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Abstract——The massive integration of intermittent renewable 
generation and the increasing variability of demand raise con‐
cerns about the high level of uncertainty in the security assess‐
ment of power systems. In this context, the main contribution 
of this study is the proposal of a new definition of contingency 
criticality, which is based on the violation probability of the 
voltage security margin (VSM) while considering correlated un‐
certainties in both system loads and wind power generation. 
From this new definition, a contingency ranking can be derived 
and used to determine preventive control actions. To calculate 
this probability for each contingency, a new approach based on 
the cross-entropy (CE) method is developed and applied. The 
CE method is well-suited to handle high levels of uncertainty, 
as it typically provides faster and more accurate results com‐
pared with Monte Carlo simulation, particularly for cases with 
low violation probabilities of the VSM. Another innovative fea‐
ture of this approach is the consideration of correlated uncer‐
tainties through the use of multivariate normal distributions 
and Gaussian copulas. Furthermore, the proposed definition is 
implemented using a formulation that is capable of detecting ei‐
ther saddle-node or limit-induced bifurcations to accurately 
identify the maximum loadability point. A proof of concept is 
presented for a comprehensive explanation of the proposed defi‐
nition, followed by an application of this definition to the IEEE 
118-bus test system. The findings of this paper highlight the 

need to carefully select critical contingencies for voltage securi‐
ty assessment in the context of increasing uncertainties.

Index Terms——Critical contingency, violation probability, un‐
certainty, wind power, limit-induced bifurcation, cross-entropy 
method, probabilistic stability assessment, voltage security mar‐
gin, voltage stability.

I. INTRODUCTION 

THE decarbonization goals set by several countries 
around the world often conflict with the rapid and di‐

verse growth in power consumption. This issue is reflected 
in many types of power system studies, including stability 
and dynamic security assessments [1]. For example, the Bra‐
zilian National System Operator reported a record-high ag‐
gregate load of its interconnected system, surpassing 100 
GW of peak demand. This high loading of the system was 
associated with a significant temperature increase observed 
across much of the country [2]. These extreme climate 
events are expected to become increasingly frequent, which 
highlights the need to quantify and manage the risk of volt‐
age instability due to their relation to high load levels [1].

In its broadest sense, voltage stability refers to the ability 
of a power system to maintain steady voltages at all buses in 
the system after being subjected to a disturbance [3]. There 
is a class of methods for voltage stability analyses that em‐
ploys static approaches, which are applicable to long-term 
studies of subsequent equilibria caused by a slow and sus‐
tained load buildup. Starting from a base case and following 
a predefined load growth direction, the objective of these 
studies is to calculate the maximum additional amount of ag‐
gregate active power that can flow across the transmission 
system (known as voltage stability margin [4]). However, for 
safety reasons, transmission system operators usually define 
an upper limit on the allowable increase in the aggregate ac‐
tive power, which must be smaller than the voltage stability 
margin. This upper limit is then used to define the voltage 
security margin (VSM) [5] of the system under the previous‐
ly described conditions.
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System operators around the world rely mostly on varia‐
tions of the continuation power flow (CPF) [6] to estimate 
the VSM. However, in contingency analyses, the use of 
these variants (such as the one in [7]) may involve an exces‐
sively high computational burden due to the increasing un‐
certainties in the load growth patterns and generation redis‐
patch rules introduced by new decarbonization-related tech‐
nologies. Indeed, the consideration of uncertainties in volt‐
age stability assessment has been a focus of attention of the 
power system community recently [8]-[10].

Efficient approaches to calculating the VSM (such as the 
one in [11]) can be excessively conservative since their goal 
is to determine the worst-case scenario with no discussion 
on the likelihood of its occurrence. More useful information 
for system operators is the probability of occurrence of a 
small VSM, which is directly related to the risk of voltage 
instability. A stochastic voltage stability assessment employ‐
ing the Monte Carlo simulation (MCS) method offers a 
straightforward way to account for various uncertainties, but 
the heavy computational burden renders this method unat‐
tractive and impractical, posing a significant challenge in the 
context of large-scale networks. Recent publications have ex‐
plored alternative sampling techniques to either substitute or 
accelerate the MCS method to solve VSM problems.

In [12], the stochastic response surface method was used 
to establish surrogate models of load margins. This method 
models the response of the system using polynomial chaos 
expansion with standard random variables, and the resulting 
probability distributions significantly reduce the computation‐
al burden of the method when compared with the MCS 
method. However, estimating the coefficients of the polyno‐
mial expansion is challenging, particularly for large systems 
with many uncertainties. The surrogate model may also be 
ineffective in dealing with topology changes (such as contin‐
gencies). To address this issue, a neural network is used to 
improve the surrogate model in [13]. The success of this ap‐
proach largely depends on the availability of a suitable train‐
ing dataset, which can be a practical constraint for most of 
its applications.

The Latin hypercube sampling (LHS) was used in [14] as 
another approach to reduce the computational burden of 
MCS method. However, for large systems with many uncer‐
tain inputs, the combination with other techniques (such as 
Nataf transformation, K-means clustering, and maximum en‐
tropy model) may require a computational cost comparable 
to the MCS method.

Considering all possible operating scenarios, those with 
small VSM are rare instances. Therefore, in a probabilistic 
framework, importance-sampling techniques are recommend‐
ed to handle such problems. The cross-entropy (CE) method 
has been widely used to enhance the efficiency of MCS 
method in estimating rare events in power systems [15]-[18]. 
In the context of voltage stability, [17] (which estimates the 
worst-case scenario) and [18] (which groups critical scenari‐
os) employed the CE method to identify conditions with 
small VSM. Neither work calculated the probability of occur‐
rence of these VSMs, which is a drawback because critical 
margins with a near-zero probability of occurrence may be 

excessively conservative for operation planning.
This work employs a probabilistic approach to voltage se‐

curity analysis, rather than a deterministic one based on a 
worst-case scenario such as those adopted by [18] and [19]. 
Instead of the base or worst-case scenarios, operating points 
characterized by N - 1 contingencies are investigated in this 
paper, as opposed to [12], [14], [20]-[23], in which scenarios 
with network topology changes are not considered. Analyz‐
ing topology changes is fundamental for voltage stability as‐
sessment, given that the system almost always becomes 
more vulnerable under contingencies. If contingency criticali‐
ty is related to the violation of the VSM, contingencies clas‐
sified as non-critical when evaluated at base case may be‐
come critical due to uncertainties under this operating condi‐
tion.

Therefore, this paper presents a unique methodology for 
the definition of contingency criticality. This new definition 
is the main and most important contribution of this paper, 
and it becomes increasingly relevant as the degree of uncer‐
tainty in the operation of the system grows. The proposed 
methodology, based on a variant of the CE method, is suit‐
able for estimating violation probabilities of VSMs even if 
they are rare events (which might jeopardize estimation by 
methods such as LHS). Moreover, in this work, VSMs are 
calculated based on a Jacobian matrix expansion, making it 
possible to detect both limit-induced bifurcation (LIB) and 
saddle-node bifurcation (SNB). Previous studies on LIB de‐
tection, such as [24]-[26], can be considered as CPF variants 
and did not test their method performance for systems with 
load and generation uncertainties.

To highlight the contributions of this paper, a summary of 
them is given below in order of relevance and novelty.

1) The paper proposes a new definition of contingency 
criticality. It is based on the violation probability of the 
VSM, taking into account uncertainties in both the system 
loads and the wind power generation.

2) Based on the calculated probabilities, the proposed defi‐
nition ranks the criticality of the contingencies in decreasing 
order, in such a way that the resulting list is compliant with 
grid codes.

3) A new approach based on the CE method is developed 
to efficiently and accurately calculate these probabilities.

4) This new approach innovates by considering correlated 
uncertainties with the use of multivariate normal distribu‐
tions and Gaussian copulas.

5) Another novelty of this new approach is the use of a 
formulation capable of detecting both SNB and LIB to accu‐
rately detect the maximum loadability point.

The remainder of this paper is structured as follows: Sec‐
tion II provides the mathematical formulation proposed for 
the calculation of VSMs. Section III describes the founda‐
tions for the models of uncertainties in load and intermittent 
generation, as well as the proposed approach based on the 
CE method to calculate the violation probability of the 
VSM. Section IV presents the proposed definition of the con‐
tingency criticality. Section V shows numerical results to 
comprehensively explain and demonstrate the applicability 
of the proposed approach. Section VI outlines the conclu‐
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sions.

II. MATHEMATICAL FORMULATION PROPOSED FOR 
CALCULATION OF VSMS 

For long-term voltage stability analyses, an electric power 
system can be modeled (considering a load growth direction) 
as:

f (zλ)= 0    zÎRnλÎR (1)

where z is the system state vector; λ is a parameter associat‐
ed with active load growth [18]; and f (×) is a multivariate 
function defined in [27]. This system model reaches its maxi‐
mum loadability at λ = λ*, which characterizes a bifurcation 
point.

In this paper, the direct method described in the following 
is used to compute λ*, which enables the calculation of the 
VSM.

A. Mathematical Model for Load Growth Direction

For simplicity, a constant power model is employed to de‐
scribe the load. This type of model is commonly employed 
in long-term voltage stability analyses since it produces con‐
servative estimates of the VSM [28]. The apparent power of 
all loads is assumed to grow as a function of the parameter 
λ with a constant power factor. Thus, the growth of the de‐
manded active power starting from the current operating 
point can be represented by PL and calculated as:

PL =PL0 + λbPL (2)

where bPLÎRNL is the vector of growth directions of NL 
loads; and PL0 is the aggregate of the demanded active pow‐
er at the current operating point.

This load growth requires the redispatch of non-intermit‐
tent generation. The aggregate power output of the non-inter‐
mittent generators PG is defined by using (3a), in which bPLi 
is the component of bPL. Intermittent generation units (such 
as wind farms) are represented as power injections modeled 
by stochastic variables, so they are not considered in (3a). 
Only synchronous generators are redispatched, so PG0 is de‐
fined in such a way that PG0 -PL0 corresponds to the aggre‐
gate power output of non-intermittent generators.

PG =PG0 + α∑
i = 1

NL

λbPLi (3a)

αi =
PGimax -PGi0

∑
j = 1

NG

(PGjmax -PGj0 )
(3b)

where α =[α1α2αiαNG
] is the vector of participation 

factors of NG synchronous generators according to the rule 
given by (3b), subjected to ∑αi = 1; and PGi0 and PGimax are 

the base case and maximum active power outputs of the ith 
synchronous generator, respectively.

B. Direct Method Based on an Expanded Jacobian Formula‐
tion

According to [27], an SNB point, which is characterized 
by the steady-state Jacobian ¶f/¶z with a single zero eigen‐
value, can be calculated using the following set of equations:

f (z*λ* )= 0 (4a)

wT ¶f
¶z | (z*λ* ) = 0 (4b)

 w ¹ 0 (4c)

where w is the left eigenvector that must be related to the 
null eigenvalue at the bifurcation point λ = λ*; and z* is the 
state vector at the bifurcation point.

In this paper, the nonzero condition of (4c) is replaced 
with  w

2 - 1 = 0 to normalize the left eigenvector. The par‐
tial derivatives of the left eigenvector multiplied by the Jaco‐
bian matrix in (4b) are calculated from the expanded Jacobi‐
an formulation proposed in [26], which uses a variant of the 
CPF. This formulation uses sigmoid smooth functions to rep‐
resent the reactive power limits of generators and control de‐
vices. The result is a direct method capable of finding both 
SNB and LIB using the same formulation.

In this paper, only control equations involving Q-limits 
are considered, as these are the main causes of LIB. There‐
fore, the expanded Jacobian matrix is given by:

¶f
¶z

=

é

ë

ê
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¶θ

¶P
¶V

0

¶Q
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¶V

¶Q
¶QG

0
¶G
¶V

¶G
¶QG

(5)

where z =[θVQG ]T; P, Q, and G are the vectors of active 
power, reactive power, and mismatches of the controlled 
variables, respectively; θ and V are the vectors of bus volt‐
age angles and magnitudes, respectively; and QG is the con‐
trol variable vector for the generated reactive power.

The Q-limit control residue of a synchronous generator 
connected to bus k can be calculated as:

DGk = (1 - ch1 × ch3)(1 - ch2 × ch4)(V ref
k -V cal

k )+
(ch1 × ch3)(1 - ch2 × ch4)(Qmax

Gk -Qcal
Gk )+

(1 - ch1 × ch3)(ch2 × ch4)(Qmin
Gk -Qcal

Gk ) (6)

ch1 = (1 + ea(Qcal
Gk -Qmax

Gk + tol) )-1 (7a)

ch2 = (1 + ea(Qcal
Gk -Qmin

Gk - tol) )-1 (7b)

ch3 = (1 + ea(V cal
k -V ref

k - tol) )-1 (7c)

ch4 = (1 + ea(V cal
k -V ref

k + tol) )-1 (7d)

where ch1, ch2, ch3, and ch4 are the sigmoid functions; Qcal
Gk, 

Qmax
Gk , and Qmin

Gk  are the calculated, maximum, and minimum 
values of reactive power of the synchronous generator con‐
nected to bus k, respectively; V ref

k  and V cal
k  are the reference 

and calculated voltages of bus k, respectively; a is the slope 
of the sigmoid function; and tol is a tolerance value. To en‐
sure that the outputs of the sigmoid functions are approxi‐
mately either 0 or 1, a is set to be a large value (> 105) and 
tol is set to be a small one (< 10-4).

The objective of the sigmoid functions is to represent the 
discontinuities related to Q-limits by smooth functions, thus 
enabling the detection of LIB as SNB in (4) [26]. Since the 
proposed direct method uses the expanded Jacobian matrix 
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instead of iteratively converting one PV-type bus into a PQ-
type bus according to the PV-PQ bus type switching logic 
when the reactive power limit is reached, such as in [24], it 
is simpler to implement and results in significant computa‐
tional time savings.

The nonlinear algebraic equation set (4), hereinafter de‐
scribed by F(Z)= 0, with Z =[zλw], can be solved by any 
numerical method. If the classical Newton-Raphson method 
is used, (4b) must be solved for Z, where

¶F
¶Z

=
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0

¶ ( )wT ¶f
¶z

¶z
0

¶ ( )wT ¶f
¶z

¶w

0 0
¶( w

2 - 1)
¶w

(8)

In (8), the terms ¶f ¶λ and ¶( w
2 - 1) ¶w can be replaced 

with bPL - α∑
i = 1

NL

bPLi and 2wT, respectively, and the term 

¶ ( )wT¶f ¶z ¶w is equivalent to (¶f ¶z )T. Finally, as an exten‐

sion of [26], the second partial derivative resulting from the 
application of the Newton-Raphson method to (4b) is calcu‐
lated as:
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(9)

A =
¶PT

¶θ
wP +

¶QT

¶θ
wQ (10a)

B =
¶PT

¶V
wP +

¶QT

¶V
wQ +

¶GT

¶V
wQG

(10b)

C =
¶QT

¶QG

wQ +
¶GT

¶QG

wQG
(10c)

where wP, wQ, and wQG
 are the partitions of the left eigenvec‐

tor w corresponding to active power, reactive power, and 
generated reactive power (as a controlled variable), respec‐
tively.

III. MODELS OF UNCERTAINTIES IN LOAD AND 
INTERMITTENT GENERATION AND PROPOSED APPROACH 

BASED ON CE METHOD

This section defines the uncertainty models for load 
growth direction and intermittent generation output power, 
including their stochastic dependence, which is an important 
feature that must be considered in voltage security assess‐
ment. For simplicity, only wind power generation is consid‐
ered in this paper, although additional uncertain models rep‐
resenting other types of intermittent generators can be easily 
incorporated into the adapted CE method presented in Sec‐
tion III-D. Furthermore, the use of an approach based on the 

CE method is justified. Accordingly, the CE method is also 
presented, incorporating the adaptions introduced in this 
study.

The uncertainty models are based on normal distributions 
and Gaussian copulas, which are suitable for the voltage se‐
curity study in this paper. As demonstrated in [29], the Bra‐
zilian National System Operator considered historical wind 
power generation data from the northeast region of Brazil 
and concluded that, when viewed as a group of multiple 
wind farms, wind power generation conformed to a normal 
distribution. In [30], similar conclusions were reached, based 
on the premise of a large number and geographical disper‐
sion of wind turbines. This same reasoning can be extended 
to load models. Furthermore, employing the Gaussian copula 
to characterize correlations between input variables is sup‐
ported by recent studies on voltage and small-disturbance sta‐
bility based on actual system datasets, such as [31].

A. Uncertain Model of Load Growth Direction

Among the multiple load growth models in the literature, 
a normal probability distribution function (PDF) p(bPLi ) giv‐
en by (11) is used in works such as [12] and [13].

p(bPLi )=
1

2πσ 2
bPLi

 exp ( - (bPLi - μbPLi
)2

2σ 2
bPLi

) (11)

where μbPLi
 and σbPLi

 are the mean and the standard deviation 

of directions of load increase at bus i, respectively. To main‐
tain a constant power factor, reactive power increases in pro‐
portion to active power.

B. Uncertain Model of Wind Power Generation

This paper follows a line similar to the one adopted in 
[29] for modeling wind power generation, which is represent‐
ed by power injections from wind farm groups, modeled as 
stochastic variables with a normal PDF p(PWi ) given by (12).

p(PWi )=
1

2πσ 2
PWi

 exp ( - (PWi - μPWi
)2

2σ 2
PWi

) (12)

where μPWi
 and σPWi

 are the mean and the standard deviation 

of wind power generation at bus i, respectively; and PWi is 
the component of wind power generation vector PW.

C. Stochastic Dependence Among Uncertainties

A detailed analysis of the dependence (correlation) of sto‐
chastic variables used in voltage security assessment can be 
found in [31]. This study reveals that load-to-load uncertain‐
ties are highly dependent, whereas the correlations between 
system load and wind speed uncertainties are very weak. 
This is reasonable given that the consumption pattern of sys‐
tem loads (customers) is typically unrelated to the natural 
variation of wind speed. In terms of wind speed to wind 
speed interdependence, this study highlights that the correla‐
tion decreases as the distance between wind farms increases. 
This allows us to neglect the load-to-wind dependence in 
our representation of the correlation among uncertainties by 
a Gaussian copula given by (13).
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f (XμΣ)=
1
|| Σ (2π)d

 exp ( - 1
2

(X - μ)Σ -1 (X - μ)T ) (13)

where X =[  bPLPW  ]; μ =[  μbPL
μPW

 ], and μbPL
= (μbPLi

), μPW
=

(μPWi
); Σ is a symmetric, positive definite matrix with a di‐

mension of d ´ d; and | Σ | is the determinant of Σ.

D. Overview of Proposed Approach Based on CE Method

In voltage security assessment, the system is considered 
insecure if the VSM is smaller than a certain threshold, 
which will be represented in this paper by S(X)£ γ. S(X) is 
the load margin for a given X. For instance, the Brazilian 
National System Operator in Brazil defines this threshold as 
γ = 7% for the base case and γ = 4% for contingency analyses 
[32]. Although violations of these security margins can make 
the system vulnerable to serious outage events with high im‐
pact, the probability of these violations is typically low [13], 
[33]. This justifies our decision to assess the risk of voltage 
insecurity (and instability, consequently) using the CE meth‐
od.

CE-based approaches, which involve variance minimiza‐
tion, are known for their effectiveness in estimating probabil‐
ities of rare events. Some CE-based power system applica‐
tions include constrained optimal power flow solutions [15], 
[16], spinning reserve assessment under transmission con‐
straints [34], and identification of critical scenarios from the 
voltage stability viewpoint [17], [18].

A brief overview of the proposed approach based on the 
CE method is given below. For details on the general funda‐
mentals of the CE method, see [35]. Let a probability ℓ for 
some measurable functions of an event S(X)£ γ, γÎR (i. e., 
the expectation defined by a collection of indicator func‐
tions, E]]][I{S(X)£ γ}]) be defined as:

ℓ = ∫ I{S(X)£ γ}  f (X ; u) dX     X  f (×u) (14)

where f (X ; u) is the PDF of X determined by a parameter 
vector u; f (×u) is the general form of this PDF over its en‐
tire domain; and I{S(X)£ γ} is the indicator function with a 0 
(false) or 1 (true) result.

The MCS method produces an estimation ℓ̂ of ℓ given by 
(15), which defines an unbiased estimator from N random 
samples X1X2XN of a distribution of X.

ℓ̂ =
1
N∑k = 1

N

I{S(Xk )£ γ} (15)

Consider a new probability distribution g(X ; v) such that ℓ 

can be expressed as (16) and ℓ̂ can be estimated by (17).

ℓ = ∫ I{S(X)£ γ}W (Xuv)g(X ; v)dX     X  g(×v) (16)

ℓ̂ =
1
N∑k = 1

N

I{S(Xk )£ γ}W (Xkuv) (17)

where g(X ; v) is the PDF of X determined by a parameter 
vector v; g(×v) is the general form of this PDF over its en‐
tire domain; and W (Xuv)= f (X ; u)/g(X ; v) is the likelihood 
ratio of PDFs.

The random samples are now drawn from the PDF g(X) 

according to (17). Hence, the estimation of the PDF g(X) 
forms the basis of the importance sampling techniques. As 
discussed in Section III-C, in this paper, the used sampling 
distributions are multivariate normal PDF. In this case, a fast 
way to determine g(X) is to select a distribution equivalent 
to f (X). To this end, Algorithm 1 describes a procedure 
based on CE method to find g(X) f (X ; v) from the original 
distribution f (X ; u). This algorithm is an adaptation of the 
original one in [35], with PDF normalization and changes to 
the convergence criteria. As a result, the computational cost 
is reduced while also minimizing the potential problems as‐
sociated with finding a correlation matrix that is not positive 
definite. It is important to remark that the Cholesky decom‐
position is required only in the first iteration, so the compu‐
tational burden of the algorithm is not significantly affected 
by this decomposition.

IV. PROPOSED DEFINITION OF CONTINGENCY CRITICALITY 

In Section III, the modeling necessary to analyze the risk 
of voltage insecurity (and instability, consequently) is intro‐
duced, with the load and intermittent generation uncertainties 
represented as PDF. As discussed in this same section, pow‐
er systems typically operate with a large VSM, so violations 
of this margin are rare events, justifying the use of the CE 
method. Naturally, as the risk of violation increases, the ben‐
efits of the CE method over the traditional MCS method di‐
minish, though it should still prevail to some extent. This 
section summarizes the proposed approach for defining con‐
tingency criticality.

Voltage security and stability studies must be conducted 
preserving the system structure (without contingencies) and 
with selected contingencies, considering multiple scenarios 
of correlated uncertainties. Therefore, to deal with the large 
number of simulations required, the direct method proposed 
in Section II is implemented to compute the VSM with an 
expanded Jacobian matrix, considering the Q-limits of the 
synchronous generators, as described in Section II-B. The 
main advantage of this implementation lies in its ability to 
convert LIB points to SNB points, making them equally 
identifiable.

Algorithm 1: procedure based on CE method to find g(X) f (X ; v) from 
the original distribution f (X ; u)

Step 1: from X and its respective PDF f (X ; u), generate a set of random 
samples Xj, j = 12m (m is the number of samples drawn from the 
distribution of X). Convert the random samples Xj into standard normal 
values Zj and adjust each Zj to match the original distribution correla‐
tion structure using the Cholesky decomposition. Set the iteration num‐
ber it = 1 and v̂1 = u. v̂1 is the estimator of vi.

Step 2: calculate the performances S(Xj ) and select the elements Xe, e =
12me of the elite set, where me is determined by the pth percentile 
of m sorted in ascending order of their respective S(Xe ).

Step 3: if S(Xme
)£ γ, set v̂ = v̂it and stop. v̂ and v̂it are the estimators of the 

final v and the v at iteration it, respectively. Otherwise, set it = it + 1 and 
convert the samples Xe into standard normal values Ze.

Step 4: update the parameters μit and Σit of v̂it using Ze. Then, from PDF 
f (Zv̂it ), generate new random samples Zj, j = 12m. Convert the 
standard random samples Zj into normal values Xj using PDF f (X ; u). 
Reiterate from Step 2.
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The flowchart in Fig. 1 summarizes the stages needed to 
implement the proposed approach. The input data consist of: 
① network data with line and bus parameters, including the 
Q-limits of synchronous generators; ② the number of sam‐
ples used in each stage of the CE method and the percentage 
of the elite samples; ③ parameters of the direct method, 
such as the maximum mismatch (error) for Newton-Raphson 
convergence; ④ the mean vector and correlation matrix of 
the multivariate normal distribution obtained from the PDFs 
of load growth direction and wind power generation; and ⑤ 
the lines that will be switched off in contingency analysis. In 
the flowchart, the variable c represents the contingency num‐
ber in the list, with c = 0 indicating no contingency.

In the remainder of this paper, Algorithm 1 will be re‐
ferred to as the pre-simulation stage. The initialization of the 
proposed approach generates scenarios (samples) with con‐
sumed power from loads and injected power from wind 
farms using a multivariate normal distribution. For each un‐
certain scenario and system topology, the direct method is 
executed to compute the VSM. As a result, the elite samples 
are selected from scenarios with the smallest margins. If 
none of the elite samples violates the VSM, the parameters 
of the multivariate distribution are updated. New samples are 
then drawn from the updated parameters after a normaliza‐
tion process. Conversely, if a violation occurs, the violation 
probability of the VSM is calculated using the parameters of 
the current (converged) iteration of the pre-simulation stage. 
If this stage requires more than one iteration, the likelihood 
ratio vector must be computed to correct the estimated viola‐
tion probability of the VSM. This procedure is repeated for 

all topologies and scenarios in the contingency list.
After the convergence of the pre-simulation stage, the 

main simulation stage of the proposed approach produces a 
list with the violation probabilities of the VSM for all uncer‐
tain operating conditions contained in the contingency list. 
Based on these probabilities, a new definition of contingen‐
cy criticality is proposed as follows.

Definition When correlated uncertainties under the oper‐
ating condition are considered, the criticality of the selected 
contingencies must be ranked in descending order of their re‐
spective violation probabilities of the VSM.

As will be shown later in Section V, the main innovation 
and advantage of this new definition is its compliance with 
grid codes. Although contingencies happening under operat‐
ing conditions given by the base case may not result in a vi‐
olation of the respective VSM, when uncertainties under 
these conditions are considered, the probability of such viola‐
tion can be quite significant. Therefore, under this frame‐
work with correlated uncertainties, a contingency is consid‐
ered critical if it creates a violation probability of the VSM. 
This new definition aligns with grid codes, as it captures the 
possibility of margin violations due to uncertainties, even if 
no violations are observed in the base case. An illustrative 
example of this concept is given in Section V-B.

V. SIMULATION RESULTS 

Initially, the proposed approach and its advantages are 
comprehensively explained on a 5-bus test system. As a 
proof of concept, the bifurcation surface is shown both with 
and without Q-limit consideration. Furthermore, the results 
of the violation probability of the VSM obtained from the 
proposed approach are compared with those obtained using 
the MCS method to verify the accuracy and computational 
efficiency of the former. Although these are known facts in a 
general sense, this verification is still necessary due to the 
unique characteristics of the voltage stability problem, which 
involves a nonlinear equation set. Then, the proposed defini‐
tion is applied to the IEEE 118-bus test system, which is 
modified by the addition of seven wind farms. The test re‐
sults include contingency scenarios, given by topology 
changes, in addition to the current topology scenario. The vi‐
olation percentages of γ = 7% and γ = 4% are used for cases 
in which the system topology is complete and under contin‐
gency, respectively [32]. This application to the IEEE 118-
bus test system enables an assessment of the advantages of 
the proposed definition.

A. Application of Proposed Approach to a 5-bus Test System

As shown in Fig. 2, the 5-bus test system has generators 
at buses 1 and 3 and loads at buses 2, 4, and 5. The line pa‐
rameters and the generator parameters are extracted from 
[27]. Since the primary goal is to validate the proposed ap‐
proach, a small system without wind farm is considered. To 
put the system under a stressed operating condition, in the 
base case, the active and reactive power values consumed by 
the loads given in [27] are multiplied by 1.7 times their nom‐
inal values. Since this test system only has one PV-type bus, 
we chose a redispatch model in which this bus supplies 23% 

Start

Initialization (c=0)

Update the system topology

First iteration of the CE method

Calculate VSMs

Select the elite samples

S(Xp)£ γ ?

Update the
multivariate

normal parameters

Estimate ℓ using (17)

c = c+1

Has the entire
contingency list been

analyzed?

End

Pre-simulation
(Algorithm 1)

Main
simulation

N

Y

Y

N

Fig. 1.　Flowchart to implement proposed approach.
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of the load growth. Furthermore, the reactive power of the 
generator at bus 3 is limited to 2.5 p.u.. As a result, in the 
scenario with no uncertainties, the load margin is 8.69%.

The parameter space of load active power is mapped in 
R3 with bPLi, i = 245, ranging from 0 to 1 in intervals of 
0.1 p.u. (excluding the direction with no growth), which re‐
sults in 1330 different load growth directions. All load 
growths start from the left front corner of Fig. 3, where PL2

, 

PL4
, and PL5

 are the components of PL in (2) applied to the 5-

bus test system of Fig. 2. The black area in Fig. 3 is an inter‐
polation of the bifurcation surface calculated without Q-lim‐
its, while the gray area is an interpolation of the bifurcation 
surface calculated with Q-limits. Figure 3 clearly shows that 
Q-limits significantly reduce the VSM in all load growth di‐
rections.

When uncertainties in the load growth direction are con‐
sidered, the cases that contain violations of VSMs become 
even rarer events. Table I displays the calculated probability 
of violating the VSM of 7%, i. e., Pr(VSM < 7%). Naturally, 
results obtained using a large sample with the MCS method 
provide a more accurate estimate. In this table, the violation 
probabilty results are determined using various bPL that are 
modeled using a normal distribution with a standard devia‐
tion equal to 30% of the nominal load values. For testing 
and comparison purposes, the correlation matrix among load 
buses is defined using Pearson correlation coefficients ρ 
[36], which are equal to 0 (no correlation), 0.4, and 0.8. The 
time shown in this table is obtained by simulation on the 
MATLAB 2022. b, using a PC with an Intel Core i7-14700 
2.1 GHz processor and 32 GB RAM.

In comparison, the results using the proposed approach is 
shown in Table II. These results are obtained with m = 750 
and p = 0.1 [15] for the pre-simulation stage and 3000 sam‐
ples for the main simulation stage. 

Assuming that the solutions using the MCS method in Ta‐
ble I achieve satisfactory accuracy for the case with 106 sam‐
ples, it is possible to see that the proposed approach presents 
more accurate solutions than the MCS method with 3000 
samples, requiring slightly higher computational time. Fur‐
thermore, when compared to the results of the MCS method 
using 106 samples, the advantages of the proposed approach 
in terms of the tradeoff between accuracy and computational 
time become evident.

The results of Tables I and II for ρ = 0.8 are divided into 
four intervals to provide more detailed results, as shown in 
Fig. 4. Each interval is defined by the range of the VSM for 
each respective sample, as described by the legend. Note 
that the result of the proposed approach is the closest one to 
that of the MCS method with 106 samples in all intervals. 
Therefore, Fig. 4 shows that the proposed approach gener‐
ates accurate results for any desired range of violation of the 
VSM.

B. Application of Proposed Definition to IEEE 118-bus Test 
System

The proposed approach is applied to contingency analysis 
using the IEEE 118-bus test system in Fig. 5, in such a way 
that the proposed definition can effectively be tested. The ac‐
tive power and reactive power of 99 loads are increased by 

4

1 2 3

5

Fig. 2.　One-line diagram of 5-bus test system.
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Fig. 3.　Bifurcation surfaces of 5-bus test system with and without Q-limits.

TABLE I
RESULTS OF MCS METHOD WITH DIFFERENT NUMBER OF SAMPLES

ρ

0

0.4

0.8

3000 samples

Pr(VSM < 7%)

5.53

2.80

0.60

Time (s)

4.40

4.30

4.23

106 samples

Pr(VSM < 7%)

5.42

2.68

0.48

Time (s)

3180.87

2099.43

1813.29

TABLE II
RESULTS OF PROPOSED APPROACH

ρ

0

0.4

0.8

Pr(VSM < 7%)

5.38

2.55

0.45

Time (s)

6.91

6.69

6.66

MCS with
3×103
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Fig. 4.　Results from MCS method and proposed approach for ρ = 0.8.
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a factor of 2.15 over the original system values to make the 
power system more stressed, and 7 wind farms are added to 
buses 8, 32, 42, 55, 76, 92, and 105. Each wind farm is set 
to inject 200 MW of active power. The total amount of pow‐
er produced by wind farms supplies 15% of the total de‐
mand of the system for the base case, which leads to a VSM 
of 11.54% for the system.

The violation probability of the VSM for the system un‐
der contingency is determined with the consideration of un‐
certainties in 99 active power increment values consumed by 
loads and 7 active power values injected by wind farms. bPL 

is modeled as a normal PDF with a mean value described by 
the load active power of the base case and a standard devia‐
tion defined as 10% of this mean value. The power injected 
by each wind farm is modeled as a normal PDF with a 
mean value equal to 200 MW and a standard deviation equal 
to 25% of this mean value. To determine the correlation ma‐
trix, this system is first divided into six electrical areas, as 
shown in Fig. 5. To model load uncertainties, considering 
that the loads are tightly coupled electrically and geographi‐
cally, ρ = 0.8 is used for loads in the same area, ρ = 0.6 is 
used for loads in adjacent areas, and ρ = 0.4 otherwise.

The correlation among wind farms, on the other hand, is 
dependent on their physical proximity. To model this uncer‐
tainty, ρ = 0.3 is used for the groups of wind farms connect‐
ed to buses (8; 32), (42; 55; 76), and (92; 105). The autocor‐
relation of each wind farm is modeled by ρ = 1, and no corre‐
lation (ρ = 0) is considered both between wind farms and 
loads and between groups of wind farms.

The proposed approach uses 1000 samples and p = 0.1 for 
the pre-simulation stage and 10000 samples for the main 
simulation stage. In some cases, the pre-simulation stage con‐
verges in the first iteration, which indicates that the corre‐
sponding events are not rare. In these cases, the parameter v̂ 
is equal to u and, therefore, the PDF f (X ; u) is suitable for 
the main simulation stage. Non-rare contingencies must also 
be ranked, so the number of samples must be carefully cho‐
sen to avoid biased estimation by the proposed approach. 
Based on the approach presented in [21], the chosen sample 
sizes are adequate to produce an unbiased ranking with a 
mean sampling error of less than 0.01 for a 99% confidence 
interval. However, different choices may optimize the estima‐
tion depending on the number of parameters and the size of 
the associated stochastic problem, so this issue must be fur‐
ther investigated in applications of the proposed approach to 

other system models, which is currently underway.
Table III shows the results of the proposed definition, i.e., 

the list of critical contingencies in descending order accord‐
ing to the proposed definition to evaluate criticality. For sim‐
plicity, only the disconnection of lines is considered in the 
contingency analysis. In Table III, the third column contains 
the violation probability of the VSM that is used to rank the 
criticality of the contingency considering uncertainties under 
the operating conditions.

The results in Table III clearly illustrate the importance of 
considering the proposed definition to adequately rank the 
contingency list in terms of criticality. If the criterion used 
to define criticality is the VSM of the base case (which is 
typically done by system operators), only the contingencies 
in lines 74-75 and 45-46 would be labeled as critical. Fur‐
thermore, the contingencies in lines 22-23 and 44-45 would 
be prioritized with respect to the ones in lines 75-118, 69-
70, and 69-75. These issues could lead to insufficient preven‐
tive control actions being identified to eliminate the critical 
contingencies in voltage security assessment studies.

Voltage security analysis, like most other problems in the 
security assessment of power systems, is highly dependent 
on the operating conditions. Therefore, as expected, the pro‐
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Fig. 5.　One-line diagram of IEEE 118-bus test system.

128



SANTOS et al.: DEFINITION OF CONTINGENCY CRITICALITY BASED ON VIOLATION PROBABILITY OF VOLTAGE SECURITY MARGIN...

posed ranking of contingency criticality does not exhibit a 
universal pattern. To illustrate this, the first five contingen‐
cies (identified as the most critical ones in Table III) for the 
same system are now analyzed under a less heavily loaded 
condition. Instead of the original factor of 2.15, which is 
used to create Table III, the loads are increased by a factor 
of 2.10 with respect to their original values in [37], chang‐
ing the mean values and variances of the uncertain load mod‐
els. The wind farms maintain 200 MW of active power injec‐
tion with no changes in the uncertainty settings. With these 
modifications, the wind power generation accounts for ap‐
proximately 16% of the power demand, and the base case 
(without uncertainties) exhibits a VSM of 14.17%.

Table IV presents the results of the proposed definition ap‐
plied to this different base case. It is interesting to observe 
that no contingency would be classified as critical under the 
widely accepted deterministic definition, which is the VSM 
of the base case (shown in second column of Table IV). 
However, the application of the proposed definition reveals 
that the contingencies involving lines 74-75 and 75-118 have 
a higher than 10% probability of violating the VSM. Further‐
more, for the contingency involving line 45-46, the violation 
probability of the VSM sharply decreases, which affects the 
ranking with respect to Table III. These results clearly show 
the dependency of both the deterministic and the proposed 
definition of contingency criticality on the system operating 
conditions.

Table IV is also used to present a comparison of the re‐
sults produced by the proposed approach with the ones gen‐
erated by a benchmark, which is chosen as the MCS method 
with 105 samples to the same problem. It is possible to see 
that the proposed approach accurately estimates the violation 
probabilities of the VSM for all the analyzed contingencies 
with respect to the benchmark for both rare and non-rare 
events. Furthermore, the average time taken to produce the 
results of Table IV with the proposed approach is 10040 s. 
This is a reduction of more than 90% of the average time of 
132233 s taken to produce the respective results with the 
MCS method, which demonstrates the computational efficien‐
cy of the proposed approach. It is important to remark that 
the average time taken for the proposed approach to produce 
the results is adequate for day-ahead operation planning; 
however, if shorter time windows or larger systems are re‐
quired, the proposed approach offers several possibilities to 
apply parallel and/or distributed computation, so the scalabil‐
ity of the approach is suitable to handle more computational‐
ly demanding problems.

In summary, the proposed definition reveals that contin‐
gencies with a satisfactory VSM in the base case can have a 
high violation probability of the VSM due to the uncertain‐
ties under the operating conditions. Therefore, it is possible to 
tailor a threshold for the contingency analysis of interest—de‐
pending on the system and its uncertain features, as well as 
the level of conservatism required by the operator (given 
that stability and security are at stake)—to consider a viola‐
tion probability above which all contingencies must be taken 
into account for the determination of preventive control ac‐
tions.

VI. CONCLUSION 

The results of this paper demonstrate the need for the ad‐
aptation of voltage stability and security assessment methods 
to the current trends in the operation of power systems, 
mainly with respect to uncertainties. In particular, the pro‐
posed definition of contingency criticality shows that contin‐
gencies with satisfactory VSMs in the base case can become 
critical due to uncertainties under the operating conditions. 
Thus, with a careful selection of a threshold for the violation 
probability of the VSM defined in the respective grid code, 
it is possible to select and rank the most critical contingen‐
cies from the list of those assessed.

However, since uncertainties are considered in the prob‐
lem formulation, the computational burden to solve it in‐
creases. Therefore, to handle this issue, strategies to speed 
up the solution must be employed. This paper is particularly 
successful in achieving a satisfactory tradeoff between com‐
putational effort and accuracy of the results by proposing an 
approach based on the CE method to calculate the violation 
probabilities of the VSM. Furthermore, the use of a modi‐
fied version of the direct method to calculate the VSM also 
results in a reduction of the computational burden.

The proposed definition can be applied to the selection of 
preventive control actions to eliminate the criticality of all 
contingencies. Furthermore, the definition can be extended 
to simultaneously assess voltage and small-signal stability 

TABLE IV
RESULTS OF PROPOSED DEFINITION APPLIED TO 118-BUS TEST SYSTEM 

UNDER ANOTHER OPERATING CONDITION

Line under 
contingency

Line 74-75*

Line 75-118*

Line 45-46

Line 69-70

Line 69-75

VSM of base 
case (%)

4.55

8.69

6.57

9.10

9.32

Pr(VSM < 4%) (%)

Proposed 
approach

41.24

11.87

2.54

1.31

0.88

MCS method 
with 105 samples

41.40

11.64

2.93

1.79

0.90

Note: * denotes that the pre-simulation converges in the first iteration.

TABLE III
RESULTS OF PROPOSED DEFINITION APPLIED TO 118-BUS TEST SYSTEM

Line under contingency

Line 74-75*

Line 45-46*

Line 75-118*

Line 69-70*

Line 69-75*

Line 44-45

Line 85-89

Line 22-23

Line 85-88

VSM of base case 
(%)

2.07

4.05

6.12

6.49

6.72

5.66

6.23

5.32

7.17

Pr(VSM < 4%) with 
uncertainty (%)

93.84

53.95

21.73

13.84

11.25

4.56

3.43

2.45

1.07

Note: * denotes that the pre-simulation stage converges in the first iteration.
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and security if Hopf bifurcations are considered in the formu‐
lation presented in Section II.

Currently, the development of general guidelines for defin‐
ing the number of samples in both the pre-simulation and 
main simulation stages of the proposed approach is under in‐
vestigation. Future directions of this research include an ex‐
tension of this paper to consider different uncertainty models 
within a large class of parametric distributions, which is cur‐
rently underway, as well as the incorporation of more limits 
that may impact voltage stability, other than Q-limits of the 
synchronous generators.
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