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Model Fusion for Scalable and Sustainable
Artificial Intelligence: A Review and Outlook
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Abstract—Large language models (LLMs) have achieved re-
markable progress in recent years. Nevertheless, the prevailing
centralized paradigm for training generative artificial intelli-
gence (Al) is increasingly approaching its structural limits.
First, the concentration of large-scale graphics processing unit
(GPU) clusters restricts the access to the pre-training stage, con-
fining the fundamental model development to a small number
of resource-rich institutions. Second, the economic and energy
costs associated with operating massive data centers render this
paradigm progressively less sustainable. Third, the hardware
gatekeeping narrows the participation to computer science spe-
cialists, limiting the involvement of domain experts who are es-
sential for high-impact applications. Finally, small- and medium-
sized enterprises remain dependent on expensive application
programming interface (APIs) or shallow fine-tuning methods
that are insufficient to modify the core knowledge of a model.
Together, these constraints impede innovation and hinder equi-
table access to next-generation Al systems. Model fusion offers
a scalable alternative by integrating multiple specialized models
without retraining from scratch. This paper analyzes the cur-
rent landscape of model fusion, outlining the strengths and limi-
tations of existing methods and discussing future directions. We
highlight recent advances such as InfiFusion, InfiGFusion, and
InfiFPO, which improve the alignment and scalability through
techniques like top-K logit selection, graph-based distillation,
and preference optimization. These techniques demonstrate sub-
stantial efficiency and reasoning gains, pointing toward a more
accessible and resource-aware paradigm for large-scale model
development. Finally, we discuss the practical applicability of
model fusion, using the energy domain as an illustrative example.

Index Terms—Artificial intelligence (Al), large language mod-
el (LLM), model fusion.

1. INTRODUCTION

ITH the rapid evolution of large language models
(LLMs), we have witnessed remarkable progress and
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development of artificial intelligence (AI). These models
have been widely applied across various fields such as smart
manufacturing [1]-[3], financial investment research [4]-[6],
and corporate customer service [7]-[9], bringing significant
changes and benefits. The field of Al has made groundbreak-
ing advancements, largely spurred by the rise of foundation
models and large-scale generative architectures. Many recent
foundation models are characterized by large parameter sizes
and are trained on massive datasets containing trillions of to-
kens. These high-capacity models have enabled strong perfor-
mance across a wide range of tasks, including natural lan-
guage understanding, machine translation, text generation,
and complex question answering. Qwen 2.5 [10], for exam-
ple, features 72 billion parameters and is trained on 18 tril-
lion tokens, illustrating the scale and power typical of mod-
ern Al systems.

However, the rapid progress of LLMs has brought about
several pressing concerns. The increasing size and complexi-
ty of state-of-the-art models have led to a concentration of
Al development within a few resource-rich institutions.
These institutions benefit from substantial financial resourc-
es, specialized expertise, and privileged access to large-scale
datasets, enabling them to develop and train increasingly
complex models on massive computational infrastructures.
This has created significant barriers to entry for smaller re-
search groups and domain experts. Smaller teams often lack
the financial resources to purchase and maintain high-perfor-
mance computing equipment, the technical expertise to train
and fine-tune large models, and access to large-scale and
high-quality datasets. As a result, they struggle to compete
with the giants in the field of large model research and appli-
cation. Moreover, the monolithic training paradigm of large
models, which relies on massive, diverse datasets, and exten-
sive hardware, poses challenges for specialized or privacy-
sensitive applications. Training a large model from scratch
requires a comprehensive dataset covering a wide range of
fields and topics. However, for specialized applications such
as medical diagnosis or legal advice, the data are often high-
ly specific and sensitive. Collecting and using such data for
model training must comply with strict privacy regulations
and ethical standards. Additionally, the extensive hardware
requirements make it difficult for organizations in these spe-
cialized fields to carry out model training and deployment
on their own. The high computational costs and complex
technical operations limit the application of large models in
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these fields, making it hard to meet the specific needs of
these fields and protect data privacy at the same time.

These challenges collectively underscore the urgent need
for more flexible, efficient, and accessible strategies to har-
ness the capabilities of modern Al systems. Crucially, en-
abling knowledge reuse and promoting modularity while
maintaining model performance are essential for democratiz-
ing Al, as it allows broader communities to build, adapt, and
deploy powerful models without prohibitive costs. As an al-
ternative, building a unified multitask language model by in-
tegrating the capabilities of multiple specialized models pres-
ents a scalable and resource-efficient solution. However, this
introduces new challenges in architectural compatibility, se-
mantic alignment, and efficient knowledge transfer, which
are those that this work aims to address. Existing methods
for unifying multitask language models can be broadly cate-
gorized into two approaches: parameter-level model merging
and knowledge distillation-based fusion, as shown in Fig. 1.
Parameter-level model merging requires that all source mod-
els share the same architecture, while knowledge distillation-
based fusion can be divided into logits-level and data-level
fusion.
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Fig. 1. Tllustration of parameter-level model merging and knowledge distil-
lation-based fusion. (a) Parameter-level model merging. (b) Knowledge dis-
tillation-based fusion.
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Parameter-level model merging refers to the process of
combining multiple pre-trained models into a single model
that integrates their knowledge and capabilities. Instead of
training a large model from scratch, this approach enables ef-
ficient reuse of existing models, often improving perfor-
mance across multiple tasks while reducing the computation-
al and data requirements. Early parameter-level model merg-
ing could be achieved by weighted averaging [11] and fisher-
based merging [12]. However, these simple methods often
overlook the conflicts between different models. In contrast,
other merging methods such as drop and rescale (DARE)

[13] and trim, elect sign & merge (TIES) [14] effectively ad-
dress this limitation by resolving conflicts and improving the
performance of the merged models. TIES merges multiple
task-specific models into a single multitask model, mitigat-
ing parameter interference by trimming redundant values and
resolving sign conflicts, which leads to improved perfor-
mance. However, these merging methods are restricted to the
models with identical architectures and vocabularies, and
still cannot fully resolve the interference between conflicting
task representations. More modular approaches like composi-
tion to augment language models (CALM) [15] introduce
compositionality through cross-attention, but this comes at
the cost of adaptability and requires carefully curated integra-
tion schemes.

Knowledge distillation-based fusion is an effective ap-
proach for integrating the capabilities of multiple models in-
to a single compact model by transferring knowledge
through both logits-level and data-level supervision. This ap-
proach enables the resulting model to retain the strengths of
diverse source models while significantly reducing the com-
putational overhead. Unlike parameter-level model merging,
it does not require structural compatibility among source
models, making it highly flexible and practical for real-
world applications in resource-constrained environments.

Logits-level fusion captures not just the final predictions
of expert models, but also their internal confidence levels
across all possible outcomes. Before making a final decision,
a model assigns numerical scores (called logits) to each op-
tion, indicating how likely it considers each one to be cor-
rect. Rather than simply copying the final answer, the stu-
dent (or pivot) model learns from these full distributions of
confidence. This allows it to replicate the nuanced reasoning
and uncertainty of the expert models, leading to more accu-
rate and calibrated decisions. Existing methods like Fu-
seLLM [16] and FuseChat [17] show that combining models
in this way can work well, but they still struggle with issues
such as noisy low-confidence outputs, mismatched mean-
ings, and inefficiency when dealing with very large sets of
possible answers. To address these problems, methods such
as InfiFusion [18] and InfiGFusion [19] have been proposed.
InfiFusion reduces noise and improves alignment by focus-
ing on the most important outputs and standardizing their
scores, making it efficient for combining both two and multi-
ple models. InfiGFusion further extends this idea by repre-
senting relationships between outputs as graphs and employ-
ing advanced mathematical tools [20], [21] to better capture
and align their semantic structures, leading to significant im-
provements on complex reasoning tasks.

Data-level fusion, by contrast, focuses on transferring
knowledge through the training examples and responses pro-
vided by expert models. Instead of learning from confidence
scores, the pivot model is trained on a curated dataset con-
sisting of input questions paired with detailed answers or ex-
planations generated by the experts. By studying these rich
examples, the pivot model absorbs the reasoning patterns
and domain knowledge encoded in the expert responses, al-
lowing it to generalize more effectively across similar tasks.
Beyond logits-level fusion, data-level fusion provides an al-
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ternative avenue by transferring knowledge through se-
quence-level data distributions. Following this direction, In-
fiFPO [22] extends model fusion to the preference alignment
stage by substituting the reference model in DPO [23] with
a fused distribution from multiple sources. Through tech-
niques such as length normalization, probability clipping,
and max-margin fusion, it achieves stable and robust align-
ment across domains.

Together, these two approaches establish a flexible and
unified framework for model fusion, enabling scalable and
semantically aligned integration of heterogeneous models.
By allowing effective fusion across different architectures
and tokenizers without retraining from scratch, the model fu-
sion lowers the barriers to developing powerful LLMs and
contributes to a more open and collaborative Al ecosystem.

In the power and energy domain, the deployment of large-
scale Al models is often constrained by limited data, high
computational cost, and strict reliability requirements. Model
fusion provides a promising solution by enabling the integra-
tion of multiple specialized models without training a single
large monolithic network. Model fusion could be effective in
applications such as load and renewable generation forecast-
ing, security assessment, economic dispatch, and electricity
market analysis.

The remainder of this paper is organized as follows. Sec-
tion II reviews the development of model fusion methods,
tracing their evolution and key paradigms. Section III dis-
cusses recent advancements, including the model merging
scaling law and the knowledge distillation-based fusion. Sec-
tion IV presents applications of model fusion, using the ener-
gy domain as a representative example, and outlines future
research directions and emerging challenges.

II. DEVELOPMENT OF MODEL FUSION METHODS

A. Parameter-level Model Merging

Integrating the capabilities of different models is an impor-
tant research focus to build a multitask model. Therefore, re-
searchers have explored methods to merge multiple models.

Early fusion techniques primarily focused on parameter-
level model merging, which means direct integration of mod-
el parameters. Reference [24] simply combines source mod-
els to build a multitask model based on the weighted aver-
age weights of the source models. Also, Model Soup [11] is
proposed in a similar way. After fine-tuning the pretrained
models with different parameter configurations, Model Soup
averages the weights of the source models to combine multi-
ple models. Merging models by weighted average weights
can be observed as combination of different task vectors
from different models.

The task-vector-based model merging paradigm starts
from a shared pretrained model 6,,., which serves as a com-
mon initialization for multiple domain-specific fine-tuning
processes. Each fine-tuned model 6" represents the adapta-

tion of the base model to a particular domain or task ¢,, such
as mathematics, coding, or scientific reasoning. The goal of
merging is to integrate these specialized capabilities into a
single unified model @ without requiring additional large-

merge

scale retraining. The basic formulation can be expressed as:
K
0mcrgc = 0basc + Zik ( 02FT - abasc ) (1)
k=1

where 4, is the scaling coefficient controlling the overall con-
tribution of the kA" fine-tuned model; K is the number of
source domains; and 6" -6, is the task vector of the

task ¢,.

This linear formulation follows the principle underlying
task arithmetic (TA) [25], reflecting the assumption that
knowledge acquired in different tasks can be approximately
superposed in the parameter space. Despite its simplicity,
this linear merging rule has been found to produce surpris-
ingly strong performance when the fine-tuned models share
a similar architecture and pretraining distribution.

However, recent studies reveal that the real-world parame-
ter landscapes are highly non-linear, and pure linear composi-
tion may lead to conflicts or interference across domains. To
address this, a number of variants introduce stochastic and
adaptive mechanisms to enhance the robustness and general-
ization. Typical strategies include: (D random parameter
dropout to mitigate co-adaptation and reduce noise accumula-
tion across merged directions; (2) noise injection or denois-
ing regularization to smooth the parameter manifold and pre-
vent overfitting to specific domain biases; and 3 rescaling
and normalization of task vectors based on their magnitude
or fisher information, aligning their relative contributions be-
fore aggregation.

TIES-merging [14] is proposed to address the interferenc-
es by resolving the sign conflicts when merging parameters
and selecting the parameters that align with the final sign for
merging. Similarly, DARE [13] is proposed to reduce most
of the difference of parameters between the pretrained mod-
els and the fine-tuned models to mitigate the interferences in
merging methods. Merging methods combine models of spe-
cific tasks to a multitask model without additional training,
which is friendly to individuals or corporations with limited
computational resources. CALM [15] enables a model to ex-
tend various capabilities by composition with other models
using cross-attention. CALM does not modify parameters
from the source models, and only some additional parame-
ters are learned from a small amount of data. Therefore, it
does not need mass data. However, the composition with oth-
er models reduces the flexibility and lack of adaptability.

These refinements effectively relax the linearity constraint
in (1), leading to improved stability and consistent gains
across diverse merging densities and task similarities. While
effective, all these merging methods are restricted to homo-
geneous model families and cannot fuse heterogeneous to-
kenizers or sizes; they also suffer from “interference” when
models specialize in conflicting skills, failing to capture the
strengths of diverse specialized models.

base

B. Knowledge Distillation-based Fusion

Knowledge distillation-based fusion has emerged as a
more flexible paradigm [26]-[28], as it enables the integra-
tion of heterogeneous models with varying architectures and
sizes. Such fusion can be performed at both the logits level
and the data level, offering greater adaptability across di-
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verse model types.
1) Logits-level Fusion

In logits-level fusion, the new model (called the pivot
model) learns by observing the confidence scores, known as
logits, produced by several expert models when they answer
the same question. These logits reflect the probability that
each model assigns to every possible answer, not just the fi-
nal choice. By aligning its own predictions with these de-
tailed confidence patterns, the pivot model can absorb nu-
anced knowledge such as how certain or uncertain the ex-
perts are about different options. Importantly, this process
does not require the expert models to have the same internal
structure or even use the same vocabulary, making it a flexi-
ble way to combine knowledge from diverse source models
into a single and more efficient model.

FuseLLM [16] creates a unified model by distillation. Fu-
seLLM fuses the probabilistic matrices from multiple source
models, which can be taken as teacher models, and then us-
es the fused probabilistic matrices to train the target model,
which is taken as the student model. The researchers believe
the probabilistic distributions can represent the inherent
knowledge of the models, so fusing multiple probabilistic
matrices to train a model can combine the knowledge of dif-
ferent specific domains. However, fusing multiple models si-
multaneously lacks adaptability because it does not seamless-
ly support inclusion of a new model to the fusion model.
Therefore, FuseChat [17], another method fusing models
through the probabilistic matrices, is proposed to resolve the
limitation. Instead of fusing multiple models all at once,
FuseChat selects a pivot model and fuses other source mod-
els with the pivot model pairwise by distillation, and then
merges all the fused models to get the final model. FuseChat
is a plug-and-play method, which makes it easy to add a
new model to the final fused model. However, since differ-
ent models usually have differences in the conversation tem-
plates and vocabularies, token alignment is needed to ad-
dress the mapping between the probabilistic matrices from
the source models to be fused. FuseChat does not give any
systematic methods to resolve the problems brought by the
conversation templates.

Researchers introduce universal logit distillation (ULD)
[29] loss to address the limitation that the models do not
share the same vocabulary and tokenizer in the distillation.
The proposed solution is close to the solutions to optimal
transport, but it does not provide a mapping for different
models and it is also difficult for ULD to solve the align-
ment thoroughly. Dual-space knowledge distillation (DSKD)
[30] unifies the output spaces of the student model and
teacher model in distillation. For the student model and
teacher model with different vocabularies, DSKD utilizes the
cross-attention mechanism to learn the token alignment auto-
matically instead of constructing mapping matrices. Howev-
er, the performance is limited when the student model is rela-
tively small.

Most logits correspond to low-probability categories,
which contribute little to the distillation process but increase
the computational burden. InfiFusion [18] enhances the ULD
framework by incorporating top-K logit selection and logit

standardization. These innovations effectively suppress the
noise from low-probability tokens and improve the robust-
ness of knowledge alignment across models with diverse vo-
cabularies and output distributions. Moreover, InfiFusion sup-
ports both pairwise fusion and unified multi-source fusion,
thus providing flexibility for different deployment scenarios
while maintaining superior computational efficiency. InfiFu-
sion demonstrates superior performance in reasoning, cod-
ing, mathematics, and instruction-following tasks through ex-
tensive experiments on multiple benchmarks.

InfiGFusion [19] introduces a novel graph-on-logits distil-
lation (GLD) mechanism, which models token co-activation
patterns as graphs and aligns semantic dependencies between
source and pivot models using an efficient approximation of
Gromov-Wasserstein distance. This structure-aware design
enables InfiGFusion to capture relational knowledge that tra-
ditional token-wise distillation overlooks. Its effectiveness is
particularly evident in complex reasoning tasks, where se-
mantic dependencies across tokens are essential for correct
inference.

2) Data-level Fusion

The data-level fusion involves training a new model on re-
sponses generated by expert models. Expert models act as tu-
tors, providing specialized knowledge through their outputs,
which serve as training material. This captures knowledge
from closed-source models without requiring internal access,
making it practical and modular.

The theoretical foundation stems from knowledge distilla-
tion work [31], which demonstrates that teacher-generated se-
quences can effectively transfer capabilities to student mod-
els. The rise of LLMs has accelerated the research on data-
level fusion, focusing on instruction-following, reasoning,
and domain-specific tasks.

Instruction synthesis represents the most extensive re-
search area within data-level fusion. Techniques like Evol-In-
struct [32] iteratively enhance the instruction complexity,
while instruction fusion [33] combines different instruction
types. Models like Alpaca [34], Vicuna [35], and Koala [36]
demonstrate the effectiveness by training on diverse conver-
sational data [37].

For reasoning capabilities, the Orca series [38], [39] pio-
neer augmenting responses with step-by-step explanations us-
ing Chain-of-Thought methodologies. Subsequent research
works including MAmmoTH [40] and Mixed Distillation
[41] extend these techniques to mathematical domains. Re-
cent advances include DeepSeek-R1 [42], which leverages
curated datasets for direct distillation to open-source models
like Qwen [43] and LLaMA [44], and HuatuoGPT-o0l [45],
which uses GPT-40 [46] to generate self-correcting reason-
ing processes.

Researchers have developed prompting strategies for con-
trolling data diversity [47]-[49] and augmentation techniques
like AugGPT [50] for semantic enhancement. LLMs serve as
effective data generators for both natural language under-
standing and natural language generation tasks [51]-[56].
Projects like UltraChat [57] and FireAct [58] demonstrate
quality-diversity balance and domain-specific applications.

Most research focuses on supervised fine-tuning (SFT),
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with limited investigation in preference alignment (PA).
FuseChat 3.0 [59] addresses this by integrating fusion into
both SFT and direct preference optimization (DPO) phases.
The weighted-reward preference optimization (WRPO) algo-
rithm [60] represents advances in policy fusion through
weighted random optimization of multiple sub-policies.

Traditional preference alignment fusion methods have limi-
tations: they use only response outputs, discard probabilistic
information, and focus solely on preferred responses while
neglecting dispreferred signals. InfiFPO [22] addresses these
limitations through implicit model fusion based on sequence-
level probabilities, replacing the reference model in DPO
with a fused source model construction. It incorporates
length normalization, probability clipping, and max-margin
fusion strategies, achieving significant improvements in
mathematics, coding, and reasoning tasks.

@ Instruction alignment

InfiFusion proposes a unified model fusion framework for aligning heterogeneous models in the
instruction-following setting. InfiGFusion further improves the capability to handle complex tasks

Figure 2 illustrates the evolution path of InfiFusion series
for LLM fusion, including InfiFusion [18], InfiGFusion [19],
and InfiFPO [22], where P()) is the probability function; and
the symbol > represents a preference relation, i.e., the pre-
ferred responses have a higher priority or satisfaction level
than the dispreferred responses. Parameter-level model merg-
ing is inherently limited to fusing the models with identical
architectures, making the fusion of heterogeneous models a
critical and increasingly important research area. The output
of a model, whether represented as a probability distribution
or as generated text, can be regarded as a reflection of its in-
ternal knowledge. From this perspective, fusing outputs natu-
rally enables the integration of underlying knowledge across
models. Knowledge distillation aligns well with this intuition
by facilitating knowledge transfer through output alignment.

@ Preference alignment

InfiFPO proposes a preference-based model fusion framework for
aligning heterogeneous models through reward-guided optimization
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Fig. 2. Evolution path of InfiFusion series for LLM fusion.

To provide a more systematic and neutral overview of dif-
ferent model-fusion paradigms and their key trade-offs, Ta-
ble I summarizes representative model fusion methods in
terms of typical prerequisites, training signals, qualitative
computational costs, and main strengths and limitations.

III. ADVANCEMENTS

Model fusion has become a key paradigm for integrating
knowledge from multiple specialized models while avoiding
the prohibitive cost of retraining. Recent progress has cen-
tered on two major directions: parameter-level model merg-
ing and knowledge distillation-based fusion. The former op-
erates directly in the weight space, combining fine-tuned
models through arithmetic or statistical rules to obtain a uni-
fied model with diverse capabilities and minimal computa-
tion. The latter aligns models at the output or representation
level, transferring knowledge through supervised or rein-

forcement signals that preserve semantic and behavioral con-
sistency across heterogeneous architectures. Both directions
share a common goal of efficiently consolidating expertise
from multiple sources, yet they differ fundamentally in mech-
anism, data requirements, and interpretability.

In this section, we present recent advancements along
these two lines. We first examine how parameter-level model
merging has evolved from heuristic strategies into a princi-
pled and scalable framework, exemplified by the emergence
of the model merging scaling law. We then discuss advances
in distillation-based fusion, highlighting recent methodologi-
cal innovations that improve alignment efficiency and perfor-
mance across diverse model architectures.

A. Model Merging Scaling Law

Equation (1) in Section II defines a linear combination of
task vectors, and serves as the foundation for several recent
techniques discussed in this section. Beyond empirical suc-
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cess, model merging is now being examined through the
lens of scaling laws [61], which describe how the perfor-
mance scales with factors such as model size, number of ex-

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 14, NO. 1, January 2026

haviors provides a quantitative foundation for predicting fu-
sion efficiency, identifying the optimal trade-offs between re-
source investment and performance, and guiding the design

perts, and domain diversity. Understanding these scaling be-

TABLE 1

of future multi-model systems.

COMPARISON OF REPRESENTATIVE MODEL FUSION METHODS

Representative Qualitative
P method Typical prerequisite Training signal computational Main strength Main limitation
cost
(D Same architecture and Requiring homogeneous
Parameter averag- tokenizer SFT; linear averag- Extremely simple; without addition-  tasks and domains; mainly
in; , Mod- eckpoints fine-tune ing of mode ow al training; convenient for quic used for closely relate
ing (AVG, Mod- (@ Checkpoints fi d ing of model L, | training ient for quick d for closely related
el Soup) from a common base weights multitask models fine-tuned models in the
model same LLM family
(D Same architecture and Interpretable view of tasks as direc- Reliable on approximate lin-
TA (TA and relat- tokenizer SFT; task vectors tions; supporting controlled re- earity of the loss land-
ed task-vector @) Shared pretrained base Oypr— 0, cOm- Low scaling and combination of capa- scape; prone to perfor-
methods) model P posed linearly bilities; easy to analyze effects of ~ mance degradation from
individual tasks conflicting task vectors
(D Same architecture and SFT; task vectors Mitigating sign conflicts and pa- Still restricted to identical
Conlflict-aware tokenizer merged with Low - rameter interference; more stable architectures and vocabu-
merging (TIES, (@ Multiple task-specific masking/rescal- Medium than naive averaging when merg- laries; residual interfer-
DARE) fine-tuned models ing to reduce ing many experts; maintaining ence persisting for highly
conflicts low training overhead conflicting skills
Modular composi- Preserving original experts; modu-
tion (C ALISI— Compatible attention/inter- SFT on adapter/ lar and extensible; enabling plug  Increasing inference latency
style composi- face between a base cross-attention Medium in new domain specialists with and memory footprint;
ti(}),nal au lr)nema_ model and expert mod- modules; source small amounts of data; support- less flexible than fully
tion) & ules models frozen ing composition of independently merged models
trained models
Logits-based distil- Fuslr}g heterogeneous expert.s into Being dominated by repeat-
Logits-level fu- lation (e.g., KL a single deployable model; ex- ed teacher inference over
A . o . loiting soft confidence patterns :
sion (FuseLLM, Access to teacher logits OT-style losses) High p ) large corpora in computa-
. . rather than hard labels; often .o
FuseChat) into a pivot . tion; cumbersome token
more robust than simple ensem- .
model . and prompt alignment
bling
(D) Heterogeneous vocabu-  Logits-based distil- Explicitly handling tokenizer mis-  More complex implementa-
Cross-tokenizer larics g 1%1 tion with cross- match; enabling logits-level fu- tion; mainly applying to
logit distillation @) Mechanisms for cross- tokenizer alion- High sion across different model eco- fusion of strong but struc-
(ULD, DSKD) token alienment required ment ob'ecti%es systems; broad fusion applicabili- turally heterogeneous
& q ) ty teachers
. Simple pipeline; reusing closed- or . . .
Data-level fusion (D No structural compati- Sufuiivrisegnﬁ;‘;_ open-source experts; naturally Dlsrcoaé:é?lgisggeifé)arl;‘jion.
(Evol-Instruct, bility requirement theticginstru);:- Medium - supporting domain- and reason- Stron erformance de e’n-
Alpaca, Orca, (@ Access to expert-gener- . . High ing-oriented fusion via curated &b P
tions, rationales, . o . dence on prompt design
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geting real-world utility and safe-
ty

1) Scaling Laws in Deep Learning

Scaling laws describe how the performance of a system
changes as its fundamental resources such as model size, da-
ta volume, or computational budget increase. They reveal
that the performance often follows predictable power-law

trends rather than arbitrary fluctuations, enabling researchers
to forecast accuracy and efficiency without exhaustive exper-
imentation. Classical scaling laws quantify how loss scales
with model size, data volume, and computational budget,
leading to parameter/data power-laws and computation-opti-
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mal trade-offs [62]-[64]. Extensions explore transfer efficien-
cy, precision and quantization scaling [65], and sparsity-in-
duced trade-offs [66], among others. Together, these studies
establish a quantitative framework for reasoning about re-
source allocation in large-scale model development [67]-[70].
2) Toward a Scaling Law of Model Merging

While traditional scaling laws focus on how the perfor-
mance of a single model improves with more parameters or
data, they do not address composition in weight space: how
knowledge from multiple pretrained experts can be efficient-
ly combined. Existing merging studies typically examine on-
ly a few experts, leaving the relationship between the num-
ber of merged models and the resulting performance under-
explored. References [71] and [72] examine this question
from theoretical and empirical perspectives, identifying the
factors that influence merging success but without establish-
ing a unified and predictive framework.

Recent research work [61] empirically analyzes how mod-
el-merging performance changes with both the number of
merged experts (K) and the base model size (V). Figure 3 il-
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lustrates representative results of the scaling law, where each
panel corresponds to one merging method, AVG (averaging
the weights of different models), TA, TIES, and DARE,
showing how the cross-entropy loss evolves as more experts
are merged. This figure is redrawn based on the results re-
ported in [61], with modifications in visualization style for
clarity. Reference [61] selects multiple domain-specific ex-
perts from mathematics, coding, and science, merges them,
and evaluates the merged models using cross-entropy loss,
where lower cross-entropy loss indicates better performance.
They collect results for model merging across model sizes
from 5x 10% to 3.28 x 10'° with 1-9 experts, fit the empirical
data with functional curves, and validate the fitted relation-
ship on the base model with size of 7.27 x 10'°. The dots in
Fig. 3 represent the empirical results obtained from actual
merging experiments, while the smooth curves are fitted us-
ing the model merging scaling law, providing a quantitative
model that captures the observed relationship among K, N,
and the performance. Two clear and consistent patterns
emerge from these fitted curves.
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Fig. 3.

1) Diminishing returns with increasing number of merged
experts. Across all merging methods, the cross-entropy loss
decreases monotonically (or nearly so) as the number of
merged experts increases, following the scaling law. Most of
the performance improvement occurs early: the curves exhib-
it a visible “elbow” around K=~ 5-6, beyond which additional
experts yield progressively smaller gains. This pattern re-
flects a diminishing-returns effect in multi-expert fusion,
where early merging provides rapid benefits while later addi-
tions contribute marginal improvements.

2) Scaling with model size. It is observed that base mod-
els with larger sizes not only achieve better accuracy but al-
so reach saturation more quickly. Moreover, the domain-de-
pendent tendencies are evident: mathematics-related tasks
tend to saturate earlier (shorter tails), whereas science-related
domains continue to benefit from adding experts before pla-
teauing.

Overall, the alignment between the experimental data
points and the fitted scaling law curves demonstrates that the
model-merging performance follows smooth and predictable
regularities across different merging methods and model siz-

Representative results of scaling law across different merging methods. (a) AVG. (B) TA. (c¢) TIES. (d) DARE.

es. These results provide strong empirical evidence that the
merging scaling law accurately characterizes the relationship
among expert count, model capacity, and performance gain,
transforming model fusion from a heuristic process into a
quantitatively predictable paradigm.

B. Advances in Knowledge Distillation-based Fusion

Knowledge distillation-based fusion aligns heterogeneous
models through their output behaviors rather than parameter
values, enabling integration across architectures or vocabular-
ies without structural constraints. Recent advances are exem-
plified by the InfiFusion series [18], [19], [22], as illustrated
in Fig. 2. Three key stages of evolution could be summa-
rized: (D instruction alignment, where models are fused by
matching token-level outputs in instruction-following tasks;
@ structure-aware alignment introduced by InfiGFusion,
which incorporates graph-based reasoning alignment; and 3
preference alignment introduced by InfiFPO, which leverag-
es reward-guided optimization to reflect human feedback. To-
gether, these developments transform distillation-based fu-
sion from heuristic knowledge transfer into a principle and
multi-level framework for aligning heterogeneous LLMs.
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1) InfiFsusion

Distillation-based fusion extends applicability to heteroge-
neous models by aligning knowledge at the output level. The
InfiFusion [18] framework introduces mechanisms for align-
ing token distributions across different vocabularies, support-
ed by robust objectives such as the optimal transport and dis-
tance-based alignment. Efficiency and stability are further en-
hanced through techniques like top-K logit selection and log-
its standardization, which not only concentrate the optimiza-
tion on high-confidence outputs but also mitigate discrepan-
cies caused by heterogencous model architectures. These
methodological refinements collectively ensure that the align-
ment is both semantically meaningful and computationally
tractable. Based on this, the unified fusion jointly integrates
multiple source models in a single optimization process, sig-
nificantly reducing the GPU cost compared with pairwise
training while delivering competitive or superior perfor-
mance. For instance, a unified InfiFusion variant attains an
average score of 79.92, closely matching a pairwise counter-
part (79.96). Meanwhile, it consumes only about 160 GPU
hours (less than the 450 GPU hours required by the pairwise
model) and merely accounts for 0.016% of the GPU hours
of base model with size of 1.4x10° required for the full
training of a comparable foundation model. These results
demonstrate that the unified fusion not only scales more
gracefully with the number of source models but also repre-
sents a fundamental shift from heuristic aggregation toward
principled and optimization-based objectives for knowledge
alignment. This makes it particularly relevant in the resource-
constrained scenarios, where practitioners must balance mod-
el quality against strict limits on training budgets.
2) InfiGFsusion

Beyond token-level alignment, InfiGFusion [19] incorpo-
rates relational structures into the fusion process, addressing
the critical limitation that the token-wise distribution match-
ing alone often fails to capture higher-order reasoning pat-
terns. By modeling token co-activation patterns as graphs
and aligning them across models, InfiGFusion captures struc-
tural dependencies such as causality, logical consistency, and
temporal or semantic ordering. This design moves fusion
closer to reasoning-aware alignment rather than shallows
probability matching. Empirically, InfiGFusion improves the
average accuracy from 77.94% (SFT baseline) to 83.79%
across diverse reasoning benchmarks, with especially large
gains on multi-step tasks. These improvements illustrate that
the structure-aware fusion allows models to internalize not
only what tokens to generate, but also how to reason about
relationships  between them. Importantly, InfiGFusion
achieves this without incurring prohibitive computational
overhead, thanks to efficient graph approximation methods
that summarize relational dependencies in a compact form.
Such advances highlight a path forward for building fused
models that exhibit stronger logical consistency, interpretabil-
ity, and robustness, all of which are crucial for the domains
such as scientific discovery, law, and energy system optimi-
zation, where reliable reasoning is indispensable.
3) InfiFPO

The fusion at the preference alignment stage remains rela-

tively unexplored, despite its central role in aligning LLMs
with human values and practical utility. InfiFPO [22] intro-
duces a sequence-level implicit fusion strategy that circum-
vents vocabulary conflicts by aligning entire response se-
quences rather than individual tokens, thereby preserving se-
mantic coherence across heterogeneous architectures. Built
upon the FuseRLHF framework, InfiFPO integrates rein-
forcement learning from human feedback into the fusion pro-
cess, enabling the pivot model to inherit both preference
alignment and source model expertise. Reformulated as an
efficient offline objective, InfiFPO yields substantial gains:
using Phi-4 as the pivot and multiple models with sizes of 9 x
10°-2.4x 10", the average score across 11 benchmarks that
can represent aggregate performance improves from 79.95 to
83.33, while avoiding expensive online sampling and reward
model training. This positions preference-aligned fusion as
both practical and scalable, lowering the barrier to integrat-
ing alignment into multi-model fusion pipelines. Enhance-
ment strategies such as length normalization, probability clip-
ping, and dynamic max-margin fusion further stabilize the
training and mitigate the risks of overfitting or inheriting bi-
ased behaviors from source models. Taken together, these in-
novations elevate preference-aligned fusion into a promising
direction for future research, as it provides a direct mecha-
nism for combining heterogeneous LLMs while ensuring
that the fused models not only achieve strong performance
but also faithfully reflect human-centered objectives. Look-
ing ahead, such techniques may become essential in deploy-
ing safe, robust, and socially aligned Al systems across do-
mains where decision quality and ethical considerations are
paramount.

All numerical performance results reported in this subsec-
tion for InfiGFusion and InfiFPO (including average scores
and benchmark-level improvements) are quoted directly
from the corresponding original publications rather than re-
produced in this review. The benchmark lists, evaluation pro-
tocols, model scales, tokenizers, and experimental settings
strictly follow those described in [19] and [22].

C. Operational Sustainability

From an operational perspective, recent advances in the In-
fi-series provide clear quantitative evidence that the model
fusion can achieve competitive or superior performance un-
der substantially reduced computational budgets. Specifical-
ly, InfiFusion and InfiGFusion integrate multiple source mod-
els within a single optimization process and require only
about 160-195 GPU hours, whereas existing logits-level fu-
sion baselines such as FuseLLM and FuseChat require ap-
proximately 225 GPU hours and 650 GPU hours, respective-
ly, under the same model size of 1.4x 10" and comparable
evaluation protocols [19]. This reduces GPU hours at the
training stage by approximately 60%-75% with no loss (and
often a gain) in average benchmark score, yielding a marked
energy-efficiency improvement at the fusion stage.

A similar efficiency advantage is observed for the prefer-
ence-based fusion. In InfiFPO, the preference optimization is
completed using approximately 55-60 GPU hours, while
achieving higher average performance than several baselines
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that rely on comparable or even larger computational bud-
gets [22]. Compared with the much heavier training pipe-
lines typically used in reinforcement-learning-based align-
ment and multi-stage fusion frameworks such as FuseChat,
InfiFPO achieves stronger alignment effectiveness under an
order-of-magnitude lower GPU budget, indicating that the ef-
fective preference alignment can be realized in a highly ener-
gy-efficient manner.

All in all, InfiGFusion and InfiFPO demonstrate that mod-
el fusion delivers better performance per unit time than pair-
wise distillation and multi-stage training. When the hardware
setup stays the same, the longer these models run, the more
electricity they use, and the more carbon emissions they pro-
duce. So, cutting down the time needed to train these mod-
els directly reduces their environmental impact.

This supports the view that the model fusion constitutes
not only an effective strategy for capability integration, but
also a practically sustainable pathway for developing and
aligning large-scale foundation models.

IV. APPLICATIONS AND FUTURE DIRECTIONS

The value of model fusion lies not only in methodological
innovation but also in enabling practical Al deployment
across diverse domains. Applications in energy, healthcare,
and finance illustrate the ability of model fusion to integrate
heterogeneous data for more adaptive decision-making,
while the growing data scale and model complexity call for
advances in efficiency, scalability, and multimodality. This
section first reviews representative applications of model fu-
sion using the energy domain as an illustrative example,
then outlines future directions and open challenges that will
shape the next stage of the field.

A. Applications of Model Fusion

1) Applications of Parameter-level Model Merging

The applicability of parameter-level model merging spans
a wide range of domains, including healthcare, finance, ro-
botics, and industrial systems. For instance, in the energy do-
main, separate models are often developed for renewable en-
ergy generation forecasting, equipment condition monitoring,
and energy market optimization. By merging these models, it
becomes possible to construct an integrated system that holis-
tically considers environmental dynamics, infrastructure reli-
ability, and economic signals. Such a system can improve
the accuracy of solar and wind power predictions, enable the
proactive maintenance of generation and storage assets, and
enhance the decision-making in real-time market operations.
Ultimately, this contributes to more reliable, efficient, and
sustainable energy systems.

Beyond these conceptual benefits, concrete use cases in
modern power and energy systems already begin to align nat-
urally with fusion-style designs. In the short-term load and
renewable energy generation forecasting, the ensemble ap-
proaches combine physical models with diverse machine
learning predictors to improve the robustness under non-sta-
tionary weather and demand patterns [73]-[75]. In the asset
condition monitoring and fault diagnosis, practical deploy-
ments are inherently multi-source: measurements and inspec-

tion signals are collected through heterogeneous sensing and
detection mechanisms, and reliable diagnosis often requires
aggregating evidence across channels while being robust to
noise and interference [76], [77]. In the electricity markets
and dispatch, recent research works on electricity price fore-
casting have shown that heterogenecous machine learning
models and ensemble schemes can be combined to enhance
the accuracy and robustness of day-ahead and longer-horizon
price predictions [78], [79]. These examples illustrate that
the power and energy applications often have a natural multi-
source structure, making them particularly well suited to ben-
efit from principled fusion frameworks.

Thus, the parameter-level model merging offers a scalable
and modular approach to democratizing Al capabilities
across specialized tasks and domains. It provides a flexible
framework for integrating diverse models while preserving
their unique strengths, thereby facilitating the development
of comprehensive and adaptive solutions in various applica-
tion contexts.

2) Applications of Model Merging Scaling law

The model merging scaling law quantitatively describes
how the performance of fused models improves as the num-
ber of merged experts and the base model size increase, of-
fering a predictive framework for understanding the composi-
tional efficiency. In the industrial contexts, this law can
guide the design of scalable and resource-aware Al systems
by identifying when the inclusion of additional expert mod-
els produces diminishing performance gains. In the energy
domain, for instance, the forecasting and optimization tasks
must account for diverse temporal horizons (e.g., short-term
load prediction and long-term generation planning), spatial
variations across regions, and dynamically changing environ-
mental or market conditions. Traditionally, separate models
are trained for sub-domains such as wind power forecasting,
photovoltaic control, and grid stability analysis. By applying
the model merging scaling law, practitioners can evaluate
how the predictive accuracy scales with the number of
merged domain experts and determine an optimal fusion
point that balances accuracy, computational cost, and energy
consumption. In practice, this enables adaptive and efficient
model composition for real-time energy management, lead-
ing to more reliable, sustainable, and cost-effective power
system operation.

Beyond the energy domain, the same principle extends nat-
urally to other data-intensive fields where multiple special-
ized models coexist. In healthcare, for example, predictive
systems often combine models trained on different data
sources such as medical imaging, genomic profiles, and elec-
tronic health records, each capturing complementary aspects
of clinical knowledge. The model merging scaling law pro-
vides a systematic framework for estimating how diagnostic
accuracy or generalization is improved as more expert mod-
els are integrated. This helps researchers and practitioners al-
locate computational resources efficiently while maintaining
data privacy by avoiding the need for joint retraining. In fi-
nance, applications such as multi-market forecasting and risk
modeling rely on models specialized for distinct asset class-
es or temporal patterns. Scaling analysis helps determine the
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point at which adding more models yields diminishing re-
turns, ensuring the computational efficiency in high-frequen-
cy decision-making environments. Similarly, in manufactur-
ing and industrial automation, predictive maintenance and
process optimization often depend on models tuned for spe-
cific sensors, machinery, or production lines. By quantifying
the performance improvements as a function of the number
of merged experts, organizations can plan gradual model in-
tegration strategies that match available hardware capacity
and latency requirements.

More broadly, the model merging scaling law marks a
transition from heuristic and trial-and-error fusion to a quan-
titative understanding of how composition scales with perfor-
mance. It provides not only descriptive patterns but also
practical predictions: a small set of early experiments can be
used to forecast the entire performance-versus-scale trend,
guiding the resource allocation before the large-scale deploy-
ment. This predictive capability supports a new paradigm of
sustainable Al engineering, in which the model integration
decisions explicitly account for the computational cost, envi-
ronmental impact, and system efficiency. By turning model
merging into a predictable and theoretically grounded pro-
cess, the model merging scaling law establishes a unified
foundation for scalable, cost-effective, and environmentally
responsible Al deployment across scientific and industrial do-
mains.

3) Applications of Knowledge Distillation-based Fusion

Model fusion techniques at the logits and data levels offer
an important degree of flexibility for integrating heteroge-
neous models, particularly in settings where the parameter-
level alignment is difficult or impractical. These techniques
are especially relevant to application domains characterized
by heterogeneous and multi-source data such as modern ener-
gy systems that combine time-series sensor streams and geo-
spatial weather information. By enabling the fusion without
requiring strict architectural compatibility or joint retraining,
such methods open the door to more versatile and adaptive
predictive frameworks that can better accommodate the di-
versity of data inherent in the energy-related applications.

Despite these advantages, the deployment of model fusion
in energy contexts also presents significant challenges. The
forecasting and optimization in power and energy systems of-
ten involve data that vary substantially across temporal hori-
zons, geographic regions, and operational conditions, making
the robustness and adaptability of fused models a critical
concern. Moreover, the real-world scenarios such as distribut-
ed energy resources, grid balancing, and demand-side man-
agement impose strict constraints on latency, computational
efficiency, and resource budgets, underscoring the need for
compact yet capable models that can be deployed at the
edge. Finally, as the sustainability becomes a central evalua-
tion criterion, the energy cost of computation itself must be
considered alongside the predictive accuracy. This highlights
the importance of fusion strategies that are not only effective
in performance but also resource-cfficient, scalable, and
aligned with the broader goal of sustainable energy intelli-
gence.

While these issues are particularly salient in energy sys-

tems, the modularity and scalability of fusion methods make
them equally valuable in other data-intensive fields. In these
domains, combining models across institutions or data silos
is often required under strict privacy and interoperability con-
straints. Model fusion thus represents a versatile tool for
building high-performing Al systems in complex and data-di-
verse environments. By enabling the seamless integration of
models trained on disparate data sources and architectures,
the fusion techniques pave the way for more robust, adap-
tive, and sustainability-aware Al solutions across a wide
range of applications.

B. Future Directions

The future trajectory of model fusion is defined not only
by methodological innovations but also by its ability to ad-
dress cross-domain challenges, particularly in the resource-
constrained and energy-sensitive applications. Several interre-
lated research directions are central to this agenda.

First, a priority involves the development of plug-and-play
fusion frameworks capable of integrating models across het-
erogeneous domains, architectures, and training paradigms.
Current methods remain hindered by mismatches in tokeniz-
ers, objectives, and parameter scales, limiting their applica-
bility in real-world pipelines. A modular and dynamic design
could enable practitioners to integrate domain-specific mod-
els without full retraining, facilitating continual learning
while ensuring adaptability in fast-evolving domains such as
climate modeling and energy system optimization.

Second, the development of computation- and data-effi-
cient fusion methods is indispensable for broadening partici-
pation and ensuring sustainability. Although the current fu-
sion methods already offer significant efficiency gains com-
pared with full retraining, they still entail non-negligible
computational and data costs, which can pose barriers to
broader adoption. Yet in energy-sensitive domains, the com-
putational efficiency is not only a matter of accessibility but
also that of sustainability: reducing training and inference en-
ergy costs is essential for lowering the carbon footprint of
large-scale Al systems. Techniques such as sparsity, parame-
ter sharing, and low-resource distillation will be crucial in
making fusion both equitable and environmentally responsi-
ble.

Finally, extending fusion methods to multimodal contexts
introduces both opportunities and unresolved barriers. Inte-
grating modalities such as language, vision, and sensor data
can enable richer multimodal inference; however, achieving
alignment across heterogeneous representation spaces re-
mains challenging. For instance, in energy applications, fus-
ing textual reports with satellite imagery and real-time sen-
sor streams requires principled methods for cross-modal em-
bedding and distillation to ensure the reliable joint decision-
making.

Taken together, these directions highlight the dual necessi-
ty of advancing theoretical principles and addressing applica-
tion-driven challenges. Model fusion must evolve not only
as a methodological discipline but also as a cross-domain en-
abler, with energy-efficient and application-aware designs
serving as critical testbeds for its broader societal impact.
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V. CONCLUSION

This review surveys the current landscape of research on
democratizing Al, focusing on improving accessibility, scal-
ability, and knowledge reuse in large-scale model develop-
ment. It synthesizes recent progress in model fusion, summa-
rizing key paradigms and representative techniques such as
InfiFusion, InfiGFusion, and InfiFPO, which have advanced
logits-level denoising, structural alignment, and preference-
based sequence fusion. Recent studies on model merging
scaling laws are also discussed, providing a quantitative per-
spective on how model performance evolves with the num-
ber of fused experts and offering theoretical guidance for the
efficient and sustainable model composition. Furthermore,
this review examines the practical applications of model fu-
sion, using the energy domain as a representative case to il-
lustrate its effectiveness in integrating heterogeneous models
and enabling adaptive and resource-aware Al systems. Look-
ing ahead, the future research is expected to move toward
more general and multimodal fusion frameworks that en-
hance scalability, reasoning, and interpretability, paving the
way for flexible and sustainable Al architectures.
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