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LLM-based Exploitation of Edge Data in
Modern Power Systems
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Abstract—The modern power systems face challenges, includ-
ing high proportions of uncertain renewable energy, rapid dy-
namics of power electronics, and decentralized control among
multiple entities. Digital development has enabled power grids
to integrate numerous edge devices equipped with sensing and
computing capabilities, aiming to exploit edge data to enhance
grid observability, controllability, and resilience. However,
much of potential value of edge data remains unexploited with
traditional architecture and methods. Therefore, we explore the
potential of leveraging large language models (LLMs) to fully
exploit edge data in modern power systems. An intelligent, scal-
able, and efficient three-layer architecture is proposed to align
the capabilities of LLMs with the constraints of edge scenarios.
Supporting technologies are reviewed for each layer, including
multimodal data fusion, lightweight collaborative inference, and
closed-loop control. To validate the proposed architecture, we
provide three representative scenarios for preliminary explora-
tion: virtual power plant (VPP) dispatch, intelligent substation
inspection, and contingency management, illustrating how
LLMs can unlock the value of edge data. We conclude by iden-
tifying key technical challenges and outlining future research di-
rections for building modern power systems by LLM-based ex-
ploitation of edge data.

Index Terms—Edge data, large language model (LLM), virtu-
al power plant (VPP), intelligent inspection, contigency manage-
ment, modern power system, resilence.

1. INTRODUCTION

HE global shift in energy structures, along with the roll-

out of the carbon peaking and carbon neutrality goals
(CPCNGs) [1], is driving sweeping changes in power sys-
tems. This transformation is defined by two key develop-
ments: the widespread adoption of renewable energy sources
(RESs) [2], [3] and the digitalization of power system opera-
tions [4]. The CPCNGs promote the development of modern
power systems by supporting large-scale integration of
RESs, advancing modernization of smart grid, and promot-
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ing more diversified energy consumption. Together, these
trends are reshaping the fundamental model of the power in-
dustry. Unlike traditional centralized power systems, the
modern power systems emphasize the deep integration of dis-
tributed energy resources, energy storage systems, electrical
loads, and smart terminals [5]. This integration leads to a
more complex operational paradigm, which necessitates
clearer observability of modern power systems. Therefore,
there is an urgent need to exploit edge data to enable more
refined management, which supports real-time and transpar-
ent perception, and facilitates global control across the entire
network [6], [7].

Edge data is both massive and heterogencous [8]. In terms
of data volume, the edge data in modern power systems is
growing exponentially, which includes monitoring informa-
tion collected from a wide range of sensors and smart termi-
nals, such as smart meters [9], substation sensors [10], super-
visory control and data acquisition (SCADA) systems [11],
distributed energy resource management systems (DERMSs)
[12], transmission and distribution monitoring devices, and
weather monitoring systems [13]. In terms of heterogeneity,
the edge data is diverse, encompassing both structured data
(such as voltage, current, and other time-series measure-
ments) and unstructured data (including inspection images,
video recordings, fault logs, equipment maintenance records,
and even social media posts concerning power outages or
weather alerts) [14].

The massive and heterogeneous edge data in modern pow-
er systems plays a critical role in enabling the dispatch opti-
mization [15], anomaly detection [16], load forecasting [17],
and safety warnings [18]. While traditional methods, particu-
larly physical model-based methods, remain highly effective
in scenarios requiring high precision, low latency, and deter-
ministic results, they face significant challenges in effective-
ly exploiting edge data.

1) In terms of intelligence, traditional physical model-
based methods depend heavily on extensive prior knowledge
and assume ideal operating conditions, which limits their
adaptability in dynamic and real-world scenarios. Although
machine learning methods [19] offer data-driven capabilities,
they require high-quality training samples and struggle to
handle heterogeneous data. Thus, there is an urgent need for
a sufficiently intelligent agent that can automatically extract
value from data.

2) In terms of scalability, the exponential growth of edge
data—fueled by the proliferation of smart meters, sensors,
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and monitoring devices—places immense strain on central-
ized processing architectures. These systems typically trans-
mit raw data to remote data centers, leading to significant
bandwidth consumption and processing delays. Local light-
weight inference is essential as it significantly reduces data
upload.

3) In terms of efficiency, the real-time decision-making is
becoming increasingly critical due to the widespread integra-
tion of power electronic devices and RESs, which intensify
grid fluctuations [20]. A framework for online verification
and closed-loop control of decisions is critically required.
Centralized solutions often fail to meet such stringent laten-
cy requirements. Therefore, the processing architecture of
edge data should be intelligent for adaptive decision-making,
scalable to manage growing data, and efficient to minimize
the overhead and delays, ensuring the stability and reliability
of both local and global power system operations.

While traditional methods struggle with the integration
and processing of edge data, large language models (LLMs),
trained on extensive data [21], offer a promising solution.
Models like GPT [22], DeepSeck [23], Bard [24], and LLa-
MA [25] excel in tasks such as text comprehension, cross-
modal data processing, and knowledge reasoning in some do-
mains [26]-[28], making them ideal for the exploitation of
edge data in complex systems like modern power systems.
LLMs are particularly effective in handling unstructured data
[29], integrating diverse data sources [30], and providing
contextual reasoning [31] for tasks like fault diagnosis. Their
ability to enable natural language interfaces also improves
human-machine interaction [32], increasing transparency and
decision-making. Overall, LLMs provide a unified frame-
work to enhance the intelligence, scalability, and efficiency
in the management of modern power systems.

Recent studies have explored the applications of LLMs in
smart grids [33]-[42]. Some provide broad reviews of LLM-
based functions, such as operations, planning, and security
[33]. Others develop LLM-based chatbots to automate con-
tract negotiation [34] or propose modular reasoning frame-
works for task planning [35]. Task-specific designs have
been used for electric vehicle (EV) charging [36], heating,
ventilation, and air conditioning (HVAC) fault diagnosis
[37], and wind power forecasting [38]. Some studies focus
on the optimization and multi-agent coordination in distribu-
tion networks [39], [40]. Recent research also explores
LLMs for safety-critical functions, such as semantic under-
standing for protection control [41] and reinforcement learn-
ing with uncertainty handling in energy management [42].
Most of these methods target isolated tasks, single modali-
ties, or controlled environments.

Despite notable success in various domains, the LLM-
based exploitation of edge data in modern power systems re-
mains in its infancy and faces several critical challenges.

1) General-purpose LLMs, primarily trained on generic
text corpora, lack the domain-specific knowledge of modern
power systems. As a result, their outputs often fail to com-
ply with physical laws or operational constraints intrinsic to
modern power systems [43]. How to generate secure and re-
liable decisions for operations of modern power systems con-

stitutes the core objective of LLM-based exploitation of
edge data.

2) The edge data generated by modern power systems is
massive, heterogeneous, and multimodal in nature [13]. How
to construct unified representations that enable LLMs to ef-
fectively integrate and infer over edge data remains an open
research problem.

3) Modern power systems comprise a vast number of geo-
graphically distributed devices, with imbalanced computing
resources and tight real-time requirements [44]. How to coor-
dinate software and hardware resources efficiently and devel-
op an architecture that supports the robust deployment of
LLMs under such constraints poses a significant challenge.

To address these challenges, this paper leverages LLMs to
fully exploit edge data, aiming to fill the gap in applications,
refine key technologies, and provide representative scenarios
for preliminary exploration. First, we introduce a three-layer
architecture designed to integrate LLMs into modern power
systems. This architecture focuses on key technologies at
each layer, including multimodal data fusion, lightweight col-
laborative inference, and closed-loop control, for optimizing
the processing of edge data and enhancing system observabil-
ity, controllability, and resilience. Then, we provide three
representative scenarios for the preliminary exploration in
modern power system: virtual power plant (VPP) dispatch,
intelligent substation inspection, and contingency manage-
ment. Finally, we discuss the remaining challenges and fu-
ture research directions for LLM-based exploitation of edge
data in modern power systems, including cross-modal spatio-
temporal semantic alignment, hierarchical intent alignment in
multi-layer architectures, robust inference under data uncer-
tainty and operational disturbances, collaborative optimiza-
tion under cross-institutional data barriers, consistent deci-
sion-making, scalability bottlenecks in deployment of LLMs
for large-scale power systems, and information security chal-
lenges in LLM-based architectures.

II. EDGE DATA AND LLMS

This section provides a systematic review of edge data in
modern power systems, along with a comprehensive analysis
of LLMs in terms of their characteristics, classification, and
current development status. Given the unique features of
edge data, such as its heterogeneity, real-time requirements,
and multimodal formats, the use of LLMs is not only effec-
tive but also essential. Their effectiveness stems from their
strong generalization capabilities, ability to process cross-
modal inputs, and potential for contextual understanding in
real-time scenarios. This section further examines the neces-
sity and applicability of LLMs, considering both the data-
driven demands and practical deployment requirements.

A. Edge Data in Modern Power Systems

Edge data refers to data that is generated, processed, and
analyzed at or near the source of generation, typically by
edge devices such as sensors, smart terminals, and intelligent
monitoring systems located across various points in the mod-
ern power systems. Unlike traditional centralized data pro-
cessing, which sends data to a central data center for analy-
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sis, edge data is processed locally to provide real-time in-
sights and enable immediate decision-making. This data is
crucial for supporting dynamic operations of modern power
systems and ensuring quick responses, especially during
high-stakes events such as faults or emergencies.

In modern power systems, edge data consists of multidi-
mensional datasets generated in real time by edge devices
such as sensors, smart terminals, and intelligent monitoring
systems. The rapid development of renewable energy, big da-
ta, and Internet of Things (IoT) technologies has accelerated
the digital transformation of modern power systems, result-
ing in unprecedented diversity, complexity, and multimodali-
ty in edge data. The external features of edge data include
massiveness and heterogeneity, while internal features in-
clude real-time capability, cross-domain data correlation, geo-
graphical distribution, and varying data value density [6].

1) Massiveness

Modern power systems generate data at unprecedented
rates, with sensors, smart terminals, and intelligent monitor-
ing systems continuously producing data streams that far ex-
ceed the data volumes of traditional power systems. While
this massive data scale enhances the situational awareness
and provides a rich foundation for predictive analytics and
decision-making, it also introduces new challenges in stor-
age, transmission latency, and computational processing that
traditional power systems have not encountered.

2) Heterogeneity

In this context, heterogeneity emphasizes the diversity and
complexity of data sources rather than correlations among
them. Each node in modern power systems, including termi-
nal points, substations, distribution rooms, and end users,
continuously generates diverse and heterogeneous data
streams. These data streams include structured time-series
measurements, as well as semi-structured maintenance logs
and unstructured data such as inspection reports, fault re-
cords, and aerial imagery [45], reflecting differences in data
origin, format, structure, and generation frequency. Further-
more, external data sources such as meteorological alerts, so-
cial media feeds, and market demand fluctuations contribute
additional heterogeneity and provide valuable contextual in-
sights for operations of modern power systems.

3) Real-time Capability

Timely data collection and transmission are critical in
modern power systems, especially for rapid fault detection
and emergency response [46]. Edge devices must support
low-latency communication and fast computation to ensure
stability and safety. Real-time capability across the entire da-
ta pipeline, including acquisition, transmission, processing,
and decision-making, is essential, and in many critical cases,
immediate decisions in edge devices are indispensable.

4) Cross-domain Data Correlation

While heterogeneity highlights differences in data origin
and representation, the cross-domain data correlation empha-
sizes the intrinsic relationships between different data sourc-
es, particularly between internal grid variables and external
environmental or market factors [47]. Cross-domain analysis
helps uncover hidden patterns that may be missed by tradi-

tional methods. For instance, integrating weather alerts with
load profiles can significantly enhance the forecasting accura-
cy and support more robust dispatch and early warning sys-
tems.

5) Geographical Distribution

Edge data shows variation across different locations be-
cause it is generated at various points in modern power sys-
tems. Differences in operation of regions and local condi-
tions cause the data to change in unique and unpredictable
ways. This requires a control architecture that can manage
both overall coordination and specific regional adjust-
ments [48].

6) Varying Data Value Density

The informational value of edge data varies considerably.
Some datasets offer high-value insights by capturing critical
equipment conditions or early fault indicators, while others
may contain redundant or low-relevance data. Accurate iden-
tification and selective processing of high-value data are es-
sential for improving the analytical efficiency and enabling
the intelligent decision support at scale.

Given the aforementioned characteristics, effectively ex-
ploiting edge data and extracting its value require an intelli-
gent, scalable, and efficient data processing architecture.
Such complexity and multimodality of edge data demand
models with the ability of unifying diverse formats, under-
standing semantics, and reasoning under uncertainty. LLMs
are uniquely suited to meet these needs, especially in their
multimodal and domain-adapted forms.

B. LLMs

In recent years, LLMs have achieved major breakthroughs
and gained widespread applications. A prevailing paradigm
combines self-supervised pre-training on large unlabeled da-
tasets with task-specific fine-tuning for downstream use
[49]. Notably, LLMs also exhibit zero-shot generalization,
enabling them to perform tasks based solely on prompt in-
structions without additional training [50].

1) Pre-training of LLMs

The primary objective for pre-training of LLMs is to learn
general language patterns from vast amounts of unlabeled da-
ta, thereby establishing a base model with transferable gener-
alization capabilities for downstream tasks. The key consider-
ations lie in the data sources and training methodologies em-
ployed during pre-training. Typical data sources for pre-train-
ing of LLMs encompass web text, books, and news articles.
For instance, GPT-3 utilizes general text corpora such as
Common Crawl [51] and Wikipedia [52] alongside special-
ized domain datasets including The Pile [53], which contains
academic papers, code repositories, and technical question-
and-answer (Q&A) collections. The RefinedWeb [54] dataset
further processes Common Crawl by filtering high-quality
web content.

The pre-training of LLMs mainly adopts two methods:
self-supervised and unsupervised learning. Self-supervised
learning includes tasks such as masked language modeling
and autoregressive next-token prediction, while unsupervised
learning focuses on context-based prediction without human
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annotation. Due to the massive parameter scale, the pre-train-
ing of LLMs is computationally demanding, typically requir-
ing thousands of graphics processing unit (GPU) hours. In
modern power systems, the pre-training of LLMs with do-
main-specific data such as operational logs, sensor data, and
system behavior records enables LLMs to grasp system-spe-
cific dynamics without requiring full retraining. For instance,
the grid artificial intelligent assistant (GAIA) integrates di-
verse data sources to support tasks like monitoring and
black-start operations, streamlining pre-training of LLMs for
applications of modern power systems [55]. Similarly, power
pre-trained model (PowerPM) establishes a foundation for
electric time-series modeling by capturing temporal depen-
dencies in power data [56].

2) Fine-tuning of LLMs

The purpose of fine-tuning is to adapt a pre-trained model
for specific tasks by updating a subset of its parameters us-
ing limited data, thereby improving the domain-specific per-
formance. Fine-tuning can be classified into three primary
methods.

1) Supervised fine-tuning (SFT): this method requires
high-quality labeled datasets such as Q&A pairs for effective
training. The process focuses on optimizing parameters to en-
hance the instruction compliance. A representative example
is InstructGPT [57], which leverages human-annotated com-
mand-response pairs to enhance the ability of GPT-3 to accu-
rately follow user instructions.

2) Parameter-efficient fine-tuning (PEFT) [58]: this meth-
od with effective training necessitates the use of labeled data
while maintaining the majority of pre-trained parameters fro-
zen to preserve the model consistency. The optimal results
are achieved by fine-tuning only a small subset of newly in-
troduced parameters. The primary methods include:

(D Low-rank adaptation (LoRA) [59], which incorporates
low-rank matrices to significantly reduce the number of train-
able parameters and memory usage.

2 Adapter tuning [60], which introduces lightweight
multi-layer perceptron (MLP) adapters between transformer
layers, adding minimal parameters while achieving perfor-
mance comparable to full fine-tuning.

) Prefix-tuning [61], which appends learnable continuous
prefix vectors to the model input, enabling the efficient adap-
tation with performance close to that of full parameter tun-
ing.

3) Reinforcement learning fine-tuning (RLFT): this meth-
od optimizes the model output by employing reward signals
to align responses with either human preferences or task-spe-
cific objectives. For instance, the reinforced fine-tuning
(ReFT) [62] utilizes proximal policy optimization (PPO) to
sample multiple inference paths and rewards correct respons-
es, driving parameter updates toward higher-reward direc-
tions. However, the effectiveness of RLFT depends critically
on reward rules, requiring careful design of the reward func-
tion to ensure the optimal performance.

For the applications of modern power systems, even when
system topologies or load levels differ from those used dur-
ing training, the full retraining of LLMs is unnecessary.

Techniques such as PEFT and LoRA enable LLMs to quick-
ly adapt to new system conditions without requiring frequent
retraining. For instance, GPT-2 has been fine-tuned for load
forecasting using adapters with frequency, temporal, and spa-
tial parameters, enhancing adaptability while preserving pre-
trained knowledge [63]. Similarly, BERT has been used for
wind power forecasting, employing a multi-stage fine-tuning
process to capture spatiotemporal dependencies [64]. Further-
more, version control mechanisms, along with chain-of-
thought reasoning [65] and meta-reasoning modules [66],
help prevent outdated or conflicting information, ensuring
stable decision-making.

3) In-context Learning of LLMs

In-context learning refers to the ability of LLMs to per-
form tasks by prompt-based instructions without relying on
any task-specific labeled examples. This capability is en-
abled by the vast pre-trained knowledge embedded in LLMs
and their ability to interpret human-readable task descrip-
tions. It plays a critical role in scenarios where labeled data
is scarce or unavailable, especially in modern power sys-
tems. LLMs exhibit in-context learning in three key forms.

1) Task generalization: LLMs complete previously unseen
tasks such as fault classification or log summarization based
on prompt semantics alone [67].

2) Domain generalization: this allows LLMs trained on
general corpora to process content specific to modern power
systems such as sensor logs or control commands [68].

3) Modality bridging: textual prompts guide LLMs to in-
fer over inputs from other modalities, such as infrared imag-
es [69].

This capability allows LLMs to interpret novel system
states, respond to long-tail fault events, and adapt to evolv-
ing operational protocols without retraining, offering flexible
semantic intelligence at the edge [70]. In the context of non-
intrusive load monitoring (NILM) [71], LLMs can leverage
in-context learning to disaggregate power signals and adapt
to changes in household appliance usage without requiring
extensive retraining [72], [73]. This ability to adapt with
minimal data is also evident in modern power systems. For
example, a memory-efficient plug-in adapter was used with
Llama-7B to build a load forecasting model capable of per-
forming well even with minimal data [74], while reinforce-
ment learning leverages LLMs to understand safety require-
ments and design adaptive penalty functions in energy man-
agement scenarios [34].

In practical applications across various domains, users can
leverage existing open-source LLMs by downloading their
model architectures and pre-trained parameters. They can
then perform task-specific fine-tuning instead of training
models from scratch, enabling rapid development and de-
ployment. However, implementing this method directly at
the edge of modern power systems remains challenging be-
cause both inference and fine-tuning of LLMs require sub-
stantial computational resources that are typically unavail-
able in most edge devices. Section III will propose a novel
LLM-based architecture tailored for edge data to address this
problem.
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III. LLM-BASED EXPLOITATION OF EDGE DATA

To fully explore the edge data in modern power systems,
this section proposes a dedicated three-layer architecture.
Moreover, key technologies are systematically presented un-
derlying the proposed architecture, detailing the practical
roles and applications for processing massive and heteroge-
neous edge data in modern power systems based on LLMs.

A. System Architecture

The three-layer architecture includes the device, edge, and
cloud layers, as shown in Fig. 1. Unlike conventional archi-
tectures where edge nodes primarily serve as passive data
conduits, the LLM-based design enables active and semantic-
level processing across all layers, leveraging the reasoning,
generalization, and multi-source integration capabilities.

‘ Hi[ @ Data alignment
Edge data<—§> Device layer ti| @ Inference of lightweight LLMs
i ((lightweight LLMs)g| i i| () Coordination between hardware |
: and software ‘
Hi[ @ Data fusion
Edge layer i || @ Domain-specific knowledge
(offline LLMs) U embedding
3 Collaborative inference
Cross- - -
domain<s Cloud layer L] @ Multimodal inference
data i| (online LLMs) Uj:: @ Closed-loop control
System architecture Key technologies
@Computing resource; «—»Data flow
Fig. 1. Three-layer architecture.

The device layer forms the foundation, consisting of sen-
sors, relay protection devices, smart meters, and unmanned
inspection units that directly interface with edge data. These
devices monitor the operational status and execute control
commands via high-performance sensors. Notably, the smart
meters can embed lightweight LLMs for local inference,
which are recommended by the advanced metering infrastruc-
ture (AMI) 2.0 to enable a better understanding of electricity
usage and generation [75]. The device layer requires the min-
imum computing resources.

The edge layer connects the device and cloud layers, com-
prising converged terminals, gateways, and servers. It aggre-
gates data, converts protocols, and conducts real-time analy-
sis. With computational power, it supports offline tasks of
LLMs like load forecasting and fault localization. Advanced
systems enable task offloading, thereby fostering distributed
intelligence. The edge layer requires the medium computing
resources.

The cloud layer, including cloud platforms and microser-
vice clusters, supports online fine-tuning, simulation, and
strategy deployment of LLMs. It receives operational data
from the edge and distributes fine-tuned models back for iter-
ative collaboration. By integrating cross-domain data, the
cloud generates optimized strategies, enabling a “lightweight
edge, powerful cloud” architecture for adaptive management
of modern power systems [76]. The cloud layer requires the
maximum computing resources.

B. Device Layer: Data Alignment, Inference of Lightweight
LLMs, and Coordination Between Hardware and Software

The device layer represents the foundational level of the
proposed architecture. Terminal devices in this layer primari-
ly support data sensing and basic computational tasks. How-
ever, they generally lack the computational resources re-
quired for full-scale inference of LLMs. While such devices
cannot directly run large models, the deployment of light-
weight LLM variants offers a practical alternative, enabling
on-device inference in less than 50 ms [77] and occupying
only memory of hundreds of MB [78] with reduced resource
demands. This subsection therefore focuses on device-layer
technologies that support applications of LLMs and address-
es the following three key challenges.

1) Data inconsistency: multi-source heterogeneous data of-
ten features inconsistent sampling frequencies and time-
stamps, imbalanced sample volumes, and varying quality.

2) Inference limitations: these include terminal computing
bottlenecks, inference latency, weak model generalization,
and notable long-term performance decline.

3) Integration inefficiency: current systems often exhibit
inefficient model utilization across heterogeneous devices
and face challenges in the integration of complex systems.

Consequently, the device-layer technologies include data
alignment, inference of lightweight LLMs, and coordination
between hardware and software.

1) Data Alignment

Multi-source data alignment serves as the initial step for
transforming raw and disorganized data into a structured
form suitable for analytical applications. For lightweight
LLMs deployed at the device layer, the effectiveness of
downstream inference tasks highly depends on the quality
and consistency of input features. Recent advances in adap-
tive interpolation techniques have significantly enhanced tem-
poral alignment, particularly for multi-source data with vary-
ing sampling features. While traditional methods such as lin-
ear and spline interpolation demonstrate limited effectiveness
for non-uniformly sampled data, novel methods such as the
adaptive hypergraph transformer-based multi-scale interpola-
tion have demonstrated notable improvements in structured
data generation, which directly supports contextual modeling
in LLM-based architectures [79].

Several advanced techniques have been proposed to ad-
dress the alignment challenges. For instance, time-series fore-
casting-test time adaptation (TSF-TTA) employs fast Fourier
transform (FFT) analysis to dynamically identify the optimal
event trigger windows and adapt models to shifting data dis-
tributions during the testing phase [80]. These dynamic align-
ment mechanisms are crucial for maintaining prompt and
contextually relevant responses of LLMs in edge environ-
ments. In event-driven alignment scenarios, the EventVL
framework offers a robust spatiotemporal representation
method that precisely synchronizes drone inspection imagery
with SCADA time-series data [81], enabling LLMs to ex-
tract cross-modal correlations. Additionally, the time-series
data synchronization-generative adversarial network (TDS-
GAN) architecture integrates generative adversarial networks
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(GANs) with physical system modeling. This design enables
robust alignment of events in modern power systems and fa-
cilitates a detailed analysis of correlations between fault oc-
currences and load fluctuation patterns [82], thereby enhanc-
ing the factual grounding of LLM-based outputs in complex
scenarios.
2) Inference of Lightweight LLMs

Inference of lightweight LLMs has emerged as a key en-
abler for localized natural language processing (NLP) on re-
source-constrained devices. Devices with sufficient comput-
ing capability at the device layer can deploy streamlined
LLM variants to support the operation of modern power sys-
tems. As shown in Fig. 2, essential techniques for achieving
the inference of lightweight LLMs include knowledge distil-
lation [83], model quantization [84], pruning [85], and the
design of lightweight architectures. Knowledge distillation is
a technique in which a smaller model (student) is trained to
mimic the behavior of a larger and pre-trained model (teach-
er) to enhance its efficiency and performance. Model quanti-
zation converts high-precision weights or activation matrices
to low-precision ones, aiming to minimize the performance
degradation. Pruning removes weights with little impact on
performance, further optimizing the model. While light-
weight LLMs inevitably result in some performance trade-
offs compared with traditional LLMs, recent studies have
demonstrated effective compensation mechanisms such as
the use of retrieval-augmented generation (RAG) [86] and
edge-layer collaboration, which help mitigate these perfor-
mance losses and ensure that the lightweight LLMs remain
effective for real-time decision-making in dynamic power
system environments.

Original Original Original Original
LLMs Sample LLMs LLMs LLMs
iLoss JLOSS
Lightweight ! i i
LLMs Lightweight Lightweight New
LLMs LLMs architecture
(a) (b) (© (d)
Full-precision weight; Pruned weight

Full-precision weight-only;
Low-precision weight-only;

Full-precision activation-only
Low-precision activation-only

Fig. 2. Techniques for inference of lightweight LLMs. (a) Knowledge dis-
tillation. (b) Model quantization. (c) Pruning. (d) Lightweight architecture.

Recent advancements such as bit-term pruning with tempo-
ral feature preservation (BT-TPF) [87], lightweight contextu-
al embedding for edge learning (LCEFL) [88], knowledge
distillation with graph attention fusion for intelligent monitor-
ing (KD-GAFIM) [89], sparse distributed federated learning
(SDFL) [90], graph-based spatial detection (GSDet) [91],
and edge-LLM [92] have demonstrated promising trade-offs
between model accuracy and computational efficiency at the
device layer.

3) Coordination Between Hardware and Software

Sustainable development at the device layer necessitates a
close coordination between hardware and software. A critical
challenge lies in balancing the computational performance
and energy efficiency, which significantly affects the long-
term operation of IoT terminals in modern power systems,
particularly those powered by batteries. This trade-off be-
comes even more crucial when deploying lightweight LLMs
at the device layer, as their inference still demands non-trivi-
al computational resources and continuous operation. At the
hardware level, the dynamic voltage and frequency scaling
(DVFS) [93] improves energy efficiency. In parallel, the
computation offloading enables holistic energy management
within the proposed architecture [94], enabling adaptive re-
source allocation for LLM tasks based on terminal status
and network conditions.

To further optimize energy strategies for inference of light-
weight LLMs at the device level, deep reinforcement learn-
ing (DRL) has been applied to jointly tune DVFS and
offloading parameters [95]. Reference [96] avoids setting re-
ward functions. Instead, it uses “intelligence” as a metric to
evaluate the cognitive improvements. In parallel, the com-
pact hardware-software co-designs for multi-modal deep neu-
ral networks (M-DNNSs) [97] offer valuable references for
building the low-power accelerators of LLMs at the device
layer.

The standardization of hardware interfaces and communi-
cation protocols is also essential for scalable and interopera-
ble deployment of LLMs. Widely adopted standards such as
IEEE 802.15.4 [98], IEC 62541 [99], MQTT 5.0 [100], and
ISO/IEC 21823-3 [101] govern general IoT communication,
while IEC 61850 [102], IEEE P3240.07 [103], IEEE 1815
[104], and GB/T 41780.3-2025 [105] target at the power loT
terminals. Newer standards like IEEE P1945 [106] and ETSI
GS MEC 030 [107] define edge computing interfaces, laying
the groundwork for a unified edge environment that supports
the execution of distributed LLMs across heterogeneous de-
vices.

C. Edge Layer: Data Fusion, Domain-specific Knowledge
Embedding, and Collaborative Inference

The edge layer, positioned at the middle layer of the pro-
posed architecture, serves as a crucial hub between the de-
vice and cloud layers. It receives raw or pre-processed data
from devices, transmits operational feedback to the cloud,
and coordinates with regional computing nodes to support
distributed intelligence. In this context, the lightweight
LLMs can be deployed offline at the edge layer to provide
localized semantic inference.

However, directly applying general-purpose LLMs to the
edge environments poses significant challenges. These mod-
els are typically pre-trained on general text corpora and lack
the domain-specific knowledge required for applications of
modern power systems. Moreover, they struggle to interpret
the edge data common in modern power systems. Further-
more, due to the resource constraints, the edge-based infer-
ence of LLMs remains highly inefficient. These limitations
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hinder LLMs from accurately understanding the operational
states or supporting the real-time decision-making. To ad-
dress these problems, the following three capabilities are es-
sential: data fusion, domain-specific knowledge embedding,
and collaborative inference.
1) Data Fusion

Recent studies have achieved significant progress in adapt-
ing LLMs to support the operations of modern power systems
by integrating heterogeneous data sources. Current data fusion
methods fall into three categories, focusing on data representa-
tion and knowledge integration. As shown in Fig. 3(a), time-
series feature encodings (sequence embeddings) and text em-
beddings are concatenated and fed into LLMs for task-specif-
ic fine-tuning [108]-[112]. This fusion enhances the ability
of LLM to generate accurate outputs based on temporal pat-
terns. As shown in Fig. 3(b), integrating spatiotemporal
graph representations into the inputs of LLMs enables a
range of downstream tasks, including time-series prediction
[56], [74], [113], energy management [114], and fault classi-
fication [33]. LLMs developed for power electronics circuit
design further incorporate multi-dimensional embeddings, in-
cluding physical modeling constraints and structured knowl-
edge bases. As shown in Fig. 3(c), alternative methods dis-
cretize continuous time-series data into textual formats using
normalization and quantization techniques [115]. Moreover,
the multimodal fusion of diverse data types, including images
and text [116], images and time series [117]-[119], has been
applied to improve photovoltaic power output forecasting.
2) Domain-specific Knowledge Embedding

In this context, the domain-specific knowledge embedding
enables LLMs to rapidly acquire expertise in modern power
systems, thereby enhancing their adaptability to edge-layer
tasks. Two common methods for domain-specific knowledge
embedding are in-context learning and fine-tuning. In terms
of in-context learning, which includes RAG [86] and knowl-
edge graph (KG) as shown in Fig. 4, RAG dynamically in-
corporates external knowledge by combining retrieval mecha-
nisms with generative modeling, while KG uses structured
data to represent semantic relationships among entities.
These methods help LLMs contextualize their responses
when interpreting edge data in modern power systems. Spe-
cifically, RAG can leverage the structured knowledge from
KG to enhance its generative capabilities. In terms of fine-
tuning, some recent efforts employ PEFT alongside multi-
channel architectures to continuously inject domain-specific
knowledge into pre-trained LLMs [58]. This design ensures
that LLMs maintain their domain relevance over time, pre-
venting the overwrite of existing knowledge while adapting
to new information, even when operating in the decentral-
ized and dynamic edge environments.
3) Collaborative Inference

Due to the limited computational capacity of edge devic-
es, achieving the efficient inference of LLMs demands the
joint optimization across hardware design, model architec-
ture, and distributed edge resource management. The experi-
mental results in [120] indicate that the model architecture,
batch size, and quantization level significantly impact the en-
ergy consumption and inference speed of LLMs.
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Fig. 3. Three data fusion methods. (a) Time-series feature encodings and
text embeddings. (b) Spatiotemporal graph + inputs of LLM. (c) Continuous
time-series data to textual formats.

Current studies aim to accelerate the inference of LLMs at
the edge layer by dynamically allocating tasks based on de-
vice resource profiles [121], predicting the task arrival time
through the proactive path planning [122], and applying
memory-aware loading strategies alongside compact models
[123]. More advanced, [124] proposes a layer-wise partition-
ing of LLMs, distributing model segments across edge devic-
es according to their resource capacities. A task execution
plan is then generated to ensure the timely and coherent in-
ference across the edge network. Multi-agent collaborative
systems can also be employed, where specialized LLMs han-
dle different tasks to reduce knowledge overload in any sin-
gle model and facilitate the version upgrades and module re-
placements over time.

D. Cloud Layer: Multimodal Inference and Closed-loop
Control

The cloud layer, at the top of the proposed architecture,
acts as the central hub for data aggregation, intelligent deci-
sion-making, and continuous model adaptation. It adjusts the
strategic outputs based on the real-time data from distributed
edge nodes, especially during system changes or grid recon-
figurations.
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Cloud-based LLMs, fine-tuned with edge data, enable the
context-aware strategy formulation and adapt to the evolving
conditions, supporting the grid optimization, fault analysis,
and multi-source coordination.

While promising, challenges remain in coordinating across
the time scales and maintaining the decision robustness in
the extreme scenarios. Continued refinement of the cloud-
edge collaboration and real-time feedback mechanisms will
be key to enhancing the system resilience and operational
trustworthiness. To address these problems, the following
two technologies are essential: multimodal inference and
closed-loop control.

1) Multimodal Inference

With the growing demand for intelligent analysis of the
edge data in modern power systems, LLMs and their multi-
modal extensions (i. e., multimodal large language models
(MLLMs)) [125] offer promising capabilities for interpreting
the cross-domain inputs from meteorological, market, and
grid sources. Unlike conventional simulation tools struggling
to support the minute-level, high-precision, and cross-modal
simulation, MLLMs can process the diverse modalities in-
cluding text, images, video, and audio. This enables a more
integrated understanding of complex system conditions.

However, despite their probabilistic strengths, the outputs
of MLLMs often fail to comply with the fundamental physi-
cal constraints inherent to modern power systems, such as
Kirchhoff’s laws and electromagnetic transient dynamics.
Moreover, the stringent safety verification requirements in
operations of modern power systems, combined with the
scarcity of the annotated fault scenarios, pose significant bar-
riers to the native adoption of LLMs in the simulation-driv-
en decision tasks.

Recent research has started exploring the integration of

LLMs with the simulation of modern power systems. For in-
stance, [126] incorporates LLMs into a DRL framework, us-
ing LLMs to encode operational states expressed through the
power-specific terminology as numerical rewards to optimize
the optimal power flow. In [127], machine learning tech-
niques are employed to combine the power grid topology im-
ages with textual data, allowing MLLMs to generate concise
reports on the operational status of modern power systems.
While such studies are still in early stages, they highlight
the potential of LLMs to enhance the simulation fidelity and
decision-making in the data-rich but physically constrained
environments.

2) Closed-loop Control

LLMs deployed at the cloud layer are increasingly serving
as the semantic and decision-making core of modern power
systems. By enabling the strategy generation, validation, and
feedback-driven optimization, LLMs elevate the cloud layer
into an intelligent brain center, supporting the end-to-end
conversion from the edge data to adaptive control decisions.

1) LLMs analyze the multimodal and real-time data
streams from edge devices to automatically generate struc-
tured and executable strategy templates in JSON format.
These templates define the control parameters, timing re-
quirements, and embedded safety constraints, thereby ensur-
ing the standardization and operational consistency.

2) A digital twin of power system is maintained at the
cloud layer, incorporating the real-time simulation platforms
such as OPAL-RT [128]. This environment enables the milli-
second-level and closed-loop verification of the LLM-based
strategies, assessing the static security (e.g., N—1 contingen-
cies) and dynamic stability (e.g., small-signal performance).
An integrated online learning mechanism adjusts the inputs
of LLMs based on the feedback from actual control out-
comes, forming a self-evolving execution-evaluation-optimi-
zation loop.

3) To ensure the robust performance under emergency con-
ditions, the inverse reinforcement learning is applied to ex-
tract the reward functions from historical SCADA/power
management unit (PMU) emergency data [129]. This sup-
ports the dynamic and risk-aware decision-making. Further-
more, the design of a spatiotemporal fault-tolerant action
space helps reduce the complexity of emergency responses,
significantly improving the LLM-based reaction speed and
reliability in critical scenarios.

E. Comparison with Traditional Cloud-edge-end Architecture

As shown in Table I and Fig. 1, compared with the tradi-
tional cloud-edge-end architecture [130], the proposed archi-
tecture introduces significant improvements in both the struc-
tural design and functional organization.

Structurally, the proposed architecture moves beyond the
traditional top-down and linear cloud-edge-end design by dis-
tributing the intelligence and computational capabilities
across three layers, all enhanced by LLMs. The device layer
enables the inference of lightweight LLMs for local decision-
making, the edge layer facilitates the collaborative computa-
tion through LLM-based processing, and the cloud layer em-
ploys LLMs for the global optimization and strategic coordi-
nation.
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TABLE I
COMPARISON OF TRADITIONAL CLOUD-EDGE-END ARCHITECTURE AND
PROPOSED ARCHITECTURE

Traditional cloud-edge-

Layer end architecture Proposed architecture
Perception, alignment, and inference
_ Edge data perception of edge data locall_y by usmg‘llght—
Device weight LLMs with computing
and update only A
resource, and coordinating
software with hardware
Decentralized processing, inference
of offline domain-specific knowledge
Edge Data transfer only using embedded LLMs, data fusion,
and collaborative interaction
Centralized processing, Processing of diverse modalities
Cloud analysis, and application with decision-making supported

of edge data by closed-loop control

This decentralization, powered by LLMs, enhances the au-
tonomy, scalability, and ability to handle the complex and
dynamic tasks across the system.

Functionally, the proposed architecture transitions from
the cloud-dependent processing to a layered task allocation
model driven by LLMs. The real-time responses are man-
aged locally at the device level with the inference of LLMs.
The regional collaboration occurs at the edge layer with
LLMs to facilitate the coordination, and the cloud layer uses
LLMs to orchestrate system-wide strategy. This distributed
and LLM-based method improves responsiveness, reliability,
and adaptability, making it well-suited for modern power sys-
tems.

IV. PRELIMINARY EXPLORATION OF APPLICATIONS

Building upon the proposed architecture and the key tech-
nologies presented in Section III, this section will demon-
strate their practical applications through the following three
representative scenarios: VPP dispatch (scenario 1), intelli-
gent substation inspection (scenario 2), and contingency man-
agement (scenario 3). These implementations aim to address
the three core research challenges related with the data inte-
gration, system architecture, and coordination between soft-
ware and hardware introduced in Section I, thereby validat-
ing both the technical soundness and practical viability of
the proposed architecture.

The three scenarios applied in this section implement the
proposed architecture, consisting of device, edge, and cloud
layers. Each scenario demonstrates how LLMs can be lever-
aged to exploit the large-scale heterogencous edge data in
the complex and real-world operational settings, thereby
achieving the closed-loop control and full business logic exe-
cution. Specifically, in scenario 1, LLMs enable the unified
multimodal data representation, facilitating the efficient inte-
gration of diverse data sources. Scenario 2 establishes a
closed-loop workflow encompassing the fault detection, diag-
nosis, and resolution. Scenario 3 synthesizes the power grid,
meteorological, and social media data to generate the reli-
able emergency decisions during extreme events in modern
power systems. Together, these implementations highlight
the practical advantages of LLMs in extracting actionable in-

telligence from massive edge data. They mark a significant
step forward in deploying LLM-based exploitation of edge
data for the enhanced situational awareness, responsiveness,
and reliability in the operations of modern power systems.

A. Scenario 1: VPP Dispatch

The VPP achieves the second-level resource dispatch
through an LLM-enhanced architecture that coordinates the
operations across layers. As depicted in Fig. 5, the device
layer functions as the sensing interface, the edge layer serves
as a real-time coordination node, and the cloud layer acts as
the global optimization center. Through the robust communi-
cation protocols and standardized semantic templates, a bidi-
rectional flow of data and control signals is established, facil-
itating the intelligent resource dispatch in the real-world op-
erational scenarios.

At the device layer, the distributed RESs, flexible loads,
and sensing terminals are deployed. Local controllers collect
the sub-second frequency data such as voltage, current, and
power, which are transmitted to the edge layer via wireless
communication. Lightweight LLMs on embedded platforms
perform functions including active/reactive power regulation,
power factor correction, and charging/discharging schedul-
ing, and interpret structured dispatch commands from the
edge layer.

At the edge layer, the nodes and controllers aggregate re-
gional assets and implement localized strategies through dis-
cretized action spaces. Multi-source data is aligned, prepro-
cessed, and passed through offline lightweight LLMs to gen-
erate real-time control actions. These actions can either be
executed locally for rapid responses or sent to the cloud for
further validation. The intermediate results and execution
logs are retained for the global reference and retrospective
analysis.

At the cloud layer, LLMs process the heterogeneous in-
puts, such as market prices, grid status, and user behavior,
using structured Q&A templates to generate context-aware
and globally optimized dispatch plans. These plans undergo
the formal safety verification, including power flow simula-
tions and stability assessments, to ensure the compliance
with physical constraints. The validated instructions are then
distributed to edge and device layers via 5G + time-
sensitive networking (TSN), ensuring the low-latency and
synchronized execution.

By integrating LLMs with the domain-specific knowledge
and enforcing the rule-based validation, the system ensures
that the dispatch decisions not only adapt to evolving condi-
tions but also align with power system physics. Unlike the
traditional rule-based systems that lack flexibility, LLMs of-
fer stronger generalization across modalities and greater se-
mantic depth in the decision-making. The real-time and
closed-loop feedback mechanism across the cloud, edge, and
device layers enhances the responsiveness, coordination, and
fault tolerance.

Conventional SCADA systems, which rely on centralized
data collection and lack local intelligence, struggle to re-
spond swiftly to the dynamic grid changes.
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Fig. 5. Architecture for VPP dispatch.

Similarly, the cloud-based architecture is hampered by
communication delays, limiting its applications in time-criti-
cal emergency control. In contrast, the proposed architecture
integrates edge data and aligns the control granularity with
the computational capacity of each layer, improving both the
responsiveness and processing efficiency.

The LLM-based VPP dispatch adopts a cloud-edge-device
architecture aligned with the operations of modern power
systems. The lightweight LLMs at the device and edge lay-
ers ensure the rapid local inference and fallback control,

while the online LLMs at the cloud layer orchestrate the
global coordination using structured Q&A prompts. With the
low-latency communication and scalable deployment, the
system supports scalable, reliable, and interpretable dispatch
under high-renewable and high-volatility conditions.

To validate the feasibility and ensure the reproducibility,
we design a standardized evaluation framework covering da-
ta, metrics, models, and runtime environments. The simulat-
ed datasets are constructed using benchmark models of mod-
ern power systems, incorporating time-stamped load, genera-
tion, and market data. The evaluation metrics include power
balance error, dispatch latency, optimality gap, semantic con-
sistency verified via MATPOWER simulations, and output
stability under prompt replays. All the configurations of
LLMs, such as model version, prompt template, temperature,
and seed, are explicitly recorded. The runtime environment
is defined across the cloud and edge layers, with synchro-
nized clocks. The wvalidation scenarios include integration
tests, contingency responses, and fallback strategy execution
under the cloud disconnection and multi-round prompt con-
sistency checks. All the results are version-controlled to en-
sure the traceability and reproducibility across deployments.

B. Scenario 2: Intelligent Substation Inspection

The intelligent substation inspection enables the full-lifecy-
cle management of equipment via an LLM-based hierarchi-
cal architecture. As shown in Fig. 6, the device layer inte-
grates the patrol robots and multimodal sensors to collect the
massive and heterogeneous edge data including the infrared
thermography, partial discharge, and overheating inspection.
The embedded processors at this layer run lightweight diag-
nostic models for the millisecond-level fault detection and lo-
cal alarms. Both structured and unstructured data is then
transmitted to the edge server for further analysis.

At the edge layer, MLLMs deployed at the station fuse im-
age, voiceprint, and log data from the device layer with the
local offline KGs to conduct the preliminary defect analysis.
The LLMs convert infrared images to textual descriptions,
extract spectral features, and combine them with log data to
infer multiple possible fault causes and confidence scores.
The prompt templates and standard data formats enable the
unified semantic understanding. The edge layer also queries
local KGs containing maintenance history and defects labels
to recommend possible solutions.

At the cloud layer, LLMs query global KGs to retrieve
historical cases, generate maintenance strategies, and pro-
duce structured work orders. These drafts are reviewed by
engineers and then sent to field terminals for execution,
forming a complete, intelligent, and closed-loop control pro-
cess. The integration of multimodal data at the edge layer fa-
cilitates the unified representation, thereby enhancing the se-
mantic understanding and enabling the proactive and data-
driven substation management.

These strategies are verified via online LLMs and sent
back to the station level, forming a closed-loop “monitor-an-
alyze-diagnose-decide-report” (MADDR) workflow that en-
hances the responsiveness, accuracy, and semantic under-
standing throughout the inspection and control process.
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Fig. 6. Architecture for intelligent substation inspection.

Compared with conventional inspection systems that rely
on periodic manual checks, fragmented data sources, and
static rule-based diagnostics, the proposed architecture trans-
forms substations into intelligent and self-aware agents. In-
stead of waiting for anomalies to escalate or relying solely
on human interpretation, LLMs enable proactive and real-
time semantic reasoning over multimodal signals. This shift,
from reactive maintenance to predictive and data-driven life-
cycle management, not only improves the fault detection
speed and diagnostic precision but also lays the foundation
for fully autonomous substation operations in complex and

dynamic grid environments.

The intelligent substation inspection is technically and
practically feasible. The device-edge-cloud architecture
aligns with the existing deployment practices. Mature multi-
modal sensing technologies and lightweight edge models en-
able the real-time fault detection, while the cloud-based
MLLMs support advanced reasoning using KGs. The stan-
dardized data formats and prompt templates ensure the pro-
cessing consistency, and feedback mechanisms with rule-
based filtering enhance the output safety and reliability.

To verify the practical feasibility, a staged validation pro-
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cess is proposed.

1) Build multimodal datasets (thermal images, audio sig-
nals, and maintenance logs).

2) Deploy the device-edge-cloud model chain.

3) Test the diagnostic accuracy, consistency, and latency
under normal and degraded conditions.

4) Compare the generated work orders with expert reports.

A reproducible evaluation protocol is established using the
time-aligned and labelled data with the expert-annotated
ground truth. Key metrics include diagnostic Top-1/Top-3 ac-
curacy, semantic consistency with KGs, completeness of
work-order fields, and fault localization accuracy. All
prompts, hyperparameters, and runtime environments are

standardized. The logs, inputs, and outputs are archived in
the structured formats to ensure the traceability and compara-
bility across experiments.

C. Scenario 3: Contingency Management

The contingency management system is the key to evalu-
ate the closed-loop emergency control under the extreme
conditions. As shown in Fig. 7, it follows a hierarchical de-
vice-edge-cloud architecture that enables the timely sensing,
reasoning, and action. Before the typhoon landfall, the sys-
tem continuously gathers data from various sources and coor-
dinates the real-time decisions to mitigate the disaster im-
pacts.
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Fig. 7. Architecture for contingency management.

At the device layer, the tower-mounted sensors and inspec-
tion drones collect the micro-meteorological information, in-
cluding wind speed, air pressure, rainfall, and aerial imagery.
This layer enables the immediate local responses. All struc-
tured and unstructured data is transmitted in real time to the
edge layer for further processing.

At the edge layer, the MLLMs fuse inputs from sensors,
radar, PMU data, and unmanned aerial vehicle (UAV) imag-
es. These models run on the station-side computing plat-
forms and use local KGs to perform the fast risk assess-
ments. For instance, by comparing UAV images with past

cases, the system can detect the potential tower damage and
suggest the isolation commands. The sentiment and keyword
analysis of social media posts further refine the regional risk
identification and support the localized resource allocation.
Edge nodes may also generate simulation parameters for the
digital-twin environments.

At the cloud layer, LLMs receive pre-decisions from the
edge layer, access historical cases and policy documents via
RAG, and combine this with live meteorological forecasts to
synthesize the cross-domain strategies. These strategies in-
clude the grid islanding, water-pumping coordination, and
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safeguarding critical loads. The validated instructions are is-
sued as structured messages to both devices and field teams,
supporting the multi-agency coordination across grid, emer-
gency, and transport departments. This architecture enables
the unified and real-time decision-making through the seam-
less integration of diverse data and intelligent reasoning
across all layers.

A provincial deployment in China demonstrates the practi-
cal value. It includes the grid-based emergency repair proto-
cols, electronic sandbox systems for rapid decision-making,
and drone inspection networks supported by the satellite
communication. A BeiDou-based [131] smart repair platform
provides the real-time coordination. Together, these tools cre-
ate a comprehensive air-ground-space emergency response
framework. These advancements have demonstrated the sub-
stantial progress in the integration of massive and heteroge-
neous edge data, facilitating the coordinated decision-making
across multi-level system architectures and enabling decision
processes supported by the ultra-real-time simulation capabil-
ities. This system effectively addresses the challenge of bal-
ancing distributed computational resources by leveraging
both edge and cloud computing to handle varying levels of
decision complexity.

The contingency management architecture is feasible in
terms of the technical maturity, architectural soundness, and
deployment readiness. MLLMs can already support key
tasks such as path prediction, sentiment extraction, and cross-
domain reasoning. The device-edge-cloud architecture en-
ables the real-time sensing, local risk assessment, and cen-
tralized strategy generation via RAG-enhanced LLMs. The
existing infrastructure such as UAV networks, edge devices,
and KGs further supports the practical implementation.

To validate the feasibility and ensure reproducibility, a uni-
fied verification and evaluation framework is proposed.

1) Disaster simulation validation: construct digital-twin en-
vironments based on historical typhoon trajectories and inte-
grate real-time radar, meteorological, and social data to com-
pare system-generated responses with official contingency
plans.

2) RAG consistency test: evaluate the semantic alignment
between retrieved cases and generated strategies, cross-veri-
fied with expert-reviewed plans.

3) Performance testing: simulate the concurrent multi-
node data uploads to measure the edge inference latency,
cloud processing delay, and communication stability.

4) Public sentiment validation: assess the accuracy of so-
cial text extraction (e.g., power outage, flood) and its incor-
poration into decision strategies. The quantitative indicators
include zone recall, action validity, fusion rate, and decision
latency. All data formats, prompts, and hyperparameters are
standardized, ensuring the evaluation process is transparent,
repeatable, and comparable across deployments.

D. Roadmap to Future Power Systems

Figure 8 presents a concise roadmap linking current appli-
cations of LLMs in modern power systems with their antici-
pated future roles. The top section highlights five key areas
where LLMs have already been applied effectively. Based

on these advances, the lower section outlines two major di-
rections for future development: LLM-based adaptive and de-
cision-support capabilities and LLM-based reliability and sus-
tainability enhancement.

%

,,,,,,,,,,,,,,,,,,,,,,,,,, | Eo——
‘ LLM-based adaptive
i and decision-support capabilities :

Application deployed in modern power systems
Operation and management
Energy market trading and management
Energy asset management and fault diagnosis
Personalized energy services

Power forecasting and dispatch optimization

lFuture development

P ———— 1o
LLM-based reliability and
sustainability enhancement
Microgrid and distributed
energy management

Adaptive and flexible operation

o <

Cross-domain data integration . ..
5 Security and controllability
and decision support : :
: Optimization and dispatch of
low-carbon and green
power systems

Multimodal data processing
and intelligent sensing

Fig. 8. Roadmap linking current applications of LLMs in modern power
systems with their anticipated future roles.

These prospective directions demonstrate the growing po-
tential of LLMs but also highlight critical challenges that
must be addressed, such as the integration of multimodal da-
ta, resource coordination, and safety assurance. The subse-
quent section claborates on these barriers and outlines the
technical efforts required to support the envisioned future.

V. CHALLENGES AND PROSPECTS

The rapid advancement of artificial intelligence and LLMs
has introduced a new wave of methods and technologies,
fundamentally reshaping the landscape of emerging modern
power systems. In contrast, traditional static techniques are
increasingly inadequate for addressing the complexities of
these highly dynamic and tightly coupled systems. Despite
recent progress, several critical challenges remain unre-
solved. This section examines key challenges that hinder the
effective integration of LLMs into operations of modern
power systems. Addressing these challenges is essential for
enabling LLMs to fully exploit the edge data in next-genera-
tion power systems.

A. Cross-modal Spatiotemporal Semantic Alignment

Applying LLMs in modern power systems faces a funda-
mental challenge in achieving cross-modal spatiotemporal se-
mantic alignment, particularly when processing multimodal
inspection data collected by intelligent robots. These robots
simultaneously capture infrared images that reveal the equip-
ment thermal patterns, partial discharge ultrasonic signals
that contain time-frequency characteristics, and maintenance
logs with textual descriptions of insulation degradation. To
generate the accurate and explainable outputs, LLMs must
align these modalities while accounting for the multiscale be-
havior of power equipment, which ranges from millisecond-
level transients to long-term aging processes.
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However, current technologies of LLMs struggle with
such complex alignment tasks, especially in the context of
diverse, massive, and heterogeneous edge data. A core diffi-
culty lies in the representational mismatch: LLMs operate on
discrete token sequences, whereas power system data often
exists in continuous mathematical forms. This discrepancy
hinders the effective information fusion across modalities.
Moreover, the typical processing methods in visual trans-
formers and temporal models, such as patch partitioning and
sliding windows, fail to preserve the spatial topology of elec-
trical infrastructure or capture the abrupt fault-induced signal
shifts.

Future research should focus on developing physics-in-
formed and joint embedding spaces that can bridge discrete-
continuous modality gaps [132]. In parallel, the adaptive spa-
tiotemporal attention mechanisms are needed to reduce the
semantic drift and enhance the alignment fidelity across mo-
dalities in real-world power systems [133].

B. Hierarchical Intent Alignment in Multi-layer Architectures

As LLMs are deployed across the cloud, edge, and device
layers in modern power systems, ensuring semantic consis-
tency and control objective alignment across these layers be-
comes increasingly complex. Each layer inherently operates
with different levels of information granularity, computation-
al capacity, and response time. For instance, while the cloud
layer focuses on the global optimization and long-horizon
planning, the edge and device layers prioritize localized con-
trol and real-time responsiveness.

The core challenge lies in aligning the decision-making
“intent” among these layers. Existing LLMs lack hierarchi-
cal modeling capabilities to distinguish and reconcile the
conflicting objectives. This leads to potential inconsistencies
such as cloud-generated strategies misinterpreted or locally
overridden by edge-layer LLMs with incomplete contextual
awareness. Moreover, there is no standardized mechanism to
propagate constraints or intent representations from higher
layers downward in a controllable manner.

To address this challenge, future studies should explore
multi-agent frameworks with LLMs, where each agent inter-
prets and negotiates strategic intents while preserving local
autonomy. These frameworks could reduce the need for hier-
archical reinforcement learning and layered policy distilla-
tion [134]. Additionally, new semantic representation proto-
cols are needed to encode and communicate control objec-
tives explicitly across layers in a scalable and interpretable
format.

C. Robust Inference
Operational Disturbances

Under Data Uncertainty and

Modern power systems often operate in environments
with noisy measurements, delayed communication, incom-
plete sensor coverage, and rapidly evolving fault conditions.
LLMs, originally designed for idealized text corpora, show
limited robustness when exposed to such uncertainty-ridden
operational data. This vulnerability poses a serious risk in
safety-critical applications such as real-time dispatch, fault
isolation, and emergency control.

The main difficulty arises from the lack of explicit uncer-
tainty modeling in current LLMs. Their deterministic infer-
ence paths and overconfident outputs can lead to misinterpre-
tation of noisy inputs or failure to recognize the novel fail-
ure modes. Furthermore, the absence of confidence calibra-
tion and adversarial resilience mechanisms makes LLMs sus-
ceptible to cascading errors in the real-time applications.

Future solutions must incorporate the uncertainty-aware
learning paradigms within the architectures of LLMs. This
includes integrating probabilistic reasoning modules, confi-
dence estimation layers, and robust loss functions tailored to
the characteristics of edge data. Additionally, the adversarial
training and anomaly-injection simulations should be used to
enhance the fault tolerance and interpretability of LLM-driv-
en decisions under the high-risk and data-deficient condi-
tions [135].

D. Collaborative Optimization Under Cross-institutional
Data Barriers

With the development of modern power systems, data si-
los among power grid companies, new energy stations, and
aggregators have led to a “data famine” dilemma for LLMs.
Despite the exponential growth of relevant data across elec-
tricity markets, meteorological platforms, and operational do-
mains, the cross-institutional conflicts are intensifying as
stakeholders pursuing the independent optimization objec-
tives.

The core challenge stems from the tension between pre-
serving data sovereignty and meeting the performance re-
quirements of LLMs. Centralized training methods that ag-
gregate raw data violate the privacy and regulatory con-
straints, while decentralized methods such as federated learn-
ing remain vulnerable to the gradient leakage and inference
attacks.

Addressing this challenge requires innovation across three
dimensions.

1) Secure multi-party computation must enable the en-
crypted analysis without data exposure.

2) Blockchain-based token incentive mechanisms can en-
courage the data sharing under transparent governance [136].

3) A unified framework that integrates technical solutions
with institutional and regulatory coordination is essential.
However, this multifaceted problem extends beyond algo-
rithm design, demanding cross-disciplinary efforts in privacy
engineering, digital trust, and energy data governance [137].

E. Consistent Decision-making in Complex Power Systems

The deployment of LLMs in power systems utilizing the
edge data faces key reliability challenges. Semantic instabili-
ty arises as LLMs are sensitive to input variations, leading
to inconsistent outputs that may affect the real-time control
precision. LLMs also tend to generate hallucinated informa-
tion when faced with incomplete or noisy edge data, which
can cause errors in tasks like fault diagnosis [138] or load
forecasting [139].

Another challenge is the lack of interpretability, as LLMs
operate as “black-box” models, complicating the accountabil-
ity in safety-critical tasks. Furthermore, LLMs struggle with
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generalization under out-of-distribution (OOD) conditions,
especially when dealing with rare operational scenarios such
as extreme weather or system failures, which undermines
their reliability in the dynamic and real-time power system
applications [140].

Future research should focus on enhancing the cross-mod-
al data alignment, improving hierarchical intent alignment
across system layers, and developing robust inference mecha-
nisms for edge data. The collaborative multi-model frame-
works should also be explored to combine the strengths of
different models for more reliable decision-making in the
complex environments.

F. Scalability Bottlenecks in Deploying LLMs for Large-
scale Power Systems

Deploying LLMs to process the edge data in large-scale
power systems presents significant scalability challenges.
One issue is the mismatch between the model capacity and
system scale, as LLMs struggle to handle vast volumes of
edge data from millions of sensors and monitoring points.
Context window limitations further hinder the processing of
long-duration data, leading to the incomplete reasoning. The
heterogeneity across regions adds complexity, as LLMs lack
regional generalization mechanisms, causing performance
degradation.

Additionally, the inference latency and resource bottle-
necks pose challenges, especially for real-time applications
requiring millisecond-level responses. The high cost of updat-
ing and maintaining LLMs also makes it difficult to adapt to
frequent system changes.

Future work should explore the modular architectures of
LLMs, knowledge enhancement techniques like RAG, and
hierarchical deployment strategies to improve the scalability
and reliability in edge data applications across large-scale
power systems.

G.  Information Security Challenges in LLM-based

Frameworks for Modern Power Systems

The deployment of LLMs raises several unique informa-
tion security challenges, especially given their susceptibility
to hallucinations and sensitivity to input data and model pa-
rameters [141], [142]. At the device layer, vulnerabilities
such as the firmware replacement and data eavesdropping
pose risks to model integrity. The time synchronization
spoofing and weak OTA security can affect the inference ac-
curacy and trigger erroneous control actions. The edge layer
faces risks from outdated models and unauthorized access to
local knowledge bases, which can mislead operational deci-
sions. At the cloud layer, integrating diverse data sources
may expose the sensitive system information, while LLM-
based control recommendations could escalate to unsafe ac-
tions if compromised.

To mitigate these risks, future research should focus on se-
curing each layer with enhanced encryption, access control,
and anomaly detection. Additionally, the architectures of
LLMs must be designed to prevent hallucinations and ensure
the decision traceability, boosting the security and reliability
of LLM-based systems in modern power systems.

VI. CONCLUSION

This paper explores the LLMs for analyzing and applying
massive and heterogeneous edge data in modern power sys-
tems, leading to three key conclusions.

Firstly, we propose a three-layer architecture for LLM-
based edge data, consisting of the device, edge, and cloud
layers. This design ensures the seamless data integration, pro-
moting regional autonomy at the edge layer while leveraging
cloud intelligence. Key technologies include (I the data
alignment, inference of lightweight LLMs, and co-optimiza-
tion between hardware and software at the device layer, ©)
data fusion, domain-specific knowledge embedding, and col-
laborative inference at the edge layer, (3 and multimodal in-
ference and closed-loop control at the cloud layer.

Secondly, we demonstrate their implementations across
three representative scenarios: VPP dispatch, intelligent sub-
station inspection, and contingency management. These ap-
plications correspond to the three research questions posed
in Section I, addressing semantic understanding of power
system operations, alignment and fusion of heterogeneous
edge data, and co-design of hardware and software.

Finally, we highlight the challenges and future research di-
rections for applications of LLMs in modern power systems,
focusing on cross-modal integration, hierarchical intent align-
ment, robust inference under uncertainty, collaborative opti-
mization across data barriers, consistent decision-making,
scalability bottlenecks in deploying LLMs for large-scale
power systems, and information security challenges in LLM-
based frameworks.

Our future work will focus on deploying the technologies
of LLMs in real-world power systems. We aim to further in-
tegrate cloud-edge-device layers and control logic of hard-
ware and software, advancing toward a unified framework
for intelligent decision-making.
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