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Abstract—Wide-area measurement systems enable the trans-
mission of measurement and control signals for wide-area
damping controllers (WADCs) in smart grids. However, the vul-
nerability of the communication network makes the WADC sus-
ceptible to malicious cyber attacks, such as false data injection
(FDI) attack and denial of service (DoS) attack. Researchers de-
velope numerous supervised machine-learning and model-based
solutions for attack detection. However, the partially labeled at-
tack data, skewed class distributions, and the need for precise
mathematical models present significant challenges for real-
world attack detection. This paper introduces the cyber attack-
resilient wide-area damping controller (CyResWadc) system
framework to address these challenges. The proposed frame-
work leverages semi-supervised generative adversarial network
(SSGAN) model to handle partially labeled attack data. It utiliz-
es the support vector machine-based synthetic minority overs-
ampling technique (SVM-SMOT) for data oversampling to man-
age skewed class distributions. Furthermore, probing signals
are used to stimulate the power system, facilitating the genera-
tion of synthetic attack scenarios under different operational
conditions. If any attack is detected, an alternate pair of mea-
surement and control signals is used for attack mitigation. The
performance is validated on a developed hardware-in-the-loop
(HIL) cyber-physical testbed built using the open parallel archi-
tecture laboratory-real time (OPAL-RT) simulator, industry-
grade hardware, Network Simulator 3 (NS-3), and open plat-
form for data collection (OpenPDC).

Index Terms—Cyber attack, cyber security, false data injec-
tion (FDI) attack, attack detection, semi-supervised generative
adversarial network (SSGAN), wide-area damping controller
(WADC), support vector machine (SVM).
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[. INTRODUCTION

N the past, low frequency oscillations (LFOs) have been

responsible for various blackouts and unscheduled trip-
ping of generators, such as the blackout in the Western Inter-
connection (WSCC) in 1996, the blackouts in Denmark-Swe-
den, USA-Canada, and Italy in 2003, and the blackout in
Chile in 2011 [1]. Unwanted generator tripping happens in
the Indian grid due to sustained LFO [2]. Over the past two
decades, various wide-area damping controllers (WADCs)
have been proposed for inter-area oscillation modes (0.2-0.8
Hz) and implemented in several smart grids, e.g., WSCC
and China Southern Power Grid [3]. However, the wide-area
signals for WADC are transmitted through multiple devices,
ranging from phasor measurement units (PMUs) to local pha-
sor data concentrators (PDCs) and from local PDCs to super
PDCs. The integration of cyber and physical layers makes it
vulnerable to attacks that can manipulate control operations
and destabilize the system. Notable incidents, such as the
Stuxnet worm in 2010 [4] and the Venezuela cyber attack in
2019 [5], have demonstrated how cyber vulnerabilities in
smart grids can be exploited.

Existing studies on methods of FDI attack detection in
smart grids can be broadly classified into data-driven and
model-based methods. Model-based methods are further di-
vided into static state estimation (SSE) and dynamic state es-
timation (DSE) methods. The SSE methods are implemented
by researchers. The SSE method proposed in [6] utilizes a
non-linear filtering approach based on cyber-physical infor-
mation derived from Kirchhoff’s laws to detect FDI attacks
on state estimation (SE). In [6], data from adjacent nodes
are needed and can be implemented locally or distributively.
The SSE method proposed in [7], which is called the reac-
tance perturbation strategy, is used for FDI attack detection
on power system SE for improving the security of SE with-
out increasing the operational cost. However, the SSE meth-
ods in [6] and [7] are valid for the steady state, whereas
WADC is designed to operate in a dynamic state as well. To
address this limitation, researchers explore the DSE meth-
ods. For instance, a joint attack detection and compensation
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method is proposed by using the Kalman filter for automatic
generation control (AGC) system [8]. Reference [9] proposes
a robust parallel DSE method, which utilizes an extended
Kalman filter and graphical processing unit for FDI attack
detection by using a trusted set of PMU measurements [9].
However, the DSE methods in [8] and [9] require the follow-
ing information: (1) system models; (2 system parameters;
and (@ threshold selection. However, the DSE methods may
suffer from divergence and scalability issues.

In contrast to the model-based methods, data-driven meth-
ods offer an alternative approach for FDI attack detection
that does not require knowledge of the system parameters or
system models in real time. Various supervised learning (SL)-
based methods are implemented by researchers for this pur-
pose. For example, the invertible automatic encoder (IEA)
combined with a long short-term memory (LSTM) -based
classifier to detect FDI attacks is proposed in [10]. A distrib-
uted support vector machine (SVM) model, which uses data
preprocessed by principal component analysis (PCA), is
trained for FDI attack detection in power systems [11]. A
framework of bad data detection and convolutional neural
network (BDD-CNN) is proposed in [12] to detect FDI at-
tacks and identify the exact location of injected data in pow-
er systems. Unfortunately, the above-mentioned methods rely
on a large feature dataset with complete labels, which pres-
ents a major challenge due to the scarcity of labeled data, es-
pecially in cases of cyber attacks. The task of labeling unla-
beled data is exceedingly difficult, requiring expert domain
knowledge of the system. As a result, SL-based methods
may not be effective for attack detection in real power sys-
tem [13]. However, semi-supervised learning (SSL) -based
methods offer a better alternative in such cases. For exam-
ple, the unobservable FDI attacks are detected in the distribu-
tion network using an adversarial auto-encoder (AAE)-based
algorithm [14]. In addition, a graph-based semi-supervised
learning (GBSSL) model is proposed for attack detection
and classification in photovoltaic arrays in [15].

To enhance the cyber security of WADC, researchers pro-
pose various strategies, including the design of attack-resil-
ient controllers and the development of data-driven attack de-
tection techniques that can operate without modifying the ex-
isting controller architecture [16], [17]. A resilient adaptive
WADC framework is proposed in [18] for FDI attack detec-
tion and correction on the measurement side, utilizing linear
state estimation (LSE) as a data preprocessor. LSE can esti-
mate the bus voltage and line current phasors and detect any
bad data in the measurement. However, LSE relies on accu-
rate system parameters for SE, which limits its adaptability
for large and deregulated power systems with multiple sys-
tem operators. Furthermore, a secure network predictive con-
trol (SNPC) -based resilient WADC is proposed to defend
against the deception attacks in [19]. However, the method
proposed in [19] is designed to detect attacks only during
the communication process between the sensors and the con-
trol center. The data encryption standard (DES) algorithm is
considered unsafe due to its short key length of 64 bits. Ref-
erence [20] shows that DES algorithm can be compromised
through brute force attacks. A wide-area robust sliding mode

controller (WARSMC) is proposed to defend against FDI at-
tacks and mitigate inter-area oscillations in [21]. However,
WARSMC depends on the redundancy of the measurement
system, and the time delay is not considered for controller
design. The time delay deteriorates the control performance
and can destabilize the system [22]. A defense strategy based
on simultaneous input and SE is proposed for the WADC
system against modal resonance-oriented cyber-attack (MR-
OCA) in [23]. A multiple-controller switching-based resilient
wide-area damping controller (MCS-RWADC) is proposed
for detecting strong cyber attacks in [24]. However, MCS-
RWADC requires the deployment of multiple modules,
which significantly increases the complexity of communica-
tion channels and escalates the implementation costs.

Researchers also implement the game theory framework
to defend WADC against cyber attacks. An optimal cyber-
layer defense strategy is developed using the Markov game
to defend WADC against cyber attacks in [25]. However, the
game theory framework assumes that the defender has per-
fect knowledge of the attacker strategy, which causes serious
resource waste due to the high over-defense rate. Further-
more, due to the challenges of obtaining accurate system
models in real time, data-driven approaches of PMU are pro-
posed in studies for cyber attack detection [16], [26]. The K-
nearest neighbor and decision tree-based methods are pro-
posed for cyber attack detection in the WADC system in
[16]. A wide-area measurement system (WAMS)-based high-
voltage direct current (HVDC) damping framework is pro-
posed in [26], which uses attack shuffle convolutional neural
network and continuous wavelet transform (CWT) for data
integrity attack detection. However, both [16] and [26] rely
on large labeled datasets for model training. An online ro-
bust principal component analysis (RPCA) method is pro-
posed in [17] for a malicious corruption-resilient WADC sys-
tem. However, the performance of RPCA method highly de-
pends on the accuracy of offline-generated subspace library.

Current research on the cyber security of WADC predomi-
nantly concentrates on cyber attack detection through attack-
resilient WADC, as demonstrated by the methods proposed
in [18], [23], and [24]. However, these methods are con-
strained either by their reliance on the accuracy of the sys-
tem model and parameters or by the need for redundant mea-
surement signals. Additionally, grid operators may be unwill-
ing to modify the WADC due to operational and economic
constraints. Additionally, SL-based methods, as proposed in
[16] and [26], enable effective cyber attack detection by us-
ing labeled data without altering the controller architecture.
Despite these advancements, SL-based methods are limited
by the difficulty in obtaining accurate labels for attack sce-
narios. There is a noticeable lack of research exploring the
potential of utilizing SSL-based methods with limited la-
beled data. The SSL-based methods operate without requir-
ing changes to the existing controller architecture or real-
time knowledge of system parameters and models. The SSL-
based method has the potential to improve the accuracy of
cyber attack detection by learning from both labeled and un-
labeled data, and this study aims to fill this gap.

In this paper, a cyber attack-resilient wide-area damping
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controller (CyResWadc) system framework is proposed for
cyber attack detection and mitigation. The proposed frame-
work is capable of dectecting cyber attack at both attack sur-
faces (measurement signal and control signal). To the best of
the authors’ knowledge, this paper innovatively employs an
SSL-based method for detecting cyber attacks. Upon detect-
ing a cyber attack, the mitigation module strategically
switches the WADC input and output signals to minimize
the impacts of cyber attacks. The main contributions of this
paper can be summarized as follows.

1) We propose a CyResWadc system framework for cyber
attack detection and mitigation in cyber-physical power sys-
tem. The proposed framework incorporates a semi-super-
vised generative adversarial network (SSGAN) model to han-
dle partially labeled data.

2) Support vector machine-based synthetic minority overs-
ampling technique (SVM-SMOT) addresses the skewed class
distributions for the WADC system. While limited attack da-
ta are expected to be available in the future, the lack of ade-
quate labeled attack data at present can be solved by utiliz-
ing probing signals to generate synthetic attack scenarios un-
der various operational conditions.

3) To capture the system dynamics, physics-aware features
are utilized, such as the damping torque coefficient (DTC)
and mode shape (MS).

4) Simulation test studies validate the proposed frame-
work on 4-machine two-area system and IEEE 16-machine
68-bus systems, where the SSGAN+SVM-SMOT model is
trained with unlabeled data and a small amount of labeled
data.

5) A hardware-in-the-loop (HIL) cyber-physical testbed is
developed utilizing the open parallel architecture laboratory-
real time (OPAL-RT) simulator, industry-grade hardware,
Network Simulator 3 (NS-3), and open platform for data col-
lection (OpenPDC). The proposed framework is validated
via the HIL testbed by replicating realistic cyber attack sce-
narios.

The rest of this paper is organized as follows. The system
representation and problem formulation are briefly explained
in Section II. Section III shows the proposed framework
against FDI attack. The SSGAN model for attack detection
is introduced in IV. The physics-aware features for FDI at-
tack detection are defined in Section V, and the experimental
setup and empirical evaluation are given in Section VI. Even-
tually, the conclusion is given in Section VII.

II. SYSTEM REPRESENTATION AND PROBLEM FORMULATION

A. System Respresentation

The wide-area power system exhibits inherent non-lineari-
ty, which is mathematically represented by complex non-lin-
ear differential-algebraic equations (DAEs). The non-linear
wide-area power system under FDI attacks at the sensor and
actuator locations is represented as:

X =f(x,_u,_.e ,,w_,)

yt:h(xt7 ut’rtl)+vt

(M

where subscript ¢ is the time index; x, is the n-dimensional
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state variable vector; w,_, is the process noise vector; y, and
v, are the /-dimensional vectors of measurement output sig-
nal and measurement noise, respectively; u, is the g-dimen-
sional vector of the wide-area control signal fed to the excit-
er; f() and A() are the functions that represent the state tran-
sition and measurement, respectively; e/ , is the malicious
signal that is injected at the actuator; and r/ is the attack sig-
nal that is employed at the measured data.

Reference [27] provides a detailed modeling of FDI at-
tacks and their impacts on the WADC system, including a
comparative analysis of pulse, sinusoidal, sawtooth, triangu-
lar, and random attack types. The magnitude of oscillation
reaches its maximum for the sinusoidal attack when the fre-
quency of the injected signal is similar to the inter-area
mode frequency.

B. Problem Formulation

In the wide-area power system, an attacker can gain ac-
cess to and compromise the sensors and actuator signals. To
address this issue, this paper formulates the cyber attack de-
tection problem as a semi-supervised classification problem.
Specifically, the problem assumes the existence of a partially
labeled data. We set S as the total data set, which includes a
small amount of labeled attack/event data set £={(x,,y,),
x,~P, y,€[l,C], [ €[l,L] and a large amount of unlabeled da-
ta set U={x,}, x,~P,, u €[l, U], where x, is the labeled data
instance; x, is the unlabeled data instance; C is the number
of classes; P, is the actual distribution of data x, and x,; y, is
the label of x;; L is the total number of labeled data instanc-
es; and U is the size of the unlabeled data instances. The pri-
mary objective is to obtain a robust semi-supervised classifi-
er by using the limited labeled data. In addition to cyber at-
tacks, this paper considers various power system events,
such as various types of faults, line outages, and generator
outages, which cause LFOs.

III. PROPOSED FRAMEWORK AGAINST FDI ATTACK

The schematic diagram in Fig. 1 illustrates the proposed
framework for cyber attack detection and mitigation, where
EXC is short for exciter; AVR is short for automatic voltage
regulator; PSS is short for power system stabilizer; SVC is
short for static var compensator; TCSC is short for thyristor
controlled series capacitor; UPFC 1is short for unified power
flow controller. Additionally, the control centre in Fig. 1 ex-
hibits two switches denoted as 7, and 7,. The proposed
framework comprises two key components, which are cyber
attack detection module and cyber attack mitigation module.
The cyber attack detection module utilizes the deep learning
(DL)-based model that is trained with physics-aware features
to classify attacks and events. These physics-aware features
are calculated using raw PMU data, thereby providing a
comprehensive representation of the system dynamics. The
raw PMU data vector D, comprises frequency f, positive-
sequence voltage magnitude V, angular speed w, active pow-
er P, and reactive power Q.

Ddam.vet = [ﬁ I/’ w, P’ Q] (2)
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Fig. 1. Proposed framework for cyber attack detection and mitigation.

Figure 2 outlines sequential steps of training process of
the proposed framework. The training process leverages
physics-aware features to classify power system events and
attacks. The physics-aware features are scaled for training
process as illustrated in Fig. 2.

Generate data

- Labelled data
- Unlabelled data
Prepare Extract feature . Scale physics-
input data Damping torque coefficient —  aware feature

- Mode shape (standardization)

|

Train DL-based
model

Test DL-
based model

Use trained |
DL-based model

Fig. 2. Block diagram of sequential steps of training process of proposed
framework.

During normal as well as event situations of the power
system, 7, remains connected. However, upon detecting a cy-
ber attack by the proposed framework at the measurement/
control signal, the switch configuration is altered from 7, to
T,. Specifically, the cyber attack detection module is utilized
to detect any cyber attacks on the measurement/control sig-
nal. Once a cyber attack is detected, the cyber attack mitiga-
tion module selects an alternative pair of measurement and
control signals and adjusts the parameters of WADC system
accordingly [28].

IV SSGAN MODEL FOR ATTACK DETECTION

A. Preliminary of GAN Model

The GAN model, which is a widely popular and efficient
DL-based model, has been applied to solve diverse issues in
various research fields such as video synthesis [29]. The
GAN model consists of two competing neural networks: the
generator and the discriminator. The generator is trained to
produce novel synthetic samples from random noise input.
In contrast, the discriminator classifies samples as either au-

,,,,,,,,,,,,,,,,,

thentic (from the real data source) or synthetic (generated by
the generator) [30]. The GAN model is trained through the
zero-sum game theory between the generator and discrimina-
tor, where parameters are updated to reach Nash equilibrium.

To explain the training of GAN model, we set vector x
and k to be the actual input data with distribution p,,, (x)
and the latent/noise prior space with distribution ¢(k), respec-
tively. Furthermore, we set G and D to be differentiable
functions, where G is the generator with input k; and D is
the discriminator with input x. The output of D is mapped to
interval [0,1]. The min-max optimization objective function
V(D, G) is given as:

mGin max V(D,G)=E,, llogD(x)]+
Eyy [log (1 = D(G(K)))]
where E[*] is the expectation function.

The optimization objective function in (3) is solved using
neural networks and the application of back-propagation via
gradient ascent and gradient descent. Given a batch
{x, k;}!_, of training data and samples from the latent space,
the optimization objective function in (3) can be reformulat-
ed into the optimization of two separate cost functions C(),
i.e., one for the discriminator D and another for the genera-
tor G, which can be expressed as:

3)

eD)=- 5| Slog Dx, )+ log (1 - DGk, )
1 (4)
C<G)=—;Zlog D(G(k,))

where C(D) is the discriminator cost function, which aims to
maximize the probability of correctly classifying real data as
real and generated data as fake; and ((G) is the generator
cost function, which aims to generate data that are classified
as real by the discriminator.

B. Solution to Skewed Class Distribution

Unbalanced classification occurs when data are distributed
unevenly among various classes, resulting in inconsistencies
in the available data for each class. Training models with un-
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balanced data, where one class has more examples than an-
other (more event data than attack data), can lead to a biased
model that performs poorly on the minority class (attack
class) due to the skewed class distribution [31]. To address
this issue, class balancing techniques are used before train-
ing the SSL-based method. The application of the class bal-
ancing techniques leads to an improved performance of the
SSL-based method. The class balancing technique involves
generating synthetic data for the minority class using overs-
ampling techniques. Researchers propose numerous oversam-
pling techniques, such as synthetic minority based on the
probabilistic distribution (SyMProD) technique [31], synthet-
ic minority oversampling technique (SMOT) [32], mahalano-
bis distance-based oversampling (MDO) technique [33],
oversampling using propensity score (OUPS) technique [34],
and SVM-based SMOT [35]. Moreover, a GAN variant,
known as conditional GAN (CGAN), is also used to gener-
ate data for the attack class.

C. Integration of Oversampling Techniques with SSGAN
Model

In the proposed framework, the issue of unbalanced data
is resolved by integrating the oversampling techniques with
SSGAN model, as shown in Fig. 3. Limited minority data
points are used to generate new samples with a similar distri-
bution. The synthetic data are then combined with real data
set for SSGAN model training. The SSL-based method utiliz-
es a combination of labeled and unlabeled data during the
training data process. The SSGAN model consists of a gener-
ator and a discriminator, which is trained in supervised and
unsupervised training modes. In unsupervised training mode,
the discriminator distinguishes between real and fake sam-
ples. While the supervised training mode focuses on the abil-
ity of the discriminator to classify the samples into their re-
spective class labels.

Training data Discriminator D feature extractor ’
Real data set &
l Labelled data Real samples Binary
. . [~ discriminator

Oversampling _|  Unlabelled Unsuperwspd —{ Fake samples loss
attack data data . binary classifier
Discriminator 1

Generator
Fake data < loss
Supervised Supervised
—— binary classifier ~ discriminator loss

090000000000000

Convolutional and max
pooling layers

Random noise
(latent vector)

Labels 7 .
Discriminator 2

Generator G

Fig. 3.

As shown in Fig. 3, the discriminator in supervised and
unsupervised training modes is arranged in a stacked man-
ner. We denote the discriminator in supervised training mode
as the supervised discriminator (discriminator 1) and the dis-
criminator in unsupervised training mode as the unsuper-
vised discriminator (discriminator 2). The supervised discrim-
inator is trained to classify the samples into M classes by as-
signing the label to each sample x to give an M-dimensional
vector of logits [/,,/,,...,],,], which can be converted to class
probabilities by applying the activation function. The unsu-
pervised discriminator uses the same neural network as the
supervised one, with the weights of the layers being reused.
It is stacked on top of the output layer of the supervised dis-
criminator just before the activation function. A normalized
sum of exponential outputs is used as a custom activation
function to predict the authenticity of real and fake samples,
which can be given as:

Klx)

Ax)+1

Kx)= 3 exp (L, (x)

D(x)=
)

Architecture of integrating oversampling techniques with SSGAN model.

The SSGAN model involves augmenting the original data-
set with extra samples generated by the generator, which in-
creases the number of class labels from M to M+ 1, where
M+1 is the newly added class label for the generated sam-
ples. This modification compels the discriminator to identify
which of the M+ 1 classes the sample belongs to [36].

We set p,...(v=(M+1)x) to be the probability that the
given input x is fake. The overall loss function of the
stacked discriminator for training the classifier can be given
as:

J==E,, p,. 108 P youer (V)] =
E, l10gp 0 (y=(M+Dx)]=Js+J,
Js==E\p, cp 108 P e VX, y <M+ 1)]
Jy==E, o[108(0 =P (y=M+1Dx)]+
E, 61108 P e (v =M+ 1jx)]

where J is the overall loss; and Jg and J;, are the supervised
loss and unsupervised loss, respectively.

In addition, J; is the cross-entropy loss, which is incurred
from the predicted distribution over M classes. Meanwhile,
Jy, consists of two separate terms. The first term in J,, corre-

(6)
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sponds to the loss that arises from classifying real inputs,
while the second term is associated with the loss incurred
from classifying generated samples as fake. To achieve the op-
timal solution, it is necessary to minimize both Jg and J;; to
acquire exp(/,, (x))=h(x)p(y=i,x), Vi<M+1 and exp(,,,, (x))=
h(x)ps(x) for any undetermined scaling function A(x), where
p(y=i,x) is the joint probability that a sample x belongs to
class i; and pg(x) is the probability that the same sample x
is produced by the generators (the fake-data distribution).

To enhance the performance of the SSGAN model, vari-
ous oversampling techniques are integrated into it. The modi-
fied models include SSGAN+SyMProD model, SSGAN+
OUPS model, SSGAN+MDO model, SSGAN+SVM-SMOT
model, and CGAN+SSGAN model. Additionally, a compre-
hensive comparison of the modified models with other state-
of-the-art (SOTA) methods is conducted. Three SSL-based
methods (namely semi-supervised boosting (SemiB) [37], la-
bel propagation (LP) [38], and semi-supervised SVM
(S3VM) methods [39]) are considered in this study for com-
parison. Furthermore, to ensure a fair comparison, the data
balancing methods are also integrated with the base learners,
which are LP+SyMProD model, SemiB+SyMProD model,
LP+OUPS model, and SemiB+OUPS model.

V PHYSICS-AWARE FEATURES FOR FDI ATTACK DETECTION

A. MS

The MS is a complex vector that describes the phase an-
gle and magnitude of the dominant LFO mode observed in
the PMU measurements. During system disturbances, MS
provides information about the most dominant LFO mode
and which generator is contributing the most to it. MS for a
particular inter-area mode can be obtained conventionally
from eigenvalue analysis based on the system model. It is
unique irrespective of the type and duration of faults. How-
ever, it is affected to some extent by operational condition
changes caused by line outages, generation outages, etc. Fur-
thermore, when the cyber attack causes oscillation in the
WADC system with a frequency different from the electro-
mechanical mode, the MS may exhibit a peak magnitude.
Additionally, at the bus where the WADC is installed, the
phase angle will be leading. Therefore, the MS obtained for
cyber attacks is different from those obtained for other pow-
er system events. Hence, this can be a useful feature for the
cyber attack detections in WADC system. However, if the in-
jected signal frequency is the same as the electromechanical
mode frequency, resonance is likely to be induced. Thus, the
MS may bear resemblance to the one derived from eigenval-
ue analysis. In such a case, the MS may not be useful for cy-
ber attack detection, but this limitation is mitigated by utiliz-
ing DTC. The MS can be tracked in real time through a
spectral analysis technique that employs time-synchronized
PMU data as input, specifically generator speed measure-
ments [40]. The dominant LFO mode for MS computation is
filtered out by wavelet synchrosqueezing transform [41]. The
phase angle and magnitude are computed using cross-power

spectral density (CPSD) and power spectral density (PSD)
techniques, respectively. The relationship defined by (7) can
be utilized to extract phase angle information among the gen-
erators [40]. By simplifying (7), (8) is obtained to get phase
angle information. The phase angle of all generators is calcu-
lated with respect to a high mode observability reference
generator signal at the frequency of dominant mode w,. It is

. .1
worth noting that }1m T E[Z,(w,) ] converges to a constant,
reo

where Z,(w,) is the finite Fourier transform (FT) of the sig-
nal z,(f) at frequency w,; and 7 is the total time. In addition,
U,, and 2, provide information about the b" and " sig-
nals in the ¢" mode in (7), respectively.

(7
Wbc (wa)géélu,c_é%,b (8)

where ¥, .(w,) is the CPSD between two generator signals.

Now, we consider the special case (b=c), which corre-
sponds to the PSD. Substituting »=c into (7) yields (9). The
PSD is computed for each generator speed signal. The mag-
nitude of the dominant mode presented in the generator
speed signal is determined by (9). The PSD of each signal is
scaled by the square of the magnitude [Uf, ,|. Therefore, the
PSD serves as a direct measure of the observability of the
mode at the generator.

W, (0,)2 U, Jim - EIZ, @, Y]

.1
¥y, (0,)=(24, [ lim T ElZ, (o, F1 ©)
The normalized estimated |ZZ, ,| is computed as:
V4
)= [ (10)

nn

where ¥, is the PSD for the generator under consideration;
and ¥,, is the PSD of the reference generator at the mode
frequency being estimated.

B. Damping Torque Coefficient (DTC)

The LFOs are associated with the dissipation and transmis-
sion of oscillation energy flow in the network. In the electro-
mechanical transients, the energy concept is used for the
analysis of LFOs. There is a strong correlation between the
energy consumption/production of equipment during an oscil-
lation period and its DTC [42]. By leveraging the wide-area
measurement system (WAMS) data at the control center, the
oscillation energy flow is initially calculated, followed by
the subsequent computation of the DTC based on the de-
rived energy flow. The oscillation energy flow W, , between
node o and node e is calculated by (11) and (12) [42]. We
set W2 to be the oscillation component. In addition, W” con-
sists of the monotonic varying component pertaining to ener-
gy production/consumption, which can be computed as (13).

W,=[(P,da0,+0,daIn7,) +

J@np, an5,d1 + 20, dA I 7, ) (1)

W,,=wl+w?’ (12)

oe
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2= [(AP,.480,+AQ,d(A I V) =

|enap, ., d+40, 4010 7,))

APU(.’ = Pue - Pve,s
AlnV,=InV,~InV,
Ao=1o=1o

AQ,e= Qo0 = Qoes

where subscripts o and e denote node o and node e, respec-
tively; AP is the active power variation; AQ is the reactive
power variation; Af is the frequency deviation; subscript s de-
notes the steady-state value; and Af, is the phase angle varia-
tion.

For V, P, and Q, either per-unit or actual value can be se-
lected. This selection may lead to the calculation results of
WP having different units. Additionally, the frequency devia-
tion Af, is selected in units of Hz.

(13)

Furthermore, W is composed of potential energy W o ki

netic energy W,,, and generation/consumption energy W,

gen*

W(ﬁ = Wken + I/Vpot—"_ Wgen (14)
For monotonically varying W, the difference of W, +

W.__ between two local minima / and m is:

gen
(W + Wgen,m )_(Wpot,l + Wgen,] )= (WoDe,m - Wken, m )_

pot,m
(Wo[s.l - Wken.,[ ) = Wgen,m - Wgen,l: Wgen.ml (15)

where W, is the energy dissipation/production from point
f, to point ¢,; and W, , is the kinetic energy. If W, >0,
the generator is consuming energy resulting in a positive
damping effect. Conversely, if W, <0, the generator is
adding energy to the network and has a negative damping ef-
fect. By incorporating W, and angular speed w, DTC
K7 can be given as:

w

gen,ml

_ (Wo[:.m - Wken, m ) - (W Le),l - Wken,l )

[

tm
, J o’ dt
tl

DTC ™ 0 16
wojt o dt (16)

where w, is the rated speed deviation.

VI. EXPERIMENT SETUP AND EMPIRICAL EVALUATION

A. Description of Test System

The two-area test system in Kundur consists of four gener-
ators, as depicted in Fig. 4. The PDC receives the PMU mea-
surement signals from different buses, which are then trans-
mitted to the control center via the wide-area network. The
WADC system takes the line power deviation of lines 7 and
8 as input and transmits the generated control signal to gen-
erator G4. The WADC system may be placed at the control
center (centralized control) or near the actuator (decentral-
ized). In the case of a centralized WADC system, both mea-
surement and control signals are subject to cyber attacks,
while in the decentralized WADC system, only measurement
signals are targeted.

Wide-area
network

CyResWadc-based _,
attack detection

A
7777777777777 . ' # Cyber attack
1 : WADC system — :
Y : Control signal :
i Measurement . :
=i L _» extraction dispatch

Control center

---» GPS clock signal for time stamp;---> PMU data; ---> Control data
A&C: Automation and control

Fig. 4. Two-area test system.

B. WADC Design Based on Mixed H,/H ,

The non-linear power system is linearized around an oper-
ating point to obtain the state space model [43]. Then, the
dominant inter-area mode is identified based on oscillation
frequency and damping ratio. The WADC is designed using
mixed H,/H_, controller as it provides a balance between con-
flicting requirements such as improved transient response
and frequency domain performance. The linear matrix in-
equality (LMI) method, implemented using MATLAB func-
tion hinfmix, provides a natural framework for formulating a
multi-objective H,/H, output feedback control with regional
pole placement [43].

C. Model Architecture

The architectures of modified generator and discriminator
networks with learning parameters are presented in Tables I
and II, respectively. The architecture describes the structure
of the model, while the learning parameters provide informa-
tion about the training process. The first layer in the genera-
tor network is the one-dimensional convolution (convention
1D) layer, which takes random noise as input. The LeakyRe-
LU activation function and max pooling layers with stride
are used subsequently. The flatten is used for changing data
dimension into an array, then fully connected hidden layers
are used for deeper architectures with ReLU and LeakyRe-
LU activation functions in the generator, and the last layer
uses sigmoid, which provides the required data format for
the discriminator. In the case of the discriminator network,
the last layer of the supervised discriminator uses a sigmoid
activation function with Adam optimizer algorithm parame-
ter set at learning rate Lr=0.002 and f=0.5. While unsuper-
vised discriminator uses a custom activation function with
optimizer setting Lr=0.0002 and f=0.5.



152 JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 14, NO. 1, January 2026

TABLE I
ARCHITECTURE OF GENERATOR NETWORK

Layer configuration details Output dimension

Convolution1D (32 filter, size 3)+LeakyReLU (a=0.2) 98,32
Maxpooling1D (size 2, stride 2) 49,32
ConvolutionlD (25 filter, size 2)+LeakyReLU (a=0.2) 48,25
MaxPooling1D (size 2, stride 2) 24,25

Flatten 600

DensetReLU (a=0.2) 15

Dense+ReLU (a=0.2) 18

Dense+LeakyReLU (a=0.2) 12

Dense+sigmoid 10

TABLE 11
ARCHITECTURE OF DISCRIMINATOR NETWORK

Layer configuration details Output dimension

Dense+LeakyReLU (a=0.2) 20
Dense+LeakyReLU (a=0.2) 15
Dense+LeakyReLU (a=0.2) 10
DensetReLU (a=0.2) 5
Dropout layer (a=0.2) 5
Dense 1

D. Event and Attack Data

The proposed framework can handle partially available
event and attack data. While the measured event data are
generally available, adequate attack data may not be avail-
able. Therefore, probing signals in the WADC measurement
or control signals can be used to generate limited cyber at-
tack scenarios. However, since probing signals cannot be
used too frequently, the imbalance in event and attack cases
can be addressed using the SVM-SMOT [35].

1) Event Data

Various power system events, such as generator outage,
line outage, single-line-to-ground fault, line-to-line fault, dou-
ble-line-to-ground fault, and three-phase faults, are created
for various operational conditions that consider generation-
load changes randomly within a +20% range [16]. The vari-
ous faults are created at 2s and cleared at different time
(700 =2.01,2.05,2.10,2.15, and 2.20 s). Additionally, double-
circuit lines are created to replace single lines, and line out-
age cases are generated. For generator outage cases, genera-
tors G2 and G3 are tripped for different operational condi-
tions. The total number of the generated cases for events is
24735, out of which 5000 event cases are labeled and the
rest are unlabelled.

2) Design and Execution of Probing Signal for Control/mea-
surement Signals

Various types of probing signals, including sinusoidal,
ramp, pulse, random, saw-tooth, and triangular attacks, are
designed and injected into the control and measurement sig-
nals [16], [27]. The steps for designing the signals are as fol-
lows.

Step 1: for implementing covert attacks on control/mea-
surement signals, the oscillation frequency of the probing

signal is determined through Prony analysis of multiple mea-
sured event data, which fall within the inter-area frequency
range of 0.50-0.55 Hz for the two-area test system. The fre-
quency of the injected probing signal is selected to match
the inter-area mode at 0.51 Hz, the local modes at 1.00 Hz,
and half of the inter-area mode frequency at 0.25 Hz
[23], [27].

Step 2: during various events, the minimum and maxi-
mum values of WADC signals are monitored , and the prob-
ing signal is kept within this range, making the modeled at-
tacks difficult to detect. Additionally, to simulate stealthy re-
play attacks, recorded data from three-phase faults are used
when there is no actual disturbance in the system.

Step 3: probing signals are injected under various opera-
tional conditions to generate a data set that simulates the at-
tack scenarios.

The probing signal is injected at 2's and ends at 30s. The
labeled data include only 100 attack scenarios, which is rela-
tively low, and there are just 2000 unlabeled attack instanc-
es, which is significantly fewer than the event data.

E. Metrics for Evaluating Performance

The effectiveness of the proposed framework depends on
its ability to accurately identify attacks while minimizing
false alarms. To quantitatively evaluate the performance of
all the base learners and modified models, several metrics
are employed, including accuracy, Fl-score [44], and Mat-
thew correlation coefficient (MCC) [45]. A score approach-
ing 1 for each metric is desirable, indicating that the model
performs exceptionally well for attack detection. Four param-
eters are used to calculate these metrics: true positive 7P,
true negative TN, false positive FP, and false negative FN.

The MCC in [45] is used for quantifying the correlation
between the predicted value and true value. The use of MCC
showcases the reliability of the classifier. This metric yields
additional insights into the performance of the base learners
and modified models for unbalanced data beyond traditional
measures such as accuracy and Fl-score. The MCC is mathe-
matically defined as:

TPx TN—FPx FN
J(TP+FPYTN+FPYTP+FN)TN+FN)

MCC=

amn

F. Analysis and Comparison of Experimental Results

To evaluate the impact of training data composition, fif-
teen distinct training scenarios (S1 to S15) are generated us-
ing random sampling from the event and attack database.
This allows us to investigate the effectiveness of the pro-
posed framework under varying training scenario characteris-
tics. However, it creates an uneven distribution of events and
attacks in the training data, ultimately affecting the training
of all the base learners and modified models. To ensure an
accurate evaluation of the performance of all the base learn-
ers and modified models, the unseen samples of the test set
remain consistent across all scenarios. These cases allow for
the examination of the performance of the base learners and
modified models under operational conditions of limited la-
beled data and an unbalanced distribution of attacks and
events. The proportion of attack and event class data in the
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unlabeled training data set varies between two cases: case 1
and case 2.

Case 1: the unlabeled training data set consists of 20% at-
tack data and 80% event data.

Case 2: the unlabeled training data set consists of 30% at-
tack data and 70% event data.

The resulting combination of labeled and unlabeled data
sets is used to train all models to evaluate their performance.
1) Case 1

The objective of the test is to evaluate the performance of
all base learners and modified models with physics-aware
features and determine the impact of various oversampling
techniques. Various models demonstrated promising perfor-
mance across 15 scenarios. The accuracy comparison depict-
ed in Fig. 5 demonstrates that the SSGAN+SVM-SMOT
model outperforms the baseline classifiers in the maximum
scenarios. In the heat map, yellow indicates higher perfor-
mance of the model for a specific case, while green repre-
sents weaker performance. Specifically, the SemiB, LP, and
LP-OUPS models achieved an average test accuracy of
0.7670, 0.7787, and 0.7827, respectively. The SSGAN, SS-
GAN+OUPS, and SSGAN+MDO models achieved an accu-
racy of 0.8660, 0.8997, and 0.8910, respectively, while the
SSGAN+SVM-SMOT model provides an even higher accura-
cy of 0.9094. The heat map of Fl-score among various mod-
els across fifteen scenarios (case 1) is shown in Fig. 6.
SemiB model achieves an average Fl-score of 0.7760, and
SSGAN+OUPS model achieves that of 0.8676, while the SS-
GAN+SVM-SMOT model exhibites a superior Fl-score of

Ntz 0.7043 0.7580

(UVLORRIRIVOCN 0.8543 [ 0.844 1 fOWF0E]
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0.8812. The MCC metric is employed to evaluate overall
performance of the models concerning both attack and event
classifications, and the results are shown in Fig. 7. It has
been observed that the SSGAN+SVM-SMOT model shows
the highest average MCC of 0.8177. These comparative anal-
yses indicate the efficacy of SSGAN+SVM-SMOT model in
detecting attacks across fifteen scenarios. The obtained re-
sults emphasize the critical importance of having a sufficient
number of data points during the training process. The inte-
gration of oversampling techniques, such as SVM-SMOT, en-
ables the generation of synthetic data points, effectively in-
creasing the quantity and diversity of the training.

095y
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0.60
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-+ LP+SYMPROD model; -+ SemiB+OUPS model; -+ SSGAN model
-=-SSGAN+MDO model; -*- SemiB+SYMPROD model
-+ CGAN+SSGAN model; + SSGAN+SVM-SMOT model
+-LP+OUPS model; + SSGAN+SYMPROD model
Fig. 5. Accuracy comparison among various models across fifteen scenari-
os (case 1).
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Fig. 7. Heat map of MCC among various models across fifteen scenarios (case 1).
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2) Case 2

The objective of the test is to evaluate and compare the
performance of various models as the proportion of actual at-
tack data increased to 30% in the training data set. The accu-
racy in case 2 for various models is illustrated in Fig. 8.
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Fig. 8. Accuracy comparison among various models across fifteen scenari-
os (case 2).

It can be observed that the baseline classifier models, in-
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cluding SemiB model (0.7522), LP+SyMProD model
(0.8409), SemiB+OUPS model (0.8084), SSGAN+OUPS
model (0.9637), and SSGAN+MDO model (0.9629) exhibit
low average performance while the SSGAN+SVM-SMOT
model provides 0.9633. The corresponding heat map of F1-
score among various models across fifteen scenarios (case 2)
is depicted in Fig. 9. It can be observed that the SSGAN+
SVM-SMOT model achieves an average Fl-score of 0.9579.
The heat map of MCC among various models across fifteen
scenarios (case 2) is presented in Fig. 10.

Interestingly, the average scores of baseline models are
SemiB+SyMProD model (0.7612), SSGAN-+OUPS model
(0.9280), and SSGAN+MDO model (0.9258) while the SS-
GAN+SVM-SMOT model achieves the highest average
score of 0.9278. These results confirm that increasing the
number of actual attack data points and subsequently generat-
ing artificial samples lead to an improvement in the perfor-
mance of all base learners and modified models. Additional-
ly, the Fl-score and MCC increase for certain models like
SSGAN-OUPS model due to the expanded training dataset
with more attack samples. However, the SSGAN+SVM-
SMOT model maintains consistent performance across both
cases with low and high attack samples.
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Fig. 9. Heat map of Fl-score among various models across fifteen scenarios (case 2).
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Fig. 10. Heat map of MCC among various models across fifteen scenarios (case 2).

G. Real-time HIL Test Analysis

The HIL cyber-physical testbed depicted in Fig. 11 is used
to validate the proposed framework by using an OPAL-RT
simulator (model OP5707XG) test bench. System parameters
are identical to those used in the MATLAB/Simulink simula-

tion. The experimental evaluation provides a real-time plat-
form for analysis that incorporates delays and errors, which
are absent in offline MATLAB simulations. The RT-Lab soft-
ware is utilized for real-time interaction with the simulator.
In this setup, the Schweitzer Engineering Laboratories (SEL-
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2407) GPS clock is used to synchronize devices with coordi-
nated universal time (UTC) by directly connecting to the
Oregano synl1588-PCle card in OPAL-RT simulator and the
SEL-421 PMU using an inter-range instrumentation group
time code-B (IRIG-B) signal. The SEL-421 PMU is used to
transmit synchrophasor measurements to the local PDC. The
SEL-3350 real-time automation controller (RTAC) acts as
the local PDC and receives synchrophasor data according to
the IEEE C37.118 standard. The NS-3 is utilized to emulate
the communication infrastructure of a wide-area network. By
utilizing the Linux kernel networking subsystem with the
NS-3 tap bridge feature to connect NS-3 substation gateways
(local PDC) with the control center application (super PDC).
The measurement data are directed via NS-3 to the super
PDC, in this case, OpenPDC. Similarly, NS-3 is also de-
ployed to create wide-area network communication between
the control center and the actuator. This arrangement allows
for the introduction of time delays in the data transmission
path, both on the measurement side between the local PDC
and super PDC and on the control signal side between Open-
PDC and the actuator. The time delays considered range
from a minimum of 60 ms to a maximum of 600 ms [46].
The wireshark packet analyzer (Pcap) is used to verify the
received data packets by OpenPDC following the IEEE
C37.118 protocol. In real time, data are saved in a CSV file
format, and a Python script is executed to calculate the
WADC control signal for the proposed framework online.
Subsequently, the calculated control signal is transmitted to
the actuator simulated in the OPAL-RT simulator via NS-3.
OPAL-RT simulator

(model OP5707XG)
Samms s (front view)

RLab software §
4 (host PC)

Fig. 11. Implementation of proposed framework in HIL cyber-physical test-
bed utilizing OPAL-RT simulator .

The trained SSGAN+SVM-SMOT model is deployed to
the OpenPDC system (control center) to detect cyber attacks.
To illustrate, a sinusoidal attack is executed at 1 s on the
line power flow deviation of lines 7 and 8 (measurement sig-
nal), and the control signal is sent to G4. The test system
shows sustained oscillations and moves toward instability.
But when the proposed framework is implemented, the at-
tack is detected, and a new set of measurement and control
signals is selected. The input to the controller is changed to
the power flow in lines 8 and 9, and the control signal is
given to G3, which compensates for the adverse effect

caused by the attack, as shown in Fig. 12.
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Fig. 12. Implementation of proposed framework in test system.

H. Performance on IEEE 16-machine 68-bus System

To further investigate the practicality of the proposed
framework in a more complex power system, the tests are
carried out on the IEEE 16-machine 68-bus test system [47].
There are three poorly damped inter-area modes, with fre-
quencies of 0.514, 0.620, and 0.780 Hz, respectively. The
generators that have the highest involvement in these modes
are G13, G14, and G15. WADC is designed with active pow-
er flow measurements from lines 9-29, 13-17, 14-41, 16-18,
and 54-1 as its inputs, and G3, G9, G13, G14, and G16 as
the actuator plants. The SSGAN+MDO and SSGAN+SVM-
SMOT models are implemented with physics-aware features
to assess the efficacy of cyber attack detection. The results
of unbalanced data cases are presented in Table IIIl. From
the table, it can be observed that SSGAN+SVM-SMOT mod-
el achieves the highest accuracy of 97.04%, with an F1-
score of 96.54% and an MCC score of 94.04%.

TABLE III
RESULTS OF UNBALANCED DATA CASES

Model Case Accuracy Fl-score MCC
SSGAN: MDO (2g;:fgé% ) 0889 0849 07743
SouaN SV (2(5;:_685% ) 08924 08580 07854
SSGANMDO (3(5;:_673% ) 0962 09536 09258
Sssﬁglfﬁsgﬁ' (38(;:_"7(2)% ) 09704 09654 0.9404

VII. CONCLUSION

The conclusions of this paper are summarized as follows.

1) The CyResWadc system framework is proposed to de-
tect and mitigate FDI attacks. The proposed framework uses
an SSGAN model integrated with SVM-SMOT for the at-
tack detection.

2) SVM-SMOT synthesizes new data instances by sam-
pling along the decision boundary. It uses few nearest neigh-
bors and applies interpolation or extrapolation depending on
the density of the majority class data points around it. As a
result, the SVM-SMOT generates realistic synthetic samples
and ensures unbiased model training.

3) Probing signals are used to generate measurements that



156

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 14, NO. 1, January 2026

resemble attack scenarios required for the SSL-based method
training. It eliminates the need for actual attack data, which
may not be possible to obtain at present.

4) The SSGAN+SVM-SMOT model is evaluated against
existing models that incorporate oversampling techniques.
The performance of the proposed framework has been vali-
dated in two-area and IEEE 16-machine 68-bus test systems.
Real-time evaluation on a developed HIL cyber-physical test-
bed validates that the proposed framework effectively de-
tects and mitigates attacks while maintaining system perfor-
mance within acceptable limits.
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