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Power Systems Under Wildfires
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Abstract—The uncertainty and variability of advancing wild-
fires present significant challenges to the resilience of power sys-
tems. This paper proposes a hierarchical dispatch strategy of
multi-type virtual power plants (VPPs) for enhancing resilience
of power systems under wildfires, which encompass geographi-
cally distributed VPPs (GDVPPs) based on Internet data cen-
ters (IDCs) and geographically concentrated VPPs (GCVPPs)
that aggregate flexible loads (FLs). The proposed strategy en-
hances resistance to wildfire-induced uncertainties by facilitat-
ing coordinated operations between these two types of VPPs. At
the upper level, an improved maximum flow model is intro-
duced to quantify the dynamic changes in the workload trans-
fer capability of IDC (WTCI) under wildfire conditions, and sto-
chastic model predictive control (SMPC) is employed to per-
form rolling optimization of generator outputs, IDC workload
transfers, and load shedding, thereby minimizing the total regu-
lation costs. Based on the load shedding instructions from the
upper level, the lower level integrates GCVPPs to provide load
curtailment services, effectively offsetting the load shedding
power. Subsequently, the lower level feeds back the load re-
bound (LR) resulting from these load curtailment services to
the upper-level strategy, serving as a basis for its rolling optimi-
zation. The SMPC integrates an event-driven deductive model
to address the fine-grained modeling of the operational state, ef-
fectively overcoming challenges posed by discrepancies in simu-
lation time steps arising from power system cascading failures,
variations in IDC adjustment capacity, and LR effects. Finally,
a modified 39-bus power system, integrated with an 8-bus IDC
network, is used as a case study to validate the effectiveness of
the proposed strategy.

Index Terms—Wildfire, hierarchical dispatch, cascading fail-
ure, virtual power plant, data center, flexible load, resilience.
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NOMENCLATURE

A. Indices and Sets

Qg Q,, 2, Sets of generators, loads, and data centers
(DCs)

Qv Sets of wind and sequential hybrid system op-
erational state (SHSOS) scenarios during peri-
od ¢

QF, Q° Sets of lines and optical fibers during period ¢

& Set of events

H W Numbers of elements in Q" and in Q)"

gu k Indices of generators, electric vehicles (EVs),
and events

i,j Indices of buses

n, h,w Indices of dispatch periods, SHSOS scenarios,
and wind scenarios

t Timescale of wildfire spread and dispatch peri-
od

t' Timescale characterizing temperature rise and
charging dynamics of flexible loads (FLs)

At', At Durations of timescales #'and ¢

U, N Number of EVs within a geographically con-
centrated virtual power plant (GCVPP) and
number of periods in one prediction horizon

W..W. Target numbers of wind speed and wind direc-

tion scenarios

B. Variables

o The maximum amount of workload that DC
connected to bus 7 can handle during period ¢
in scenario w

0in O Voltage phase angles of buses i and j during
period ¢ in scenario /

CC, CP,C!  Costs of generator adjustment, workload trans-
fer, and load shedding during period ¢

d, Euclidean distance in scenario w

Sijw Workload flow of O,; during period 7 in sce-
nario w

it The maximum workload flow of O,; during

period ¢

P,; Power flow on L,
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Increase and decrease of outputs of generator
g during period ¢ in scenario 4 for up and
down regulations

Power transferred in and out from DC con-
nected to bus i during period ¢ in scenario A
for up and down regulations

Load shedding power of bus i during period ¢
in scenario A

Load power of bus i during period ¢ in scenar-
ioh

Load curtailment power by GCVPP during pe-
riod ¢ in scenario w

Charging power adjustment of EV u during pe-
riod ¢

Load shedding power received by bus i,
Load curtailment power by GCVPP in sce-
nario w

Rebound power of GCVPP connected to bus i
during period ¢'in scenario w

Outputs of generator g during periods ¢ and
t—1 in scenario A

Radiative heat flux produced by a wildfire on
L, and O, in scenario w during period ¢
Termination time of original load (rebound ini-
tiation time) and GCVPP connected to bus i in
scenario w

Value corresponding to event k in scenario w
Thermal inertia coefficient during temperature
rise process of L, ; in scenario w

Cost coefficients of generator adjustment,
workload transfer, and load shedding

Type identifier and activation criterion of
event k

Rated discharging efficiency and capacity of
EVu

State of O, ; during period ¢ in scenario w that
equals 1 for intact case and 0 for failure
Vegetation factor and terrain factor
Wildfire-induced line fault, optical fiber fault,

overload disconnection, load-shedding, and
load rebound (LR) events

Indicator function
Functional relationship among wind scenario
w, LR, and SHSOS

Thermal growth coefficient during tempera-

ture rise process of overloaded line in scenario
w

Flame emissivity during period ¢ in scenario w
View angles between flame and L, ; or O, ; dur-
ing period ¢ in scenario w

Heat capacities of L, ; and O, ;

Net heat fluxes absorbed by L, ; and O, ; during
time ¢/
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Original and expanded graphs during period ¢
in scenario w

Generator that needs to reduce output to
maintain power balance in scenario w

Transmission line between buses i and j and
optical fiber between DCs connected to buses
iandj

State of charge (SOC) margin indicator of EV
u during period ¢

Unit masses of L, ;and O, ;

Object that processes event in scenario w
Original charging/discharging power of EV u

Load power and load shedding power of bus i
during period ¢

Idle and peak power consumptions of DC con-
nected to bus i during period ¢

The maximum charging and discharging pow-
er of EVu

The maximum limit of active power of L,

Charging power adjustment of EV u during pe-
riod ¢

Heat gain rates of ohmic loss, solar heat,
and convective and radiative heat dissipations
for L, ; and O, ; during period ¢ in scenario w

Heat gain rate from fire during period ¢’ in sce-
nario w
Down- and up-ramping limits of generator g

Distances between wildfire and L, ; or O,; dur-
ing period ¢ in scenario w

Expected SOC of EV u at time ¢
SOC of EV u at time 72"
SOC of EV u at the initiation time of period ¢

Time when wildfire approaches vicinity of L,
and O, in scenario w

Time required for L;; and O, to be damaged

by wildfire after it reaches their vicinity in sce-
nario w

Time when L, ; transitions into an overloaded
state in scenario w

Time required for L,; to transition from over-
load to trip in scenario w

Temperature limits for L,; and O, ;
Temperatures of L,; and O,; at time ' in sce-
nario w

Flame zone temperature and length during pe-
riod ¢ in scenario w

Time when event occurs in scenario w
Ambient temperature at time ¢’

Initial temperature of overloaded line at time ¢’
in scenario w

Connection time and disconnection time of
EV u

Failure occurrence time and end time
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tfj" v Time required for x}'; to be damaged by wild-
fire after reaching vicinity

U, Number of EVs selected to provide load cur-
tailment service in scenario w

Uy By Wind speed and direction during period ¢ in
scenario w

v, V' Original and expanded vertex sets

v Super-sink node

x;; Damaged line or optical fiber connected to

buses i and j in scenario w

1. INTRODUCTION

N recent years, there has been an increase in both the fre-

quency and intensity of wildfires [1]. During wildfire
propagation, the fire may unexpectedly cause transmission
lines to fail sequentially. The power flow of these failed
lines is then redistributed to other lines. When a surge in
power flow exceeds the capacity of the remaining lines, it
may induce overloading and triggers cascading failures [2],
[3]- To mitigate this risk, it is imperative to prioritize opera-
tional strategies that enhance the resilience of the power sys-
tem against wildfires.

Currently, numerous studies in the literature investigate
methods to mitigate the impact of wildfires on power sys-
tems. To account for the impact of radiative and convective
heat released during the propagation of wildfires on transmis-
sion lines, a dynamic line rating model is proposed in [4] to
predict the disconnection time of the lines due to wildfires.
Reference [S5] further considers the influence of uncertainty
in solar radiation, wind speed, and direction on the propaga-
tion trajectory of wildfires. Reference [6] proposes a probabi-
listic proactive generation re-dispatch strategy to enhance the
operational resilience of power systems under wildfires.
However, this strategy fails to address the critical impact of
transmission line overloads on cascading failures. Reference
[7] proposes a double-time-dimension process constraint that
enables power system operators to consider the correlation be-
tween extreme weather events and cascading overload failures
in their optimization decisions. However, owing to the stochas-
tic nature of wind patterns in wind direction and the random
fluctuations in wind speed, errors in the predicted wildfire tra-
jectory are inevitable, and as the time horizon extends, these
errors increase significantly [8]. The increased prediction er-
rors may result in the open-loop optimization strategy pro-
posed in [7] deviating from actual fault scenarios, thereby lead-
ing to considerable degradation in resilience performance.

Stochastic model predictive control (SMPC) is an ad-
vanced control technology designed to effectively address
the uncertainties and variabilities in power system dispatch
[9]. Rolling prediction values are utilized in SMPC to dy-
namically optimize generator outputs in real time, mitigating
cascading overloads arising from prediction errors by re-dis-
patching generators in real time. However, the relatively
slow ramp rate of generators, combined with the rapid trip-
ping of severely overloaded lines, reduces the feasibility of
overload control based on re-dispatching of generators in
practical applications [10]. Although conventional emergency

overload control (EOC) including generator tripping and
load shedding prevents rapid tripping, it inevitably results in
significant load losses [11]. An emerging method is to con-
vert downstream microgrids on overloaded lines into a pre-
planned islanding mode, which reduces the load losses in
EOC [12]. However, the scarcity of well-established mi-
crogrids hinders the widespread adoption of this method.

Fortunately, multi-type virtual power plants (VPPs) are
widely distributed throughout power systems [13]. Given the
geographically dispersed distribution of data centers (DCs),
this paper refers to Internet data centers (IDCs) as geographi-
cally distributed VPPs (GDVPPs). GDVPPs swiftly adjust
the power flow distribution within power systems by trans-
ferring workloads across various DCs [14]. Hence, integrat-
ing GDVPPs with generators into the dispatch framework en-
hances the capacity of the power system to mitigate over-
loads in time. This integration reduces the reliance on EOC.
Reference [15] develops a workload power model for DCs
using piecewise linearization to quantify the workload trans-
fer capability of IDCs (WTCI). A transmission congestion
management method based on IDCs is proposed in [16].
However, this method assumes that the IDC topology re-
mains static over time and overlooks the coupling relation-
ship between the IDC topology and WTCI. Consequently, it
is inadequate for the scenarios discussed in this paper, where
the IDC topology evolves over time [17].

On the other hand, flexible loads (FLs) on the user side
such as electric vehicles (EVs) and air conditioners (ACs)
demonstrate significant potential in offering load curtailment
services to offset the load shedding power in EOC [18].
Since these FLs are geographically concentrated within a dis-
tribution network, the VPP formed by them is referred to as
a geographically concentrated VPP (GCVPP). In [19], a bi-
level dispatch strategy involving EVs and energy storage is
proposed to enhance the resilience of the electricity-gas sys-
tem against winter storms. Based on a two-stage stochastic
optimization framework, a frequency-constrained unit com-
mitment model is developed in [20] to schedule generation
and FLs to prevent extensive load shedding caused by ex-
treme weather. Nonetheless, the load rebound (LR) effect
that follows load curtailment services leads to a surge in
power load. This surge threatens the stable operation of the
power system during subsequent periods [21]. To address
this, dynamically refreshed load baselines are used in [22] to
capture the LR effects and integrate them into the look-
ahead scheduling scheme. The states of load baselines, as
well as the power system topology and WTCI over continu-
ous periods, can be defined as sequential hybrid system oper-
ational state (SHSOS) to better describe the sequential im-
pacts of wildfires. However, the frequency of load baseline
variations significantly differs from the rate of changes in
power system topology and WTCI induced by wildfires.
Therefore, traditional fixed-time-step refresh rates cannot ac-
curately predict the future system operational states.

In summary, current research on utilizing multi-type VPPs
to reduce load losses caused by cascading overload failures
under wildfires reveals three gaps:

1) Existing resilience operation strategies based on proac-
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tive generator scheduling and EOC lack interference resis-
tance, leading to significant load loss during cascading fail-
ures caused by errors in predicted wildfire trajectories.

2) The impact of wildfire-damaged fiber optics on the
time-varying characteristics of WTCI in mitigating line over-
loads remains unexplored.

3) Due to the frequency differences in changes among
these elements within SHSOS, traditional fixed-time-step
simulation techniques are inadequate for the dynamic deduc-
tion of SHSOS, thereby reducing the accuracy and efficacy
of optimization decisions.

To bridge the above gaps, this paper proposes a novel hier-
archical dispatch strategy of multi-type VPPs to enhance the
interference resistance and robustness of resilience operation-
al strategies against the uncertainties of wildfire trajectories.
The major contributions of this paper are summarized as fol-
lows.

1) IDCs and FLs are integrated into the proposed hierar-
chical dispatch strategy. At the upper level, beyond the se-
quential re-dispatch of generators, the rapid adjustment of
power flow within the power system is facilitated by sequen-
tially transferring workloads within IDCs, mitigating EOC re-
quirements caused by errors in the predicted wildfire trajecto-
ry. At the lower level, the load curtailment services provided
by FLs further mitigate the costs associated with load shed-
ding in EOC.

2) An improved maximum flow model is proposed for the
first time to quantify WTCI during sequential periods. This
model quantifies the dynamic correlation characteristics be-
tween wildfire trajectories and WTCI, providing support for
formulating look-ahead workload transfer strategies, and ful-
ly harnessing the potential of IDCs to block cascading fail-
ures.

3) An event-driven deductive model for SHSOS is pro-
posed and integrated into the SMPC framework. Based on
real-time refreshed SHSOS, the upper level transmits the op-
timized load shedding results to the lower level, which
serves as triggering commands for LR evaluation. Subse-
quently, the lower level provides feedback on the results of
LR back to the upper level. This feedback acts as a trigger-
ing condition for the evolution of SHSOS. Through this itera-
tive feedback mechanism, coordinated optimization of multi-
type VPPs is achieved.

The remainder of this paper is organized as follows. Sec-
tion II presents the operational mechanisms of hybrid sys-
tems under wildfires. Section III presents an overview of the
proposed hierarchical dispatch strategy. Section IV presents
the event-driven deductive model for SHSOS. The principles
and implementation of the proposed hierarchical dispatch
strategy are presented in Section V. Section VI discusses the
case study to verify the proposed strategy. Conclusions and
future work are given in Section VI.

II. OPERATIONAL MECHANISMS OF HYBRID SYSTEMS
UNDER WILDFIRES

Figure 1 illustrates the typical structure of hybrid system
under wildfires, which comprises the power system, GDVPP,

and GCVPP. The operational mechanisms of hybrid system
in responding to wildfires are discussed from four aspects.
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Fig. 1. Typical structure of hybrid system under wildfires.

1) The red circles in Fig. 1 indicate wildfires. As Fig. 1
shows, the progressing wildfires sequentially damage an in-
creasing number of transmission lines and optical fibers, pos-
ing a risk of wildfire-triggered cascading overload failures.
The power system needs to proactively schedule generator
output, allowing GDVPP and GCVPP to quickly eliminate
overloaded lines with the minimal load shedding costs.

2) As shown by the GDVPP region in Fig. 1, GDVPP al-
ters the power flow distribution within the power system to
alleviate overload issues by transferring workloads between
DCs. However, since fiber optics may also be impacted by
wildfires, it is crucial to consider the time-varying character-
istics of WTCI to fully realize the potential of GDVPP in
mitigating overloads.

3) The GCVPP in Fig. 1 exhibits the ability to aggregate
FLs on user side, implement demand response strategies,
and provide load curtailment services.

4) Furthermore, it has been reported that wildfires often
exhibit sudden shifts in their trajectories [23], as indicated
by the red dashed circles in Fig. 1. The prediction errors in
wildfire-triggered cascading overload failures and multi-peri-
od WTCI predictions pose a significant challenge for power
system operators in formulating effective dispatch strategies.

III. OVERVIEW OF PROPOSED HIERARCHICAL DISPATCH
STRATEGY

This section introduces an overview of the proposed hier-
archical dispatch strategy in Fig. 2 to address the aforemen-
tioned challenges with specific details, which will be elabo-
rated below.
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Fig. 2. Overview of proposed hierarchical dispatch strategy.

A. Interrelationship Among SMPC, SHSOS, and Upper Level

As shown in Fig. 2, in the optimization process, SMPC
operates with a time step of A¢ and defines the optimization
horizon as {t,t+1,....,t+ N}. During period ¢, the power sys-
tem operator uses the current sampling values as initial con-
ditions to calculate the prediction values during each period
within the optimization horizon. Based on the probability
density functions of wildfire prediction errors, multiple sce-
narios are selected to obtain a certain number of discrete sce-
narios [24].

During period ¢, the power system operator applies these
scenarios to the event-driven deductive model to obtain dis-
crete scenarios that capture changes in SHSOS. These scenar-
ios incorporate the power system topology, WTCI, and load
information. Then, the power system operator employs these
scenarios in a closed-loop hierarchical optimization to deter-
mine the power regulation plan for the optimization horizon.
Only the decisions made for the current period ¢ are actually
executed, while the other results during [z+ 1,7+ N] are updat-
ed by the next optimization with the horizon [+ 1,¢+N+1].
At the next sampling moment, the prediction results are cor-
rected based on the latest measurement values, and this opti-
mization process is repeated [25].

B. Interaction Mechanism Between Upper and Lower Levels
of Proposed Hierarchical Dispatch Strategy

The upper level incorporates constraints based on SHSOS
scenarios, aiming to minimize comprehensive regulation
costs by optimizing generator re-dispatch power, IDC work-
load transfer strategies, and load shedding strategies. At the
lower level, GCVPPs implement load curtailment services
according to the load shedding power issued by the upper
level, aiming to maximize the offset of load shedding de-
mand. In the process of optimizing load curtailment instruc-
tions, GCVPPs fully consider the electrical demand of FLs
and calculate the maximum regulation capacity during the
current period ¢ based on the data provided by FLs. Load
curtailment instructions are decomposed, and the resulting
LR power is uploaded to the upper level to refine SHSOS
scenario dynamics.

IV. EVENT-DRIVEN DEDUCTIVE MODEL FOR SHSOS

A. Uncertainty Modeling

The wind speed v, and direction ¢, are modeled as uncor-
related random variables following Weibull and von Mises
distributions, respectively. Latin hypercube sampling gener-
ates the initial scenarios by dividing each probability distri-
bution into equal intervals, sampling within each interval,
and applying inverse transformation. To alleviate the compu-
tational burden, a synchronous backward reduction technique
eliminates the number of scenarios. For each scenario w, the
probability-weighted distance D, =min{z, d, A (w,w")} to its
nearest neighbor w' is computed. The scenario minimizing
z, D, is removed, and its probability is assigned to w’ This
1terates until reaching the target scenario counts W, and
W, . The total wind scenarios during perlod t are Q)= W =
W, W,, with combined probability z,==,z(. Here, Q dy-
namically updates using real-time data to reflect uncertain-
ties in SMPC optimization.

B. Impact of Wildfires on Topology of Power Systems and
IDC Network

According to [5], in the wind speed and wind direction
combination scenario w, the distance between the wildfires
and the affected transmission lines or optical fibers is ex-
pressed as:

X, W
H—lz/

r = cos(4,, )At| x=P,D

I+o

rag\ L (M
When the wildfire spreads beneath the affected transmis-
sion lines or optical fibers, the radiative heat flux emitted
from the wildfire to these components is calculated accord-

ing to [4] as:

o= ¥”)sin(tan"/l) x=P,D 2
where A4 is a geometric factor defined as:
L cos(y;!
A= v (y“j) x=P’D (3)
tlj LSIH(ytzj)
The flame characteristics (¢, yi:" N Vot T/,, and L] ) de-

pend on fuel properties, combustion dynamics, and ambient
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conditions. Detailed methodologies for parameter quantifica-
tion are not addressed herein; refer to [26] for implementa-
tion specifics.

Since the temperature rise of lines and optical fibers af-
fected by the wildfires responds more rapidly, a finer times-
cale is needed. The spread of wildfires operates on a larger
timescale, utilizing a coarse-grained time axis ¢ and a time
step At. Conversely, for the temperature rise, with a smaller
timescale, the fine-grained time axis ¢’ and step Az’ are used
to capture instantaneous changes.

The temperature rise of lines and optical fibers affected
by the wildfire is expressed as:

Txw  _Ew Fri

t'+1,ij t'.. j (4)

The net heat flux for transmission lines, governed by ohm-
ic losses, solar radiation, wildfire radiation, convective heat
transfer, and thermal radiation, is formulated as:

Pw S, W W ow
F, qiij

tlj q[t)‘l/vj—‘rqtlj-‘r tlj QIU (5)

Optical fibers do not carry power flow, therefore, they do
not generate ohmic losses. The net heat flux is simplified as:

Frh=a;,+4a0,— 405,405 (6)

For a transmission line unaffected by wildfire but over-
heating due to overloading, the analytical expression for the
time required to reach its maximum permissible temperature

is formulated as:

P, max E w
w_ l T _T _gw(Pij)_ﬁ"
Y IBI‘T/ T’z‘wliw TE ‘("w (Pz/) lB

Specific calculations for ¢,(P,;) and B}, can be obtained
by referring to IEEE standards and CIGRE standards [27]
and will not be repeated in this paper for brevity.

C. Modeling Impact of Wildfires on WTCI

This paper develops an improved maximum flow model
to efficiently assess multi-period WTCI, where the IDC net-
work is formally represented as a graph G, (V,E,, ). In this
graph, the original vertex set /" denotes all nodes in the net-
work, while the edge set £, denotes the optical fiber con-
nections between node pairs during period ¢ in scenario w.
Specifically, (i,j)€ E,,, indicates the existence of an optical fi-
ber link from bus 7 to bus j [28]. In the improved maximum
flow model, DCs that transfer workloads out are defined as
source nodes, while those that receive the transferred work-
loads are referred to as sink nodes. To simplify the problem
of determining the maximum transferable workload involv-
ing multiple sink nodes, an expanded vertex set V' is intro-
duced comprising the virtual super-sink node. As shown in
Fig. 3, this transformation is accomplished by expanding the
original graph G, (V,E,) to an expanded graph

1wV E/). In the expanded graph, V' includes the original
Vertlces V along with the newly added super-sink node v.
Meanwhile, the edge set E/ is obtained by extending the
original edge set k£, , by adding new edges from each sink
node to the super-sink node v, with the capacity of these
new edges defined as oo.
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Fig. 3. Improved maximum flow modeling through graph extension. (a)
Graph with multiple sinks. (b) Expanded graph with single sink.

By employing this extended graph, the original problem is
reformulated as a maximum flow problem from the source
node 7 to the super-sink node v. The objective function for
the maximum flow problem in the combined scenario of
wind speed and wind direction w is given as:

o =max > fii ()
()eE],
s.t.
o _5T max
(i_j;};l.'“ f;, ijw ti,w (9)
T.max T.max __
5”1 Lw 5t Lw (l’j;/fu f;,i,j_ w (10)
O<f;l] w <f;Tax;Lttj.w v(l7j)€ Etfw (11)
0 TD w TD max
/1 iow { “jw “jmax (12)
o 1 Ttl?/ —TlDt/
.ft,i,j,wz z ft,j,k,w VJ € V’\{V} (13)
Y(.j)e E], V(j.k)eE/],
f;‘/vu—é?}aﬁ VJEV (14)
V(j.veE],

Formula (9) ensures that the total workload transferred
from the source node stays within its permissible transfer
limit. Equation (10) adjusts the maximum transfer capacity
of the source node over time by relating the transferable
workloads during period #+1 to those during period ¢. For-
mulas (11) and (12) ensure that the workload flow on any
edge (i,j)e E/,, must remain within the capacity of the edge.
Equation (13) ensures the flow conservation by requiring
that for all intermediate nodes except super-sink nodes, the
inflow equals the outflow. Formula (14) ensures that the to-
tal workload transferred to each sink node does not exceed
its maximum workload processing capacity [29].

DCs consume substantial power for workload processing.
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Workload transfer thus offers an alternative to power trans-
mission. DC power consumption combines static and rated
power with server workload [30]. The maximum power
transferable from source node i to all sink nodes during peri-
od ¢ in scenario w is given by:

PK_ pID
P =Po+ 7MK o (15)
Li
As analyzed above, P is closely related to the con-

nectivity of the topology of IDC network. As shown in Fig.
3, the topology of the IDC network is compromised by fiber
optical failures caused by wildfires (such as failure 1 occur-
ring during period ¢ and failure 2 during period 7+ 1). There-
fore, multi-period WTCI needs to be dynamically simulated
according to the progression of the wildfire.

D. Assessment of LR

User-side FLs aggregated by GCVPP essentially obtain
regulatory capacity in the temporal dimension by delaying
power demand to subsequent periods. EVs are typical repre-
sentatives of user-side FLs. This paper details how to assess
LR following load curtailment services provided by a
GCVPP integrated with multiple EVs. As illustrated in Fig.
4, during the dispatching periods ¢ and 7+ 1, EVs will en-
gage in charging and terminating activities. Consequently,
the timescale for EVs should also adopt ¢’ to emphasize their
dynamic behavior and rapid response capability.

SOC
P o—
o ‘
- P . I
-1 t t+1 +2 +3 Time
SOC of EV 1 pre-adjustment; —SOC of EV 2 pre-adjustment
SOC of EV 1 post-adjustment; - -»>SOC of EV 2 post-adjustment
(a)
‘ Load
Power P1E+P2E rebound
] é
P {
— Py
in i h d L rbd rbd out it 1
non ’fg 5o Load n g g Time
—Curtailment
(b)
—Power consumed of GCVPP pre-adjustment
----- Power consumed of GCVPP post-adjustment
Time range during which load rebound occurs
Fig. 4. Load curtailment services and LR of a GCVPP with two EVs. (a)

target state of charge (SOC). (b) Power.

The original charging completion time for EV u, denoted
as t°¢', represents the total time required for EV u to reach

u

its expected SOC starting from its initial SOC.

exp _ QinE
togl_tin_,’_ Su Su E
u — ‘u EP],_E u

(16)

When the power system requires providing load curtail-
ment services from the GCVPP connected to bus i, the
GCVPP coordinates EVs to reduce either charging power or
discharging power back to the power system.

This paper assumes the GCVPP prioritizes EVs based on

their SOC margin indicator during period ¢, as defined
in (17).
Saut.E _ Sexp
E _ u u
Mt,u_ Sfu—Slfxp (17)

EVs with a higher SOC margin offer greater flexibility
and are prioritized for load curtailment services. After pro-
viding load curtailment services from ¢ to ¢+1, the actual
charging completion time for EV u is the current time period
t+1 plus the time needed to restore the remaining energy.

. E (S°7-SE)- (APE“+PbE)At
M=+ 1+ - EPbA,Et (18)
Hence, LR will occur during the interval [¢t%,¢/**], during
which the rebound power of EV u is formulated as:
Pb,E t e og/ t)bd
Ply=1 " 6567 (19)

0 else

Subsequently, the LR power of the GCVPP is formulated in
(20), and U,, depends on the load shedding power in scenar-
io w.

rbd. vV _ rbd
Pt LW ZP
ogl,V rbd,V
s <t <t (20)
ogl,V _ ogl o‘gl ugl
ZLi w _max{t].w’ i uw’ "'7 }
rbd. V rbd rbd rbd
1 —meﬁlw.”JmW..tU

E. Event-driven Deductive Model of SHSOS

In an event-driven simulation mechanism, events act as ac-
tive variables, while system states serve as passive variables.
These events drive the simulation clock advancement, inher-
ently adapting to SHSOS deduction [31]. The general expres-
sion of a discrete event is given as:

{atk)) P> &by =atk w17 (k). 0} (K))
Qz:{gwu éWFO’ §0F’ QZLS’ Cir }

where — indicates that the event is driven to occur; and @
is a delimiter.
The wildfire-induced line and optical fiber fault events are
defined in (22). For k=1, x is P; while for k=2, x is D.
(athyy P> &y =[5 101y (k).
o(k)=UT5>T5™) k=1,2

tu(k) tvru_i_t/rw

1)

(22)

The calculation of t{:jx“" is based on the formulas presented
in (1)-(6).

Once L}, enters an overload state at time #;; in scenario w,
an overload disconnection event &, is triggered following a
delay of 7;.



YIN et al.: HIERARCHICAL DISPATCH OF MULTI-TYPE VIRTUAL POWER PLANTS FOR ENHANCING RESILIENCE OF POWER SYSTEMS... 139

(o)) > @ =l 11017 B L)
0-(3) 1( t zj TPmax)
tw(3) t””-i—tLW

The occurrence time of load shedding event & corre-
sponds to the moment when bus i, receives the load shed-
ding command.

(0@) > E(@y=[AP,,.g,1@{1; 4).i,)
o(4)=I(AP!,  #0)

Once a load shedding command is received by the
GCVPP connected to bus i, it will trigger the LR event &,
which is expressed as:

(a(9)) = &G =P 1 1@ (17 (5)vd,, )
o(5)= (AP}, #0)

The simulation framework for the event-driven deductive
model of SHSOS is shown in Fig. 5. Each scenario w is se-
quentially input into the event-driven deductive model, lead-
ing to the deduction of the corresponding SHSOS scenarios
Qf within the optimization period. There exists a mapping
relationship between the input scenario w and the derived re-
sult 4, where multiple input scenarios may map to the same
derived result. The probability 7, of each SHSOS scenario is
formulated as:

(23)

24

Liw

w2

(25)

tLi,w

= >, @, (26)

Wil (w)=h}

Event of workload transferring or
providing load curtailment services

&
n
T
Event of wildfire-induced damage to
transmission lines or optical fibers

DC power flow calculation for power systems

I Power system topology Injection power of
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Event queue driving SHSOS evolution

Fig. 5. Simulation framework for event-driven deductive model of SHSOS.

V. PRINCIPLES AND IMPLEMENTATION OF PROPOSED
HIERARCHIACL DISPATCH STRATEGY

A. Upper Level

The objective function of the upper-level strategy aims to
minimize the comprehensive regulation costs C within the
rolling horizon.

min C= VGCzG + VDCzD + VICtI (27)
H

Co=At Y m, (PE,+PP) (28)
h=1
H

C/=At Ym, (P + P, (29)
h=1

C Atzﬂ'thP“h (30)

h= ieQ
The steady-state direct current model is used for calculat-
ing power flows [32] with the constraints shown in (31)-(39).
1) Power balance
The power balance constraint can be expressed as:

zpigh_ 2 tth AP,[,;,) Yt,Vh

geQ, ieQ, (3 1)
2) Ramping rates of generators
The ramping rates of generators should be satisfied as:
—R;At<P, ,—P7, ,,<R/At V1,Yg,Vh (32)

3) Output limits of generators
The output of generators must comply with their opera-
tional upper and lower boundary constraints.

—¢
PS<PS, <P, ViYg.Vh

tg.h

(33)

4) Limits of load shedding power

When it is necessary to shed load, the load shedding pow-
er is non-negative and does not exceed the total load power
on the corresponding bus.

0<AP], ,<P!., VtViVh

5) Power flow on transmission lines
The limits of the power flow on transmission lines should
satisfy their capacity constraints.

PSPy VL, € QL Vt,Vh

(34

(35)
6) The linear relationship between voltage angles and pow-
er flow on transmission lines
The linear relationship is expressed as:
Ht ih 0

23 L Jo h
Poijn= TH VL€ Q. VL Vh (36)
L]
7) Voltage phase angle limits
The voltage phase angle limits are given by:
0,<0,,,<0, Vi VhVt (37)
8) Operational constraints of IDCs
The operations of IDCs are constrained by:
0< P, <PRI™ iVt (38)
> Ph=> PM, Vi.VLVh (39)

ieQ, ieQ,
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where P2Y™ is obtained by applying the improved maxi-

mum flow model, as described in (8)-(15) using the Ford-
Fulkerson algorithm [33].

Constraint (38) ensures that the transferred power from
the DC connected to bus i remains within its maximum
transferable power during all periods. Equation (39) ensures
that the total power transferred out of the DC must be equal
to the total power transferred into the DC during all periods.

During the next period 7+ 1, the ensemble of SHSOS sce-
narios is narrowed down to a specific scenario based on the
actual information collected. The optimization for the period
t+1 is initiated and continues until the entire optimization
cycle is completed.

B. Lower Level

Through the load shedding instructions from the upper lev-
el, the lower level guides GCVPPs to provide load curtail-
ment services.

The maximum load curtailment capacity of EV u during
period ¢ is formulated as an optimization problem expressed

as:
AP/™ =max |AP},| (40)
s.t.

(PrE+APL - 1)

=St 7 fr<t<t’<t+1 (41
PbE out t+ 1

et PO

S:J.,min Sstfiu SSf,max (43)

Ser < gonk (44)

0<PM_APE < P'+ P! (45)

Equation (41) describes the SOC change of EV u between
periods ¢ and ¢+ 1. Equation (42) describes the SOC change
of EV u between periods 7+ 1 and ¢, where only the base
charging power P”* is considered. Constraints (43) and (44)
ensure that the SOC of EV u remains within safe operational
limits and satisfies the minimum energy requirement upon
departure. And (45) limits the charging and discharging pow-
er throughout the regulation process.

Then, the maximum regulation capability of the GCVPP
connected to bus i, which integrates a total of U EVs during
period ¢, is given by:

APVmax E‘APEmax (46)

Based on the regulatory capability of GCVPP, the lower-
level strategy calculates the load curtailment power that the
GCVPP connected to bus i needs to provide during period ¢
in SHSOS scenario % by solving the optimization problem in
(47), subject to (48) and (49).

min(AP}, , -

APJ;) 47

(43)

(49)
Subsequently, based on the principle that EVs with higher

Vv I
AP <AP,
O<APV <APVmax
tih

Lih—

M/, are prioritized for load curtailment power allocation, the
rebound power is calculated using (18)-(20).

For the metrics of the power system resilience, a simple
quantitative measure is given by:

I
R= J 100 - 2( o 100) dr
I

ieQ

(50)

Integrating R from ¢, to ¢, quantifies the cumulative load
loss during the entire cascading failure event, thus providing
a measure of resilience of the power system [34]. The small-
er the value of R, the less the loss of supplied loads in the
power system under wildfires, indicating stronger resilience;
conversely, the weaker the resilience.

The implementation process of the proposed hierarchical
dispatch strategy is illustrated in Algorithm 1.

Algorithm 1: implementation process of proposed hierarchical dispatch
strategy

Step I: initialization. Set the simulation parameters, including time and the
prediction time range.

Step 2: scenario generation and simplification. Latin hypercube sampling
is used to represent the uncertainties in wind speed and direction.
Backward simplification is used to compute the probability distance
from each scenario to the nearest scenario, and scenarios are selected
to reduce the computational burden.

Step 3: using Q! and (1)-(25), deduce the SHSOS set Q.

Step 4: upper-level optimization. Calculate the generator adjustment costs
CF, the load transfer costs CP, and the load shedding costs C! using
(28)-(30). Then, obtain the expected total regulation cost C for Q7 us-
ing (27).

Step 5: lower-level optimization. Calculate the load curtailment capacity
using (40)-(45). Calculate the load curtailment power of GCVPPs us-
ing (47)-(49). Decompose load curtailment instructions using (17).
Calculate the LR using (16)-(20). Then, evaluate the LR to update
the SHSOS deduction results.

Step 6: iterative update. Based on the collected actual information, opti-
mize for the next control period 7+ 1 until the entire optimization cy-
cle is completed.

VI. CASE STUDY

The programs of the proposed hierarchical dispatch strate-
gy are written in MATLAB 2016a and executed on an Intel
17-990X processor of 47 GHz desktop computer with IBM
ILOG CPLEX version 12.2.

A. Test System and Simulation Data

This subsection constructs an improved 39-bus power sys-
tem integrated with an 8-bus IDC network to validate the ef-
fectiveness of the proposed hierarchical dispatch strategy
[35]. The topology of the test system is shown in Fig. SA1
of Supplementary Material A. Figures SA2-SAS5 of Supple-
mentary Material A illustrate the total workloads of IDCs,
transferable workloads of IDCs, values of wind speed and di-
rection on the test day, and the predicted daily outputs of PV
and WT, respectively. Supplementary Material A presents the
generator parameters, while Table SAIIl of Supplementary
Material A provides details on the probability distributions
for two EV types in GCVPP, whose charging behaviors de-
rive from Monte Carlo simulations. For computational tracta-
bility, the maximum DC workload capacity is set to be 6/ =
100 TB, and the fiber flow limit is set to be f;7**=400 GB.
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Transmission line and fiber temperature is capped at 353 K.
Cost coefficients are y;=y,=1 $/MW and y,=100 $/MW,
with time steps Af=15 min and At'=1 min. The base power
of the power system is 100 MW. For wind speed, the stan-
dard deviation is considered to be 15% of the mean value.
For wind direction, the K-factor for the von Mises distribu-
tion is assumed to be 2. Wildfire parameters are defined as
1=0.07 kg/m*® and p=40 kg/m*® [5]. The unit length mass
for transmission lines and optical fibers is 1.13 kg/m and
0.55 kg/m, respectively. The equivalent specific heat capaci-
ties for transmission lines and optical fibers are 843 J/(kg-K)
and 675 J/(kg-K), respectively.

Five strategies S1-S5 are investigated to demonstrate the
benefits of the proposed strategy. The details of the five strat-
egies are described as follows. S1 is a resilient open-loop op-
erational strategy considering predictive errors in wildfire tra-
jectory models (as proposed by [7]). S2 utilizes SMPC to
process the predictive errors of wildfire trajectories, but
VPPs are not involved in the dispatch strategy. S3 utilizes
SMPC to process the predictive errors of wildfire trajectory,
and GDVPP participates in the upper-level strategy, but it
overlooks the impact of wildfire on WTCI, as described in
[16]. S4 utilizes SMPC to process the prediction errors of
wildfire trajectories, while considering the impact of wild-
fires on WTCI. However, GCVPPs are not involved in the
lower-level strategy. S5 utilizes the proposed hierarchical dis-
patch strategy in this paper.

B. Simulation Results

Assuming the fire ignition point is detected at 10:10, the
predicted and actual wind speed and direction data are incor-
porated into the event-driven deductive model to generate
equipment failure information, as shown in Table SAIV of
Supplementary Material A. The equipment failure events
from Table SAIV are illustrated in Fig. SAl. Additionally,
the wildfire trajectories predicted by S1 align with the actual
trajectories in Fig. SA1, highlighting the spatiotemporal cor-
relation between wildfire propagation and equipment failures.

The simulation results under the five strategies are shown
in Fig. 6. The duration of each time interval is 15 min. The
red and green arrows in Fig. 6 mark the periods correspond-
ing to the actual and predicted equipment failures, respective-
ly, as shown in Table SAIV, further demonstrating the corre-
spondence between the predicted and actual equipment fail-
ures.

The simulation results of the resilience, anti-interference
capability, and adjustment costs of each method are com-
pared, as shown in Table I. The anti-interference capability
of various strategies can be represented by {=(R'—R)/R’,
where R* and R represent the resiliences of SI and other
strategies, respectively.

C. Analysis on Effect of SMPC

As shown in Table I and Fig. 6, S1 exhibits the weakest
level of resilience, and its generator outputs are significantly
different from the other four methods. This is due to several
notable fluctuations in wind speed and direction between
10:30 and 14:30.
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However, S1 does not promptly update these fluctuations,
resulting in prediction errors between the predicted and actu-
al equipment failure conditions, as shown in Table SAIV.

Specifically, it is predicted that L, fails during the 55"
period, triggering a cascading overload of L, 5, L5 14 Ly 4
and L,,;. However, the actual failure occurs on L, during
the 55" period, triggering a cascading overload of L, and
L, . Furthermore, in S1, the predicted failure time of PV, is
the 61" period, which is later than the actual occurrence.
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TABLE I
COMPARISON OF DIFFERENT STRATEGIES

Event
Strategy SMPC  IDC FL —— R ¢
fWFO fLR
S1 X X X X X 49.69 0.00
S2 J x x x X 1625  0.67
S3 J J x x x 1598  0.68
S4 J J x x 12.57  0.75
S5 J Y J J 590  0.88

Additionally, in S1, it is predicted that a failure of L, |, oc-
curs during the 67" period, but the actual failure occurs on
L, ;. The following predictive strategies are formulated based
on S2 of SMPC and the rolling deductive results of the pow-
er system topology. During the 53" period, G, and G, are
directed to adjust their outputs over the next two periods to
prevent an overload after L ; disconnects.

During the 60" period, G, is required to increase its out-
put while cutting off PV,. During the 63" period, G,, and
G,, are directed to increase their outputs, while G5, is direct-
ed to decrease its output to prevent overloads on L., and
L, due to the tripping of L, ;. By comparing the simulation
results of S1 and S2, it can be observed that SMPC effective-
ly diminishes the risk of power system operators making in-
correct generator re-dispatching decisions due to prediction
errors, and the resilience is improved by 67%.

D. Analysis of Effects of GDVPP and &y,

As demonstrated in Table I, the resilience of S3 shows a
slight improvement compared with that of S2. Notably, the
resilience of S4 is significantly improved by 75%. This en-
hancement is primarily due to the integration of &, into
the event-driven deductive model of SHSOS in S4, which
provides superior look-ahead capability for predicting work-
load transfer.

Figure 7 illustrates the power of IDCs in S2-S4. As ob-
served, in both S3 and S4, GDVPP transfers workloads from
DC, and DC,, to DC, during the 55" period.

This transfer process reduces the power flow on L, and
L, substantially mitigating their overload conditions after
the disconnection of L, ;. However, during these periods, the
WTCI is relatively low, making the impact on load loss re-
duction in the EOC not very evident. Furthermore, the fail-
ure event Oy, that occurs during the 65" period causes a
significant drop in WTCI during the subsequent periods.
Therefore, when the failure event L, ; and its cascading fail-
ures occurr during the 67" period, the rapid response capabil-
ity of S3 is affected, resulting in a lower level of resilience
improvement. However, the event-driven deductive model of
SHSOS incorporates &), allowing for proactive workload
reallocation from DC,, to DC, during the 65" period. Conse-
quently, S4 exhibits greater operational resilience compared
with S3. This indicates that incorporating GDVPP into resil-
ient operational dispatch helps compensate for the slow
ramping speed of generators, depending on the dynamic
characteristics of WTCI. Therefore, the proposed maximum
flow model, which assesses the impact of fiber optical dam-
age on WTCI over multiple periods, plays a crucial role.
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E. Analysis of Effects of GCVPPs and &y

Building upon the foundation established by S4, S5 em-
ploys GCVPPs to mitigate the load shedding requirements,
which improves the resilience by 88%. In S4 and S5, the
GCVPP load power curves of buses 4, 7, and 8 are present-
ed in Figs. SA6-SAS8 of Supplementary Material A. It is ob-
served that the GCVPP on bus 4 provides load curtailment
service during the 60™ period, reducing the need for the load
shedding caused by the power shortage due to the PV, fail-
ure. GCVPPs on buses 7 and 8 also provide load curtailment
services during the 55 56", and 57" periods, followed by
LR during subsequent decision periods. Furthermore,
GCVPPs on buses 7 and 8 again provide load curtailment
services during the 67" period, which is followed by a pro-
longed LR not fully depicted in Figs. SA7 and SA8 of Sup-
plementary Material A. By comparing Fig. SA8(d) and SAS8
(e), it can be observed that the generator outputs of S4 and
S5 differ during the 59™, 60™, 61, and 62™ periods. This in-
dicates that S5 responds to the LR caused by the load curtail-
ment service provided by GCVPPs by increasing generator
outputs. By comparing the simulation results of S4 and S5,
the impact of GCVPPs on enhancing the anti-interference ca-
pability of the resilience operational strategy is illustrated.

FE. Performance Evaluation

The proposed strategy integrates Latin hypercube sam-
pling to generate scenarios for wind speed and direction, and
its overall convergence is validated through the law of large
numbers. As the number of scenarios W increases, the opti-
mized solution approaches the theoretical optimal solution.
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This paper analyzes the performance of the proposed strat-
egy with various scenario quantities W= {1x1,5x3,12x
7,35x 15,200 x 50}. The theoretical expected function value
is approximated by the result at =200 x50, enabling con-
vergence assessment through comparison with the computed
target function value. The simulation results are shown in
Fig. 8. In Fig. 8 the vertical axis depicts the cumulative dis-
tribution function (CDF) of the resilience level R. More than
50% of the resilience levels for W=1x1 are above 80,
while the resilience levels for W=12x7 are primarily con-
centrated in the interval [6,22]. This indicates that W=12x7
demonstrates superior performance in mitigating the expan-
sion of cascading failures triggered by wildfires, thereby en-
hancing the resilience of the power system. Increasing the
number of scenarios allows the optimized solution to ap-
proach the theoretical optimal solution more closely, leading
to a reduction in load shedding power. However, when the
number of scenarios reaches W=12x7, the improvement be-
comes less significant.

s L L

L L

0 10 20 30 40 50 60 70 80 90 100
Resilience level R

—W=1x1; —W=5x3; —W=12xT7; — W=35x15; —W=200x50

Fig. 8. Simulation results of load loss of with different scenario quantities.

VII. CONCLUSION

This paper proposes a hierarchical dispatch strategy that
enhances power system resilience against uncertainties in
wildfire trajectory predictions through coordinated operation
of GDVPP and GCVPP. In the case study, the power system
resilience and anti-interference capability under five different
strategies are analyzed. The following conclusions are drawn.

1) By updating the deductive results for cascading fail-
ures, the impact of prediction uncertainties on resilient dis-
patch strategies can be reduced through generator output re-
dispatch. However, due to the slow ramp rates of generators,
load shedding in the EOC is still necessary to prevent cas-
cading failures.

2) The improved maximum flow model dynamically evalu-
ates WTCI across multiple periods, and integrating its quanti-
fied results as constraints into the upper level enhances the
ability of IDCs to quickly block cascading overload failures.

3) Utilizing GCVPPs for load curtailment services lowers
the costs associated with load shedding in the EOC. Further-
more, integrating LR feedback results from the lower level
into the event-driven deductive model of SHSOS enables co-
ordinated optimization of GCVPPs and GDVPP.

This paper neglects the impact of wildfires on energy sys-
tem infrastructures beyond power systems such as the threats
to natural gas pipelines. Future research will develop joint re-
silience strategies for electricity-gas systems. Additionally,
developing a general disaster evolution process and event-
driven deductive model will broaden the applicability of the
proposed hierarchical dispatch strategy.
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