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Abstract——Wide-area measurement systems enable the trans‐
mission of measurement and control signals for wide-area 
damping controllers (WADCs) in smart grids. However, the vul‐
nerability of the communication network makes the WADC sus‐
ceptible to malicious cyber attacks, such as false data injection 
(FDI) attack and denial of service (DoS) attack. Researchers de‐
velope numerous supervised machine-learning and model-based 
solutions for attack detection. However, the partially labeled at‐
tack data, skewed class distributions, and the need for precise 
mathematical models present significant challenges for real-
world attack detection. This paper introduces the cyber attack-
resilient wide-area damping controller (CyResWadc) system 
framework to address these challenges. The proposed frame‐
work leverages semi-supervised generative adversarial network 
(SSGAN) model to handle partially labeled attack data. It utiliz‐
es the support vector machine-based synthetic minority overs‐
ampling technique (SVM-SMOT) for data oversampling to man‐
age skewed class distributions. Furthermore, probing signals 
are used to stimulate the power system, facilitating the genera‐
tion of synthetic attack scenarios under different operational 
conditions. If any attack is detected, an alternate pair of mea‐
surement and control signals is used for attack mitigation. The 
performance is validated on a developed hardware-in-the-loop 
(HIL) cyber-physical testbed built using the open parallel archi‐
tecture laboratory-real time (OPAL-RT) simulator, industry-
grade hardware, Network Simulator 3 (NS-3), and open plat‐
form for data collection (OpenPDC).

Index Terms——Cyber attack, cyber security, false data injec‐
tion (FDI) attack, attack detection, semi-supervised generative 
adversarial network (SSGAN), wide-area damping controller 
(WADC), support vector machine (SVM).

I. INTRODUCTION 

IN the past, low frequency oscillations (LFOs) have been 
responsible for various blackouts and unscheduled trip‐

ping of generators, such as the blackout in the Western Inter‐
connection (WSCC) in 1996, the blackouts in Denmark-Swe‐
den, USA-Canada, and Italy in 2003, and the blackout in 
Chile in 2011 [1]. Unwanted generator tripping happens in  
the Indian grid due to sustained LFO [2]. Over the past two 
decades, various wide-area damping controllers (WADCs) 
have been proposed for inter-area oscillation modes (0.2-0.8 
Hz) and implemented in several smart grids, e. g., WSCC 
and China Southern Power Grid [3]. However, the wide-area 
signals for WADC are transmitted through multiple devices, 
ranging from phasor measurement units (PMUs) to local pha‐
sor data concentrators (PDCs) and from local PDCs to super 
PDCs. The integration of cyber and physical layers makes it 
vulnerable to attacks that can manipulate control operations 
and destabilize the system. Notable incidents, such as the 
Stuxnet worm in 2010 [4] and the Venezuela cyber attack in 
2019 [5], have demonstrated how cyber vulnerabilities in 
smart grids can be exploited.

Existing studies on methods of FDI attack detection in 
smart grids can be broadly classified into data-driven and 
model-based methods. Model-based methods are further di‐
vided into static state estimation (SSE) and dynamic state es‐
timation (DSE) methods. The SSE methods are implemented 
by researchers. The SSE method proposed in [6] utilizes a 
non-linear filtering approach based on cyber-physical infor‐
mation derived from Kirchhoff’s laws to detect FDI attacks 
on state estimation (SE). In [6], data from adjacent nodes 
are needed and can be implemented locally or distributively. 
The SSE method proposed in [7], which is called the reac‐
tance perturbation strategy, is used for FDI attack detection 
on power system SE for improving the security of SE with‐
out increasing the operational cost. However, the SSE meth‐
ods in [6] and [7] are valid for the steady state, whereas 
WADC is designed to operate in a dynamic state as well. To 
address this limitation, researchers explore the DSE meth‐
ods. For instance, a joint attack detection and compensation 
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method is proposed by using the Kalman filter for automatic 
generation control (AGC) system [8]. Reference [9] proposes 
a robust parallel DSE method, which utilizes an extended 
Kalman filter and graphical processing unit for FDI attack 
detection by using a trusted set of PMU measurements [9]. 
However, the DSE methods in [8] and [9] require the follow‐
ing information: ① system models; ② system parameters; 
and ③ threshold selection. However, the DSE methods may 
suffer from divergence and scalability issues.

In contrast to the model-based methods, data-driven meth‐
ods offer an alternative approach for FDI attack detection 
that does not require knowledge of the system parameters or 
system models in real time. Various supervised learning (SL)-
based methods are implemented by researchers for this pur‐
pose. For example, the invertible automatic encoder (IEA) 
combined with a long short-term memory (LSTM) -based 
classifier to detect FDI attacks is proposed in [10]. A distrib‐
uted support vector machine (SVM) model, which uses data 
preprocessed by principal component analysis (PCA), is 
trained for FDI attack detection in power systems [11]. A 
framework of bad data detection and convolutional neural 
network (BDD-CNN) is proposed in [12] to detect FDI at‐
tacks and identify the exact location of injected data in pow‐
er systems. Unfortunately, the above-mentioned methods rely 
on a large feature dataset with complete labels, which pres‐
ents a major challenge due to the scarcity of labeled data, es‐
pecially in cases of cyber attacks. The task of labeling unla‐
beled data is exceedingly difficult, requiring expert domain 
knowledge of the system. As a result, SL-based methods 
may not be effective for attack detection in real power sys‐
tem [13]. However, semi-supervised learning (SSL) -based 
methods offer a better alternative in such cases. For exam‐
ple, the unobservable FDI attacks are detected in the distribu‐
tion network using an adversarial auto-encoder (AAE)-based 
algorithm [14]. In addition, a graph-based semi-supervised 
learning (GBSSL) model is proposed for attack detection 
and classification in photovoltaic arrays in [15].

To enhance the cyber security of WADC, researchers pro‐
pose various strategies, including the design of attack-resil‐
ient controllers and the development of data-driven attack de‐
tection techniques that can operate without modifying the ex‐
isting controller architecture [16], [17]. A resilient adaptive 
WADC framework is proposed in [18] for FDI attack detec‐
tion and correction on the measurement side, utilizing linear 
state estimation (LSE) as a data preprocessor. LSE can esti‐
mate the bus voltage and line current phasors and detect any 
bad data in the measurement. However, LSE relies on accu‐
rate system parameters for SE, which limits its adaptability 
for large and deregulated power systems with multiple sys‐
tem operators. Furthermore, a secure network predictive con‐
trol (SNPC) -based resilient WADC is proposed to defend 
against the deception attacks in [19]. However, the method 
proposed in [19] is designed to detect attacks only during 
the communication process between the sensors and the con‐
trol center. The data encryption standard (DES) algorithm is 
considered unsafe due to its short key length of 64 bits. Ref‐
erence [20] shows that DES algorithm can be compromised 
through brute force attacks. A wide-area robust sliding mode 

controller (WARSMC) is proposed to defend against FDI at‐
tacks and mitigate inter-area oscillations in [21]. However, 
WARSMC depends on the redundancy of the measurement 
system, and the time delay is not considered for controller 
design. The time delay deteriorates the control performance 
and can destabilize the system [22]. A defense strategy based 
on simultaneous input and SE is proposed for the WADC 
system against modal resonance-oriented cyber-attack (MR‐
OCA) in [23]. A multiple-controller switching-based resilient 
wide-area damping controller (MCS-RWADC) is proposed 
for detecting strong cyber attacks in [24]. However, MCS-
RWADC requires the deployment of multiple modules, 
which significantly increases the complexity of communica‐
tion channels and escalates the implementation costs.

Researchers also implement the game theory framework 
to defend WADC against cyber attacks. An optimal cyber-
layer defense strategy is developed using the Markov game 
to defend WADC against cyber attacks in [25]. However, the 
game theory framework assumes that the defender has per‐
fect knowledge of the attacker strategy, which causes serious 
resource waste due to the high over-defense rate. Further‐
more, due to the challenges of obtaining accurate system 
models in real time, data-driven approaches of PMU are pro‐
posed in studies for cyber attack detection [16], [26]. The K-
nearest neighbor and decision tree-based methods are pro‐
posed for cyber attack detection in the WADC system in 
[16]. A wide-area measurement system (WAMS)-based high-
voltage direct current (HVDC) damping framework is pro‐
posed in [26], which uses attack shuffle convolutional neural 
network and continuous wavelet transform (CWT) for data 
integrity attack detection. However, both [16] and [26] rely 
on large labeled datasets for model training. An online ro‐
bust principal component analysis (RPCA) method is pro‐
posed in [17] for a malicious corruption-resilient WADC sys‐
tem. However, the performance of RPCA method highly de‐
pends on the accuracy of offline-generated subspace library.

Current research on the cyber security of WADC predomi‐
nantly concentrates on cyber attack detection through attack-
resilient WADC, as demonstrated by the methods proposed 
in [18], [23], and [24]. However, these methods are con‐
strained either by their reliance on the accuracy of the sys‐
tem model and parameters or by the need for redundant mea‐
surement signals. Additionally, grid operators may be unwill‐
ing to modify the WADC due to operational and economic 
constraints. Additionally, SL-based methods, as proposed in 
[16] and [26], enable effective cyber attack detection by us‐
ing labeled data without altering the controller architecture. 
Despite these advancements, SL-based methods are limited 
by the difficulty in obtaining accurate labels for attack sce‐
narios. There is a noticeable lack of research exploring the 
potential of utilizing SSL-based methods with limited la‐
beled data. The SSL-based methods operate without requir‐
ing changes to the existing controller architecture or real-
time knowledge of system parameters and models. The SSL-
based method has the potential to improve the accuracy of 
cyber attack detection by learning from both labeled and un‐
labeled data, and this study aims to fill this gap.

In this paper, a cyber attack-resilient wide-area damping 
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controller (CyResWadc) system framework is proposed for 
cyber attack detection and mitigation. The proposed frame‐
work is capable of dectecting cyber attack at both attack sur‐
faces (measurement signal and control signal). To the best of 
the authors’  knowledge, this paper innovatively employs an 
SSL-based method for detecting cyber attacks. Upon detect‐
ing a cyber attack, the mitigation module strategically 
switches the WADC input and output signals to minimize 
the impacts of cyber attacks. The main contributions of this 
paper can be summarized as follows.

1) We propose a CyResWadc system framework for cyber 
attack detection and mitigation in cyber-physical power sys‐
tem. The proposed framework incorporates a semi-super‐
vised generative adversarial network (SSGAN) model to han‐
dle partially labeled data.

2) Support vector machine-based synthetic minority overs‐
ampling technique (SVM-SMOT) addresses the skewed class 
distributions for the WADC system. While limited attack da‐
ta are expected to be available in the future, the lack of ade‐
quate labeled attack data at present can be solved by utiliz‐
ing probing signals to generate synthetic attack scenarios un‐
der various operational conditions.

3) To capture the system dynamics, physics-aware features 
are utilized, such as the damping torque coefficient (DTC) 
and mode shape (MS).

4) Simulation test studies validate the proposed frame‐
work on 4-machine two-area system and IEEE 16-machine 
68-bus systems, where the SSGAN+SVM-SMOT model is 
trained with unlabeled data and a small amount of labeled 
data.

5) A hardware-in-the-loop (HIL) cyber-physical testbed is 
developed utilizing the open parallel architecture laboratory-
real time (OPAL-RT) simulator, industry-grade hardware, 
Network Simulator 3 (NS-3), and open platform for data col‐
lection (OpenPDC). The proposed framework is validated 
via the HIL testbed by replicating realistic cyber attack sce‐
narios.

The rest of this paper is organized as follows. The system 
representation and problem formulation are briefly explained 
in Section II. Section III shows the proposed framework 
against FDI attack. The SSGAN model for attack detection 
is introduced in IV. The physics-aware features for FDI at‐
tack detection are defined in Section V, and the experimental 
setup and empirical evaluation are given in Section VI. Even‐
tually, the conclusion is given in Section VII.

II. SYSTEM REPRESENTATION AND PROBLEM FORMULATION 

A. System Respresentation

The wide-area power system exhibits inherent non-lineari‐
ty, which is mathematically represented by complex non-lin‐
ear differential-algebraic equations (DAEs). The non-linear 
wide-area power system under FDI attacks at the sensor and 
actuator locations is represented as:

ì
í
î

x t = f (x t - 1ut - 1e't - 1wt - 1 )

yt = h(x tutr't )+ vt

(1)

where subscript t is the time index; x t is the n-dimensional 

state variable vector; wt - 1 is the process noise vector; yt and 
vt are the l-dimensional vectors of measurement output sig‐
nal and measurement noise, respectively; ut is the q-dimen‐
sional vector of the wide-area control signal fed to the excit‐
er; f (·) and h(·) are the functions that represent the state tran‐
sition and measurement, respectively; e't - 1 is the malicious 
signal that is injected at the actuator; and r't is the attack sig‐
nal that is employed at the measured data.

Reference [27] provides a detailed modeling of FDI at‐
tacks and their impacts on the WADC system, including a 
comparative analysis of pulse, sinusoidal, sawtooth, triangu‐
lar, and random attack types. The magnitude of oscillation 
reaches its maximum for the sinusoidal attack when the fre‐
quency of the injected signal is similar to the inter-area 
mode frequency.

B. Problem Formulation

In the wide-area power system, an attacker can gain ac‐
cess to and compromise the sensors and actuator signals. To 
address this issue, this paper formulates the cyber attack de‐
tection problem as a semi-supervised classification problem. 
Specifically, the problem assumes the existence of a partially 
labeled data. We set S as the total data set, which includes a 
small amount of labeled attack/event data set L ={(x lyl ), 
x l~Pd, ylÎ[1C], lÎ[1L] and a large amount of unlabeled da‐
ta set Ű ={xu }, xu~Pd, uÎ[1U], where xl is the labeled data 
instance; xu is the unlabeled data instance; C is the number 
of classes; Pd is the actual distribution of data xl and xu; yl is 
the label of xl; L is the total number of labeled data instanc‐
es; and U is the size of the unlabeled data instances. The pri‐
mary objective is to obtain a robust semi-supervised classifi‐
er by using the limited labeled data. In addition to cyber at‐
tacks, this paper considers various power system events, 
such as various types of faults, line outages, and generator 
outages, which cause LFOs.

III. PROPOSED FRAMEWORK AGAINST FDI ATTACK 

The schematic diagram in Fig. 1 illustrates the proposed 
framework for cyber attack detection and mitigation, where 
EXC is short for exciter; AVR is short for automatic voltage 
regulator; PSS is short for power system stabilizer; SVC is 
short for static var compensator; TCSC is short for thyristor 
controlled series capacitor; UPFC is short for unified power 
flow controller. Additionally, the control centre in Fig. 1 ex‐
hibits two switches denoted as T1 and T2. The proposed 
framework comprises two key components, which are cyber 
attack detection module and cyber attack mitigation module. 
The cyber attack detection module utilizes the deep learning 
(DL)-based model that is trained with physics-aware features 
to classify attacks and events. These physics-aware features 
are calculated using raw PMU data, thereby providing a 
comprehensive representation of the system dynamics. The 
raw PMU data vector Ddataset comprises frequency f, positive- 
sequence voltage magnitude V, angular speed ω, active pow‐
er P, and reactive power Q.

Ddataset =[ fVωPQ] (2)
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Figure 2 outlines sequential steps of training process of 
the proposed framework. The training process leverages 
physics-aware features to classify power system events and 
attacks. The physics-aware features are scaled for training 
process as illustrated in Fig. 2. 

During normal as well as event situations of the power 
system, T1 remains connected. However, upon detecting a cy‐
ber attack by the proposed framework at the measurement/
control signal, the switch configuration is altered from T1 to 
T2. Specifically, the cyber attack detection module is utilized 
to detect any cyber attacks on the measurement/control sig‐
nal. Once a cyber attack is detected, the cyber attack mitiga‐
tion module selects an alternative pair of measurement and 
control signals and adjusts the parameters of WADC system 
accordingly [28].

IV SSGAN MODEL FOR ATTACK DETECTION

A. Preliminary of GAN Model

The GAN model, which is a widely popular and efficient 
DL-based model, has been applied to solve diverse issues in 
various research fields such as video synthesis [29]. The 
GAN model consists of two competing neural networks: the 
generator and the discriminator. The generator is trained to 
produce novel synthetic samples from random noise input. 
In contrast, the discriminator classifies samples as either au‐

thentic (from the real data source) or synthetic (generated by 
the generator) [30]. The GAN model is trained through the 
zero-sum game theory between the generator and discrimina‐
tor, where parameters are updated to reach Nash equilibrium.

To explain the training of GAN model, we set vector x 
and k to be the actual input data with distribution pdata (x) 
and the latent/noise prior space with distribution q(k), respec‐
tively. Furthermore, we set G and D to be differentiable 
functions, where G is the generator with input k; and D is 
the discriminator with input x. The output of D is mapped to 
interval [0, 1]. The min-max optimization objective function 
V(DG) is given as:

min
G

max
D

V(DG)=Ex~pdata (x) [log D(x)]+
Ek~q(k) [log(1 -D(G(k)))] (3)

where E[·] is the expectation function.
The optimization objective function in (3) is solved using 

neural networks and the application of back-propagation via 
gradient ascent and gradient descent. Given a batch 
{x ik i }

n
i = 1 of training data and samples from the latent space, 

the optimization objective function in (3) can be reformulat‐
ed into the optimization of two separate cost functions C (·), 
i.e., one for the discriminator D and another for the genera‐
tor G, which can be expressed as:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

C (D)=-
1
2 ( )∑

i = 1

n

log D(x i )+ log (1 -D(G(k i )))

C (G)=-
1
n∑i = 1

n

log D(G(k i ))

(4)

where C (D) is the discriminator cost function, which aims to 
maximize the probability of correctly classifying real data as 
real and generated data as fake; and C(G) is the generator 
cost function, which aims to generate data that are classified 
as real by the discriminator.

B. Solution to Skewed Class Distribution

Unbalanced classification occurs when data are distributed 
unevenly among various classes, resulting in inconsistencies 
in the available data for each class. Training models with un‐

   Generate data
· Labelled data
· Unlabelled data

Prepare
input data

Extract feature
· Damping torque coefficient
· Mode shape

Scale physics-
aware feature 

(standardization)

Train DL-based
model

Use trained
DL-based model

Test DL-
based model

Fig. 2.　Block diagram of sequential steps of training process of proposed 
framework.
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Fig. 1.　Proposed framework for cyber attack detection and mitigation.

148



SAINI et al.: SECURING WIDE-AREA DAMPING CONTROLLER AGAINST CYBER ATTACKS USING SEMI-SUPERVISED GENERATIVE...

balanced data, where one class has more examples than an‐
other (more event data than attack data), can lead to a biased 
model that performs poorly on the minority class (attack 
class) due to the skewed class distribution [31]. To address 
this issue, class balancing techniques are used before train‐
ing the SSL-based method. The application of the class bal‐
ancing techniques leads to an improved performance of the 
SSL-based method. The class balancing technique involves 
generating synthetic data for the minority class using overs‐
ampling techniques. Researchers propose numerous oversam‐
pling techniques, such as synthetic minority based on the 
probabilistic distribution (SyMProD) technique [31], synthet‐
ic minority oversampling technique (SMOT) [32], mahalano‐
bis distance-based oversampling (MDO) technique [33], 
oversampling using propensity score (OUPS) technique [34], 
and SVM-based SMOT [35]. Moreover, a GAN variant, 
known as conditional GAN (CGAN), is also used to gener‐
ate data for the attack class.

C. Integration of Oversampling Techniques with SSGAN 
Model

In the proposed framework, the issue of unbalanced data 
is resolved by integrating the oversampling techniques with 
SSGAN model, as shown in Fig. 3. Limited minority data 
points are used to generate new samples with a similar distri‐
bution. The synthetic data are then combined with real data 
set for SSGAN model training. The SSL-based method utiliz‐
es a combination of labeled and unlabeled data during the 
training data process. The SSGAN model consists of a gener‐
ator and a discriminator, which is trained in supervised and 
unsupervised training modes. In unsupervised training mode, 
the discriminator distinguishes between real and fake sam‐
ples. While the supervised training mode focuses on the abil‐
ity of the discriminator to classify the samples into their re‐
spective class labels.

As shown in Fig. 3, the discriminator in supervised and 
unsupervised training modes is arranged in a stacked man‐
ner. We denote the discriminator in supervised training mode 
as the supervised discriminator (discriminator 1) and the dis‐
criminator in unsupervised training mode as the unsuper‐
vised discriminator (discriminator 2). The supervised discrim‐
inator is trained to classify the samples into M classes by as‐
signing the label to each sample x to give an M-dimensional 
vector of logits [l1l2...lM], which can be converted to class 
probabilities by applying the activation function. The unsu‐
pervised discriminator uses the same neural network as the 
supervised one, with the weights of the layers being reused. 
It is stacked on top of the output layer of the supervised dis‐
criminator just before the activation function. A normalized 
sum of exponential outputs is used as a custom activation 
function to predict the authenticity of real and fake samples, 
which can be given as:

ì

í

î

ï
ïï
ï

ï
ïï
ï

D(x)=
K(x)

K(x)+ 1

K(x)=∑
m = 1

M

exp (lm (x))
(5)

The SSGAN model involves augmenting the original data‐
set with extra samples generated by the generator, which in‐
creases the number of class labels from M to M + 1, where 
M + 1 is the newly added class label for the generated sam‐
ples. This modification compels the discriminator to identify 
which of the M + 1 classes the sample belongs to [36].

We set pmodel (y = (M + 1)|x) to be the probability that the 
given input x is fake. The overall loss function of the 
stacked discriminator for training the classifier can be given 
as:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïïï
ï

ï

ï

J =-Exy~pdata (xy) [log pmodel (y|x)]-

      Ex~G [log pmodel (y = (M + 1)|x)]= JS + JU

JS =-Exy~pdata (xy) [log pmodel (y|xy <M + 1)]

JU =-Ex~pdata( )x [log (1 - pmodel (y = (M + 1)|x))]+

         Ex~G [log pmodel (y = (M + 1)|x)]

(6)

where J is the overall loss; and JS and JU are the supervised 
loss and unsupervised loss, respectively.

In addition, JS is the cross-entropy loss, which is incurred 
from the predicted distribution over M classes. Meanwhile, 
JU consists of two separate terms. The first term in JU corre‐
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Fig. 3.　Architecture of integrating oversampling techniques with SSGAN model.
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sponds to the loss that arises from classifying real inputs, 
while the second term is associated with the loss incurred 
from classifying generated samples as fake. To achieve the op‐
timal solution, it is necessary to minimize both JS and JU to 
acquire exp(lm (x))=h(x)p(y= ix)"i<M+1 and exp(lM+1 (x))= 
h(x)pG (x) for any undetermined scaling function h(x), where 
p(y = ix) is the joint probability that a sample x belongs to 
class i; and pG (x) is the probability that the same sample x 
is produced by the generators (the fake-data distribution).

To enhance the performance of the SSGAN model, vari‐
ous oversampling techniques are integrated into it. The modi‐
fied models include SSGAN+SyMProD model, SSGAN+
OUPS model, SSGAN+MDO model, SSGAN+SVM-SMOT 
model, and CGAN+SSGAN model. Additionally, a compre‐
hensive comparison of the modified models with other state-
of-the-art (SOTA) methods is conducted. Three SSL-based 
methods (namely semi-supervised boosting (SemiB) [37], la‐
bel propagation (LP) [38], and semi-supervised SVM 
(S3VM) methods [39]) are considered in this study for com‐
parison. Furthermore, to ensure a fair comparison, the data 
balancing methods are also integrated with the base learners, 
which are LP+SyMProD model, SemiB+SyMProD model, 
LP+OUPS model, and SemiB+OUPS model.

V PHYSICS-AWARE FEATURES FOR FDI ATTACK DETECTION

A. MS

The MS is a complex vector that describes the phase an‐
gle and magnitude of the dominant LFO mode observed in 
the PMU measurements. During system disturbances, MS 
provides information about the most dominant LFO mode 
and which generator is contributing the most to it. MS for a 
particular inter-area mode can be obtained conventionally 
from eigenvalue analysis based on the system model. It is 
unique irrespective of the type and duration of faults. How‐
ever, it is affected to some extent by operational condition 
changes caused by line outages, generation outages, etc. Fur‐
thermore, when the cyber attack causes oscillation in the 
WADC system with a frequency different from the electro‐
mechanical mode, the MS may exhibit a peak magnitude. 
Additionally, at the bus where the WADC is installed, the 
phase angle will be leading. Therefore, the MS obtained for 
cyber attacks is different from those obtained for other pow‐
er system events. Hence, this can be a useful feature for the 
cyber attack detections in WADC system. However, if the in‐
jected signal frequency is the same as the electromechanical 
mode frequency, resonance is likely to be induced. Thus, the 
MS may bear resemblance to the one derived from eigenval‐
ue analysis. In such a case, the MS may not be useful for cy‐
ber attack detection, but this limitation is mitigated by utiliz‐
ing DTC. The MS can be tracked in real time through a 
spectral analysis technique that employs time-synchronized 
PMU data as input, specifically generator speed measure‐
ments [40]. The dominant LFO mode for MS computation is 
filtered out by wavelet synchrosqueezing transform [41]. The 
phase angle and magnitude are computed using cross-power 

spectral density (CPSD) and power spectral density (PSD) 
techniques, respectively. The relationship defined by (7) can 
be utilized to extract phase angle information among the gen‐
erators [40]. By simplifying (7), (8) is obtained to get phase 
angle information. The phase angle of all generators is calcu‐
lated with respect to a high mode observability reference 
generator signal at the frequency of dominant mode ωa. It is 

worth noting that lim
T®¥

1
T

E[|Za (ωa )|2 ] converges to a constant, 

where Za (ωa ) is the finite Fourier transform (FT) of the sig‐
nal zb (t) at frequency ωa; and T is the total time. In addition, 
Uab and Uac provide information about the bth and cth sig‐
nals in the ath mode in (7), respectively.

Ψbc (ωa )@UabUac lim
T®¥

1
T

E[|Za (ωa )|2 ] (7)

Ψbc (ωa )@ÐUac -ÐUab (8)

where Ψbc (ωa ) is the CPSD between two generator signals.
Now, we consider the special case (b = c), which corre‐

sponds to the PSD. Substituting b = c into (7) yields (9). The 
PSD is computed for each generator speed signal. The mag‐
nitude of the dominant mode presented in the generator 
speed signal is determined by (9). The PSD of each signal is 
scaled by the square of the magnitude |Uab|. Therefore, the 
PSD serves as a direct measure of the observability of the 
mode at the generator.

Ψbb (ωa )@ |Uab|
2 lim

T®¥

1
T

E[|Za (ωa )|2 ] (9)

The normalized estimated |Uab| is computed as:

|Uab| =
Ψbb

Ψnn

(10)

where Ψbb is the PSD for the generator under consideration; 
and Ψnn is the PSD of the reference generator at the mode 
frequency being estimated.

B. Damping Torque Coefficient (DTC)

The LFOs are associated with the dissipation and transmis‐
sion of oscillation energy flow in the network. In the electro‐
mechanical transients, the energy concept is used for the 
analysis of LFOs. There is a strong correlation between the 
energy consumption/production of equipment during an oscil‐
lation period and its DTC [42]. By leveraging the wide-area 
measurement system (WAMS) data at the control center, the 
oscillation energy flow is initially calculated, followed by 
the subsequent computation of the DTC based on the de‐
rived energy flow. The oscillation energy flow Woe between 
node o and node e is calculated by (11) and (12) [42]. We 
set W O

oe to be the oscillation component. In addition, W D
oe con‐

sists of the monotonic varying component pertaining to ener‐
gy production/consumption, which can be computed as (13).

Woy = ∫(PoydDθo +Qoyd(D ln Vo )) +

∫(2πPoydDfodt +DQoyd(D ln Vo )) (11)

Woe =W O
oe +W D

oe (12)
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W D
oe = ∫(DPoedDθo +DQoed(D ln Vo )) =

           ∫(2πDPoeDfodt +DQoed(D ln Vo ))

DPoe =Poe -Poes

D ln Vo = ln Vo - ln Vos

Dfo = fo - f0

DQoe =Qoe -Qoes

(13)

where subscripts o and e denote node o and node e, respec‐
tively; DP is the active power variation; DQ is the reactive 
power variation; Df is the frequency deviation; subscript s de‐
notes the steady-state value; and Dθo is the phase angle varia‐
tion.

For V, P, and Q, either per-unit or actual value can be se‐
lected. This selection may lead to the calculation results of 
W D

oe having different units. Additionally, the frequency devia‐
tion Dfo is selected in units of Hz.

Furthermore, W D
oe is composed of potential energy Wpot, ki‐

netic energy Wken, and generation/consumption energy Wgen.

W D
oe =Wken +Wpot +Wgen (14)

For monotonically varying Wgen, the difference of Wpot +
Wgen between two local minima l and m is:

(Wpotm +Wgenm )- (Wpotl +Wgenl )= (W D
oem -Wkenm )-

(W D
oel -Wkenl )=Wgenm -Wgenl =Wgenml (15)

where Wgenml is the energy dissipation/production from point 
tl to point tm; and Wkenl is the kinetic energy. If Wgenml > 0, 
the generator is consuming energy resulting in a positive 
damping effect. Conversely, if Wgenml < 0, the generator is 
adding energy to the network and has a negative damping ef‐
fect. By incorporating Wgenml and angular speed ω, DTC 
KDTC can be given as:

KDTC =
Wgenml

ω0∫
tl

tm

ω2 dt
=

(W D
oem -Wkenm )- (W D

oel -Wkenl )

ω0∫
tl

tm

ω2 dt
(16)

where ω0 is the rated speed deviation.

VI. EXPERIMENT SETUP AND EMPIRICAL EVALUATION 

A. Description of Test System

The two-area test system in Kundur consists of four gener‐
ators, as depicted in Fig. 4. The PDC receives the PMU mea‐
surement signals from different buses, which are then trans‐
mitted to the control center via the wide-area network. The 
WADC system takes the line power deviation of lines 7 and 
8 as input and transmits the generated control signal to gen‐
erator G4. The WADC system may be placed at the control 
center (centralized control) or near the actuator (decentral‐
ized). In the case of a centralized WADC system, both mea‐
surement and control signals are subject to cyber attacks, 
while in the decentralized WADC system, only measurement 
signals are targeted.

B. WADC Design Based on Mixed H2/H¥

The non-linear power system is linearized around an oper‐
ating point to obtain the state space model [43]. Then, the 
dominant inter-area mode is identified based on oscillation 
frequency and damping ratio. The WADC is designed using 
mixed H2/H¥ controller as it provides a balance between con‐
flicting requirements such as improved transient response 
and frequency domain performance. The linear matrix in‐
equality (LMI) method, implemented using MATLAB func‐
tion hinfmix, provides a natural framework for formulating a 
multi-objective H2/H¥ output feedback control with regional 
pole placement [43].

C. Model Architecture

The architectures of modified generator and discriminator 
networks with learning parameters are presented in Tables I 
and II, respectively. The architecture describes the structure 
of the model, while the learning parameters provide informa‐
tion about the training process. The first layer in the genera‐
tor network is the one-dimensional convolution (convention 
1D) layer, which takes random noise as input. The LeakyRe‐
LU activation function and max pooling layers with stride 
are used subsequently. The flatten is used for changing data 
dimension into an array, then fully connected hidden layers 
are used for deeper architectures with ReLU and LeakyRe‐
LU activation functions in the generator, and the last layer 
uses sigmoid, which provides the required data format for 
the discriminator. In the case of the discriminator network, 
the last layer of the supervised discriminator uses a sigmoid 
activation function with Adam optimizer algorithm parame‐
ter set at learning rate Lr = 0.002 and β = 0.5. While unsuper‐
vised discriminator uses a custom activation function with 
optimizer setting Lr = 0.0002 and β = 0.5.
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Fig. 4.　Two-area test system.
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D. Event and Attack Data

The proposed framework can handle partially available 
event and attack data. While the measured event data are 
generally available, adequate attack data may not be avail‐
able. Therefore, probing signals in the WADC measurement 
or control signals can be used to generate limited cyber at‐
tack scenarios. However, since probing signals cannot be 
used too frequently, the imbalance in event and attack cases 
can be addressed using the SVM-SMOT [35].
1)　Event Data

Various power system events, such as generator outage, 
line outage, single-line-to-ground fault, line-to-line fault, dou‐
ble-line-to-ground fault, and three-phase faults, are created 
for various operational conditions that consider generation-
load changes randomly within a ±20% range [16]. The vari‐
ous faults are created at 2 s and cleared at different time 
(Tclear = 2.012.052.102.15 and 2.20 s). Additionally, double-
circuit lines are created to replace single lines, and line out‐
age cases are generated. For generator outage cases, genera‐
tors G2 and G3 are tripped for different operational condi‐
tions. The total number of the generated cases for events is 
24735, out of which 5000 event cases are labeled and the 
rest are unlabelled.
2) Design and Execution of Probing Signal for Control/mea‐
surement Signals

Various types of probing signals, including sinusoidal, 
ramp, pulse, random, saw-tooth, and triangular attacks, are 
designed and injected into the control and measurement sig‐
nals [16], [27]. The steps for designing the signals are as fol‐
lows.

Step 1: for implementing covert attacks on control/mea‐
surement signals, the oscillation frequency of the probing 

signal is determined through Prony analysis of multiple mea‐
sured event data, which fall within the inter-area frequency 
range of 0.50-0.55 Hz for the two-area test system. The fre‐
quency of the injected probing signal is selected to match 
the inter-area mode at 0.51 Hz, the local modes at 1.00 Hz, 
and half of the inter-area mode frequency at 0.25 Hz 
[23], [27].

Step 2: during various events, the minimum and maxi‐
mum values of WADC signals are monitored , and the prob‐
ing signal is kept within this range, making the modeled at‐
tacks difficult to detect. Additionally, to simulate stealthy re‐
play attacks, recorded data from three-phase faults are used 
when there is no actual disturbance in the system.

Step 3: probing signals are injected under various opera‐
tional conditions to generate a data set that simulates the at‐
tack scenarios.

The probing signal is injected at 2 s and ends at 30 s. The 
labeled data include only 100 attack scenarios, which is rela‐
tively low, and there are just 2000 unlabeled attack instanc‐
es, which is significantly fewer than the event data.

E. Metrics for Evaluating Performance

The effectiveness of the proposed framework depends on 
its ability to accurately identify attacks while minimizing 
false alarms. To quantitatively evaluate the performance of 
all the base learners and modified models, several metrics 
are employed, including accuracy, F1-score [44], and Mat‐
thew correlation coefficient (MCC) [45]. A score approach‐
ing 1 for each metric is desirable, indicating that the model 
performs exceptionally well for attack detection. Four param‐
eters are used to calculate these metrics: true positive TP, 
true negative TN, false positive FP, and false negative FN.

The MCC in [45] is used for quantifying the correlation 
between the predicted value and true value. The use of MCC 
showcases the reliability of the classifier. This metric yields 
additional insights into the performance of the base learners 
and modified models for unbalanced data beyond traditional 
measures such as accuracy and F1-score. The MCC is mathe‐
matically defined as:

MCC =
TP ´ TN -FP ´FN

(TP +FP)(TN +FP)(TP +FN)(TN +FN)
(17)

F. Analysis and Comparison of Experimental Results 

To evaluate the impact of training data composition, fif‐
teen distinct training scenarios (S1 to S15) are generated us‐
ing random sampling from the event and attack database. 
This allows us to investigate the effectiveness of the pro‐
posed framework under varying training scenario characteris‐
tics. However, it creates an uneven distribution of events and 
attacks in the training data, ultimately affecting the training 
of all the base learners and modified models. To ensure an 
accurate evaluation of the performance of all the base learn‐
ers and modified models, the unseen samples of the test set 
remain consistent across all scenarios. These cases allow for 
the examination of the performance of the base learners and 
modified models under operational conditions of limited la‐
beled data and an unbalanced distribution of attacks and 
events. The proportion of attack and event class data in the 

TABLE II
ARCHITECTURE OF DISCRIMINATOR NETWORK 

Layer configuration details

Dense+LeakyReLU (α = 0.2)

Dense+LeakyReLU (α = 0.2)

Dense+LeakyReLU (α = 0.2)

Dense+ReLU (α = 0.2)

Dropout layer (α = 0.2)

Dense

Output dimension

20

15

10

5

5

1

TABLE I
ARCHITECTURE OF GENERATOR NETWORK 

Layer configuration details

Convolution1D (32 filter, size 3)+LeakyReLU (α = 0.2)

Maxpooling1D (size 2, stride 2)

Convolution1D (25 filter, size 2)+LeakyReLU (α = 0.2)

MaxPooling1D (size 2, stride 2)

Flatten

Dense+ReLU (α = 0.2)

Dense+ReLU (α = 0.2)

Dense+LeakyReLU (α = 0.2)

Dense+sigmoid

Output dimension

9832

4932

4825

2425

600

15

18

12

10
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unlabeled training data set varies between two cases: case 1 
and case 2.

Case 1: the unlabeled training data set consists of 20% at‐
tack data and 80% event data.

Case 2: the unlabeled training data set consists of 30% at‐
tack data and 70% event data.

The resulting combination of labeled and unlabeled data 
sets is used to train all models to evaluate their performance.
1) Case 1

The objective of the test is to evaluate the performance of 
all base learners and modified models with physics-aware 
features and determine the impact of various oversampling 
techniques. Various models demonstrated promising perfor‐
mance across 15 scenarios. The accuracy comparison depict‐
ed in Fig. 5 demonstrates that the SSGAN+SVM-SMOT 
model outperforms the baseline classifiers in the maximum 
scenarios. In the heat map, yellow indicates higher perfor‐
mance of the model for a specific case, while green repre‐
sents weaker performance. Specifically, the SemiB, LP, and 
LP-OUPS models achieved an average test accuracy of 
0.7670, 0.7787, and 0.7827, respectively. The SSGAN, SS‐
GAN+OUPS, and SSGAN+MDO models achieved an accu‐
racy of 0.8660, 0.8997, and 0.8910, respectively, while the 
SSGAN+SVM-SMOT model provides an even higher accura‐
cy of 0.9094. The heat map of F1-score among various mod‐
els across fifteen scenarios (case 1) is shown in Fig. 6. 
SemiB model achieves an average F1-score of 0.7760, and 
SSGAN+OUPS model achieves that of 0.8676, while the SS‐
GAN+SVM-SMOT model exhibites a superior F1-score of 

0.8812. The MCC metric is employed to evaluate overall 
performance of the models concerning both attack and event 
classifications, and the results are shown in Fig. 7. It has 
been observed that the SSGAN+SVM-SMOT model shows 
the highest average MCC of 0.8177. These comparative anal‐
yses indicate the efficacy of SSGAN+SVM-SMOT model in 
detecting attacks across fifteen scenarios. The obtained re‐
sults emphasize the critical importance of having a sufficient 
number of data points during the training process. The inte‐
gration of oversampling techniques, such as SVM-SMOT, en‐
ables the generation of synthetic data points, effectively in‐
creasing the quantity and diversity of the training.

LP+OUPS model; SSGAN+SYMPROD model

SSGAN modelLP+SYMPROD model; SemiB+OUPS model;
SemiB model;LP model;S3VM model; SSGAN+OUPS model

SSGAN+MDO model; SemiB+SYMPROD model
CGAN+SSGAN model; SSGAN+SVM-SMOT model
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Fig. 5.　Accuracy comparison among various models across fifteen scenari‐
os (case 1).
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Fig. 6.　Heat map of F1-score among various models across fifteen scenarios (case 1).
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Fig. 7.　Heat map of MCC among various models across fifteen scenarios (case 1).
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2) Case 2
The objective of the test is to evaluate and compare the 

performance of various models as the proportion of actual at‐
tack data increased to 30% in the training data set. The accu‐
racy in case 2 for various models is illustrated in Fig. 8.
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Fig. 8.　Accuracy comparison among various models across fifteen scenari‐
os (case 2).

It can be observed that the baseline classifier models, in‐

cluding SemiB model (0.7522), LP+SyMProD model 
(0.8409), SemiB+OUPS model (0.8084), SSGAN+OUPS 
model (0.9637), and SSGAN+MDO model (0.9629) exhibit 
low average performance while the SSGAN+SVM-SMOT 
model provides 0.9633. The corresponding heat map of F1-
score among various models across fifteen scenarios (case 2) 
is depicted in Fig. 9. It can be observed that the SSGAN+
SVM-SMOT model achieves an average F1-score of 0.9579. 
The heat map of MCC among various models across fifteen 
scenarios (case 2) is presented in Fig. 10. 

Interestingly, the average scores of baseline models are 
SemiB+SyMProD model (0.7612), SSGAN+OUPS model 
(0.9280), and SSGAN+MDO model (0.9258) while the SS‐
GAN+SVM-SMOT model achieves the highest average 
score of 0.9278. These results confirm that increasing the 
number of actual attack data points and subsequently generat‐
ing artificial samples lead to an improvement in the perfor‐
mance of all base learners and modified models. Additional‐
ly, the F1-score and MCC increase for certain models like 
SSGAN-OUPS model due to the expanded training dataset 
with more attack samples. However, the SSGAN+SVM-
SMOT model maintains consistent performance across both 
cases with low and high attack samples.

G. Real-time HIL Test Analysis

The HIL cyber-physical testbed depicted in Fig. 11 is used 
to validate the proposed framework by using an OPAL-RT 
simulator (model OP5707XG) test bench. System parameters 
are identical to those used in the MATLAB/Simulink simula‐

tion. The experimental evaluation provides a real-time plat‐
form for analysis that incorporates delays and errors, which 
are absent in offline MATLAB simulations. The RT-Lab soft‐
ware is utilized for real-time interaction with the simulator. 
In this setup, the Schweitzer Engineering Laboratories (SEL-
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Fig. 9.　Heat map of F1-score among various models across fifteen scenarios (case 2).
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Fig. 10.　Heat map of MCC among various models across fifteen scenarios (case 2).

154



SAINI et al.: SECURING WIDE-AREA DAMPING CONTROLLER AGAINST CYBER ATTACKS USING SEMI-SUPERVISED GENERATIVE...

2407) GPS clock is used to synchronize devices with coordi‐
nated universal time (UTC) by directly connecting to the 
Oregano syn1588-PCIe card in OPAL-RT simulator and the 
SEL-421 PMU using an inter-range instrumentation group 
time code-B (IRIG-B) signal. The SEL-421 PMU is used to 
transmit synchrophasor measurements to the local PDC. The 
SEL-3350 real-time automation controller (RTAC) acts as 
the local PDC and receives synchrophasor data according to 
the IEEE C37.118 standard. The NS-3 is utilized to emulate 
the communication infrastructure of a wide-area network. By 
utilizing the Linux kernel networking subsystem with the 
NS-3 tap bridge feature to connect NS-3 substation gateways 
(local PDC) with the control center application (super PDC). 
The measurement data are directed via NS-3 to the super 
PDC, in this case, OpenPDC. Similarly, NS-3 is also de‐
ployed to create wide-area network communication between 
the control center and the actuator. This arrangement allows 
for the introduction of time delays in the data transmission 
path, both on the measurement side between the local PDC 
and super PDC and on the control signal side between Open‐
PDC and the actuator. The time delays considered range 
from a minimum of 60 ms to a maximum of 600 ms [46]. 
The wireshark packet analyzer (Pcap) is used to verify the 
received data packets by OpenPDC following the IEEE 
C37.118 protocol. In real time, data are saved in a CSV file 
format, and a Python script is executed to calculate the 
WADC control signal for the proposed framework online. 
Subsequently, the calculated control signal is transmitted to 
the actuator simulated in the OPAL-RT simulator via NS-3.

The trained SSGAN+SVM-SMOT model is deployed to 
the OpenPDC system (control center) to detect cyber attacks. 
To illustrate, a sinusoidal attack is executed at 1 s on the 
line power flow deviation of lines 7 and 8 (measurement sig‐
nal), and the control signal is sent to G4. The test system 
shows sustained oscillations and moves toward instability. 
But when the proposed framework is implemented, the at‐
tack is detected, and a new set of measurement and control 
signals is selected. The input to the controller is changed to 
the power flow in lines 8 and 9, and the control signal is 
given to G3, which compensates for the adverse effect 

caused by the attack, as shown in Fig. 12.

H. Performance on IEEE 16-machine 68-bus System
To further investigate the practicality of the proposed 

framework in a more complex power system, the tests are 
carried out on the IEEE 16-machine 68-bus test system [47]. 
There are three poorly damped inter-area modes, with fre‐
quencies of 0.514, 0.620, and 0.780 Hz, respectively. The 
generators that have the highest involvement in these modes 
are G13, G14, and G15. WADC is designed with active pow‐
er flow measurements from lines 9-29, 13-17, 14-41, 16-18, 
and 54-1 as its inputs, and G3, G9, G13, G14, and G16 as 
the actuator plants. The SSGAN+MDO and SSGAN+SVM-
SMOT models are implemented with physics-aware features 
to assess the efficacy of cyber attack detection. The results 
of unbalanced data cases are presented in Table III. From 
the table, it can be observed that SSGAN+SVM-SMOT mod‐
el achieves the highest accuracy of 97.04%, with an F1-
score of 96.54% and an MCC score of 94.04%.

VII. CONCLUSION 

The conclusions of this paper are summarized as follows.
1) The CyResWadc system framework is proposed to de‐

tect and mitigate FDI attacks. The proposed framework uses 
an SSGAN model integrated with SVM-SMOT for the at‐
tack detection.

2) SVM-SMOT synthesizes new data instances by sam‐
pling along the decision boundary. It uses few nearest neigh‐
bors and applies interpolation or extrapolation depending on 
the density of the majority class data points around it. As a 
result, the SVM-SMOT generates realistic synthetic samples 
and ensures unbiased model training.

3) Probing signals are used to generate measurements that 
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OpenPDC system 
(control center)

Switch

OPAL-RT simulator
(model OP5707XG)

Oregano syn1588-PCIe

(front view)

Local PDC
(RTAC)

Network
simulator

RT-Lab software
(host PC)

Fig. 11.　Implementation of proposed framework in HIL cyber-physical test‐
bed utilizing OPAL-RT simulator .
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TABLE III
RESULTS OF UNBALANCED DATA CASES

Model

SSGAN+MDO 
model

SSGAN+SVM-
SMOT model

SSGAN+MDO 
model

SSGAN+SVM-
SMOT model

Case

Case 1 
(20%-80%)

Case 1 
(20%-80%)

Case 2 
(30%-70%)

Case 2 
(30%-70%)

Accuracy

0.8859

0.8924

0.9632

0.9704

F1-score

0.8449

0.8580

0.9536

0.9654

MCC

0.7743

0.7854

0.9258

0.9404

155



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 14, NO. 1, January 2026

resemble attack scenarios required for the SSL-based method 
training. It eliminates the need for actual attack data, which 
may not be possible to obtain at present.

4) The SSGAN+SVM-SMOT model is evaluated against 
existing models that incorporate oversampling techniques. 
The performance of the proposed framework has been vali‐
dated in two-area and IEEE 16-machine 68-bus test systems. 
Real-time evaluation on a developed HIL cyber-physical test‐
bed validates that the proposed framework effectively de‐
tects and mitigates attacks while maintaining system perfor‐
mance within acceptable limits.
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