms——Wind turbine (WT), wind farm (WF), cyberse‐
curity, active power controller, attack detection, attack mitiga‐
tion, frequency stability, false data injection (FDI), machine 
learning.
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Input vector to long short-term memory 
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Error covariance matrix

Bryson’s cost function matrices

Recurrent weight matrix

Bryson’s solution matrix

I. INTRODUCTION 

OVER the last decade, the total installed wind power ca‐
pacity has grown annually by 17.5% in Canada and 

21.1% globally [1]. Additionally, grid reliance on wind ener‐
gy is becoming a new trend, e.g., on April 27, 2020, wind 
energy supplied 72% of the electricity demand in the South‐
west Power Pool, Little Rock, USA, while only about 22% 
of its generation capacity is wind energy [2]. Therefore, 
even a relatively small share of wind energy can play a criti‐
cal role at key moments in power grids.

Among various wind energy generation technologies, dou‐
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bly-fed induction generator (DFIG) has been widely used in 
power grids due to its low cost and capability to harvest the 
maximum energy at different wind speeds [3]. However, the 
interfacing converters between the generator and the grid de‐
couple DFIGs from the rest of the system, reducing the iner‐
tia of the entire grid. For example, the inertia of the Europe‐
an power grid in 2016 has been reduced by around 20% 
compared with that in 1996, primarily due to the integration 
of grid-decoupled renewable energy sources (RESs), most of 
which are DFIGs [4]. The inertia reduction makes the fre‐
quency stability of the grid more vulnerable to frequency-re‐
lated events, e.g., load changes and generator trips. To tackle 
this problem, grid codes in power grids with considerable 
wind energy share, e.g., National Grid Code in UK [5], have 
enforced large-scale wind farms (WFs) to participate in load 
frequency control (LFC) schemes [3]. Although the integra‐
tion of DFIGs leads to a reduction in the grid inertia, they 
possess the capability to offer fast frequency support. To pro‐
vide such services by WFs, the techniques proposed in [6]-
[13] can be classified into two major groups: installing auxil‐
iary devices in the grid close to WFs [6]-[8] and modifying 
WF control schemes [9] - [13]. Using the second group of 
techniques, WFs can operate in primary frequency support 
mode (PFSM) to arrest the frequency changes after a distur‐
bance. The techniques used in PFSM rely on supervisory 
control and data acquisition (SCADA) systems and commu‐
nication links to take control actions and transfer data/com‐
mand [14].

In a WF, communication protocols used to transfer data/
command, e.g., IEC 61400-25 [15], are designed for fast da‐
ta exchanges and do not include security features, such as 
encryption, as highlighted by the U.S. Department of Energy 
[16]. Therefore, the important communications are prone to 
various forms of cyber attacks. Such attacks should be differ‐
entiated from threats against conventional generators and 
handled separately since WFs ① are spread across remote ar‐
eas with limited physical security and numerous remote data 
transfers, resulting in an extensive attack surface; ② have 
unique cyber layers and protocols designed without security 
consideration; and ③ exhibit fast and unique transient behav‐
iors and stability issues that can quickly affect grid opera‐
tions.

Over the past decade, adversaries have exploited existing 
vulnerabilities in WFs, leading to several events with consid‐
erable wind turbine (WT) outages. For instance, in March 
2019, a denial-of-service (DoS) attack is launched against 
the communication between the control center and WFs in 
Utah, U.S., which results in unexpected reboots of the devic‐
es after exploiting the vendor firewall [16]. Another attack in 
Germany in February 2022 results in an outage of 5800 WTs 
[17]. Based on the above discussions, the security analysis 
of the WFs is of paramount importance, particularly when 
WTs are used for sensitive applications such as frequency 
control.

Despite the importance, only a limited number of studies 
focus on security analysis of the WFs. In [18], the cyber-
physical model of WF is analyzed, and various scenarios are 
studied in which the attacker sends false shutdown com‐

mands to the WTs. In [19], manipulation of WT setpoints is 
considered as the attacker target, and the consequences of 
such attacks on the WTs operation are investigated. In [20], 
the sub-synchronous damping controller for series-compen‐
sated DFIG is targeted by attackers in various scenarios. At‐
tacks that result in the disconnection of turbines are detected 
in [21] using time series data of WF power generation in the 
long term. Moreover, mitigation techniques for delay and 
DOS cyber attacks against WTs are studied in [22] and [23]. 
Although the cybersecurity of LFC is extensively studied in 
[24], only limited studies focus on the potential impacts of 
cyber attacks targeting WFs in the LFC scheme. For in‐
stance, a cyber attack against measured frequency is dis‐
cussed in [25], which aims to trigger load-shedding schemes. 
However, the diagnosis and mitigation framework proposed 
in [25] overlooks critical grid operation aspects, such as 
LFC response, frequency limits (e. g., deadband and rate of 
change of frequency (RoCoF)), and time limitations of the 
PFSM. Consequently, the anomaly-based intrusion detection 
and diagnosis system relies on unrealistic model residuals, 
potentially leading to inaccurate decision-making. In addi‐
tion, cyber vulnerabilities of WF active power controller 
(WFAPC) in PFSM and their impacts on the frequency sta‐
bility of grid have not been studied in the literatures yet.

Based on the above discussion, in this paper, the cyberse‐
curity vulnerabilities of WFAPC in PFSM are analyzed and 
effective solutions are proposed to enhance the security of 
WFs against the developed attacks. First, using a cyber-phys‐
ical model of DFIG-based WFs, the entry points of the at‐
tacker  are identified and two types of attacks, i. e., black-
box and white-box false data injection (FDI) attacks, are de‐
veloped based on the attacker’s knowledge. In the white-box 
FDI attack, the attackers have sufficient knowledge about 
the grid parameters, whereas, in the black-box FDI attack, 
their information is limited to the historical data of the grid. 
Then, a bi-level detection and mitigation technique is pro‐
posed to maintain the grid security, offering superior perfor‐
mance compared with existing techniques. At the control 
center of the WF (primary detector), a support vector ma‐
chine (SVM)-based technique is employed with the help of a 
well-tailored observer to detect and mitigate adverse mea‐
surement manipulations. At the dispatch center of the power 
grid (secondary detector), an long short-term memory 
(LSTM)-based technique is developed, employing frequency 
measurements, WF generation, and their respective rates of 
change to identify the attacks. Finally, to mitigate the at‐
tacks, the primary detector replaces the manipulated signal 
with an estimated one, whereas when the primary detector is 
not able to mitigate the attack, the secondary detector may 
rebuild the active power reference signal of WF based on 
frequency deviation and droop control theory. The contribu‐
tions of this paper can be summarized as follows.

1) This paper identifies novel cybersecurity vulnerabilities 
of WFAPC, specifically focusing on their impact on frequen‐
cy stability of power grid, and develops two FDI attacks tai‐
lored to varying levels of the attacker’s knowledge.

2) A bi-level detection and mitigation technique is pro‐
posed to effectively identify the developed FDI attacks, em‐
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ploying an SVM-based technique at the control center of the 
WF as the primary detector and an LSTM-based technique 
at the dispatch center of the power grid as the secondary de‐
tector.

3) A hierarchical mitigation technique is presented, utiliz‐
ing a tailored observer at the control center of the WF for 
initial response and a novel backup technique at the dispatch 
center of the power grid that bypasses compromised WF con‐
trols by directly replacing the active power reference signal.

II. LFC AND CYBER-PHYSICAL MODEL OF WFS 

A. Participation of WFs in LFC

Three distinct periods during an under-frequency (UF) 
event in the grid are classified as: ① the inertial frequency 
response of all rotating masses; ② the primary frequency re‐
sponse of generators and load damping; and ③ automatic 
generation control (AGC) operation (secondary and tertiary 
frequency responses) [26] - [33]. WFs can provide all these 

frequency supports if they are empowered and enabled by 
WFAPC. Figure 1 presents a taxonomy of wind-based fre‐
quency support techniques, categorized by their underlying 
mechanisms and control strategies. While Fig. 1 illustrates 
the broader landscape of frequency support, the primary fo‐
cus of this paper is specifically on inertial and primary fre‐
quency responses. This emphasis stems from the practical ad‐
vantages of implementing such techniques without relying 
on auxiliary devices, which ultimately translates into lower 
system costs. To clarify the connection, Fig. 1 highlights the 
branches of the taxonomy directly related to inertial and pri‐
mary frequency responses. These branches demonstrate how 
WTs can contribute to frequency stability by emulating syn‐
chronous generator inertia and providing rapid power injec‐
tions in response to frequency drops. These techniques are 
crucial for maintaining frequency stability, which is the cen‐
tral theme explored in this paper. Additionally, among these 
techniques, de-loading mechanisms may result in wind ener‐
gy curtailment. Thus, similar to many studies, we use power 
unreserved control mechanism [9]-[11].

B. Communication System of SCADA System

The SCADA system of a WF is often composed of moni‐
toring and control mechanisms and a communication system. 
Monitoring and control mechanisms are often deployed at 
three levels [3], [21]: bottom level (WT level), middle level 
(WF level), and top level (grid level). In addition, the com‐
munication system of the SCADA system can be divided in‐
to five sub-networks to transfer data/commands, as shown in 
Fig. 2, and is explained in Supplementary Material A [21]. 
In Fig. 2, LAN is short for local area network; WAN is 
short for wide-area network; SCU is short for substation con‐
trol unit; GDA is short for grid data acquisition; PDI is short 
for process data interface; VCS is short for voltage control 
system; IED is short for intelligent electronic device; WTCP 
is short for WT control panel; Meteo is short for meteorolog‐
ical station; ICCP is short for inter-control center communi‐
cations protocol; SL is short for substation level; PL is short 
for process level; BL is short for by level; LN is short for 

logical node; FC denotes function corresponding to an LN; 
DO is short for data object; and DA is short for data attribute.

C. Model of WF

1)　Model of WT
The model of captured mechanical wind power Pm and 

the active power reference of the DFIG PMPPT are adopted 
from [34]. Accordingly, the drive-train system (containing 
the shaft and the gearbox) is modeled as a single-mass block 
with inertia Hw, which can be expressed as:
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Due to the fast dynamics of the back-to-back converter in 
DFIG, Pe can be considered to follow PMPPT [10].
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Fig. 1.　Taxonomy of wind-based frequency support techniques.
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2)　Model of WFAPC
In this paper, a time-variable droop strategy [10], which is 

enhanced by an adaptive recovery time technique, is used to 
emulate frequency response and also alleviate secondary fre‐
quency dip. 

The active power control scheme of WT, which is also the 
model of WFAPC, is shown in Fig. 3 and explained in Sup‐
plementary Material B, where MPPT is short for maximum 
power point tracking.

D. Model of Power Grid Integrated with WFs

The frequency response model of the power grid is gener‐
ally built neglecting nonlinearities and all relatively small 
time constants, which is a common assumption in the stud‐
ies related to LFC [35]. An approximate model for the fre‐
quency stability study in a single-area power grid following 
an active power disturbance DPdist is proposed in Fig. 4. In 
Fig. 4, the model of WT includes WFAPC and DFIG drive-
train dynamics during and after the support time. The distur‐
bance can be either a sudden loss of a load (DPdist > 0) or a 
generating unit (DPdist < 0). In this model, all the frequency 
service providers are divided into five categories, which are 
as follows.

1) WT: dynamic behaviors of WTs are characterized by 
the PFSM and the drive-train response with the time con‐
stant TWT.  Assuming the mechanical power is constant 
(DPm = 0), impacts of WTs on system frequency during and 

after the support period are considered in the model pro‐
posed in [10] and [11].

2) Steam turbine: the fraction of steam turbine power gen‐
erated by high-pressure section is represented by FHP [35].

3) Gas turbine: the transfer function of combined cycle 
and open cycle gas turbines has two considerable time con‐
stants including TGT and TGG [35].

4) Flexible load (FL): as emerging frequency service pro‐
viders, FL can be modeled by their time constant TFL.

5) Converter interfaced generator (CIG): the transfer func‐
tion of CIGs that provide virtual frequency response, except 
WTs, can be modeled considering the time constant TCIG 
[36]. In Fig. 4, the AGC system is modeled as a proportion‐
al-integral (PI) controller (kp and ki), and the transfer func‐
tion of power grid is characterized by the grid equivalent in‐
ertia H and the load damping coefficient D. The considered 
load-shedding scheme includes four steps depending on the 
frequency deviation [37]. The model in Fig. 4 can be de‐
scribed in state-space form as:
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ẋ =Ax +Bv
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III. ATTACK MODELING 

Communication networks and cyber components, which 
belong to the bottom, middle, and top levels, can be targeted 
by different types of cyber attacks. However, in this paper, 
FDI attacks against WFAPC that exploit the top level of WF 
are investigated.

A. FDI Attack Against WFAPC

The attackers can manipulate measurement signals (e. g., 
grid frequency) by launching different types of FDI attacks. 

Ethernet; Communication link Firewall; Access point;Router;

IED (PL/BL)

Subnet

WAN

Central SCADA server

Application
server

IED (SL)

…

Video wall ICCP
server

Web
server

IEC 61850-7

IEC 61400-25

? LAN of control center of WF

SCADA server

SCADA workstation
VCS

IEC 61400-25

Meteo SCADA remote

? LAN of control room of WF

? LAN of WF

Operator
console WFAPC

SCADA workstation
Meteo SCADA remoteVCSPDI

GDA
SCU

WTCP1 WTCP2 WTCPN

Meteo

Application
server

Communication
server

Server

LD

LN

FC

DA

DO

GDA
SCU

PDI

? LAN of substation (PoI)

? LAN of backup remote control

IEC 60870-5-101
Modbus/DNP3

Fig. 2.　Communication system of SCADA system.

MPPT

WFAPC

Outer and inner
control loops RSC

Measurement
The jth WF

ωm, j

ΔPj

Pref, jPMPPT, j

f

*υdq, j

vr, j, ir, j

++

Fig. 3.　Active power control scheme of WT.

162



ANSARI et al.: DETECTION AND MITIGATION OF FALSE DATA INJECTION ATTACKS AGAINST WIND FARM ACTIVE POWER...

Figure 5 illustrates an exemplary FDI attack path. The at‐
tacker may take the following steps [38], [39].

Step 1: bypass the firewall of the web server control cen‐
ter. 

This step aims to establish initial access to the internal net‐
work. Attackers may exploit known vulnerabilities in web 
server softwares (e. g., Apache, Nginx) or web applications 
(e.g., SCADA monitoring interfaces).

Step 2: bypass the firewall of the ICCP server and access 
LAN of the WF control center. This step focuses on lateral 
movement within the network to gain access to the SCADA 
system. Techniques such as port scanning, exploiting trust re‐
lationship, creating tunnels, or leveraging stolen credentials 
and pass-the-hash attacks may be employed.

Step 3: log into SCADA server. Adversaries may utilize 
the methods such as exploiting SCADA software vulnerabili‐
ties and credential theft (e.g., through phishing emails, social 
engineering, and malware installation). Persistent access may 
also be achieved by installing backdoors on compromised 
systems [38].

Step 4: Manipulate targeted data. Manipulating targeted da‐
ta requires understanding the SCADA protocols used by the 
GDA module (e.g., Modbus and DNP3) to map data objects 
(DOs) to their corresponding physical parameters within the 
WF [38]. By analyzing communication traffic between the 
SCADA server and the GDA module, attackers can identify 
and manipulate targeted data attributes (DAs).

In this paper, the objective of the attacker is to drive the 
actual grid frequency beyond the thresholds fthr defined by 
grid codes [40], e.g., 59.1 Hz. 

Under such a condition, load-shedding schemes may be 
activated to avoid frequency instability. If the frequency 
drop is not captured by activation of load-shedding steps, ro‐
tating generators may begin to disconnect to avoid physical 
damage, which results in system collapse. For instance, in 
the FDI attack model proposed in this paper, the attackers 
can force the WFs to decline their power output by sending 
a fake over-frequency signal to WFAPC. This may immedi‐
ately cause a power generation deficit in the power grid. 
Thus, the target of the attacker is WFAPC, and the attack 
vector includes the frequency measurement received by the 
control center of the WF.

In a non-stealthy FDI attack, f ͂ (k) can be chosen arbitrari‐
ly by the attacker at any time step k, but there is a high 
chance of being ineffective or even being detected easily. 
Note that, k is in milliseconds and kÎ{0tsample2tsample...Tn }. 
To launch a stealthy FDI attack, the attack variables should 
at least satisfy the following constraints.
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~
RoCoF (k)£RoCoFmax    "k (4)

τ͂ £ k £ tsup + τ͂ (5)

In the rest of this paper, only stealthy FDI attacks are con‐
sidered due to their severity.

Equation (3) indicates that f ͂ (k) should be out of the fre‐
quency deadband DfDB to keep the WFAPC in frequency sup‐
port mode (FSM). Moreover, if the frequency goes lower or 
higher than fmin and fmax, respectively, the corresponding re‐
lays, which are much faster than WFAPC, may isolate the 
WF. Therefore, f ͂ (k) out of the frequency deadband is disre‐
garded as bad data by WFAPC. Using the same logic, (4) 
puts constraint on the RoCoF of f ͂ (k) (e. g., ±2.00 Hz/s for 
500 ms moving-average window, ±1.50 Hz/s for 1000 ms 
moving-average window, and ±1.25 Hz/s for 2000 ms mov‐
ing-average window [41]). In addition, the time constraint of 
frequency support is imposed by (5). After passing tsup, the 
WF may again be in MPPT mode even if there are any fre‐
quency deviations. The trajectory of f ͂ (k) is depicted in Fig. 
6. When f ͂ (k) is sent to WFAPC, its output may deviate from 

the accurate value by 
~
DP, as shown in (6). The aim of the at‐

tacker is to create enough 
~
DP to cross fthr and ultimately trig‐

ger load-shedding schemes.
~
DP (z)= TWT

KWT

RWT

z

z - e
-

tsample

TWT

( f ͂ (z)- fnom ) (6)

Two different stealthy FDI attack models based on the lev‐
el of the attacker’s knowledge about the grid parameters are 
discussed in the next subsections. The attackers may know 
the exact values of parameters mentioned in Fig. 4, i.e., the 
white-box FDI attack, or they have to estimate the parame‐
ters based on historical data, i.e., the black-box FDI attack.

B. White-box FDI Attack Model

In the white-box FDI attack model, we assume that the at‐
tackers have enough knowledge about the grid parameters,   
i. e., H, D, FHP, KX, RX, and TX. Thus, using model (2) and 
applying f ͂ (k), they can predict the frequency changes follow‐

ing 
~
DP.

Figure 7 shows the flow chart of the algorithm for the at‐
tacker to launch white-box FDI attack considering the load 
and generation profile. This algorithm can be time-wise di‐
vided into three stages:

Stage 1: long-term stage. The adversaries predict PL (d) 
and the maximum P̄W (d) using historical data. Then, they 
find the day on which the maximum dependency of the pow‐

er grid on wind energy occurs (day d *). We measure this de‐
pendency using index LDWI(d) as:

LDWI(d)=
P̄W (d)

PL (d)- P̄W (d)
       "dÎ[1365] (7)

The higher the value of LDWI, the higher the chance of a 
successful attack. Additionally, employing this index can re‐
duce the risk of the attacker being detected during unauthor‐
ized access to the LAN of WF control center. Attack detec‐
tion and critical vulnerability patching can take organizations 
tens to hundreds of days, with longer detection time for 
more sophisticated threats [42], [43].

Stage 2: short-term stage. On day d *, the required grid pa‐
rameters should be updated every minute. Then, the matrices 
A, B, and C, and PW (t) are computed accordingly. Next, at‐
tackers need to calculate the value of the needed active pow‐
er disturbance DP *

dist to achieve Df =Dfthr assuming that the 
initial frequency f0 is the nominal frequency. Moreover, they 
should calculate the value of the needed frequency deviation 
Df * after the decline of PW (t). In other words, attackers aim 
to answer two key questions: what is the frequency drop 
caused by the WFs shutdown, and what active power short‐
age is needed to violate the frequency threshold?

Stage 3: real-time stage. The attackers have access to the 
measured f (k) and PW (k). The attack will be successful if 
one of the two following conditions is met: first, 
DP *

dist⩽PW (k); second, f (k)-Df *⩽fthr. Otherwise, go to the 
next time step in stage 2.

C. Black-box FDI Attack Model

Contrary to the white-box FDI attack, in this subsection, 
the attackers do not have access to the accurate system pa‐

Update system parameters H, D, FHP, KX, RX, and TX

Start

End

Calculate LDWI(d) and find d*

Predict PL(d ) and PW (d )
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Is time
out?

Stage 1:
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Stage 2:
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stage
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Calculate and{∃ΔPdist, Δf =Δfthr| f0=fnom}*
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f (k)-Δf *≤ fthr?

*

{∃Δf   , ΔPdist=ΔPW(t)| f0=fnom}*

N

N

Y
Y

Measure f (k)
and PW (k)

Fig. 7.　Flow chart of algorithm for attacker to launch white-box FDI at‐
tack.
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rameters. Accordingly, stages 1 and 3 are the same as those 
shown in Fig. 7, but they have to employ a system identifica‐
tion method to estimate the parameters in stage 2, which are 
described in Fig. 8. In the first step, the attackers use the his‐
torical discrete form of WF power changes DPW (z) and the 
grid frequency variations Df (z), which can be obtained by 
compromising the historian server. Then, a Z-transform tech‐
nique is applied to find the amount of disturbance in power 
grid at time step k e[k]. The procedure to calculate DP *

dist and 
Df * is detailed in Supplementary Material C.

IV. ATTACK DETECTION AND MITIGATION 

The standard intrusion detection systems (IDSs) are ill-
equipped to detect the designed FDI attacks against frequen‐
cy measurements of WFs due to several key factors: the 
stealthy nature of the attacks, the lack of power grid context 
of the IDS, the complexity of relevant communication proto‐
cols, the time-sensitive nature of frequency data, potential 
weaknesses in encryption, and the absence of specialized at‐
tack signatures. Therefore, it is preferable to detect and miti‐
gate any cyber attacks where and when they occur before 
their propagation. Therefore, WFs should be outfitted with 
suitable cybersecurity measures, i.e., the primary detector. It 
must be able to operate based on an approximate model 
since the accurate model is not accessible to the operator/
owner of the WF.

However, a secondary detector at the dispatch center of  
the power grid is warranted due to ① the potential for unde‐
niable errors in the output of the primary detector as a result 
of the constantly evolving grid model, and ② the recogni‐
tion that the operator of the grid retains responsibility for the 
security of the grid and has access to redundant measure‐
ments. The secondary detector serves to defend against po‐
tential undetected attacks bypassing the primary detector. 
Considering the limitations of sampling rates and communi‐
cation delays in wide-area power grids, and to maintain coor‐
dination between the primary and secondary security layers, 
the secondary detector is designed to operate at a slower 
pace compared with the primary detector.

A generic diagram of the proposed bi-level detection and 
mitigation technique is depicted in Fig 9. Machine learning 

(ML)-based techniques are deployed as part of the proposed 
bi-level technique due to their capability to effectively cap‐
ture uncertain patterns in noisy data and flexibility and adapt‐
ability in handling different wind conditions and grid opera‐
tion scenarios. Accordingly, ML-based techniques are widely 
employed as the core of anomaly and attack detection in the 
context of frequency stability of the power grid [44]. At the 
control center of WF (primary level), the primary detector 
employs an observer to estimate the grid frequency, as 
shown in Fig 9. This estimation is then compared with the 
value received from the SCADA system using an SVM-
based technique. At the dispatch center of the power grid 
(secondary level), a well-tailored LSTM-based technique is 
deployed to classify the data streams. Subsequently, a new 
power setpoint is commanded to the affected WFs.

A. Algorithm of Primary Level

The model of the proposed bi-level technique is shown in 
Fig. 10. The primary detector works based on an approxi‐
mate model of the power grid to estimate the frequency (cor‐
responds to 

-Df in Fig. 10). Hence, the estimated frequency 
might contain an error. Thus, ML-based techniques are em‐
ployed to recognize error behavior under various operation 
conditions in the training stage. Therefore, the trained ML-
based techniques are utilized instead of applying a fixed 
threshold. To this end, the primary detector (SVM-based 
technique) is employed at the control center of the WF to 
compare the acquired measured value 

~
Df with the estimated 

value 
-Df.

1) Observer Design
As shown in Fig. 10, the power disturbance û is estimated 

by a predefined constant coefficient γ due to the linear rela‐
tionship between frequency derivation and the power distur‐
bance. Then, 

-Df is calculated using a reduced-order model 
and a linear quadratic regulator (LQR) observer applying the 
following steps.

Step 1: a full-order linearized model of the power grid is 
extracted.

Step 2: the Hankel singular values of the power grid are 
calculated.

Step 3: the reduced-order model is obtained by keeping 
the appropriate number of the largest Hankel singular values 
and neglecting the rest.

e

e

ˆ
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Input historical data: {LDWI *, Δf (z), ΔPW (z), A, B, C}
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Stage 2:
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Fig. 8.　Model of black-box FDI.
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Step 4: to cover the operation range of interest, three oper‐
ation points determined by different WF instantaneous levels 
of integration (10%, 25%, and 50% of the power grid load) 
are considered.

Step 5: the Bode diagrams of the full-order and the ap‐
proximated models are compared in these three operation 
points. The preferred approximated model exhibits minimal 
error, particularly within the frequency range of less than 103 
rad/s in the Bode diagrams.

Step 6: the reduced-order model is considered to represent 
the system dynamics, whose matrices are indicated by Ar, 
Br, and Cr.

Step 7: Bryson’s method [45] is applied to adjust symmet‐
ric weighting matrices (Qr ³ 0 and Rr > 0) in the quadratic 
cost function.

Step 8: the observer gain vector L is calculated as L =
R-1

r BT
r S, where S is the solution to (8).

AT
r S + SAr - SBr R-1 BT

r S +Qr = 0 (8)

Step 9: grid frequency is estimated as:

ì
í
î

ïï
ïï

-Df =Cr x̂

x̂̇ = (Ar -LCr )x̂ +Brû +LDf
(9)

2) Design of ML-based Technique at Primary Level
The steps taken to train an efficient ML-based technique 

for classification at the primary level are explained in Sup‐
plementary Material D.
3) Mitigation at Primary Level

The primary detector replaces the measured value 
~
Df with 

the estimated value 
-Df.

B. Algorithm of Secondary Level

As shown in Fig. 10, the dispatch center of the power 
grid takes over from the control center of the WF when the 
primary detector fails.
1)　Design of ML-based Technique at Secondary Level

The LSTM-based technique can extract information from 
past data streams, forget less informative ones, and update 
learnable weights, i.e., the input weight matrix W, the recur‐
rent weight matrix R, and the bias matrix b. Therefore, 
LSTM-based technique is employed for attack detection at 
the secondary level due to the time-dependency of the data 
in the underlying system. The design of ML-based technique 
at the secondary level is explained in the Supplementary Ma‐
terial E.
2)　Mitigation at Secondary Level

At first, the dispatch center of the power grid receives se‐
cure PWj and f from the jth WF and from the power grid, re‐
spectively. Then, the data go through a filtering process to 
detect and eliminate bad data (outliers). Also, in order to 
lessen the computational burden, authentic sample detection 
and skip are done based on the logic illustrated in Fig. 10 
(bottom tables). Based on the healthy frequency dynamic, 
the following cases are recognized as authentic samples: ① 
frequency is within the deadband (f UF

DB £ f £ f OF
DB ); ② under 

the over-frequency condition (f > f OF
DB ), the RoCoF is nega‐

tive; ③ under the under-frequency condition (f < f UF
DB ), the 

RoCoF is positive; ④ under the over-frequency condition (f >
f OF

DB ), the RoCoF is non-negative but the rate of change of ac‐
tive power of the jth WF RoCoPWj is negative; and ⑤ under 

Dispatch center of power grid
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Fig. 10.　Model of proposed bi-level technique.
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the under-frequency condition (f < f UF
DB ), the RoCoF is non-

positive but RoCoPWj is positive, which means the WF is 
supporting the grid frequency.
3)　Time Coordination

As the measured values (signals) are continuous data 
streams, due to the high sampling rate of IEDs, a moving 
window is adopted to segregate the input data into smaller 
segments. Using this technique, the maximum allowable re‐
sponse time of LSTM-based technique can be extended, 
which may result in achieving higher accuracy. Once the 
LSTM-based technique detects a cyber attack against the j th 
WF, the dispatch center of the power grid sends an FSM 
turn-on command (status is 1) to the jth WF and replaces the 

corrupted reference value (signal) 
~
DP ref

Wj with the alternative 

value (signal) 
- -- ----- --- -- ----- --
DP ref

Wj =R-1
WT ( fnom - f ). Note that the compro‐

mised WFAPC is bypassed by the dispatch center of the 
power grid to avoid malfunctions. That means the secondary 
detector command is superior to the primary one in case of 
conflict.

It is worth noting that the grid operators should have an 
estimation of the maximum response time. Thus, the attack 
should be mitigated before activation of the load-shedding 
scheme. Equation (10) shows the minimum time of first-step 
load-shedding activation t min

LSh1. In addition, we set f UF
DB  and 

fLSh1 to be 59.8 Hz and 59.1 Hz, respectively.

ì

í

î

ïïïï

ïïïï

t min
LSh1 =

DfLSh1

RoCoFmax

DfLSh1 = f UF
DB - fLSh1

(10)

A constraint that should not be violated to have a timely 
response is given as:

ì

í

î

ïïïï

ïïïï

t min
LSh1 - tdelay - TWT ³ tML + tn

tn = ntsample =
n

fsample

(11)

where t min
LSh1Î[400500]ms; tdelayÎ[10100]ms; TWTÎ[50200]ms; 

tMLÎ[0,10]ms; and tnÎ[90440]ms [46].
Hence, it is recommended to consider the sampling rate, 

the number of samples, the communication delay, and the 
minimum time to trigger the load-shedding scheme in param‐
eter tuning.

V. PERFORMANCE EVALUATION

In this section, numerical results are carried out to assess 
the consequences of cyber attacks against WFAPC in FSM, 
as well as the effectiveness of the proposed bi-level tech‐
nique. For this purpose, the modified 39-bus New England 
system is studied, where generators connected to buses 30, 
37, and 38 are replaced by three WFs, respectively, each in‐
cluding 330, 670, and 670 WTs of GE1.5xle [47]. In order 
to model the wind speed, the Weibull distribution of Penas‐
cal Wind Power Site, Texas, USA is utilized and extracted 
based on 7 years of measured data (2007-2013) [48]. More‐
over, it is assumed that 70% of the power generation includ‐
ing WFs, are providing frequency support, i.e., total partici‐
pation factor K = 0.7 [35]. The generators connected to bus 

39 are equipped with gas turbine, and the generators connect‐
ed to buses 33 and 34 are equipped with steam turbine. Al‐
so, the load connected to bus 7 is considered to be an FL. 
Additionally, IEEE RTS load profile is adopted in this study, 
with an annual peak load of 8300 MW [49]. The AGC sys‐
tem controls the load reference of the conventional genera‐
tors. Additionally, the load-shedding scheme is designed 
based on Western Electric Coordinating Council (WECC) 
grid code [40]. MATLAB simulations for the case studies 
are conducted on a computational platform featuring an Intel 
Xeon W-1370 CPU operating at 2.90 GHz and 32 GB of 
memory.

A. FDI Attack Consequence

It is assumed that the FDI attack is launched at t = 1 s. 
The frequency and load-shedding caused by FDI attack are 
depicted in Fig. 11, where “WF: 0.100 p.u.→Load shedding: 
0.053 p. u.” denotes the WF capacity is 0.100 p. u. in the 
power grid and the cyber attack against it leads to 0.053 p.u. 
load-shedding in the power grid. Figure 11 shows that the 
FDI attack causes frequency instability when the instanta‐
neous WF capacity is 0.450 p.u. or greater, even though full 
steps of load-shedding are done. In such circumstances, gen‐
erators begin to disconnect from the grid, and islanding 
schemes may even occur. Moreover, even a relatively low 
share of compromised WFs, e.g. 0.150 p.u., can trigger the 
load-shedding scheme.

In Fig. 12, the frequency nadir and load-shedding for dif‐
ferent values of power grid inertia H, power grid stiffness 
D +R-1, and participation factor K in FDI attack against 
WFAPC are depicted. Results show that power grid stiffness 
changes have the greatest impact on frequency nadir and 
load-shedding value. A decrease in stiffness from 10.0 p. u. 
to 6.5 p. u. doubles the frequency nadir. In realistic power 
grids, stiffness may change from 6.00 p.u. to 16.50 p.u. [35]. 
Therefore, the FDI attack may result in system collapse 
when PW > 0.35 p.u. and stiffness is less than 7.50 p.u.. Addi‐
tionally, though H plays an undeniable role in the RoCoF 
right after the event, it has a limited impact on the frequency 
nadir. Moreover, frequency stability is improved significantly 
at K = 77%.
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Fig. 11.　Frequency and load-shedding caused by FDI attack.
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1)　White-box FDI Attack
In white-box FDI attacks, adversaries can go through the 

algorithm shown in Fig. 7 and select the best attack time. 
The results of the modified IEEE 39-bus system is illustrat‐
ed in Fig. 13. 

Inspired by [42] and [43], if an intruder remains undetect‐
ed within the LAN of the control center of the WF, there is 
a high probability of launching a maximally effective attack 
during the identified 80-day period (dashed red line), leading 
to power grid collapse. Figure 13 shows that LDWI can even 
reach 80% at d * = 69 although the installed capacity of WFs 
accounts for approximately 15% of the total system genera‐
tion capacity and the rated WF generation is about 30% of 
the annual peak load.

The results of FDI attacks considering different WF capac‐
ities are shown in Table I. In Table I, the best day and the 
best moment are found by the “long-term stage” and “short-
term and real-time stages”, respectively. In addition, random 
day/moment refers to skipping the corresponding stage. A 
Monte Carlo simulation is employed and the average result 
is reported for a random day/moment. For instance, if no ca‐

pacity is applied, choosing the best day by the attackers may 
result in system collapse. However, if a random day is 
picked, the power grid may survive, but it suffers from 
0.244 p.u. load-shedding for the best moment or 0.177 p.u. 
load-shedding for a random moment. Even if a WF capacity 
of 40% is applied, the attack on the best day may result in 
system collapse. In case the WF capacity is 30%, the attack 
at the best day and moment may result in 0.311 p.u. load-
shedding while a random attack results in only 0.053 p. u. 
load-shedding.

Comparing Fig. 11, Fig. 13, and Table I, we observe that 
an FDI attack compromising approximately 3% of the WF 
capacity can trigger load-shedding, while exceeding 15% of 
the WF capacity leads to a rapid collapse of the power grid.
2)　Black-box FDI Attack

As detailed in Section III-C, black-box FDI attacks, which 
rely on historical data, are susceptible to estimation errors. 
Here, the effects of the attacker estimation error on the suc‐
cess of attackers are investigated. To this end, a sensitivity 
analysis is conducted to determine the relationship between 
the successful attack and variations in relevant parameters. 
Specifically, the analysis aims to identify the parameters 
whose estimation accuracy significantly influences the suc‐
cessful attack and to quantify the tolerable error margins.

The partial correlation matrix of the black-box FDI attack 
is shown in Table II, where system and generator parameters 
are set as inputs; and frequency nadir and load-shedding are 
set as outputs. 

Output power of WF varies from 10% to 60% of the pow‐
er grid demand, with the corresponding adjustments to KWT. 
In addition, the attack is designed based on the known pa‐
rameters. Then, parameters D, H, KWT, FHP, TGT, TRH, and R-1 
are changed from -10% to 10% with the interval of 0.1% 
one by one. Finally, the attack is applied to calculate fre‐
quency nadir and load-shedding. The obtained results in Ta‐
ble II show that KWT and RWT have the most considerable ef‐
fect on the outputs. 
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Fig. 12.　Sensitivity analysis of frequency nadir and load-shedding for different values of power grid inertia, stiffness, and participation factor in FDI attack 
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Note that R-1 is set based on grid code requirements [3], 
and attackers do not face troubles in estimating it. Addition‐
ally, among all turbine-governor parameters, FHP, TGT, and 
TRH have relatively bigger partial correlation values but may 
be lower than those of D and H. Hence, the attackers can 
use typical values for turbine-governor parameters. It should 
be noted that a proper estimation of H and D is required to 
design a successful attack. 

However, they are contingent upon the dynamic behavior 
of aggregated generators and loads, which are subject to in‐
herent uncertainties stemming from load variations and gen‐
erator dispatch schemes. 

In Fig. 14, the impact of estimation error on the correct 
prediction of the power grid collapse is depicted from the 
perspective of the attacker for different WF participation fac‐
tor KWT. For instance, when KWT = 0.491, which means the 
WFs are providing 49% of the frequency support, the estima‐
tion error may not affect the attack result if estimation errors 
of D and H are less than 10.5% and 36%, respectively. In ad‐
dition, within a specific narrow bound for KWT, from 0.484 
to 0.487, the accurate values of D and H are needed. As a re‐
sult, in the black-box FDI attack, perfect knowledge about 
KWT is required, and D and H need to be estimated carefully 
depending on KWT.

B. Evaluation of Proposed Bi-level Technique
1)　Primary Detector

To construct the required dataset, the following operation 
ranges are considered: wind speed range is [3.5, 11.5]m/s 
and load deviation range is ±0.3 p.u., which encompass the 
specified period depicted in Fig. 13. To simulate the distur‐
bances, a three-phase short circuit lasting three cycles is ran‐
domly applied to nearby buses in 50% of the benign sam‐
ples. Consequently, the attack initiation time is randomly se‐
lected within this highlighted period. A total of 120000 sam‐
ples are generated, comprising 60000 benign samples (with 
and without short circuits) and 60000 FDI attack samples, 
equally divided into 50% black-box and 50% white-box FDI 
attacks. The dataset is divided into training, validation, and 
test sets with ratios of 70%, 15%, and 15%, respectively. 
The training process is conducted offline using a reliable da‐
taset. The load-shedding sensitivity to communication laten‐
cy is shown in Table III, where the WF capacities are cho‐
sen as 0.35, 0.40, 0.45, 0.50, and 0.55 p.u.. Based on the re‐
sults, SVM-based technique shows the highest performance 
as the primary detector in the proposed bi-level technique. 
SVM-based technique employs a radial basis function ker‐
nel, which is selected due to its effectiveness in capturing 
nonlinear relationships inherent in cyber-physical measure‐
ments. The key hyperparameters are determined via cross-
validation: the regularization parameter is set as C = 50, and 
the kernel coefficient is set as γ = 0.15. To compensate for 
any potential class imbalance in the dataset, the class weight 

TABLE I
RESULTS OF FDI ATTACKS

WF capacity (%)

0

40

30

Day

Best

Random

Best

Random

Best

Random

LDWI

0.744

0.361

0.667

0.357

0.429

0.293

Moment

Best

Random

Best

Random

Best

Random

Best

Random

Best

Random

Best

Random

Load-shedding (p.u.)

0.311

0.311

0.240

0.170

0.311

0.311

0.244

0.177

0.311

0.244

0.177

0.053

Dfnadir (Hz)

Null

8.418

1.530

1.354

Null

4.066

1.524

1.353

1.726

1.512

1.364

1.313

Result

Collapse

Collapse

Load-shedding

Load-shedding

Collapse

Collapse

Load-shedding

Load-shedding

Load-shedding

Load-shedding

Load-shedding

Load-shedding

TABLE II
PARTIAL CORRELATION MATRIX OF BLACK-BOX FDI ATTACK

Parameter

KWT

D

H

R-1

TRH

FHP

TST

TSG

TGT

TGG

Frequency nadir (Hz)

0.985 

-0.154 

-0.148 

0.802

0.042

-0.062 

0.018

0.006

0.058

0.022

Load-shedding (p.u.)

0.980

-0.228

-0.156

0.775

0.028

-0.038

0.004

0.008

0.021

0.014
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Fig. 14.　Impact of estimation error on correct prediction of power grid col‐
lapse.
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parameter is set to be balanced. Note that the grid parame‐
ters are the same in all samples and are equal to the system 
parameters used in the observer design. The impacts of er‐
rors in turbine-governor parameters and power grid parame‐
ters within range of ±50% are investigated in Fig. 15. As 
shown in Fig. 15, the classification accuracy of the primary 
detector may downgrade following the grid parameter chang‐
es. Therefore, the secondary detector is proposed in this pa‐
per to back up the primary detector.

TABLE III
LOAD-SHEDDING SENSITIVITY TO COMMUNICATION LATENCY

Communica‐
tion delay (s)

0.01

0.05

0.10

0.15

0.20

0.25

Load-shedding (p.u.)

0.35 p.u.

0

0

0

0

0

0

0.40 p.u.

0

0

0

0

0

0.053

0.45 p.u.

0

0

0.053

0.053

0.053

0.053

0.50 p.u.

0

0

0.053

0.053

0.053

0.117

0.55 p.u.

0

0.053

0.053

0.053

0.117

0.117

As the primary detector uses data from IEC 61400-25 
compatible protocols, it is inherently prone to communica‐
tion delays. 

The classification performance of the SVM-based tech‐
nique is compared with CNN-based and DT-based tech‐
niques. Table IV demonstrates the detector classification per‐
formances. The time constant of WT and the moving win‐
dow length are 0.15 s and 0.5 s, respectively. Specifically, 
with a WF capacity of 0.45 p.u., a 100-ms latency results in 
a one-step load-shedding response (0.053 p. u.). This high‐
lights that as WF capacity increases, the influence of commu‐
nication latency on the attack mitigation technique becomes 
a critical concern, necessitating careful consideration in con‐
trol system design.

Figure 16 depicts the grid frequency after FDI attack with 
and without the mitigation technique at the best day and best 
moment for varying levels of WF capacity. Figure 16(a) 
shows the isolated performance of the primary detector, 
while Fig. 16(b) demonstrates the performance of the second‐
ary detector when the primary detector is deactivated. Figure 
16(a) shows that the mitigation technique effectively main‐
tains frequency without any load-shedding in all cases with 
different levels of WF capacity. However, without the mitiga‐
tion, the FDI attack can lead to load-shedding or even power 
grid collapse. If WF capacity is 0.350 p. u. and 0.400 p. u., 
the LFC maintains the grid frequency after load-shedding of 
0.244 p.u. and 0.311 p.u., respectively. Yet, when WF capaci‐
ty is 0.450 p.u., the grid frequency becomes unstable follow‐
ing the attack, and even four steps of load-shedding (0.311 
p. u.) fail to stabilize it. However, the mitigation technique 
prevents power grid collapse in this scenario and maintains 
frequency without any load-shedding.

2)　Secondary Detector
The dataset for training and testing of the secondary detec‐

tor is generated considering the following operation ranges: ① wind speed: [3.5,11.5]m/s; ② load deviations: ±0.3 p.u.; ③ turbine-governor parameters: ±10%; and ④ power grid 
parameters: ±10%, which are the same as the primary detec‐
tor. The assumed values of parameters in hyperparameter tun‐
ing process of the LSTM-based technique are given as fol‐
lows: α = 0.8, DfLSh1 = 0.7 Hz, τ tr = 5 min, t min

LSh1 = 470 ms, τ ts =
3.5 s, tdelay = 80 ms, μ = 10, tsample = 20 ms, RoCoFmax=1.5 Hz/s 
(over 1 s window), tn = 10 s, TWT = 150 ms, and nsample = 10. 
The optimization model (20) in Supplementary Material D is 
applied to tune hyperparameters of the LSTM-based tech‐
nique as follows: ① the number of hidden units is 100; ② 
the initial learning rate is 0.001; ③ the rate of learning rate 
dropout is 0.2; ④ the learning rate drop period is 10 s; ⑤ 
the maximum value of epochs is 180; ⑥ the minimum batch 
size is 80; ⑦ the validation frequency is 20 Hz; and ⑧ the 
solver is root mean square propagation. 
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Fig. 15. Classification accuracy of primary detector.

TABLE IV
DETECTOR CLASSIFICATION PERFORMANCES

Detector

Only primary

Only secondary

Indicator

Accuracy (%)

Frequency nadir ratio (FNR)

FPR

F1-score

Accuracy (%)

FNR

FPR

F1-score

LSTM-based technique

97.9500

0.0210

0.0200

0.9795

99.1100

0.0016

0.0162

0.9911

SVM-based technique

98.9900

0.0016

0.0186

0.9900

93.8800

0.0424

0.0800

0.9399

CNN-based technique

97.9000

0.0120

0.0300

0.9792

96.8000

0.0240

0.0400

0.9683

DT-based technique

91.1000

0.0800

0.0980

0.9118

89.1100

0.0598

0.1580

0.8962
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Based on the simulation results, TML falls within 4-7 ms. 
Based on the results, LSTM-based technique shows the high‐
est classification performance, since it is particularly effec‐
tive at capturing and recognizing patterns in sequential data.

The grid frequency and load-shedding after the FDI attack 
applying the secondary detector are illustrated in Fig. 16(b). 
It shows that the mitigation technique maintains frequency 
without any load-shedding in all cases. The slower response 
of the secondary detector compared with that of the primary 
detector causes a slightly larger frequency nadir.

The classification performance of the mitigation technique 
at the secondary level is assessed for different time window 
lengths tn, and the results are presented in Table V, where 
the WF capacities are chosen as 0.35, 0.40, and 0.45 p.u.. It 
shows that the FDI attack is mitigated efficiently when tn £
0.5 s. However, the bigger tn is, the larger the load-shedding 
required to maintain the frequency. For instance, in the case 
that tn=1 s, e.g., n = 20 and tsample = 50 ms, the secondary detec‐
tor can not prevent load-shedding at any levels of WF capacity.
3)　Proposed Bi-level Technique

The performance of the proposed bi-level technique 
against FDI attacks is investigated. Using the same dataset 
as Section V-A and applying the trained SVM-based tech‐
nique and LSTM-based technique as the primary and second‐
ary detectors, respectively, the obtained classification perfor‐
mances include accuracy of 99.88%, FNR of 0.0004, FPR of 
0.002, and F1-score of 0.998. 

Thus, the proposed bi-level technique can significantly im‐
prove the security of WFs. The detection accuracy of the 
proposed bi-level technique is compared against existing 
techniques in Table VI. The results demonstrate that the pro‐
posed bi-level technique achieves superior performance, and 
a lower rate of false alarms.

VI. CONCLUSION 

The development and integration of converter-based and 
renewable energy resources in modern power grids cause a 
lack of inertia and may threaten the frequency stability. Addi‐
tionally, dispersed WTs are monitored and controlled from a 
control center via widespread cyber networks, which intro‐
duces vulnerabilities to cyber threats. In this paper, the vul‐
nerabilities of WF to cyber threats in PFSM are investigated. 
The FDI attacks are designed based on the WF communica‐
tion architecture, protocols, and grid code specifications. It is 
shown that FDI attacks on LAN of the WF control center 
can destroy the frequency stability of the entire power grid 
even if the installed WF capacity in the power grid is rela‐
tively low (e.g., 15%). Moreover, the impacts of knowledge 
of adversaries about the power grid parameters on the severi‐
ty of the FDI attacks are discussed. In addition, a bi-level de‐
tection and mitigation technique is proposed, which is evalu‐
ated using a modified New England 39-bus system. The re‐
sults show that attackers can shut down WTs without access‐
ing the HMI and sending direct commands, which is more 
detectable. The investigated cyber attack in this paper is 
stealthy, indirect, and capable of causing severe damage, po‐

TABLE V
LOAD-SHEDDING IN DIFFERENT TIME WINDOW LENGTHS

Time window length (s)

0.2

0.4

0.5

0.6

0.8

0.9

1.0

1.4

2.0

2.4

Without mitigation

Load shedding (p.u.)

0.35 p.u.

0

0

0

0

0

0.053

0.053

0.117

0.117

0.244

0.244

0.40 p.u.

0

0

0

0

0.053

0.053

0.053

0.117

0.244

0.311

0.311

0.45 p.u.

0

0

0

0.053

0.053

0.053

0.117

0.244

0.311

0.311

0.311

TABLE VI
DETECTION ACCURACY COMPARISON BETWEEN PROPOSED BI-LEVEL 

TECHNIQUE AND EXISTING TECHNIQUES

Technique

Technique in [50]

Technique in [51]

Technique in [52]

Technique in [53]

Proposed bi-level technique

Accuracy (%)

95.26

76.38

87.86

94.24

99.88

FNR

0.0984

0.1947

0.1071

0.0588

0.0004

FPR

0.058

0.291

0.138

0.057

0.002

F1-score

0.957

0.795

0.889

0.948

0.998
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Fig. 16.　Grid frequency after FDI attack with and without mitigation tech‐
nique. (a) Primary detector. (b) Secondary detector.
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tentially leading to system collapse. At the same time, the 
proposed bi-level technique can ensure the power grid fre‐
quency remains stable within the valid range even under the 
condition of high wind energy integration.

REFERENCES

[1] International Renewable Energy Agency. (2020, Jan.). Wind energy. 
[Online]. Available: https://www. irena. org/Energy-Transition/Technolo‐
gy/Wind-energy

[2] U.S. Energy Information Administration. (2020, Jun.). The central unit‐
ed states set several wind power records this spring. [Online]. Avail‐
able: https://www.eia.gov/todayinenergy/ detail. php?id=44075

[3] Q. Wu and Y. Sun, Modeling and Modern Control of Wind Power. 
New York: John Wiley & Sons, 2018.

[4] A. Fernández-Guillamón, E. Gómez-Lázaro, E. Muljadi et al., “Power 
systems with high renewable energy sources: a review of inertia and 
frequency control strategies over time,” Renewable and Sustainable 
Energy Reviews, vol. 115, p. 109369, Nov. 2019.

[5] National-Gride-SO. (2025, Mar.). The grid code-revision 14. [Online]. 
Available:https://cms.eirgrid.ie/sites/default/files/publications/GridCode‐
Version14.3.pdf

[6] W. Bao, Q. Wu, L. Ding et al., “A hierarchical inertial control scheme 
for multiple wind farms with BESSs based on ADMM,” IEEE Trans‐
actions on Sustainable Energy, vol. 12, no. 2, pp. 751-760, Apr. 2021.

[7] M. Ansari, M. Zadsar, S. Sebtahmadi et al., “Optimal sizing of sup‐
porting facilities for a wind farm considering natural gas and electrici‐
ty networks and markets constraints,” International Journal of Electri‐
cal Power & Energy Systems, vol. 118, p. 105816, Jun. 2020.

[8] M. Ansari, M. Latify, and G. Yousefi, “GenCo’s mid-term optimal op‐
eration analysis: interaction of wind farm, gas turbine, and energy stor‐
age systems in electricity and natural gas markets,” IET Generation, 
Transmission & Distribution, vol. 13, no. 12, pp. 2328-2338, Jun. 
2019.

[9] Hydro-Quebec. (2009, Jan.). Transmission provider technical require‐
ments for the connection of power plants to the hydro quebec transmis‐
sion system. [Online]. Available: https://www.hydroquebec.com/

[10] M. Garmroodi, G. Verbič, and D. Hill, “Frequency support from wind 
turbine generators with a time-variable droop characteristic,” IEEE 
Transactions on Sustainable Energy, vol. 9, no. 2, pp. 676-684, Apr. 
2018.

[11] Z. Guo and W. Wu, “Data-driven model predictive control method for 
wind farms to provide frequency support,” IEEE Transactions on En‐
ergy Conversion, vol. 37, no. 2, pp. 1304-1313, Jun. 2022.

[12] H. Xu, C. Wang, Z. Wang et al., “Stability analysis and enhanced vir‐
tual synchronous control for brushless doubly-fed induction generator 
based wind turbines,” Journal of Modern Power Systems and Clean 
Energy, vol. 12, no. 5, pp. 1445-1458, Sept. 2024.

[13] X. Lyu, Y. Jia, and Z. Dong, “Adaptive frequency responsive control 
for wind farm considering wake interaction,” Journal of Modern Pow‐
er Systems and Clean Energy, vol. 9, no. 5, pp. 1066-1075, Sept. 2021.

[14] D. Sun, H. Liu, S. Gao et al., “Comparison of different virtual inertia 
control methods for inverter-based generators,” Journal of Modern 
Power Systems and Clean Energy, vol. 8, no. 4, pp. 768-777, Jul. 
2020.

[15] International Electrotechnical Commission. (2025, Jan.). IEC interna‐
tional standards. [Online]. Available: https://iec.ch/publications/interna‐
tional-standards

[16] U.S. Department of Energy. (2020, Jul.). Road-map for wind cyberse‐
curity. [Online]. Available: https://www. energy. gov/eere/wind/articles/
roadmap-wind-cybersecurity

[17] M. McCarty, J. Johnson, B. Richardson et al., “Cybersecurity resil‐
ience demonstration for wind energy sites in co-simulation environ‐
ment,” IEEE Access, vol. 11, pp. 15297-15313, Feb. 2023.

[18] A. Zabetian-Hosseini, A. Mehrizi-Sani, and C. Liu, “Cyberattack to cy‐
ber-physical model of wind farm SCADA,” in Proceedings of IECON  
44th Annual Conference of the IEEE Industrial Electronics Society, 
Washington, USA, Oct. 2018, pp. 4929-4934.

[19] M. Ansari, M. Ghafouri, and A. Ameli, “Cyber-security vulnerabilities 
of the active power control scheme in large-scale wind-integrated pow‐
er systems,” in Proceedings of 2022 IEEE Electrical Power and Ener‐
gy Conference, Victoria, Canada, Dec. 2022, pp. 79-84.

[20] M. Ghafouri, U. Karaagac, A. Ameli et al., “A cyber attack mitigation 
scheme for series compensated DFIG-based wind parks,” IEEE Trans‐
actions on Smart Grid, vol. 12, no. 6, pp. 5221-5232, Nov. 2021.

[21] Y. Zhang, Y. Xiang, and L. Wang, “Power system reliability assess‐
ment incorporating cyber attacks against wind farm energy manage‐
ment systems,” IEEE Transactions on Smart Grid, vol. 8, no. 5, pp. 
2343-2357, Sept. 2017.

[22] M. Ghafouri, U. Karaagac, I. Kocar et al., “Analysis and mitigation of 
the communication delay impacts on wind farm central SSI damping 
controller,” IEEE Access, vol. 9, pp. 105641-105650, Jul. 2021.

[23] H. Du, J. Yan, M. Ghafouri et al., “Modeling and assessment of cyber 
attacks targeting converter-driven stability of power grids with PMSG-
based wind farms,” IEEE Transactions on Power Systems, vol. 39, no. 
5, pp. 6716-6728, Sept. 2024.

[24] A. Ameli, A. Hooshyar, E. El-Saadany et al., “Attack detection and 
identification for automatic generation control systems,” IEEE Trans‐
actions on Power Systems, vol. 33, no. 5, pp. 4760-4774, Sept. 2018.

[25] H. Badihi, S. Jadidi, Z. Yu et al., “Smart cyber-attack diagnosis and 
mitigation in a wind farm network operator,” IEEE Transactions on In‐
dustrial Informatics, vol. 19, no. 9, pp. 9468-9478, Sept. 2023.

[26] P. Yang, X. Dong, Y. Li et al., “Research on primary frequency regula‐
tion control strategy of wind-thermal power coordination,” IEEE Ac‐
cess, vol. 7, pp. 144766-144776, Oct. 2019.

[27] R. Azizipanah-Abarghooee, M. Malekpour, T. Dragičević et al., “A lin‐
ear inertial response emulation for variable speed wind turbines,” 
IEEE Transactions on Power Systems, vol. 35, no. 2, pp. 1198-1208, 
Mar. 2020.

[28] M. Hwang, E. Muljadi, G. Jang et al., “Disturbance-adaptive short-
term frequency support of a DFIG associated with the variable gain 
based on the ROCOF and rotor speed,” IEEE Transactions on Power 
Systems, vol. 32, no. 3, pp. 1873-1881, May 2017.

[29] G. Tu, Y. Li, and J. Xiang, “Coordinated rotor speed and pitch angle 
control of wind turbines for accurate and efficient frequency re‐
sponse,” IEEE Transactions on Power Systems, vol. 37, no. 5, pp. 
3566-3576, Sept. 2022.

[30] I. Sardou and M. Ansari, “Risk-constrained self-scheduling of a gener‐
ation company considering natural gas flexibilities for wind energy in‐
tegration,” Journal of Renewable and Sustainable Energy, vol. 12, no. 
1, p. 013301, Jan. 2020.

[31] K. Doenges, L. Sigrist, I. Egido et al., “Wind farms in AGC: model‐
ling, simulation and validation,” IET Renewable Power Generation, 
vol. 16, no. 1, pp. 139-147, Jan. 2022.

[32] J. Huang, Z. Yang, J. Yu et al., “Optimization for DFIG fast frequency 
response with small-signal stability constraint,” IEEE Transactions on 
Energy Conversion, vol. 36, no. 3, pp. 2452-2462, Sept. 2021.

[33] Z. Zhang, J. Hu, J. Lu et al., “Detection and defense method against 
false data injection attacks for distributed load frequency control sys‐
tem in microgrid,” Journal of Modern Power Systems and Clean Ener‐
gy, vol. 12, no. 3, pp. 913-924, May 2024.

[34] S. Heier. (2014, Apr.). Grid integration of wind energy: onshore and 
offshore conversion systems. [Online]. Available: https://www.ndls.org.
cn/standard/detail/

[35] A. Gorbunov, J. Peng, J. Bialek et al., “Can center-of-inertia model be 
identified from ambient frequency measurements?” IEEE Transactions 
on Power Systems, vol. 37, no. 3, pp. 2459-2462, May 2022.

[36] O. Stanojev, U. Markovic, P. Aristidou et al., “MPC-based fast fre‐
quency control of voltage source converters in low-inertia power sys‐
tems,” IEEE Transactions on Power Systems, vol. 37, no. 4, pp. 3209-
3220, Jul. 2022.

[37] A. Tummala and R. Inapakurthi, “A two-stage Kalman filter for cyber-
attack detection in automatic generation control system,” Journal of 
Modern Power Systems and Clean Energy, vol. 10, no. 1, pp. 50-59, 
Jan. 2022.

[38] E. Knapp and J. Langill. (2011, Sept.). Industrial network security: se‐
curing critical infrastructure networks for smart grid, SCADA, and oth‐
er industrial control systems. [Online]. Available: https://dl.acm.org/doi/
10.5555/2597834

[39] R. Sangkhro and A. Agrawal, “Cybersecurity in industrial control sys‐
tems: a review of the current trends and challenges,” in Proceedings 
of 10th International Conference on Computing for Sustainable Global 
Development, New Delhi, India, Mar. 2023, pp. 355-359.

[40] IEEE Guide for Abnormal Frequency Protection for Power Generat‐
ing Plants, IEEE Standard C37.106-2003, 2003.

[41] European Network of Tranmission System Operators. (2018, Jan.).  
Rate of change of frequency withstand capability. [Online]. Available:  
https://eepublicdownloads.entsoe.eu/clean-documents

[42] Mandiant Consulting. (2024, Jan.). M-trends 2024 special report. [On‐
line]. Available: https://www.defenseone.com/assets/m-trends-2024-spe‐
cial-report/portal/

[43] L. Tidjon, M. Frappier, and A. Mammar, “Intrusion detection systems: 

172



ANSARI et al.: DETECTION AND MITIGATION OF FALSE DATA INJECTION ATTACKS AGAINST WIND FARM ACTIVE POWER...

a cross-domain overview,” IEEE Communications Surveys & Tutori‐
als, vol. 21, no. 4, pp. 3639-3681, Nov. 2019.

[44] L. Xi, L. Zhou, Y. Xu et al., “A multi-step unified reinforcement learn‐
ing method for automatic generation control in multi-area interconnect‐
ed power grid,” IEEE Transactions on Sustainable Energy, vol. 12, 
no. 2, pp. 1406-1415, Apr. 2021.

[45] X. Deng, X. Sun, R. Liu et al., “Optimal analysis of the weighted ma‐
trices in LQR based on the differential evolution algorithm,” in Pro‐
ceedings of 29th Chinese Control and Decision Conference, Chongq‐
ing, China, May 2017, pp. 832-836.

[46] ABB Group. (2019, Feb.). 650 series IEC 61850 communication proto‐
col manual. [Online]. Available: https://search.abb.com/library/

[47] General Electric Company. (2023, Jan.). Capacity factor leadership in 
class II winds. [Online]. Available: https://kipdf.com/ge-energy-renew‐
able-energy-ge-s-capacity-factor-leadership-in-class-ii-winds5ac8604c17
23ddc6d69a1576.html

[48] National Renewable Energy Laboratory. (2023, Jan.). Wind prospector,
National Renewable Energy Laboratory. [Online]. Available: https://
www.nrel.gov

[49] C. Barrows, A. Bloom, A. Ehlen et al., “The IEEE reliability test sys‐
tem: a proposed 2019 update,” IEEE Transactions on Power Systems, 
vol. 35, no. 1, pp. 119-127, Jan. 2020.

[50] M. Sun, I. Konstantelos， and G. Strbac, “A deep learning-based fea‐
ture extraction framework for system security assessment,” IEEE 
Transactions on Smart Grid, vol. 10, no. 5, pp. 5007-5020, Sept. 2019.

[51] S. Liu, S. You, H. Yin et al., “Model-free data authentication for cy‐
ber security in power systems,” IEEE Transactions on Smart Grid, 
vol. 11, no. 5, pp. 4565-4568, Sept. 2020.

[52] S. Ahmed, Y. Lee, S. Hyun et al., “Unsupervised machine learning-
based detection of covert data integrity assault in smart grid networks 
utilizing isolation forest,” IEEE Transactions on Information Forensics 
and Security, vol. 14, no. 10, pp. 2765-2777, Oct. 2019.

[53] V. Singh and M. Govindarasu, “A cyber-physical anomaly detection 
for wide-area protection using machine learning,” IEEE Transactions 
on Smart Grid, vol. 12, no. 4, pp. 3514-3526, Jul. 2021.

Mostafa Ansari received the B. Sc. degree in electrical engineering from 
Shahid Beheshti University, Tehran, Iran, in 2014, and the M.Sc. degree in 
electrical engineering of power systems from Isfahan University of Technol‐
ogy, Isfahan, Iran, in 2017. He is current pursuing the Ph.D. degree in Con‐
cordia University, Montreal, Canada, since 2022. His research interests in‐
clude power system dynamic control, power system economy, integration of 
large-scale renewable resources into power grid, and modeling of power sys‐
tems with a focus on resilient operation of wind energy.

Mohsen Ghafouri  received the B.Sc. and M.Sc. degrees in electrical engi‐
neering from the Sharif University of Technology, Tehran, Iran, in 2009 and 
2011, respectively, and the Ph.D. degree in electrical engineering from Poly‐
technique Montreal, Montreal, Canada, in 2018. In 2018, he was a Re‐
searcher with CYME International, Eaton Power System Solutions, Mon‐
treal, Canada. In August 2018, he joined as the Horizon Postdoctoral Fellow 
with Security Research Group, Concordia University, Montreal, Canada, 
where he is currently an Associate Professor. His research interests include 
smart grid, power system modeling, microgrid, wind energy, and control of 
industrial process.

Amir Ameli received the B. Sc. degree in electrical engineering from Iran 
University of Science and Technology, Tehran, Iran, in 2011, the M.Sc. de‐
gree in electrical engineering from the Sharif University of Technology,  Teh‐
ran, Iran, in 2013, and the Ph.D. degree in electrical engineering from the 
University of Waterloo, Waterloo, Canada, in 2019. He was a Postdoctoral 
Fellow with the Electrical and Computer Engineering Department, Univer‐
sity of Waterloo, from August 2019 to July 2020. Currently, he is an Assis‐
tant Professor with the Electrical Engineering Department, Lakehead Univer‐
sity, Thunder Bay, Canada. He is a registered Professional Engineer in Thun‐
der Bay, Canada. His current research interests include power system cyber‐
security and protection.

Ulas Karaagac received the B. Sc. and M. Sc. degrees from Middle East 
Technical University, Ankara, Turkey, in 1999 and 2002, respectively, and 
the Ph.D. degree from École Polytechnique de Montreal (affiliated with Uni‐
versité de Montreal), Montreal, Canada, in 2011. He has 25 years of diverse 
experience in power engineering, spanning industry, and academia. He has 
been involved in numerous research and industry projects across Europe, 
North America, and Asia. In 2025, he joined the Electrical-Electronics Engi‐
neering Department at Middle East Technical University. His research inter‐
ests include integration of large-scale renewable energy into power grid, 
modeling and simulation of large-scale power system, and power system dy‐
namic control.

Ilhan Kocar received the B.Sc. and M.Sc. degrees in electrical and electron-
ics engineering from Orta Doğu Teknik Üniversitesi, Ankara, Turkey, in 
1998 and 2003, respectively, and the Ph.D. degree in electronics engineering 
from Polytechnique/Université de Montreal, Montreal, Canada, in 2009. He 
has 25 years of diverse experience in the power engineering field across in‐
dustry, academia, and major regions including North America, Asia, and Eu‐
rope. He is a Full Professor at Polytechnique Montreal, Montreal, Canada, 
and President of DIgSILENT North America Inc. His research aims to ad‐
dress critical challenge in integrating renewable energy source into power 
system.

173


