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Abstract——An electricity market is a complex, dynamically op‐
erated network encompassing multiple participants under de‐
fined rules, thereby ensuring real-time supply-demand balance 
and system reliability. However, the inherent complexity and dy‐
namism of the electricity market pose significant challenges to 
conventional modelling approaches, which often rely on expert 
knowledge and manual processes informed by market regula‐
tions. This reliance frequently leads to inefficiencies and elevat‐
ed risks of error. To address these limitations, this paper pro‐
poses a framework for automated electricity market modelling 
and simulation centered on a large language model based 
agent, termed the modelling and simulation system agent (MSS-
Agent) framework. The proposed MSS-Agent framework em‐
ploys the hierarchical chain-of-thought (HCoT) method to more 
accurately extract essential information from relevant docu‐
ments, thereby enhancing modelling fidelity. Moreover, it inte‐
grates tool usage and reflexive debugging to optimize the code 
generation process, ensuring reliability in automated electricity 
market modelling and simulation. Experimental results demon‐
strate that the proposed MSS-Agent framework significantly im‐
proves both mathematical model extraction accuracy and code 
execution reliability. Consequently, the proposed MSS-Agent 
framework not only increases simulation efficiency but also pro‐
vides more precise and dependable tools for informed decision-
making in electricity markets.

Index Terms——Electricity market, large language model, artifi‐
cial intelligence (AI), chain-of-thought, modelling and simula‐
tion system, agent.

I. INTRODUCTION 

THE electricity market is a complex and dynamically op‐
erated network involving multiple participants governed 

by defined rules to ensure real-time supply-demand balance 
and system reliability [1]. The electricity market involves a 
diverse array of participants, including generation compa‐
nies, grid operators, regulators, and consumers, which inter‐
act through competitive bidding, dispatch planning, and regu‐
latory oversight [2], [3]. Given the intricate operation of the 
electricity market, a large amount of critical information, in‐
cluding evolving operational details, is recorded in unstruc‐
tured textual formats such as market reports, policy docu‐
ments, and research papers [4]. The reliance on unstructured 
textual information for essential information has posed chal‐
lenges to the automated modelling and solving of the elec‐
tricity market.

In this context, timely analysis and decision-making are of 
paramount importance for both regulators and market partici‐
pants. The electricity market environment is characterized by 
rapid fluctuations and complex interactions, demanding real-
time information processing for effective operation. Howev‐
er, traditional causal modelling methods, often relying on 
manual analysis and expert knowledge, face significant limi‐
tations.

First, these methods typically focus on representative sce‐
narios due to the sheer complexity and dynamism of the 
electricity market, leading to potential systemic errors as crit‐
ical, yet less frequent, events might be overlooked. For in‐
stance, a study that models an integrated electricity and car‐
bon market using a weekly representative load profile [5] 
may capture the average weekly behavior but miss critical in‐
formation such as negative prices resulting from excessive 
renewable energy generation. This oversight could lead to 
systemic errors in overall market regulation. From a trading 
perspective, the inability to perform automated, real-time, 
and precise electricity market modelling means that trading 
decisions are unlikely to be locally or globally optimal. 
Workarounds like rolling-horizon modelling [6] achieve opti‐
mality only within pre-defined, typical time periods, leaving 
the actual deviation from assumed conditions unassessed in 
real time.

Second, while machine learning (ML) methods such as 
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neural networks and support vector machines show promise 
in handling large datasets, they often suffer from a critical 
lack of interpretability, making it challenging to deploy them 
confidently in crucial power system planning and decision-
making [7]. This limitation hinders their widespread adop‐
tion in tasks that directly rely on understanding the underly‐
ing reasoning from unstructured textual data.

In recent years, the rapid development of the large lan‐
guage model (LLM) [8] has brought new possibilities for ad‐
dressing these issues. LLMs have demonstrated unprecedent‐
ed capabilities in natural language processing (NLP), knowl‐
edge reasoning, and contextual understanding. Currently, ad‐
vanced LLMs, represented by generative pre-trained trans‐
former 4 (GPT-4) [9], have shown remarkable performance 
in various fields, including text generation, question-answer‐
ing systems, and code writing. These models can understand 
and generate natural language, enabling them to directly in‐
teract with and comprehend research papers and generate 
corresponding mathematical models and code based on the 
content of papers. However, directly using LLMs for electric‐
ity market modelling still faces three main challenges. First, 
LLMs struggle with complex reasoning when dealing with 
long text inputs, often overlooking some critical information. 
Second, LLMs suffer from the “hallucination” problem [10], 
where they may generate seemingly plausible but inaccurate 
or entirely fabricated information. Although recent research 
such as constitutional artificial intelligence (AI) [11] and re‐
inforcement learning from human feedback [12] has partially 
mitigated this issue, the unpredictability remains unaccept‐
able in high-reliability environments such as power systems, 
where even a minor error can have catastrophic consequenc‐
es. Additionally, LLMs can generate code, but they them‐
selves cannot execute it. They interact with the feedback 
from code compilers to optimize the generated code continu‐
ously.

To overcome these challenges, LLM-based agents [13] of‐
fer a viable solution. LLM-based agents combine the lan‐
guage understanding and reasoning capabilities of LLMs 
with the interaction of external tools and environments, re‐
taining the advantages of LLMs in processing natural lan‐
guage while enhancing the system reliability and practicality. 
Agents can optimize their behavior and output through a 
closed-loop process of planning, execution, observation, and 
adjustment. This approach can help LLMs better understand 
and extract key information from long texts and verify and 
improve the generated code through real-time interaction 
with the programming environment, significantly improving 
the system reliability and accuracy.

This paper proposes a framework for automated electricity 
market modelling and simulation centered on an LLM-based 
agent, termed the modelling and simulation system agent 
(MSS-Agent) framework. The proposed MSS-Agent frame‐
work employs a hierarchical chain-of-thought (HCoT) tech‐
nique to decompose complex electricity market modelling 
tasks, gradually extracting and verifying key information 
from the text through multiple levels of reasoning steps. Si‐
multaneously, it can utilize programming tools to execute the 
generated code and reflect and debug based on the execution 

results, ensuring the accuracy and reliability of the model‐
ling results. The proposed MSS-Agent framework not only 
improves the accuracy of information extraction but also 
achieves an end-to-end automated process from text under‐
standing to code implementation. By combining the lan‐
guage understanding capabilities of LLMs with practical 
tools, the proposed MSS-Agent framework provides a more 
intelligent and efficient solution for electricity market model‐
ling and simulation.

The main contributions of this paper are as follows.
1) Proposing the MSS-Agent framework to automate the 

end-to-end process of electricity market modelling and simu‐
lation from unstructured text, overcoming the inefficiencies 
of manual and expert-driven approaches.

2) Employing an HCoT technique to guide LLMs for in‐
formation extraction of electricity market modelling to im‐
prove accuracy and efficiency, which is crucial for explain‐
able modelling.

3) Integrating reflection and debugging to optimize code 
generation and execution, which enhances simulation success 
rates and, importantly, provides transparency and traceability 
for improved interpretability of model-derived decisions.

The significance of this paper lies in improving the effi‐
ciency of electricity market information extraction and analy‐
sis, which provides more accurate and timely decision sup‐
port for market participants. By automating electricity mar‐
ket simulations, we can mitigate human error and respond 
more quickly to market changes, thereby empowering deci‐
sion-makers to make more informed choices in complex mar‐
ket environments.

The structure of this paper is as follows: Section II re‐
views the related studies. Section III describes the methodol‐
ogy. Section IV presents the experiments. Section V presents 
the discussions. Finally, Section VI concludes the paper and 
outlines future research directions.

II. RELATED STUDIES 

A. Electricity Market Modelling and Simulation

Electricity market modelling and simulation constitute a 
crucial area of research within modern energy economics. Its 
significance is ever-increasing with the proliferation of re‐
newable energy sources and the growing complexity of elec‐
tricity market. In recent years, numerous studies have fo‐
cused on exploring various factors and their interactions 
within electricity market, including renewable energy integra‐
tion, multi-period planning, competition mechanism, and 
market efficiency. For instance, advanced techniques such as 
game theory are employed to model the strategic interactions 
among market participants [14], while evolutionary game 
theory can be used to analyze long-term bidding strategies 
[15]. In [16], a model based on fuzzy Q-learning is pro‐
posed, which improves the efficiency of day-ahead electrici‐
ty market modelling by reducing the number of iterations 
and increasing the probability of Nash equilibrium. This 
model not only effectively addresses the uncertainties intro‐
duced by renewable energy but also offers more optimal 
strategy selections in complex market environments. In [17], 
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a hybrid experimental learning approach is proposed, which 
combines ML and experimental economics to model trading 
behavior in the electricity market. Through this hybrid ap‐
proach, the trader behavior can be effectively explained and 
predicted, thereby offering valuable decision support to elec‐
tricity market participants.

Furthermore, specific issues in the electricity market, such 
as the effect of delay, impact of macro-climatic events, and 
role of energy storage systems, have also been investigated. 
For instance, [18] examines the impact of wind power fore‐
cast uncertainty on the electricity market, while [19] analyz‐
es the role of energy storage systems in the electricity mar‐
ket. However, most existing methods rely on structured data 
and require experts to manually design models and adjust pa‐
rameters. Consequently, they struggle to directly process 
large amounts of unstructured textual information in the elec‐
tricity market and have difficulty in responding rapidly to 
changes in complex market rules. Although [20] utilizes 
LLMs and market sentiment agents to assist in day-ahead 
electricity price forecasting based on news text, such meth‐
ods are often tailored to specific types of text and lack gener‐
ality and automation capabilities. Therefore, achieving auto‐
mation in electricity market modelling and simulation, as 
well as efficiently extracting modelling information from un‐
structured text, has become an urgent problem.

B. LLM-based Agent and Code Generation

In recent years, LLMs have made groundbreaking ad‐
vancements in the field of NLP. Transformer [21], abandon‐
ing the traditional recurrent and convolutional neural net‐
work structures, employs a self-attention mechanism, which 
enables parallel computation and effectively captures long-
range dependencies. Building upon this, the GPT series of 
models [22] have demonstrated powerful zero-shot and few-
shot learning capabilities, with GPT-4 achieving near-human 
level performance on various NLP tasks. Furthermore, to en‐
hance the reasoning capabilities of LLMs, chain-of-thought 
(CoT) prompting [23] significantly improves model perfor‐
mance on complex reasoning tasks by guiding the model to 
generate intermediate reasoning steps. For example, CoT can 
enhance the effectiveness of code generation tasks [24]. 
These studies have laid a solid foundation for building LLM-
based agents.

Leveraging the robust language understanding and reason‐
ing capabilities of LLMs, researchers have begun to explore 
the development of LLM-based agents, enabling them to in‐
teract with external tools and explore the environment to 
achieve specific goals. Among these, ReAct [25] combines 
the reasoning and action capabilities of LLMs, allowing the 
LLM to reason based on current goals and environmental in‐
formation, generate a plan for the following action, and then 
use external tools to execute the action. The process iterates 
until the task is completed. MetaGPT [26] explores a multi-
agent collaboration framework, automating complex software 
development tasks by simulating agents in different roles 
within a software company. However, while standard CoT 
improves reasoning, its single and linear thought process can 
be less effective for highly structured and multi-component 

tasks like mathematical model extraction from long texts, 
where maintaining context across different model elements 
(e. g., objective, constraints, variables) is a significant chal‐
lenge. Also, although LLMs have shown some capability in 
code generation, the code generated directly often suffers 
from syntax errors, logical flaws, or deviations from require‐
ments, necessitating further optimization and verification.

In code generation for specialized domains, relying solely 
on code generated by LLMs is insufficient to meet practical 
needs. More effective mechanisms are required to improve 
code quality. As an important optimization strategy, reflec‐
tion mechanisms [27], where an agent critically evaluates its 
own output and iteratively refines it, have received increas‐
ing attention in recent years. The reflexion mechanism [28] 
improves code generation quality by having the LLM self-
evaluate and reflect on the generated code and then iterative‐
ly optimize based on the evaluation results. Building on this, 
Self-Refine [29] utilizes the LLM to generate feedback and 
then iteratively improves the code based on the feedback, 
further enhancing code reliability.

In high-reliability domains such as electricity market, code 
must not only be correct in terms of syntax and logic but al‐
so ensure that the underlying mathematical model is accurate 
and can adapt to the complex operating rules and constraints 
of the electricity market. Exploration in this area is still in 
its early stages [30], [31]. A crucial direction for future re‐
search is to design effective reflection mechanisms that en‐
able LLMs to understand the professional knowledge and op‐
erating mechanisms of the electricity market and to generate 
reliable code that meets practical needs.

III. METHODOLOGY 

This section proposes the MSS-Agent framework. We aim 
to develop a framework capable of automatically extracting 
electricity market information and generating executable 
models. However, achieving this goal faces several major 
challenges. Firstly, electricity market description documents 
often contain a large number of specialized terms, complex 
mathematical expressions, and background information unre‐
lated to modelling, requiring an accurate understanding and 
extraction of key information. Secondly, the process of con‐
verting unstructured text into structured mathematical mod‐
els is complex, requiring the assurance of completeness and 
accuracy in information extraction. This is a task where stan‐
dard and linear CoT prompting struggles, as it needs to track 
multiple distinct model components simultaneously. Finally, 
when translating mathematical models into executable code, 
it is necessary to handle various implementation details and 
potential errors, such as choosing appropriate data structures 
or correcting logical flaws in constraint formulations.

To address these challenges, the proposed MSS-Agent 
framework is designed with a hierarchical chain-of-thought 
information extraction (HCoT-IE) method, enhanced by Auto‐
Prompt optimization, to organize and extract electricity mar‐
ket information. Furthermore, the framework is combined 
with code templates and a reflection debugging mechanism, 
where the agent iteratively corrects its own code based on 
execution feedback, to achieve automatic model construction 

52



CHENG et al.: LEVERAGING LARGE LANGUAGE MODEL BASED AGENT FOR AUTOMATED ELECTRICITY MARKET MODELLING...

and optimization. This section presents the overall structure 
of the proposed MSS-Agent framework and details its two 
key components: HCoT-IE for electricity market modelling 
and reflective coding for electricity market simulation.

A. Overall Structure of Proposed MSS-Agent Framework

As illustrated in Fig. 1, the proposed MSS-Agent frame‐
work consists of two key components. In the HCoT-IE for 
electricity market modelling, the proposed MSS-Agent 
framework first analyzes the electricity market description 
document and uses HCoT to reason about the key elements 

that need to be extracted from the document, such as the ob‐
jective function, constraints, and market model parameters. 
The extracted information is transformed into structured data 
and used to construct a unified representation of the mathe‐
matical model. To achieve efficient information extraction, 
we designed an HCoT-IE method that enables the LLM to 
reason and organize the information needed for electricity 
market modelling in a hierarchical manner. Subsequently, the 
proposed MSS-Agent framework will sequentially extract 
the corresponding information from the long text, forming a 
complete mathematical model of the electricity market.

In the reflective coding for electricity market simulation, 
the proposed MSS-Agent framework utilizes the code genera‐
tion and modification capabilities of LLMs to modify code 
templates into corresponding executable simulation code 
based on the code templates and the extracted mathematical 
modelling information of the electricity market. Next, the 
proposed MSS-Agent framework will execute the simulation 
code in a compilation environment and generate correspond‐
ing electricity market simulation results such as locational 
marginal price (LMP) and unit output. To improve the effec‐
tiveness of the modelling and simulation, the proposed MSS-
Agent framework incorporates a reflection mechanism. This 
process is iterative: if the code execution fails, error feed‐
back triggers a reflection debugging step. The MSS-Agent 
analyzes the error, compares the flawed code against the 
original mathematical model, and produces a revised version 
for the next attempt. This cyclical process of execution, re‐
flection, and debugging continues until the code runs suc‐
cessfully, ensuring a robust and reliable final simulation pro‐
gram.

The core idea of the entire framework is to leverage the 
reasoning and code generation capabilities of LLMs to 
achieve automation and intelligence in market model con‐
struction, significantly reducing the cost and difficulty of 
building electricity market models.

B. HCoT-IE for Electricity Market Modelling

Extracting accurate electricity market information from 
documents is a critical challenge in the process of electricity 

market modelling. This challenge manifests in three main as‐
pects. First, electricity market description documents are of‐
ten lengthy and contain a large amount of non-critical infor‐
mation, requiring accurate identification and extraction of 
core elements necessary for modelling. Second, electricity 
market information is often scattered throughout the docu‐
ment in various forms, necessitating effective integration of 
these fragmented pieces of information. Finally, the extract‐
ed information needs to be transformed into a standard math‐
ematical model format, which demands a deep understanding 
of electricity market mechanisms. To address these challeng‐
es, the HCoT-IE method is proposed, as shown in Fig. 2. 
HCoT-IE decomposes the information extraction process into 
multiple elements to be extracted and iteratively extracts 
them from the original document.

First, the electricity market description document is taken 
as the input, serving as the initial information source D for 
HCoT-IE. Generally, the description document can be a re‐
search paper or a policy document on the electricity market. 
These documents are first preprocessed using PDF parsing 
tools like MinerU to convert the PDF document DÎD into 
an editable Markdown format along with LaTeX formulas. It 
is important to note that the effectiveness of this initial step, 
and consequently the entire HCoT-IE process, is contingent 
on the quality of the source document and the ability of pars‐
ing tools to handle complex layouts and formulas. Next, 
HCoT-IE method decomposes the information extraction pro‐
cess of electricity market modelling into several phases.

•
•

? HCoT-IE for electricity market modelling

HCoT reasoning
Electricity

market description
document

Summary
Complete mathematical

model of electricity market
Mathematical

modellingAutoPrompt Specific
extraction

prompt

Key elements
to be extracted
(e.g., objective

function, constraints)

?�Reflective coding for electricity market simulation

Code template
modification Simulation

code
Complete mathematical

model of electricity market

Code execution

Reflection debugging
Market simulation

result and visualization

LMP
Unit output

Fig. 1.　Overall structure of proposed MSS-Agent framework that illustrates process from document analysis to simulation code validation.
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1)　Reasoning Phase
Initially, based on the parsed document content Dmarkdown, 

HCoT calls an LLM to perform reasoning. This process can 
be represented as:

E = LLMreason (DmarkdownPreason ) (1)

where E ={e1e2...en } is the set of elements to be extracted; 
LLMreason (×) denotes the LLM used in reasoning phase; and 

Preason denotes a predefined reasoning prompt that guides the 
LLM to perform CoT reasoning. Through this process, the 
LLM can consider the document content and determine 
which elements need to be extracted for modelling, such as 
the objective function, constraint, market model parameter, 
and price limits. In this phase, we use a carefully designed 
Preason to guide the LLM through a step-by-step reasoning 
process, resulting in the set E.

2)　AutoPrompt Phase
Considering that each element to be extracted eiÎE may 

differ significantly from others, their locations in the docu‐
ment and the way they are described may vary, and the back‐
ground knowledge required to construct these elements may 
also differ. HCoT-IE method introduces an AutoPrompt 
mechanism, where each element ei from E generated in the 
reasoning phase is used as input to call the LLM for Auto‐
Prompt mechanism, generating a more precise prompt P ei

auto 
(represented as Prompt-1, Prompt-2, and Prompt-3 in Fig. 2) 
to obtain more accurate information extraction results. This 
process can be represented as:

P ei

auto = LLMauto (eiPbase ) (2)

where LLMauto (×) denotes the LLM used for AutoPrompt 
phase; and Pbase is a set of base prompts used to guide the 
LLM on generating more specific prompts for a particular el‐
ement. For instance, if the element ei is an “objective func‐
tion”, the AutoPrompt mechanism takes this high-level con‐
cept and, using a base prompt, instructs the LLM to generate 
a much more specific query such as “Extract the mathemati‐
cal formula for the objective function, including all variables 
and their definitions, and state whether it is a minimization 
or maximization problem.” This targeted approach signifi‐
cantly improves extraction accuracy. Concrete examples of 
the base prompts used in experiments can be found in Sec‐
tion IV. HCoT then uses the generated prompt P ei

auto to ex‐

tract relevant information Iei
 from the electricity market de‐

scription, i. e., the document Dmarkdown in Fig. 2, forming the 
various components of the mathematical model.

Iei
= LLMextract (DmarkdownP

ei

auto ) (3)

where LLMextract (×) denotes the LLM used for mathematical 
formula extraction.
3)　Summarization Phase

Finally, HCoT consolidates all extracted information I =
{Ie1

Ie2
...Ien

}, calling the LLM to perform deduplication, 

combination, and organization, ultimately forming the com‐
plete mathematical model M. This phase can be represented 
as:

M = LLMsummarize (IPsummarize ) (4)

where LLMsummarize (×) denotes the LLM used for summariza‐
tion phase; and Psummarize is a summarization prompt that 
guides the LLM on integrating the extracted information into 
the final mathematical model.

Through HCoT-IE, the complex task of information extrac‐
tion of electricity market modelling can be broken down into 
multiple sub-steps. A more accurate and comprehensive 
mathematical model can be obtained by iteratively extracting 
each element in the electricity market modelling process, 
though care must be taken to ensure that the increased mod‐
el complexity is translated into code with high fidelity.

Prompt-1

Prompt-2

Prompt-3

Electricity market
description document
(e.g., research papers,

policy documents)

Market model
parameter

Information
to be extracted

Constraint

�

Objective
function

Reasoning phase AutoPrompt phase

AutoPrompt

+

Electricity
market

description

Summarization phase 

�

Objective
function

Constraint
condition

Bidding
strategy

Mathematical
modelling

Complete
mathematical

model of
electricity market

Fig. 2.　Process of HCoT-IE for electricity market modelling.
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C. Reflective Coding for Electricity Market Simulation

To transform an abstract market model into an executable 
program and simulate market operation using a computer, it 
is necessary to convert the mathematical model into code. 
However, directly converting the complete mathematical 
model M into code C faces the following challenges.

1) Model complexity. Electricity market models often con‐
tain complex objective functions, constraints, and bidding 
strategies. Directly converting these models into code re‐
quires significant effort and time.

2) Code implementation details. Even the model is con‐
verted into code, it is still necessary to consider code imple‐
mentation details such as the choice of data structures for 
electricity market parameters, the specific application pro‐
gramming interface (API) syntax of the chosen optimization 

solver, and the correct indexing of variables across loops 
and constraints. These details must be carefully handled to 
ensure the correctness and efficiency of the code.

3) Debugging difficulties. Due to the complexity of the 
model and code, debugging is also very difficult. Potential 
errors can range from simple syntax mistakes to subtle logi‐
cal flaws, such as using an incorrect inequality sign in a gen‐
erator limit or encountering a solver error that declares the 
model “infeasible” from an incorrectly formulated con‐
straint. Even if an error is found, it is difficult to locate the 
root cause.

To address these challenges, this paper proposes the reflec‐
tive coding for electricity market simulation, which uses 
LLM-based reflection debugging mechanism to improve the 
code generation. As shown in Fig. 3, the specific process is 
as follows.

1)　Code Template Modification Phase
The complete mathematical model M of electricity mar‐

ket obtained in HCoT is input to the LLM, along with a pre‐
defined code template T. This code template is designed as a 
flexible scaffold rather than a rigid program. It contains the 
boilerplate structure required for a market simulation, such 
as data handling, solver initialization, and result visualiza‐
tion, but leaves the core logic sections of electricity market 
as well-defined placeholders. It also predefines the main 
modules of the simulation program, such as the market clear‐
ing module and the unit output module. It uses placeholders 
to indicate where code needs to be filled in according to the 
mathematical model. Then, the code generation capability of 
the LLM is used to modify the preset code template accord‐
ing to the mathematical model, generating the initial simula‐
tion code C0. This phase can be represented as:

C0 = LLMgenerate (MTPgenerate ) (5)

where LLMgenerate (×) denotes the LLM used for simulation 
generation; and Pgenerate is a prompt that guides the LLM on 
modifying the code template according to the mathematical 
model. To enable the LLM to modify the code template 
more accurately, the code template uses comments to thor‐
oughly explain the functional role of each module, as well 
as the parts that can be modified and those that should not 
be modified. For example, a placeholder in the market clear‐
ing module might be preceded by comments like “TODO: 
define the objective function based on cost minimization as 
specified in model M”, guiding the LLM to insert the spe‐
cific objective function it has already understood. This modu‐
lar design allows the proposed MSS-Agent framework to 

adapt to different market structures by changing the logic 
within the placeholders without altering the overall template 
architecture.
2)　Code Execution and Reflection Debugging Phase

The generated simulation code Ci is run to perform elec‐
tricity market simulation, and the simulation results, denoted 
as Ri (e.g., LMP and unit output data), are recorded. Subse‐
quently, the reflective coding for electricity market simula‐
tion performs different processing based on the code execu‐
tion status.

1) If Ci executes successfully, the reflective coding for 
electricity market simulation visualizes the simulation results 
Ri using charts and other forms.

2) If the execution of Ci fails, the reflective coding for 
electricity market simulation feeds the error information Ei 
back to the LLM and uses the understanding and reasoning 
capabilities of LLM to analyze the root cause of the error 
and perform code debugging. This phase can be represented 
as:

Ci + 1 = LLMdebug (CiEiMPdebug ) (6)

where LLMdebug (×) is the LLM used for code debugging; and 
Pdebug is a set of prompts used to guide the LLM in code de‐
bugging. The LLM will combine the error information Ei, 
the current simulation code Ci, and the original mathematical 
model M to perform a comprehensive analysis and identify 
the logical differences between the code implementation and 
the mathematical model. The code execution and reflection 
debugging process is iterated, ultimately generating more ac‐
curate and efficient simulation code Cf.

The core of the reflection debugging mechanism lies in an‐

Code template modification
Simulation

program
Complete mathematical

model of electricity market Reflection debugging
Market

simulation
result

Diagram
Visualization

Execute until
success 

Code execution

Code template
· Bidding strategies
· Objective function
· Constraint
· OPF solution

Fig. 3.　Process of reflective coding for electricity market simulation.
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alyzing the logs L i generated during code execution (also 
generated during successful code execution) and the error in‐
formation Ei, comparing the mathematical logic of M with 
the current simulation code Ci to identify the differences D 
(as shown in (7)), and adjusting the code based on these dif‐
ferences.

D= LLMcompare (MCiL iEi ) (7)

where LLMcompare (×) is the LLM used for comparing mathe‐
matical logic, code, logs, and error information.

The LLM implicitly distinguishes different types of errors 
according to their source. For instance, syntactic or runtime 
errors (e.g., type error) are identified directly from the trace‐
back of interpreter. The LLM can typically resolve these by 
correcting specific lines of code. More complex logical er‐
rors often manifest as solver failures (e.g., model infeasibili‐
ty). In such cases, the error information Ei includes the solv‐
er’s log, which may indicate conflicting constraints. The 
LLM is then guided to perform a more rigorous comparison, 
cross-referencing the code implementation of the identified 
constraints with their original mathematical formulation in 
M to find and fix the logical discrepancy. For example, if 
the comparison finds that a certain constraint in the mathe‐
matical model is not reflected in the code, or if a type mis‐
match error occurs during code execution, the LLM will 
modify the code accordingly to implement the constraint or 
resolve the error.

By using code generation and reflection debugging mecha‐
nisms, the reflective coding for electricity market simulation 
can significantly improve the code generation efficiency and 
effectively solve the problems of model complexity, code im‐
plementation details, and debugging difficulties.

IV. EXPERIMENTS 

This section validates the effectiveness of the proposed 
MSS-Agent framework through a series of experiments. The 
experimental design is described in detail, including dataset 
construction, evaluation metric design, hyperparameter set‐
tings, and experimental procedures. The primary validation 
is performed on a curated dataset of academic papers, cho‐
sen for their explicit and rigorous model formulations, which 
provide a reliable ground truth for assessing performance. 
Through these experiments, the performance of the proposed 
MSS-Agent framework is evaluated in electricity market 
modelling, information extraction, and code generation. Com‐
parisons with baseline methods demonstrate the advantages 
of the proposed MSS-Agent framework.

A. Experimental Design

1)　Test Dataset Construction
We constructed a dataset containing 60 documents cover‐

ing different types of electricity market mechanisms and sce‐
narios. These documents are mainly from high-quality aca‐
demic papers published in recent years. This choice was stra‐
tegic, as academic papers provide well-defined mathematical 
models that serve as a clear ground truth for validating the 
accuracy of our information extraction and code generation 
processes. To ensure the representativeness of the dataset, 

we selected academic papers covering a wide range of elec‐
tricity market conditions and structures, including different 
electricity market models (e. g., day-ahead energy, ancillary 
service, capacity markets), various energy entities (e. g., re‐
newable generation, energy storage system, demand re‐
sponse), and diverse market mechanisms. This variety pres‐
ents a robust test for the ability of the MSS-Agent to handle 
the linguistic and structural variability inherent in technical 
documents, which is a challenge LLMs are fundamentally 
designed to address.
2)　Evaluation Metric Design

To quantitatively evaluate the performance of the pro‐
posed MSS-Agent framework, the following three evaluation 
metrics are designed.

1) Mathematical modelling coverage
This metric is used to measure the completeness and accu‐

racy of the mathematical model information extracted by the 
proposed MSS-Agent framework. We compare the extracted 
mathematical model with the mathematical model in the orig‐
inal document to evaluate whether the extracted information 
covers all the key elements in the original document, includ‐
ing the objective function, constraints, variable definitions, 
etc. The score range of this metric is 0-100, with higher 
scores indicating more complete and accurate extracted infor‐
mation. Specifically, a score of 90-100 indicates a complete 
and accurate extraction result; a score of 70-89 indicates a 
relatively complete extraction result with minor omissions or 
inaccuracies; a score of 50-69 indicates that some key ele‐
ments are covered, but with numerous omissions or some er‐
rors; a score of 30-49 indicates that only a few key elements 
are covered and there are significant errors; and a score of 0-
29 indicates a near-total lack of relevant coverage or a funda‐
mentally flawed extraction. The LLM is used for preliminary 
evaluation of this metric, and then two experts in the field 
of electricity markets manually verify and correct it.

2) Code generation compliance
This metric is used to measure whether the execution re‐

sults of the code generated by the proposed MSS-Agent 
framework are as expected. We compare the execution re‐
sults of the code with the expected market behavior (e. g., 
price, output, etc.) to evaluate whether the code correctly 
simulates the market operation mechanism. This metric eval‐
uates the compliance of the code with expected outcomes on 
a scale of 0 to 100, where higher scores reflect greater con‐
sistency. On this scale, a score of 90-100 signifies that the 
simulation results fully align with the expected behavior of 
the model. A score of 70-89 denotes that the results are gen‐
erally correct but may exhibit minor deviations in detail. As 
scores decrease into the 50-69 and 30-49 ranges, they reflect 
increasingly significant discrepancies between the simulation 
output and the expected results. A score below 30 indicates 
a critical failure, where the generated code either fails to exe‐
cute or produces results that are fundamentally incorrect. 
The LLM is used for the preliminary evaluation of this met‐
ric, and then two experts in the field of electricity markets 
manually verify and correct it.

3) Code generation Pass@N
This metric measures the ability of an agent to generate 
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correct code within a limited number of attempts. Specifical‐
ly, Pass@N measures the proportion of successful code gen‐
erations within N debugging cycles. In the code execution 
phase, we allow the proposed MSS-Agent framework to per‐
form code debugging iteratively based on error information. 
If the generated code can be successfully executed and pass‐
es all test cases within N attempts, it is considered a success. 
The general formula for Pass@N is defined as [32]:

Pass@N =
Npass

Ntotal
(8)

where Npass is the number of instances (documents, in our 
case) for which a correct solution is generated within N at‐
tempts; and Ntotal is the total number of instances. In our 
evaluation, we employ Pass@3, which allows for up to 
three debugging cycles. Physically, Pass@N reflects the effi‐
ciency and robustness of the code generation process. A high 
Pass@N, especially when N is low, indicates that the agent 
can quickly find a correct solution with minimal feedback. 
This demonstrates its ability to effectively understand and 
rectify errors. This metric can be verified automatically by 
the compiler without manual intervention.
3) Experimental Setup and　Hyperparameters

The experimental setup and hyperparameters used in our 
experiments are shown in Table I. In the following subsec‐
tions, we provide further details on our experimental setup, 
including the specific prompts used to guide the LLM and 
the underlying assumptions of our market model.

For the reasoning phase, an example prompt of Preason is: 
“Given the following electricity market description, identify 
the key elements required for mathematical modelling. Con‐
sider elements such as the objective function (e.g., cost mini‐
mization, profit maximization), constraints (e. g., power bal‐
ance, generator limits), decision variables, and market param‐
eters.”

For the AutoPrompt phase, an example prompt of Pbase is: 
“You are an expert in electricity market modelling. Given 
the element ‘element’ , generate a specific and detailed 
prompt that would guide an LLM to extract all relevant in‐
formation related to this element from a technical document. 
The prompt should be clear, concise, and unambiguous.” 
The ‘element’  placeholder would be replaced with the spe‐
cific element (e.g., “objective function”) identified in the rea‐
soning phase.

For the summarization phase, an example prompt of 

Psummarize is: “Synthesize the following extracted information 
into a complete and coherent mathematical model of an elec‐
tricity market. Ensure that all variables are clearly defined, 
the objective function is explicitly stated, and all constraints 
are properly formulated. Use standard mathematical nota‐
tion.”

For the template modification phase, a prompt example of 
Pgenerate is: “Given the following mathematical model of an 
electricity market and a code template, modify the template 
to generate executable code that accurately simulates the 
market. Pay close attention to the comments in the template, 
which indicate where specific model components should be 
implemented.” For code execution and reflection debugging 
phase, an example prompt of Pdebug is: “Given the following 
error, source code, and the original mathematical model, 
please modify the code to resolve the error, considering con‐
sistency with the model.”

Our baseline experiments consider a simplified day-ahead 
electricity market with a single period. Generators submit lin‐
ear supply offers, and demand is assumed to be inelastic. 
The market clearing process aims to minimize the total gen‐
eration cost while satisfying power balance and generator ca‐
pacity constraints. Network constraints are initially ignored 
for simplicity, but are incorporated in later experiments us‐
ing the IEEE systems.

B. Experimental Results

Based on the above dataset, evaluation metrics, and hyper‐
parameter settings, the following experiments are conducted 
to verify the effectiveness of the HCoT method.
1)　Effectiveness of HCoT Method

This part mainly verifies the performance of different com‐
ponents in the HCoT method. The performance of the fol‐
lowing methods is compared in the information extraction 
task.

1) Method 1: directly using an LLM by inputting the origi‐
nal document and prompting it to extract all relevant infor‐
mation.

2) Method 2: using the standard CoT method by prompt‐
ing the LLM to think step by step and extract information.

3) Method 3: using the HCOT method proposed in this pa‐
per, breaking down the information extraction task into mul‐
tiple steps, and extracting information step by step.

4) Method 4: using the HCoT method, adding the Auto‐
Prompt mechanism to automatically generate more accurate 
prompts for extracting each element.

The performance comparison of different information ex‐
traction methods is shown in Table II.

TABLE I
EXPERIMENTAL SETUP AND HYPERPARAMETERS

Item

LLM (reasoning) used for information extraction

LLM (coding) used for code generation and debugging

LLM (evaluation) used for coverage and compliance 
evaluation

IEEE case size used for liveness experiments

Randomness of LLM output

The maximum length of LLM output

Diversity of LLM output

Setting

Gemini 2 Flash

Gemini 2 Flash

GPT-4

3-bus case

0.7

2048

0.95

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT INFORMATION EXTRACTION 

METHODS

Method

1

2

3

4

Coverage rate (%)

71.12

76.95

78.55

81.91

Compliance rate (%)

67.54

70.75

70.42

72.03

Pass@3 (%)

91.66

93.33

93.33

98.33
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As can be observed from Table II, the performance of 
Method 1 is the worst, which shows that complex tasks of 
electricity market information extraction are difficult to com‐
plete with simple prompts. Method 2 shows improvement in 
all evaluated metrics compared with Method 1, proving the 
effectiveness of Method 2. Method 3 improves the coverage 
rate by about 1.6 percentage points compared with that of 
Method 2, which shows that decomposing the information 
extraction task into multiple steps can extract information 
more comprehensively. Interestingly, Method 3 shows slight‐
ly lower compliance rate than Method 2. This counter-intui‐
tive result suggests a trade-off. On one hand, the more thor‐
ough process of Method 3 uncovers complex and nuanced 
constraints that Method 2 might miss, which explains its 
higher coverage rate. On the other hand, these same com‐
plex constraints are more difficult to implement correctly in 
code. This difficulty increases the risk of minor implementa‐
tion errors, which in turn slightly lowers the compliance 
rate. This challenge is precisely what Method 4 is designed 
to address. Method 4 achieves the best performance in all 
metrics, with the coverage rate reaching 81.91%, the compli‐
ance rate reaching 72.03%, and the Pass@3 reaching 
98.33%. Compared with Method 3, after adding the Auto‐
Prompt mechanism, the coverage rate is improved by about 
3.4 percentage points, the compliance rate is improved by 
about 1.6 percentage points, and the Pass@3 is improved by 
about 5 percentage points. This fully demonstrates that the 
AutoPrompt mechanism can generate more accurate prompts 
for different elements to be extracted, thereby improving the 
accuracy and completeness of information extraction.
2)　Effectiveness of Reflection Debugging Mechanism

This part mainly verifies the effectiveness of the reflection 
debugging mechanism in the reflective coding for electricity 
market simulation. The performance of the following two 
methods are compared in the code generation task.

1) Method 5: using the reflective coding for electricity 
market simulation to generate code but without the reflection 
debugging mechanism.

2) Method 6: using the reflective coding for electricity 
market simulation to generate code with the reflection debug‐
ging mechanism.

The performance comparison of different code generation 
methods is shown in Table III.

As can be observed from Table III, the Pass@3 of Meth‐
od 6 is significantly higher than that of Method 5. This 
shows that the reflection debugging mechanism can effective‐
ly identify and fix errors in the code, thereby improving the 
quality of the generated code. By analyzing the logs and er‐
ror information in the code execution process, and compar‐
ing the mathematical logic and code implementation of the 

model, the reflection debugging mechanism can help the 
LLM better understand the root cause of code errors and 
generate more accurate code. A deeper analysis of the debug‐
ging cycles reveals that the reflection debugging mechanism 
adeptly handled several common error categories. Syntactic 
errors such as incorrect indentation or variable name typos 
were almost always corrected in the first attempt. More chal‐
lenging were logical errors related to the optimization mod‐
el, such as incorrect indexing of variables in constraints or 
improper formulation of objective function terms. The reflec‐
tion debugging mechanism proved effective at resolving 
these by using the solver’s feedback (e. g., infeasibility re‐
ports on specific constraints) to pinpoint the logical flaw, 
demonstrating its ability to bridge the gap between the ab‐
stract mathematical model and its concrete implementation.
3)　Comparison of Different LLMs

This part compares the performance of different LLMs un‐
der the HCoT method. We selected two representative 
LLMs: DeepSeek V3 [33] and Gemini 2 Flash [34]. These 
models were chosen to represent different design philoso‐
phies. DeepSeek V3, developed by DeepSeek AI, is specifi‐
cally trained on a large corpus of code and technical docu‐
ments, making it a strong candidate for code generation and 
specialized domain understanding. In contrast, Gemini 2 
Flash is part of Google’s latest generation of models, de‐
signed to offer a balance of high performance and efficiency 
with strengths in multimodal reasoning and broad natural lan‐
guage understanding. This comparison allows us to evaluate 
whether a specialized model or a powerful generalist model 
is more effective for the end-to-end task of the proposed 
MSS-Agent framework. The performance comparison of dif‐
ferent LLMs is shown in Table IV.

As Table IV shows, the Gemini 2 Flash outperforms the 
DeepSeek V3 in all metrics. This result suggests that for the 
end-to-end task of the proposed MSS-Agent framework, 
strong general reasoning and natural language understanding 
capabilities, which are critical for the HCoT-IE phase, are 
more impactful than specialized coding proficiency alone. 
While DeepSeek V3 is highly competent, the well-rounded 
performance of Gemini 2 Flash appears better suited for the 
initial and complex task of interpreting and structuring the 
model from unstructured text. This shows that choosing a 
more powerful LLM can significantly improve the perfor‐
mance of the HCoT method.
4)　Impact of IEEE System Bus Sizes

This part analyzes the impact of different IEEE system 
bus sizes on the quality of code generation under the reflec‐
tive coding for electricity market simulation. We selected 
three standard IEEE systems of different sizes from the wide‐
ly used Power System Test Case Archive [35]: the IEEE 3-

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT CODE GENERATION METHODS

Method

5

6

Pass@3 (%)

85.00

98.33

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT LLMS

LLM

DeepSeek V3

Gemini 2 Flash

Coverage rate (%)

71.25

81.91

Compliance rate (%)

68.87

72.03

Pass@3 (%)

96.67

98.33
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bus system, the IEEE 30-bus system, and the IEEE 118-bus 
system, representing small, medium, and large power sys‐
tems, respectively. The performance comparison of different 
IEEE system bus sizes is shown in Table V.

The results show that as IEEE system bus sizes increases, 
that is, as the scale of the power system expands, the cover‐
age rate shows a slight downward trend. The compliance 
rate is the highest for the IEEE 30-bus system, while Pass@
3 is the highest for the IEEE 3-bus system. This decline in 
coverage rate for larger power systems is attributable to the 
increased complexity and length of the corresponding docu‐
ments, which can challenge the ability of LLM to maintain 
context over longer inputs. The non-monotonic trend of the 
compliance rate and Pass@3 reveals a more nuanced interac‐
tion with complexity. The lowest Pass@3 of IEEE 30-bus 
system suggests that it represents a “medium-complexity 
trap”. Its model is intricate enough to introduce significant 
coding challenges such as complex indexing, which are less 
prevalent in the simpler IEEE 3-bus system. However, un‐
like the larger IEEE 118-bus system, it lacks a highly regu‐
lar, pattern-based structure, which prevents the LLM from 
generalizing its coding approach and leads to more errors. 
Conversely, the highest compliance rate of IEEE 30-bus sys‐

tem indicates that it may be a “model fidelity sweet spot”, 
which is a standard, well-defined problem in literature that, 
when correctly coded, produces outcomes closely aligned 
with expectations. Simpler systems may lack this fidelity, 
while larger ones may introduce minor numerical deviations 
due to scale.

Nevertheless, the Pass@3 for all test systems remains 
above 90%, demonstrating the overall effectiveness of the re‐
flective coding for electricity market simulation, even as sys‐
tem complexity increases. It is important to distinguish the 
scalability of the MSS-Agent from the computational scal‐
ability of the simulation itself. While the MSS-Agent suc‐
cessfully formulates larger models, the primary bottleneck 
for very large-scale models (e.g., regional or global electrici‐
ty markets) becomes the computational time required by the 
optimization solver to find a solution, rather than the model 
generation process itself.

C. Case Study

To further validate the practical effectiveness of the pro‐
posed MSS-Agent framework, a case study was conducted 
utilizing the IEEE 3-bus system, a simplified yet representa‐
tive model for power system analysis. The input for this 
case study is the research paper [36], as presented in the 
Fig. 4. The proposed MSS-Agent framework processed this 
document, extracting the relevant market model information, 
including the objective function (maximizing total expected 
revenue), decision variables (capacity allocated to each mar‐
ket), and various constraints (capacity, cost, individual lim‐
its, and derivative market constraints). Subsequently, the 
MSS-Agent generated Python code based on a predefined 
template, incorporating the extracted information and utiliz‐
ing the reflective coding for electricity market simulation.

The simulation produced results for generation output 
over time and LMPs across three buses over time, as illus‐

trated in Figs. 5 and 6. Notably, the “Generation MSS-
Agent” output in Fig. 5 represents the optimized generation 

TABLE V
PERFORMANCE COMPARISON OF DIFFERENT IEEE SYSTEM BUS SIZES

Case

IEEE 3-bus

IEEE 30-bus

IEEE 118-bus

Coverage rate (%)

81.91

76.78

75.41

Compliance rate(%)

72.03

74.24

74.00

Pass@3 (%)

98.33

91.07

96.67

Yucekaya, A. (2022). Electricity trading for coal-fired power plants in Turkish power market considering uncertainty in spot,  
     derivatives and bilateral contract market. Renewable and Sustainable Energy Reviews, 159, 112189.

[‘Objective function’, ‘Constraints’, ‘Bidding strategy’, ‘Cost function’, ‘Market price forecasting’]

•Objective: maximizing total expected revenue from spot market (Es), bilateral contracts (Eb), and derivatives market (Eo).
•Decision variables: capacity allocated to each market: Qs, Qb, Qo (total) and Qs

i, Qb
i, Qo

i (per scenario i).
•Revenue calculation: based on allocated capacity, market prices (Pt

k, Pt
b), and cost functions (C(Qi)).

•Capacity constraint: total allocation cannot exceed maximum capacity: Qs+Qb+Qo ≤ Qmax.
•Cost functions: quadratic cost functions for each market.
•Individual capacity limits: Qs

i, Qb
i, Qo

i  ≤ Qmax (for each scenario i).
•Derivatives market constraint: probability-based constraint related to option strike price (X) and average spot price. Include Qi         
      that is the amount of options bought from the derivative market�
•Spot market generation rule: Qs

i = 0 if price condition not met (Pt
k ≥ a2 + 2a3).

•Non-negativity: Qs, Qb, Qo, Qs
i, Qb

i, Qo
i  ≥ 0.

•Goal: find optimal Qs, Qb, Qo to maximize revenue given prices, costs, and constraints.

# Code modifications:
# 1. Set Pmax and Pmin for MSS-Agent in load_data to ensure capacity constraints.
# 2. Define quadratic cost function in process_generator_offers; coefficients a1, a2, a3 need adjustment based on real data.
# 3. Dynamically adjust Pmax of MSS-Agent in solve_opf to implement the spot market generation constraint.
# 4. Current spot price data are randomly generated; real applications require loading actual data.
# 5. Constraints for derivatives and bilateral markets are not fully implemented and require further development.

Mathematical
model

Simulation
program

Document

Planning

Fig. 4.　Information extraction and model formulation.
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schedule determined by the MSS-Agent, while the other 
“Generation” outputs represent predefined baseline genera‐
tion profiles categorized by their operational roles: base-load 
coal units (CG1 and CG2), flexible gas turbines (GSTONE1 
and GSTONE2), and strategic reserve units (STAN2). Cru‐
cially, the simulation results shown in Figs. 5 and 6 aligned 
with the expected behavior of the electricity market model 
described in the input document. The proposed MSS-Agent 
framework successfully captured the key dynamics of the 
electricity market, including the interplay between spot and 
derivative markets, and produced a feasible and economical‐
ly rational generation dispatch. This case study demonstrates 
the capability of proposed MSS-Agent framework to auto‐
mate the process of the electricity market modelling and sim‐
ulation, starting from a textual description and culminating 
in executable code that yields meaningful results.

V. DISCUSSION 

The proposed MSS-Agent framework, while demonstrated 
in an academic context, holds significant potential as a deci‐
sion-support and rapid-prototyping tool for market regula‐
tors, analysts, and participants. For instance, regulators could 
use it to quickly translate a new policy document into a sim‐
ulation model, enabling a preliminary impact assessment that 
accelerates the policy analysis cycle. However, transitioning 
it to real-world implementation faces hurdles. Stakeholder 
adoption would require a “human-in-the-loop” approach for 
expert verification, and practical deployment would necessi‐
tate the integration with complex data systems and the use 
of secure and on-premises LLMs to protect sensitive market 
data.

The strength of the proposed MSS-Agent framework lies 
in its adaptability. To simulate a carbon tax, for example, the 

HCoT-IE would extract the tax rules, and the reflective cod‐
ing for electricity market simulation would modify the objec‐
tive function of code template to include a new emission-
based cost term. Similarly, renewable energy incentives can 
be implemented as adjustments to revenue functions or as 
new system constraints. Despite this flexibility, the frame‐
work has limitations. Its performance is contingent on the 
underlying capabilities of LLMs and the quality of input doc‐
uments (poorly structured or ambiguous texts can degrade 
extraction accuracy). Furthermore, the reflective coding 
while effective for optimization problems, would require sig‐
nificant modification for fundamentally different paradigms 
such as agent-based equilibrium models.

Future work will focus on extending the proposed MSS-
Agent framework to handle a wider variety of documents 
such as official market rulebooks and high-level policy pa‐
pers. This will require enhancing the ability of the MSS-
Agent to interpret legalistic prose and translate qualitative 
goals into quantitative model constraints, likely reinforcing 
the need for expert validation. It is also important to clarify 
that the proposed MSS-Agent framework is an offline model 
construction tool, not a real-time operational system. It han‐
dles dynamic market conditions by enabling the rapid cre‐
ation of high-fidelity models for scenario analysis, where us‐
ers can then test the impact of volatile inputs like fluctuating 
renewable generation or demand shifts.

VI. CONCLUSION 

This paper addresses the core challenges of automated 
electricity market analysis by proposing the MSS-Agent 
framework, which integrates the HCoT-IE method and the re‐
flective coding for electricity market simulation. The HCoT-
IE method ensures accurate model extraction from complex 
documents, while the integrated reflection debugging mecha‐
nism enables the agent to autonomously generate and vali‐
date reliable simulation codes. Experimental results and a 
case study demonstrate that the proposed MSS-Agent frame‐
work significantly improves the efficiency and accuracy of 
the end-to-end modelling workflow. Future research will fo‐
cus on enhancing the versatility of the framework to handle 
a broader range of market structures such as multi-period 
and stochastic models, thereby expanding its applicability as 
a powerful tool for policy analysis and market design in in‐
creasingly complex energy systems.
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