
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 14, NO. 1, January 2026

Hierarchical Dispatch of Multi-type Virtual 
Power Plants for Enhancing Resilience of 

Power Systems Under Wildfires
Haoyang Yin, Student Member, IEEE, Dong Liu, Senior Member, IEEE, and 

Jiaming Weng, Member, IEEE

Abstract——The uncertainty and variability of advancing wild‐
fires present significant challenges to the resilience of power sys‐
tems. This paper proposes a hierarchical dispatch strategy of 
multi-type virtual power plants (VPPs) for enhancing resilience 
of power systems under wildfires, which encompass geographi‐
cally distributed VPPs (GDVPPs) based on Internet data cen‐
ters (IDCs) and geographically concentrated VPPs (GCVPPs) 
that aggregate flexible loads (FLs). The proposed strategy en‐
hances resistance to wildfire-induced uncertainties by facilitat‐
ing coordinated operations between these two types of VPPs. At 
the upper level, an improved maximum flow model is intro‐
duced to quantify the dynamic changes in the workload trans‐
fer capability of IDC (WTCI) under wildfire conditions, and sto‐
chastic model predictive control (SMPC) is employed to per‐
form rolling optimization of generator outputs, IDC workload 
transfers, and load shedding, thereby minimizing the total regu‐
lation costs. Based on the load shedding instructions from the 
upper level, the lower level integrates GCVPPs to provide load 
curtailment services, effectively offsetting the load shedding 
power. Subsequently, the lower level feeds back the load re‐
bound (LR) resulting from these load curtailment services to 
the upper-level strategy, serving as a basis for its rolling optimi‐
zation. The SMPC integrates an event-driven deductive model 
to address the fine-grained modeling of the operational state, ef‐
fectively overcoming challenges posed by discrepancies in simu‐
lation time steps arising from power system cascading failures, 
variations in IDC adjustment capacity, and LR effects. Finally, 
a modified 39-bus power system, integrated with an 8-bus IDC 
network, is used as a case study to validate the effectiveness of 
the proposed strategy.

Index Terms——Wildfire, hierarchical dispatch, cascading fail‐
ure, virtual power plant, data center, flexible load, resilience.

NOMENCLATURE

A. Indices and Sets

ΩG ΩI ΩV Sets of generators, loads, and data centers 
(DCs)

ΩW
t  Ω

H
t Sets of wind and sequential hybrid system op‐

erational state (SHSOS) scenarios during peri‐
od t

ΩL
t  Ω

O
t Sets of lines and optical fibers during period t

ξ Set of events
H, W Numbers of elements in ΩH

t  and in ΩW
t

g, u, k Indices of generators, electric vehicles (EVs), 
and events

i, j Indices of buses
n, h, w Indices of dispatch periods, SHSOS scenarios, 

and wind scenarios
t Timescale of wildfire spread and dispatch peri‐

od
t′ Timescale characterizing temperature rise and 

charging dynamics of flexible loads (FLs)
Dt′ Dt Durations of timescales t′ and t
U, N Number of EVs within a geographically con‐

centrated virtual power plant (GCVPP) and 
number of periods in one prediction horizon

Wtv, Wtd Target numbers of wind speed and wind direc‐
tion scenarios

B. Variables

δmax
tiw The maximum amount of workload that DC 

connected to bus i can handle during period t 
in scenario w

θtih θtjh Voltage phase angles of buses i and j during 
period t in scenario h

C G
t , C D

t , C I
t Costs of generator adjustment, workload trans‐

fer, and load shedding during period t
dw Euclidean distance in scenario w
ftijw Workload flow of Oij during period t in sce‐

nario w
f max

tij The maximum workload flow of Oij during 
period t

Pij Power flow on Lij
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P GU
tgh P

GD
tgh Increase and decrease of outputs of generator 

g during period t in scenario h for up and 
down regulations

P DU
tih P

DD
tih Power transferred in and out from DC con‐

nected to bus i during period t in scenario h 
for up and down regulations

DP I
tih Load shedding power of bus i during period t 

in scenario h
P I

tih Load power of bus i during period t in scenar‐
io h

DP V
tih Load curtailment power by GCVPP during pe‐

riod t in scenario w
DP E

tu Charging power adjustment of EV u during pe‐
riod t

DP I
tiw Load shedding power received by bus iw

DP V
tiw Load curtailment power by GCVPP in sce‐

nario w

P rbdV
t′iw Rebound power of GCVPP connected to bus i 

during period t′ in scenario w
P G

tgh P
G
t - 1gh Outputs of generator g during periods t and 

t - 1 in scenario h
qfxw

tij  Radiative heat flux produced by a wildfire on 
Lij and Oij in scenario w during period t

t oglV
iw  t rbdV

iw Termination time of original load (rebound ini‐
tiation time) and GCVPP connected to bus i in 
scenario w

C. Parameters

α(kw) Value corresponding to event k in scenario w

βw
ij (×) Thermal inertia coefficient during temperature 

rise process of Lij in scenario w
γG, γD, γI Cost coefficients of generator adjustment, 

workload transfer, and load shedding
ξ(k) σ(k) Type identifier and activation criterion of 

event k
ηu Eu Rated discharging efficiency and capacity of 

EV u
λtijw State of Oij during period t in scenario w that 

equals 1 for intact case and 0 for failure
ρ μ Vegetation factor and terrain factor

ξWFL, ξWFO, Wildfire-induced line fault, optical fiber fault,
ξOF  ξLS, ξLR overload disconnection, load-shedding, and 

load rebound (LR) events
1(×) Indicator function

Γ(×) Functional relationship among wind scenario 
w, LR, and SHSOS

εw (×) Thermal growth coefficient during tempera‐
ture rise process of overloaded line in scenario 
w

εf
tw Flame emissivity during period t in scenario w
γPw

tij  γ
Dw
tij View angles between flame and Lij or Oij dur‐

ing period t in scenario w
C P

ij, C
D
ij Heat capacities of Lij and Oij

F Pw
t′ij, F

Dw
t′ij Net heat fluxes absorbed by Lij and Oij during 

time t′

Gtw G′tw Original and expanded graphs during period t 
in scenario w

gw Generator that needs to reduce output to 
maintain power balance in scenario w

LijOij Transmission line between buses i and j and 
optical fiber between DCs connected to buses 
i and j

M E
tu State of charge (SOC) margin indicator of EV 

u during period t

M P
ij  M

D
ij Unit masses of Lij and Oij

ow
r (k) Object that processes event in scenario w

P bE
u  Original charging/discharging power of EV u 

P I
ti DP I

ti Load power and load shedding power of bus i 
during period t

P ID
ti , P

PK
ti Idle and peak power consumptions of DC con‐

nected to bus i during period t

P̄ c
u  P̄

d
u The maximum charging and discharging pow‐

er of EV u

P̄ij The maximum limit of active power of Lij

DP E
tu Charging power adjustment of EV u during pe‐

riod t

qpw
tij q

sw
tij Heat gain rates of ohmic loss, solar heat,

qcw
tij q

rw
tij and convective and radiative heat dissipations 

for Lij and Oij during period t in scenario w

qfw
t'ij Heat gain rate from fire during period t′ in sce‐

nario w

RD
g  R

U
g Down- and up-ramping limits of generator g

r Pw
tij  r

Dw
tij Distances between wildfire and Lij or Oij dur‐

ing period t in scenario w

S exp
u Expected SOC of EV u at time t out

u

S outE
u SOC of EV u at time t out

u

S E
tu SOC of EV u at the initiation time of period t

t sPw
ij  t sDw

ij Time when wildfire approaches vicinity of Lij 
and Oij in scenario w

t fPw
ij  t fDw

ij Time required for Lij and Oij to be damaged 
by wildfire after it reaches their vicinity in sce‐
nario w

t ow
ij Time when Lij transitions into an overloaded 

state in scenario w

t cw
ij Time required for Lij to transition from over‐

load to trip in scenario w

T Pmax
ij  T Dmax

ij Temperature limits for Lij and Oij

T Pw
t′i.j  T

Dw
t′i.j Temperatures of Lij and Oij at time t′ in sce‐

nario w

T f
tw L

f
tw Flame zone temperature and length during pe‐

riod t in scenario w

t w
g (k) Time when event occurs in scenario w

T E
t′ Ambient temperature at time t′

T Cw
t′ij Initial temperature of overloaded line at time t' 

in scenario w

t in
u  t

out
u Connection time and disconnection time of 

EV u

ta tb Failure occurrence time and end time
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t fxw
ij Time required for xw

ij to be damaged by wild‐
fire after reaching vicinity

Uw Number of EVs selected to provide load cur‐
tailment service in scenario w

utw ϕtw Wind speed and direction during period t in 
scenario w

V V′ Original and expanded vertex sets
v Super-sink node
xw

ij Damaged line or optical fiber connected to 
buses i and j in scenario w

I. INTRODUCTION

IN recent years, there has been an increase in both the fre‐
quency and intensity of wildfires [1]. During wildfire 

propagation, the fire may unexpectedly cause transmission 
lines to fail sequentially. The power flow of these failed 
lines is then redistributed to other lines. When a surge in 
power flow exceeds the capacity of the remaining lines, it 
may induce overloading and triggers cascading failures [2], 
[3]. To mitigate this risk, it is imperative to prioritize opera‐
tional strategies that enhance the resilience of the power sys‐
tem against wildfires.

Currently, numerous studies in the literature investigate 
methods to mitigate the impact of wildfires on power sys‐
tems. To account for the impact of radiative and convective 
heat released during the propagation of wildfires on transmis‐
sion lines, a dynamic line rating model is proposed in [4] to 
predict the disconnection time of the lines due to wildfires. 
Reference [5] further considers the influence of uncertainty 
in solar radiation, wind speed, and direction on the propaga‐
tion trajectory of wildfires. Reference [6] proposes a probabi‐
listic proactive generation re-dispatch strategy to enhance the 
operational resilience of power systems under wildfires. 
However, this strategy fails to address the critical impact of 
transmission line overloads on cascading failures. Reference 
[7] proposes a double-time-dimension process constraint that 
enables power system operators to consider the correlation be‐
tween extreme weather events and cascading overload failures 
in their optimization decisions. However, owing to the stochas‐
tic nature of wind patterns in wind direction and the random 
fluctuations in wind speed, errors in the predicted wildfire tra‐
jectory are inevitable, and as the time horizon extends, these 
errors increase significantly [8]. The increased prediction er‐
rors may result in the open-loop optimization strategy pro‐
posed in [7] deviating from actual fault scenarios, thereby lead‐
ing to considerable degradation in resilience performance.

Stochastic model predictive control (SMPC) is an ad‐
vanced control technology designed to effectively address 
the uncertainties and variabilities in power system dispatch 
[9]. Rolling prediction values are utilized in SMPC to dy‐
namically optimize generator outputs in real time, mitigating 
cascading overloads arising from prediction errors by re-dis‐
patching generators in real time. However, the relatively 
slow ramp rate of generators, combined with the rapid trip‐
ping of severely overloaded lines, reduces the feasibility of 
overload control based on re-dispatching of generators in 
practical applications [10]. Although conventional emergency 

overload control (EOC) including generator tripping and 
load shedding prevents rapid tripping, it inevitably results in 
significant load losses [11]. An emerging method is to con‐
vert downstream microgrids on overloaded lines into a pre-
planned islanding mode, which reduces the load losses in 
EOC [12]. However, the scarcity of well-established mi‐
crogrids hinders the widespread adoption of this method.

Fortunately, multi-type virtual power plants (VPPs) are 
widely distributed throughout power systems [13]. Given the 
geographically dispersed distribution of data centers (DCs), 
this paper refers to Internet data centers (IDCs) as geographi‐
cally distributed VPPs (GDVPPs). GDVPPs swiftly adjust 
the power flow distribution within power systems by trans‐
ferring workloads across various DCs [14]. Hence, integrat‐
ing GDVPPs with generators into the dispatch framework en‐
hances the capacity of the power system to mitigate over‐
loads in time. This integration reduces the reliance on EOC. 
Reference [15] develops a workload power model for DCs 
using piecewise linearization to quantify the workload trans‐
fer capability of IDCs (WTCI). A transmission congestion 
management method based on IDCs is proposed in [16]. 
However, this method assumes that the IDC topology re‐
mains static over time and overlooks the coupling relation‐
ship between the IDC topology and WTCI. Consequently, it 
is inadequate for the scenarios discussed in this paper, where 
the IDC topology evolves over time [17].

On the other hand, flexible loads (FLs) on the user side 
such as electric vehicles (EVs) and air conditioners (ACs) 
demonstrate significant potential in offering load curtailment 
services to offset the load shedding power in EOC [18]. 
Since these FLs are geographically concentrated within a dis‐
tribution network, the VPP formed by them is referred to as 
a geographically concentrated VPP (GCVPP). In [19], a bi‐
level dispatch strategy involving EVs and energy storage is 
proposed to enhance the resilience of the electricity-gas sys‐
tem against winter storms. Based on a two-stage stochastic 
optimization framework, a frequency-constrained unit com‐
mitment model is developed in [20] to schedule generation 
and FLs to prevent extensive load shedding caused by ex‐
treme weather. Nonetheless, the load rebound (LR) effect 
that follows load curtailment services leads to a surge in 
power load. This surge threatens the stable operation of the 
power system during subsequent periods [21]. To address 
this, dynamically refreshed load baselines are used in [22] to 
capture the LR effects and integrate them into the look-
ahead scheduling scheme. The states of load baselines, as 
well as the power system topology and WTCI over continu‐
ous periods, can be defined as sequential hybrid system oper‐
ational state (SHSOS) to better describe the sequential im‐
pacts of wildfires. However, the frequency of load baseline 
variations significantly differs from the rate of changes in 
power system topology and WTCI induced by wildfires. 
Therefore, traditional fixed-time-step refresh rates cannot ac‐
curately predict the future system operational states.

In summary, current research on utilizing multi-type VPPs 
to reduce load losses caused by cascading overload failures 
under wildfires reveals three gaps:

1) Existing resilience operation strategies based on proac‐
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tive generator scheduling and EOC lack interference resis‐
tance, leading to significant load loss during cascading fail‐
ures caused by errors in predicted wildfire trajectories.

2) The impact of wildfire-damaged fiber optics on the 
time-varying characteristics of WTCI in mitigating line over‐
loads remains unexplored.

3) Due to the frequency differences in changes among 
these elements within SHSOS, traditional fixed-time-step 
simulation techniques are inadequate for the dynamic deduc‐
tion of SHSOS, thereby reducing the accuracy and efficacy 
of optimization decisions.

To bridge the above gaps, this paper proposes a novel hier‐
archical dispatch strategy of multi-type VPPs to enhance the 
interference resistance and robustness of resilience operation‐
al strategies against the uncertainties of wildfire trajectories. 
The major contributions of this paper are summarized as fol‐
lows.

1) IDCs and FLs are integrated into the proposed hierar‐
chical dispatch strategy. At the upper level, beyond the se‐
quential re-dispatch of generators, the rapid adjustment of 
power flow within the power system is facilitated by sequen‐
tially transferring workloads within IDCs, mitigating EOC re‐
quirements caused by errors in the predicted wildfire trajecto‐
ry. At the lower level, the load curtailment services provided 
by FLs further mitigate the costs associated with load shed‐
ding in EOC.

2) An improved maximum flow model is proposed for the 
first time to quantify WTCI during sequential periods. This 
model quantifies the dynamic correlation characteristics be‐
tween wildfire trajectories and WTCI, providing support for 
formulating look-ahead workload transfer strategies, and ful‐
ly harnessing the potential of IDCs to block cascading fail‐
ures.

3) An event-driven deductive model for SHSOS is pro‐
posed and integrated into the SMPC framework. Based on 
real-time refreshed SHSOS, the upper level transmits the op‐
timized load shedding results to the lower level, which 
serves as triggering commands for LR evaluation. Subse‐
quently, the lower level provides feedback on the results of 
LR back to the upper level. This feedback acts as a trigger‐
ing condition for the evolution of SHSOS. Through this itera‐
tive feedback mechanism, coordinated optimization of multi-
type VPPs is achieved.

The remainder of this paper is organized as follows. Sec‐
tion II presents the operational mechanisms of hybrid sys‐
tems under wildfires. Section III presents an overview of the 
proposed hierarchical dispatch strategy. Section IV presents 
the event-driven deductive model for SHSOS. The principles 
and implementation of the proposed hierarchical dispatch 
strategy are presented in Section V. Section VI discusses the 
case study to verify the proposed strategy. Conclusions and 
future work are given in Section VI.

II. OPERATIONAL MECHANISMS OF HYBRID SYSTEMS 
UNDER WILDFIRES 

Figure 1 illustrates the typical structure of hybrid system 
under wildfires, which comprises the power system, GDVPP, 

and GCVPP. The operational mechanisms of hybrid system 
in responding to wildfires are discussed from four aspects.

1) The red circles in Fig. 1 indicate wildfires. As Fig. 1 
shows, the progressing wildfires sequentially damage an in‐
creasing number of transmission lines and optical fibers, pos‐
ing a risk of wildfire-triggered cascading overload failures. 
The power system needs to proactively schedule generator 
output, allowing GDVPP and GCVPP to quickly eliminate 
overloaded lines with the minimal load shedding costs.

2) As shown by the GDVPP region in Fig. 1, GDVPP al‐
ters the power flow distribution within the power system to 
alleviate overload issues by transferring workloads between 
DCs. However, since fiber optics may also be impacted by 
wildfires, it is crucial to consider the time-varying character‐
istics of WTCI to fully realize the potential of GDVPP in 
mitigating overloads.

3) The GCVPP in Fig. 1 exhibits the ability to aggregate 
FLs on user side, implement demand response strategies, 
and provide load curtailment services.

4) Furthermore, it has been reported that wildfires often 
exhibit sudden shifts in their trajectories [23], as indicated 
by the red dashed circles in Fig. 1. The prediction errors in 
wildfire-triggered cascading overload failures and multi-peri‐
od WTCI predictions pose a significant challenge for power 
system operators in formulating effective dispatch strategies.

III. OVERVIEW OF PROPOSED HIERARCHICAL DISPATCH 
STRATEGY 

This section introduces an overview of the proposed hier‐
archical dispatch strategy in Fig. 2 to address the aforemen‐
tioned challenges with specific details, which will be elabo‐
rated below.

Workload transfer Transmission line damaged by wildfire;

Predicted trajectory of wildfireActual trajectory of wildfire; 

GDVPP

……

……

……

GCVPP…

…

…

GCVPP

Distribution
network 

Optical fiber damaged by wildfire; SwitchOptical fiber;
EV; AC;DC; Breaker; Load

G

G

G

Overload transmission line triggered by wildfire; GeneratorG

Fig. 1.　Typical structure of hybrid system under wildfires.
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A. Interrelationship Among SMPC, SHSOS, and Upper Level

As shown in Fig. 2, in the optimization process, SMPC 
operates with a time step of Dt and defines the optimization 
horizon as {tt + 1t +N}. During period t, the power sys‐
tem operator uses the current sampling values as initial con‐
ditions to calculate the prediction values during each period 
within the optimization horizon. Based on the probability 
density functions of wildfire prediction errors, multiple sce‐
narios are selected to obtain a certain number of discrete sce‐
narios [24].

During period t, the power system operator applies these 
scenarios to the event-driven deductive model to obtain dis‐
crete scenarios that capture changes in SHSOS. These scenar‐
ios incorporate the power system topology, WTCI, and load 
information. Then, the power system operator employs these 
scenarios in a closed-loop hierarchical optimization to deter‐
mine the power regulation plan for the optimization horizon. 
Only the decisions made for the current period t are actually 
executed, while the other results during [t + 1t +N] are updat‐
ed by the next optimization with the horizon [t + 1t +N + 1]. 
At the next sampling moment, the prediction results are cor‐
rected based on the latest measurement values, and this opti‐
mization process is repeated [25].

B. Interaction Mechanism Between Upper and Lower Levels 
of Proposed Hierarchical Dispatch Strategy

The upper level incorporates constraints based on SHSOS 
scenarios, aiming to minimize comprehensive regulation 
costs by optimizing generator re-dispatch power, IDC work‐
load transfer strategies, and load shedding strategies. At the 
lower level, GCVPPs implement load curtailment services 
according to the load shedding power issued by the upper 
level, aiming to maximize the offset of load shedding de‐
mand. In the process of optimizing load curtailment instruc‐
tions, GCVPPs fully consider the electrical demand of FLs 
and calculate the maximum regulation capacity during the 
current period t based on the data provided by FLs. Load 
curtailment instructions are decomposed, and the resulting 
LR power is uploaded to the upper level to refine SHSOS 
scenario dynamics.

IV. EVENT-DRIVEN DEDUCTIVE MODEL FOR SHSOS 

A. Uncertainty Modeling

The wind speed υt and direction ϕt are modeled as uncor‐
related random variables following Weibull and von Mises 
distributions, respectively. Latin hypercube sampling gener‐
ates the initial scenarios by dividing each probability distri‐
bution into equal intervals, sampling within each interval, 
and applying inverse transformation. To alleviate the compu‐
tational burden, a synchronous backward reduction technique 
eliminates the number of scenarios. For each scenario w, the 
probability-weighted distance Dw =min{πwdw (ww' )} to its 
nearest neighbor w' is computed. The scenario minimizing 
πw Dw is removed, and its probability is assigned to w'. This 
iterates until reaching the target scenario counts Wtv and 
Wtd. The total wind scenarios during period t are ΩW

t =Wt =
WtvWtd with combined probability πw = π

v
wπ

d
w. Here, ΩW

t  dy‐
namically updates using real-time data to reflect uncertain‐
ties in SMPC optimization.

B. Impact of Wildfires on Topology of Power Systems and 
IDC Network

According to [5], in the wind speed and wind direction 
combination scenario w, the distance between the wildfires 
and the affected transmission lines or optical fibers is ex‐
pressed as:

r xw
t + 1ij = r xw

tij(1 + μ 1 + υtw

ρ
cos(ϕtw )Dt )     x =PD (1)

When the wildfire spreads beneath the affected transmis‐
sion lines or optical fibers, the radiative heat flux emitted 
from the wildfire to these components is calculated accord‐
ing to [4] as:

qfxw
tij =

αfεf
tw B(T f

tw )4

2
sin(tan-1 A)    x =PD (2)

where A is a geometric factor defined as:

A =
Lf cos(γxw

tij )

r xw
tij - Lf sin(γxw

tij )
 x =PD (3)

The flame characteristics (εf
tw, γPw

tij, γ
Dw
tij , T f

tw, and Lf
tw) de‐

pend on fuel properties, combustion dynamics, and ambient 

Upper level

Rolling reduction
module

Rolling reduction
module

Rolling optimization

Output load shedding instruction

Load shedding instruction Update of load power
considering LR

Rolling updated load
power prediction

t+N

Δt

…

Time
t

Event-driven
deductive
model of
SHSOS

Assessment of the regulatory capacity of GCVPP

Decomposition of load shedding instruction

Constraints

Events Events

EventsRolling deduction
during period t+1 

Rolling deduction
during period t 

Power system
topology

t+N

Δt

…

Time
t

Rolling deduction
during period t+1 

Rolling deduction
during period t 

Multi-period
WTCI

Minimization of comprehensive regulation costs by determining
generator re-dispatch power, IDC workload transfer power, and load 
shedding power using SMPC, subject to SHSOS-defined constraints 

including regulation demand, WTCI, and loads

The minimization of load shedding power by determining 
regulation strategies of FLs within the GCVPP based on

upper-level load shedding instruction, subject to constraints 
such as user satisfaction degree constraint

Lower level

Load
power

considering
LR

Calculation of rebound load

Fig. 2.　Overview of proposed hierarchical dispatch strategy.

136



YIN et al.: HIERARCHICAL DISPATCH OF MULTI-TYPE VIRTUAL POWER PLANTS FOR ENHANCING RESILIENCE OF POWER SYSTEMS...

conditions. Detailed methodologies for parameter quantifica‐
tion are not addressed herein; refer to [26] for implementa‐
tion specifics.

Since the temperature rise of lines and optical fibers af‐
fected by the wildfires responds more rapidly, a finer times‐
cale is needed. The spread of wildfires operates on a larger 
timescale, utilizing a coarse-grained time axis t and a time 
step Dt. Conversely, for the temperature rise, with a smaller 
timescale, the fine-grained time axis t' and step Dt' are used 
to capture instantaneous changes.

The temperature rise of lines and optical fibers affected 
by the wildfire is expressed as:

T xw
t'+ 1ij = T xw

t'ij +
F xw

t'ij

M x
ijC

x
ij

Dt' x =PD (4)

The net heat flux for transmission lines, governed by ohm‐
ic losses, solar radiation, wildfire radiation, convective heat 
transfer, and thermal radiation, is formulated as:

F Pw
t'ij = qpw

t'ij + qsw
t'ij + qfw

t'ij - qrw
t'ij - qcw

t'ij (5)

Optical fibers do not carry power flow, therefore, they do 
not generate ohmic losses. The net heat flux is simplified as:

F Dw
t'ij = qsw

t'ij + qfw
t'ij - qrw

t'ij - qcw
t'ij (6)

For a transmission line unaffected by wildfire but over‐
heating due to overloading, the analytical expression for the 
time required to reach its maximum permissible temperature 
is formulated as:

t cw
ij =

1
βw

ij

ln ( T Pmax
ij - T E

t' - εw (Pij )- β
w
ij

T wC
t'ij - T E

t' - εw (Pij )- β
w
ij ) (7)

Specific calculations for εw (Pij ) and βw
ij can be obtained 

by referring to IEEE standards and CIGRE standards [27] 
and will not be repeated in this paper for brevity.

C. Modeling Impact of Wildfires on WTCI

This paper develops an improved maximum flow model 
to efficiently assess multi-period WTCI, where the IDC net‐
work is formally represented as a graph Gtw (VEtw ). In this 
graph, the original vertex set V denotes all nodes in the net‐
work, while the edge set Etw denotes the optical fiber con‐
nections between node pairs during period t in scenario w. 
Specifically, (ij)ÎEtw indicates the existence of an optical fi‐
ber link from bus i to bus j [28]. In the improved maximum 
flow model, DCs that transfer workloads out are defined as 
source nodes, while those that receive the transferred work‐
loads are referred to as sink nodes. To simplify the problem 
of determining the maximum transferable workload involv‐
ing multiple sink nodes, an expanded vertex set V' is intro‐
duced comprising the virtual super-sink node. As shown in 
Fig. 3, this transformation is accomplished by expanding the 
original graph Gtw (VEtw ) to an expanded graph 
G'tw (V'E'tw ). In the expanded graph, V′ includes the original 
vertices V along with the newly added super-sink node v. 
Meanwhile, the edge set E'tw is obtained by extending the 
original edge set Etw by adding new edges from each sink 
node to the super-sink node v, with the capacity of these 
new edges defined as ¥.

By employing this extended graph, the original problem is 
reformulated as a maximum flow problem from the source 
node i to the super-sink node v. The objective function for 
the maximum flow problem in the combined scenario of 
wind speed and wind direction w is given as:

δmax
tiw =max ∑

(ij)ÎE'tw

ftijw (8)

s.t. ∑
(ij)ÎE'tw

ftijw £ δ
Tmax
tiw (9)

δTmax
t + 1iw = δ

Tmax
tiw - ∑

(ij)ÎE'tw

ftijw (10)

0 £ ftijw £ f max
tij λtijw  "(ij)ÎE'tw (11)

λtijw = {0 T Dw
tij > T Dmax

tij

1 T Dw
tij £ T Dmax

tij
(12)

∑
"(ij)ÎE'tw

ftijw = ∑
"( jk)ÎE'tw

ftjkw  "jÎV′\{v} (13)

∑
"( jv)ÎE'tw

ftjvw £ δ
max
tjw  "jÎV (14)

Formula (9) ensures that the total workload transferred 
from the source node stays within its permissible transfer 
limit. Equation (10) adjusts the maximum transfer capacity 
of the source node over time by relating the transferable 
workloads during period t + 1 to those during period t. For‐
mulas (11) and (12) ensure that the workload flow on any 
edge (ij)ÎE'tw must remain within the capacity of the edge. 
Equation (13) ensures the flow conservation by requiring 
that for all intermediate nodes except super-sink nodes, the 
inflow equals the outflow. Formula (14) ensures that the to‐
tal workload transferred to each sink node does not exceed 
its maximum workload processing capacity [29].

DCs consume substantial power for workload processing. 
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Fig. 3.　 Improved maximum flow modeling through graph extension. (a) 
Graph with multiple sinks. (b) Expanded graph with single sink.
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Workload transfer thus offers an alternative to power trans‐
mission. DC power consumption combines static and rated 
power with server workload [30]. The maximum power 
transferable from source node i to all sink nodes during peri‐
od t in scenario w is given by:

P DUmax
tiw =P ID

ti +
P PK

ti -P ID
ti

κti
δmax

tiw (15)

As analyzed above, P DUmax
tiw  is closely related to the con‐

nectivity of the topology of IDC network. As shown in Fig. 
3, the topology of the IDC network is compromised by fiber 
optical failures caused by wildfires (such as failure 1 occur‐
ring during period t and failure 2 during period t + 1). There‐
fore, multi-period WTCI needs to be dynamically simulated 
according to the progression of the wildfire.

D. Assessment of LR

User-side FLs aggregated by GCVPP essentially obtain 
regulatory capacity in the temporal dimension by delaying 
power demand to subsequent periods. EVs are typical repre‐
sentatives of user-side FLs. This paper details how to assess 
LR following load curtailment services provided by a 
GCVPP integrated with multiple EVs. As illustrated in Fig. 
4, during the dispatching periods t and t + 1, EVs will en‐
gage in charging and terminating activities. Consequently, 
the timescale for EVs should also adopt t' to emphasize their 
dynamic behavior and rapid response capability.

The original charging completion time for EV u, denoted 
as t ogl

u , represents the total time required for EV u to reach 
its expected SOC starting from its initial SOC.

t ogl
u = t in

u +
S exp

u - S inE
u

ηE
u P bE

u

Eu (16)

When the power system requires providing load curtail‐
ment services from the GCVPP connected to bus i, the 
GCVPP coordinates EVs to reduce either charging power or 
discharging power back to the power system.

This paper assumes the GCVPP prioritizes EVs based on 
their SOC margin indicator during period t, as defined 
in (17).

M E
tu =

S outE
u - S exp

u

S E
tu - S exp

u

(17)

EVs with a higher SOC margin offer greater flexibility 
and are prioritized for load curtailment services. After pro‐
viding load curtailment services from t to t + 1, the actual 
charging completion time for EV u is the current time period 
t + 1 plus the time needed to restore the remaining energy.

t rbd
u = t + 1 +

Eu (S exp
u - S E

tu )- (DP E
tu +P bE

u )Dt

ηE
u P bE

u

(18)

Hence, LR will occur during the interval [t ogl
u t rbd

u ], during 
which the rebound power of EV u is formulated as:

P rbd
t'u = {P bE

u t'Î[t ogl
u t rbd

u ]

0 else
(19)

Subsequently, the LR power of the GCVPP is formulated in 
(20), and Uw depends on the load shedding power in scenar‐
io w.

ì
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ï

ï

ï
ïïï

ï

ï

ï

P rbdV
t'iw =∑

u = 1

Uw

P rbd
t'u

t oglV
iw £ t'£ t rbdV

iw

t oglV
iw =max{t ogl

1wt ogl
uwt ogl

Uw
}

t rbdV
iw =max{t rbd

1wt rbd
uwt rbd

Uw
}

(20)

E. Event-driven Deductive Model of SHSOS

In an event-driven simulation mechanism, events act as ac‐
tive variables, while system states serve as passive variables. 
These events drive the simulation clock advancement, inher‐
ently adapting to SHSOS deduction [31]. The general expres‐
sion of a discrete event is given as:

ì
í
î

ïï

ïï

σ(k)  ξ(k): = α(kw)Å t w
g (k)ow

r (k)

ξ ={ξWFL ξWFO ξOF ξLS ξLR }
(21)

where  indicates that the event is driven to occur; and Å 
is a delimiter.

The wildfire-induced line and optical fiber fault events are 
defined in (22). For k = 1, x is P; while for k = 2, x is D.

ì

í

î

ï
ïï
ï

ï
ïï
ï

σ(k)  ξ(k): =[t swx
ij t fwx

ij ]Å t w
g (k)xw

ij

σ(k)= 1(T wx
t'ij > T xmax

ij )    k = 12

t w
g (k)= t sxw

ij + t fxw
ij

(22)

The calculation of t fxw
ij  is based on the formulas presented 

in (1)-(6).
Once Lw

ij enters an overload state at time t o
ij in scenario w, 

an overload disconnection event ξOF is triggered following a 
delay of t c

ij.

SOC

(b)
Power consumed of GCVPP pre-adjustment
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Time range during which load rebound occurs 
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Fig. 4.　Load curtailment services and LR of a GCVPP with two EVs. (a) 
target state of charge (SOC). (b) Power.
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σ(3)  ξ(3): =[t o
ijt

c
ij ]Å t w

g (3)Lw
ij

σ(3)= 1(T P
t'ij > T Pmax

ij )

t w
g (3)= t ow

ij + t cw
ij

(23)

The occurrence time of load shedding event ξLS corre‐
sponds to the moment when bus iw receives the load shed‐
ding command.

ì
í
î

ïï

ïï

σ(4)  ξ(4): =[DP I
tiwgw ]Å t w

g (4)iw

σ(4)= 1(DP I
tiw ¹ 0)

(24)

Once a load shedding command is received by the 
GCVPP connected to bus iw, it will trigger the LR event ξLR, 
which is expressed as:

ì
í
î

ïï

ïï

σ(5)  ξ(5): =[P rbdV
t'iw t

rbdV
iw ]Å t w

g (5)iw

σ(5)= 1(DP V
tiw ¹ 0)

(25)

The simulation framework for the event-driven deductive 
model of SHSOS is shown in Fig. 5. Each scenario w is se‐
quentially input into the event-driven deductive model, lead‐
ing to the deduction of the corresponding SHSOS scenarios 
ΩH

t  within the optimization period. There exists a mapping 
relationship between the input scenario w and the derived re‐
sult h, where multiple input scenarios may map to the same 
derived result. The probability πh of each SHSOS scenario is 
formulated as:

πh = ∑
{w|Γ(w)= h}

πw (26)

V. PRINCIPLES AND IMPLEMENTATION OF PROPOSED 
HIERARCHIACL DISPATCH STRATEGY 

A. Upper Level

The objective function of the upper-level strategy aims to 
minimize the comprehensive regulation costs C within the 
rolling horizon.

min C = γGC G
t + γDC D

t + γIC
I
t (27)

C G
t =Dt∑

h = 1

H

πh (P GU
tgh +P GD

tgh ) (28)

C V
t =Dt∑

h = 1

H

πh (P DU
tih +P DD

tih ) (29)

C I
t =Dt∑

h = 1

H

πh∑
iÎΩI

DP I
tih (30)

The steady-state direct current model is used for calculat‐
ing power flows [32] with the constraints shown in (31)-(39).

1) Power balance
The power balance constraint can be expressed as:∑

gÎΩG

P G
tgh =∑

iÎΩI

(P I
tih -DP I

tih )    "t"h (31)

2) Ramping rates of generators
The ramping rates of generators should be satisfied as:

-RD
g Dt £P G

tgh -P G
t - 1gh £RU

g Dt    "t"g"h (32)

3) Output limits of generators
The output of generators must comply with their opera‐

tional upper and lower boundary constraints.

-P
G
g £P G

tgh £
-
P

G
g     "t"g"h (33)

4) Limits of load shedding power
When it is necessary to shed load, the load shedding pow‐

er is non-negative and does not exceed the total load power 
on the corresponding bus.

0 £DP I
tih £P I

tih    "t"i"h (34)

5) Power flow on transmission lines
The limits of the power flow on transmission lines should 

satisfy their capacity constraints.

|Ptijh| £
-
P ij    "LijÎΩ

L
t "t"h (35)

6) The linear relationship between voltage angles and pow‐
er flow on transmission lines

The linear relationship is expressed as:

Ptijh =
θtih - θtjh

Xij
    "LijÎΩ

L
t "t"h (36)

7) Voltage phase angle limits
The voltage phase angle limits are given by:

-θ i £ θtih £
-
θ i    "i"h"t (37)

8) Operational constraints of IDCs
The operations of IDCs are constrained by:

0 £P DU
tih £P DUmax

ti     "i"t (38)

∑
iÎΩV

P DU
tih = ∑

iÎΩV

P DD
tih    "i"t"h (39)
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Fig. 5.　Simulation framework for event-driven deductive model of SHSOS.
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where P DUmax
ti  is obtained by applying the improved maxi‐

mum flow model, as described in (8) - (15) using the Ford-
Fulkerson algorithm [33].

Constraint (38) ensures that the transferred power from 
the DC connected to bus i remains within its maximum 
transferable power during all periods. Equation (39) ensures 
that the total power transferred out of the DC must be equal 
to the total power transferred into the DC during all periods.

During the next period t + 1, the ensemble of SHSOS sce‐
narios is narrowed down to a specific scenario based on the 
actual information collected. The optimization for the period  
t + 1 is initiated and continues until the entire optimization 
cycle is completed.

B. Lower Level

Through the load shedding instructions from the upper lev‐
el, the lower level guides GCVPPs to provide load curtail‐
ment services.

The maximum load curtailment capacity of EV u during 
period t is formulated as an optimization problem expressed 
as:

DP Emax
tu =max |DP E

tu| (40)

s.t.

S E
t'u = S E

tu +
(P bE

u +DP E
tu )(t'- t)

ηu Eu

    t in
u < t < t'£ t + 1 (41)

S E
t'u = S E

tu +
P bE

u [t out
u - (t + 1)]
ηu Eu

    t + 1 < t'£ t out
u (42)

S Emin
u £ S E

t'u £ S Emax
u (43)

S exp
u £ S outE

u (44)

0 £P bE
u -DP E

tu £
-
P

c
u +

-
P

d
u (45)

Equation (41) describes the SOC change of EV u between 
periods t and t + 1. Equation (42) describes the SOC change 
of EV u between periods t + 1 and t out

u , where only the base 
charging power P bE

u  is considered. Constraints (43) and (44) 
ensure that the SOC of EV u remains within safe operational 
limits and satisfies the minimum energy requirement upon 
departure. And (45) limits the charging and discharging pow‐
er throughout the regulation process.

Then, the maximum regulation capability of the GCVPP 
connected to bus i, which integrates a total of U EVs during 
period t, is given by:

DP Vmax
ti =∑

u = 1

U

|DP Emax
tu | (46)

Based on the regulatory capability of GCVPP, the lower-
level strategy calculates the load curtailment power that the 
GCVPP connected to bus i needs to provide during period t 
in SHSOS scenario h by solving the optimization problem in 
(47), subject to (48) and (49).

min(DP I
tih -DP V

tih ) (47)

DP V
tih £DP I

tih (48)

0 £DP V
tih £DP Vmax

tih (49)

Subsequently, based on the principle that EVs with higher 

M E
tu are prioritized for load curtailment power allocation, the 

rebound power is calculated using (18)-(20).
For the metrics of the power system resilience, a simple 

quantitative measure is given by:

R = ∫
ta

tb é

ë

ê
êê
ê
ê
ê ù

û
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ú
ú
ú

100 -∑
iÎΩI

( )P I
ti -DP I

ti

P I
ti

´ 100 dt (50)

Integrating R from ta to tb quantifies the cumulative load 
loss during the entire cascading failure event, thus providing 
a measure of resilience of the power system [34]. The small‐
er the value of R, the less the loss of supplied loads in the 
power system under wildfires, indicating stronger resilience; 
conversely, the weaker the resilience.

The implementation process of the proposed hierarchical 
dispatch strategy is illustrated in Algorithm 1.

VI. CASE STUDY 

The programs of the proposed hierarchical dispatch strate‐
gy are written in MATLAB 2016a and executed on an Intel 
i7-990X processor of 47 GHz desktop computer with IBM 
ILOG CPLEX version 12.2.

A. Test System and Simulation Data

This subsection constructs an improved 39-bus power sys‐
tem integrated with an 8-bus IDC network to validate the ef‐
fectiveness of the proposed hierarchical dispatch strategy 
[35]. The topology of the test system is shown in Fig. SA1 
of Supplementary Material A. Figures SA2-SA5 of Supple‐
mentary Material A illustrate the total workloads of IDCs, 
transferable workloads of IDCs, values of wind speed and di‐
rection on the test day, and the predicted daily outputs of PV 
and WT, respectively. Supplementary Material A presents the 
generator parameters, while Table SAIII of Supplementary 
Material A provides details on the probability distributions 
for two EV types in GCVPP, whose charging behaviors de‐
rive from Monte Carlo simulations. For computational tracta‐
bility, the maximum DC workload capacity is set to be δmax

i =
100 TB, and the fiber flow limit is set to be f max

ij = 400 GB. 

Algorithm 1: implementation process of proposed hierarchical dispatch 
strategy

Step 1: initialization. Set the simulation parameters, including time and the 
prediction time range.

Step 2: scenario generation and simplification. Latin hypercube sampling 
is used to represent the uncertainties in wind speed and direction. 
Backward simplification is used to compute the probability distance 
from each scenario to the nearest scenario, and scenarios are selected 
to reduce the computational burden.

Step 3: using ΩW
t  and (1)-(25), deduce the SHSOS set ΩH

t .

Step 4: upper-level optimization. Calculate the generator adjustment costs 
C G

t , the load transfer costs C D
t , and the load shedding costs C I

t  using 
(28)-(30). Then, obtain the expected total regulation cost C for ΩH

t  us‐
ing (27).

Step 5: lower-level optimization. Calculate the load curtailment capacity 
using (40)-(45). Calculate the load curtailment power of GCVPPs us‐
ing (47) - (49). Decompose load curtailment instructions using (17). 
Calculate the LR using (16) - (20). Then, evaluate the LR to update 
the SHSOS deduction results.

Step 6: iterative update. Based on the collected actual information, opti‐
mize for the next control period t + 1 until the entire optimization cy‐
cle is completed.
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Transmission line and fiber temperature is capped at 353 K. 
Cost coefficients are γG = γD = 1 $/MW and γL = 100 $/MW, 
with time steps Dt = 15 min and Dt'= 1 min. The base power 
of the power system is 100 MW. For wind speed, the stan‐
dard deviation is considered to be 15% of the mean value. 
For wind direction, the K-factor for the von Mises distribu‐
tion is assumed to be 2. Wildfire parameters are defined as 
μ = 0.07 kg/m3 and ρ = 40 kg/m3 [5]. The unit length mass 
for transmission lines and optical fibers is 1.13  kg/m and 
0.55 kg/m, respectively. The equivalent specific heat capaci‐
ties for transmission lines and optical fibers are 843  J/(kg·K) 
and 675 J/(kg·K), respectively.

Five strategies S1-S5 are investigated to demonstrate the 
benefits of the proposed strategy. The details of the five strat‐
egies are described as follows. S1 is a resilient open-loop op‐
erational strategy considering predictive errors in wildfire tra‐
jectory models (as proposed by [7]). S2 utilizes SMPC to 
process the predictive errors of wildfire trajectories, but 
VPPs are not involved in the dispatch strategy. S3 utilizes 
SMPC to process the predictive errors of wildfire trajectory, 
and GDVPP participates in the upper-level strategy, but it 
overlooks the impact of wildfire on WTCI, as described in 
[16]. S4 utilizes SMPC to process the prediction errors of 
wildfire trajectories, while considering the impact of wild‐
fires on WTCI. However, GCVPPs are not involved in the 
lower-level strategy. S5 utilizes the proposed hierarchical dis‐
patch strategy in this paper.

B. Simulation Results

Assuming the fire ignition point is detected at 10:10, the 
predicted and actual wind speed and direction data are incor‐
porated into the event-driven deductive model to generate 
equipment failure information, as shown in Table SAIV of 
Supplementary Material A. The equipment failure events 
from Table SAIV are illustrated in Fig. SA1. Additionally, 
the wildfire trajectories predicted by S1 align with the actual 
trajectories in Fig. SA1, highlighting the spatiotemporal cor‐
relation between wildfire propagation and equipment failures.

The simulation results under the five strategies are shown 
in Fig. 6. The duration of each time interval is 15 min. The 
red and green arrows in Fig. 6 mark the periods correspond‐
ing to the actual and predicted equipment failures, respective‐
ly, as shown in Table SAIV, further demonstrating the corre‐
spondence between the predicted and actual equipment fail‐
ures.

The simulation results of the resilience, anti-interference 
capability, and adjustment costs of each method are com‐
pared, as shown in Table I. The anti-interference capability 
of various strategies can be represented by ζ = (R* -R)/R*, 
where R* and R represent the resiliences of S1 and other 
strategies, respectively.

C. Analysis on Effect of SMPC

As shown in Table I and Fig. 6, S1 exhibits the weakest 
level of resilience, and its generator outputs are significantly 
different from the other four methods. This is due to several 
notable fluctuations in wind speed and direction between 
10:30 and 14:30. 

However, S1 does not promptly update these fluctuations, 
resulting in prediction errors between the predicted and actu‐
al equipment failure conditions, as shown in Table SAIV.

Specifically, it is predicted that L611 fails during the 55th 
period, triggering a cascading overload of L1013, L1314, L414, 
and L45. However, the actual failure occurs on L65 during 
the 55th period, triggering a cascading overload of L67 and 
L78. Furthermore, in S1, the predicted failure time of PV4 is 
the 61st period, which is later than the actual occurrence. 
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Fig. 6.　Simulation results under different strategies. (a) S1. (b) S2. (c) S3. 
(d) S4. (e) S5.
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Additionally, in S1, it is predicted that a failure of L414 oc‐
curs during the 67th period, but the actual failure occurs on 
L45. The following predictive strategies are formulated based 
on S2 of SMPC and the rolling deductive results of the pow‐
er system topology. During the 53rd period, G30 and G31 are 
directed to adjust their outputs over the next two periods to 
prevent an overload after L65 disconnects.

During the 60th period, G30 is required to increase its out‐
put while cutting off PV4. During the 63rd period, G30 and 
G37 are directed to increase their outputs, while G32 is direct‐
ed to decrease its output to prevent overloads on L67 and 
L78 due to the tripping of L45. By comparing the simulation 
results of S1 and S2, it can be observed that SMPC effective‐
ly diminishes the risk of power system operators making in‐
correct generator re-dispatching decisions due to prediction 
errors, and the resilience is improved by 67%.

D. Analysis of Effects of GDVPP and ξWFO

As demonstrated in Table I, the resilience of S3 shows a 
slight improvement compared with that of S2. Notably, the 
resilience of S4 is significantly improved by 75%. This en‐
hancement is primarily due to the integration of ξWFO into 
the event-driven deductive model of SHSOS in S4, which 
provides superior look-ahead capability for predicting work‐
load transfer.

Figure 7 illustrates the power of IDCs in S2-S4. As ob‐
served, in both S3 and S4, GDVPP transfers workloads from 
DC4 and DC14 to DC6 during the 55th period.

This transfer process reduces the power flow on L67 and 
L78, substantially mitigating their overload conditions after 
the disconnection of L65. However, during these periods, the 
WTCI is relatively low, making the impact on load loss re‐
duction in the EOC not very evident. Furthermore, the fail‐
ure event O394 that occurs during the 65th period causes a 
significant drop in WTCI during the subsequent periods. 
Therefore, when the failure event L45 and its cascading fail‐
ures occurr during the 67th period, the rapid response capabil‐
ity of S3 is affected, resulting in a lower level of resilience 
improvement. However, the event-driven deductive model of 
SHSOS incorporates ξWFO, allowing for proactive workload 
reallocation from DC39 to DC4 during the 65th period. Conse‐
quently, S4 exhibits greater operational resilience compared 
with S3. This indicates that incorporating GDVPP into resil‐
ient operational dispatch helps compensate for the slow 
ramping speed of generators, depending on the dynamic 
characteristics of WTCI. Therefore, the proposed maximum 
flow model, which assesses the impact of fiber optical dam‐
age on WTCI over multiple periods, plays a crucial role.

E. Analysis of Effects of GCVPPs and ξLR

Building upon the foundation established by S4, S5 em‐
ploys GCVPPs to mitigate the load shedding requirements, 
which improves the resilience by 88%. In S4 and S5, the 
GCVPP load power curves of buses 4, 7, and 8 are present‐
ed in Figs. SA6-SA8 of Supplementary Material A. It is ob‐
served that the GCVPP on bus 4 provides load curtailment 
service during the 60th period, reducing the need for the load 
shedding caused by the power shortage due to the PV4 fail‐
ure. GCVPPs on buses 7 and 8 also provide load curtailment 
services during the 55th, 56th, and 57th periods, followed by 
LR during subsequent decision periods. Furthermore, 
GCVPPs on buses 7 and 8 again provide load curtailment 
services during the 67th period, which is followed by a pro‐
longed LR not fully depicted in Figs. SA7 and SA8 of Sup‐
plementary Material A. By comparing Fig. SA8(d) and SA8
(e), it can be observed that the generator outputs of S4 and 
S5 differ during the 59th, 60th, 61st, and 62nd periods. This in‐
dicates that S5 responds to the LR caused by the load curtail‐
ment service provided by GCVPPs by increasing generator 
outputs. By comparing the simulation results of S4 and S5, 
the impact of GCVPPs on enhancing the anti-interference ca‐
pability of the resilience operational strategy is illustrated.

F. Performance Evaluation

The proposed strategy integrates Latin hypercube sam‐
pling to generate scenarios for wind speed and direction, and 
its overall convergence is validated through the law of large 
numbers. As the number of scenarios W increases, the opti‐
mized solution approaches the theoretical optimal solution.

TABLE I
COMPARISON OF DIFFERENT STRATEGIES

Strategy

S1

S2

S3

S4

S5

SMPC

´

√
√
√
√

IDC

´

´

√
√
√

FL

´

´

´

´

√

Event

ξWFO

´

´

´

√
√

ξLR

´

´

´

´

√

R

49.69

16.25

15.98

12.57

5.90

ζ

0.00

0.67

0.68

0.75

0.88
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Fig. 7.　Power of IDCs in S2-S4. (a) S2. (c) S3. (d) S4.
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This paper analyzes the performance of the proposed strat‐
egy with various scenario quantities W = {1 ´ 15 ´ 312 ´
735 ´ 15200 ´ 50}. The theoretical expected function value 
is approximated by the result at W = 200 ´ 50, enabling con‐
vergence assessment through comparison with the computed 
target function value. The simulation results are shown in 
Fig. 8. In Fig. 8 the vertical axis depicts the cumulative dis‐
tribution function (CDF) of the resilience level R. More than 
50% of the resilience levels for W = 1 ´ 1 are above 80, 
while the resilience levels for W = 12 ´ 7 are primarily con‐
centrated in the interval [622]. This indicates that W = 12 ´ 7 
demonstrates superior performance in mitigating the expan‐
sion of cascading failures triggered by wildfires, thereby en‐
hancing the resilience of the power system. Increasing the 
number of scenarios allows the optimized solution to ap‐
proach the theoretical optimal solution more closely, leading 
to a reduction in load shedding power. However, when the 
number of scenarios reaches W = 12 ´ 7, the improvement be‐
comes less significant.

VII. CONCLUSION 

This paper proposes a hierarchical dispatch strategy that 
enhances power system resilience against uncertainties in 
wildfire trajectory predictions through coordinated operation 
of GDVPP and GCVPP. In the case study, the power system 
resilience and anti-interference capability under five different 
strategies are analyzed. The following conclusions are drawn.

1) By updating the deductive results for cascading fail‐
ures, the impact of prediction uncertainties on resilient dis‐
patch strategies can be reduced through generator output re-
dispatch. However, due to the slow ramp rates of generators, 
load shedding in the EOC is still necessary to prevent cas‐
cading failures.

2) The improved maximum flow model dynamically evalu‐
ates WTCI across multiple periods, and integrating its quanti‐
fied results as constraints into the upper level enhances the 
ability of IDCs to quickly block cascading overload failures.

3) Utilizing GCVPPs for load curtailment services lowers 
the costs associated with load shedding in the EOC. Further‐
more, integrating LR feedback results from the lower level 
into the event-driven deductive model of SHSOS enables co‐
ordinated optimization of GCVPPs and GDVPP.

This paper neglects the impact of wildfires on energy sys‐
tem infrastructures beyond power systems such as the threats 
to natural gas pipelines. Future research will develop joint re‐
silience strategies for electricity-gas systems. Additionally, 
developing a general disaster evolution process and event-
driven deductive model will broaden the applicability of the 
proposed hierarchical dispatch strategy.
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