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Abstract——Large language models (LLMs) have achieved re‐
markable progress in recent years. Nevertheless, the prevailing 
centralized paradigm for training generative artificial intelli‐
gence (AI) is increasingly approaching its structural limits. 
First, the concentration of large-scale graphics processing unit 
(GPU) clusters restricts the access to the pre-training stage, con‐
fining the fundamental model development to a small number 
of resource-rich institutions. Second, the economic and energy 
costs associated with operating massive data centers render this 
paradigm progressively less sustainable. Third, the hardware 
gatekeeping narrows the participation to computer science spe‐
cialists, limiting the involvement of domain experts who are es‐
sential for high-impact applications. Finally, small- and medium-
sized enterprises remain dependent on expensive application 
programming interface (APIs) or shallow fine-tuning methods 
that are insufficient to modify the core knowledge of a model. 
Together, these constraints impede innovation and hinder equi‐
table access to next-generation AI systems. Model fusion offers 
a scalable alternative by integrating multiple specialized models 
without retraining from scratch. This paper analyzes the cur‐
rent landscape of model fusion, outlining the strengths and limi‐
tations of existing methods and discussing future directions. We 
highlight recent advances such as InfiFusion, InfiGFusion, and 
InfiFPO, which improve the alignment and scalability through 
techniques like top-K logit selection, graph-based distillation, 
and preference optimization. These techniques demonstrate sub‐
stantial efficiency and reasoning gains, pointing toward a more 
accessible and resource-aware paradigm for large-scale model 
development. Finally, we discuss the practical applicability of 
model fusion, using the energy domain as an illustrative example.

Index Terms——Artificial intelligence (AI), large language mod‐
el (LLM), model fusion.

I. INTRODUCTION 

WITH the rapid evolution of large language models 
(LLMs), we have witnessed remarkable progress and 

development of artificial intelligence (AI). These models 
have been widely applied across various fields such as smart 
manufacturing [1]-[3], financial investment research [4]-[6], 
and corporate customer service [7] - [9], bringing significant 
changes and benefits. The field of AI has made groundbreak‐
ing advancements, largely spurred by the rise of foundation 
models and large-scale generative architectures. Many recent 
foundation models are characterized by large parameter sizes 
and are trained on massive datasets containing trillions of to‐
kens. These high-capacity models have enabled strong perfor‐
mance across a wide range of tasks, including natural lan‐
guage understanding, machine translation, text generation, 
and complex question answering. Qwen 2.5 [10], for exam‐
ple, features 72 billion parameters and is trained on 18 tril‐
lion tokens, illustrating the scale and power typical of mod‐
ern AI systems.

However, the rapid progress of LLMs has brought about 
several pressing concerns. The increasing size and complexi‐
ty of state-of-the-art models have led to a concentration of 
AI development within a few resource-rich institutions. 
These institutions benefit from substantial financial resourc‐
es, specialized expertise, and privileged access to large-scale 
datasets, enabling them to develop and train increasingly 
complex models on massive computational infrastructures. 
This has created significant barriers to entry for smaller re‐
search groups and domain experts. Smaller teams often lack 
the financial resources to purchase and maintain high-perfor‐
mance computing equipment, the technical expertise to train 
and fine-tune large models, and access to large-scale and 
high-quality datasets. As a result, they struggle to compete 
with the giants in the field of large model research and appli‐
cation. Moreover, the monolithic training paradigm of large 
models, which relies on massive, diverse datasets, and exten‐
sive hardware, poses challenges for specialized or privacy-
sensitive applications. Training a large model from scratch 
requires a comprehensive dataset covering a wide range of 
fields and topics. However, for specialized applications such 
as medical diagnosis or legal advice, the data are often high‐
ly specific and sensitive. Collecting and using such data for 
model training must comply with strict privacy regulations 
and ethical standards. Additionally, the extensive hardware 
requirements make it difficult for organizations in these spe‐
cialized fields to carry out model training and deployment 
on their own. The high computational costs and complex 
technical operations limit the application of large models in 
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these fields, making it hard to meet the specific needs of 
these fields and protect data privacy at the same time.

These challenges collectively underscore the urgent need 
for more flexible, efficient, and accessible strategies to har‐
ness the capabilities of modern AI systems. Crucially, en‐
abling knowledge reuse and promoting modularity while 
maintaining model performance are essential for democratiz‐
ing AI, as it allows broader communities to build, adapt, and 
deploy powerful models without prohibitive costs. As an al‐
ternative, building a unified multitask language model by in‐
tegrating the capabilities of multiple specialized models pres‐
ents a scalable and resource-efficient solution. However, this 
introduces new challenges in architectural compatibility, se‐
mantic alignment, and efficient knowledge transfer, which 
are those that this work aims to address. Existing methods 
for unifying multitask language models can be broadly cate‐
gorized into two approaches: parameter-level model merging 
and knowledge distillation-based fusion, as shown in Fig. 1. 
Parameter-level model merging requires that all source mod‐
els share the same architecture, while knowledge distillation-
based fusion can be divided into logits-level and data-level 
fusion.

Parameter-level model merging refers to the process of 
combining multiple pre-trained models into a single model 
that integrates their knowledge and capabilities. Instead of 
training a large model from scratch, this approach enables ef‐
ficient reuse of existing models, often improving perfor‐
mance across multiple tasks while reducing the computation‐
al and data requirements. Early parameter-level model merg‐
ing could be achieved by weighted averaging [11] and fisher-
based merging [12]. However, these simple methods often 
overlook the conflicts between different models. In contrast, 
other merging methods such as drop and rescale (DARE) 

[13] and trim, elect sign & merge (TIES) [14] effectively ad‐
dress this limitation by resolving conflicts and improving the 
performance of the merged models. TIES merges multiple 
task-specific models into a single multitask model, mitigat‐
ing parameter interference by trimming redundant values and 
resolving sign conflicts, which leads to improved perfor‐
mance. However, these merging methods are restricted to the 
models with identical architectures and vocabularies, and 
still cannot fully resolve the interference between conflicting 
task representations. More modular approaches like composi‐
tion to augment language models (CALM) [15] introduce 
compositionality through cross-attention, but this comes at 
the cost of adaptability and requires carefully curated integra‐
tion schemes.

Knowledge distillation-based fusion is an effective ap‐
proach for integrating the capabilities of multiple models in‐
to a single compact model by transferring knowledge 
through both logits-level and data-level supervision. This ap‐
proach enables the resulting model to retain the strengths of 
diverse source models while significantly reducing the com‐
putational overhead. Unlike parameter-level model merging, 
it does not require structural compatibility among source 
models, making it highly flexible and practical for real-
world applications in resource-constrained environments.

Logits-level fusion captures not just the final predictions 
of expert models, but also their internal confidence levels 
across all possible outcomes. Before making a final decision, 
a model assigns numerical scores (called logits) to each op‐
tion, indicating how likely it considers each one to be cor‐
rect. Rather than simply copying the final answer, the stu‐
dent (or pivot) model learns from these full distributions of 
confidence. This allows it to replicate the nuanced reasoning 
and uncertainty of the expert models, leading to more accu‐
rate and calibrated decisions. Existing methods like Fu‐
seLLM [16] and FuseChat [17] show that combining models 
in this way can work well, but they still struggle with issues 
such as noisy low-confidence outputs, mismatched mean‐
ings, and inefficiency when dealing with very large sets of 
possible answers. To address these problems, methods such 
as InfiFusion [18] and InfiGFusion [19] have been proposed. 
InfiFusion reduces noise and improves alignment by focus‐
ing on the most important outputs and standardizing their 
scores, making it efficient for combining both two and multi‐
ple models. InfiGFusion further extends this idea by repre‐
senting relationships between outputs as graphs and employ‐
ing advanced mathematical tools [20], [21] to better capture 
and align their semantic structures, leading to significant im‐
provements on complex reasoning tasks.

Data-level fusion, by contrast, focuses on transferring 
knowledge through the training examples and responses pro‐
vided by expert models. Instead of learning from confidence 
scores, the pivot model is trained on a curated dataset con‐
sisting of input questions paired with detailed answers or ex‐
planations generated by the experts. By studying these rich 
examples, the pivot model absorbs the reasoning patterns 
and domain knowledge encoded in the expert responses, al‐
lowing it to generalize more effectively across similar tasks. 
Beyond logits-level fusion, data-level fusion provides an al‐

(a)

(b)

Input

Logits Response Logits Response Logits Response

Logits-level
fusion

Data-level 
fusion

Output models

Merge model
parameters

Output model

Source models

Source
models

Model structures
and parameters

Fig. 1.　Illustration of parameter-level model merging and knowledge distil‐
lation-based fusion. (a) Parameter-level model merging. (b) Knowledge dis‐
tillation-based fusion.
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ternative avenue by transferring knowledge through se‐
quence-level data distributions. Following this direction, In‐
fiFPO [22] extends model fusion to the preference alignment 
stage by substituting the reference model in DPO [23] with 
a fused distribution from multiple sources. Through tech‐
niques such as length normalization, probability clipping, 
and max-margin fusion, it achieves stable and robust align‐
ment across domains.

Together, these two approaches establish a flexible and 
unified framework for model fusion, enabling scalable and 
semantically aligned integration of heterogeneous models. 
By allowing effective fusion across different architectures 
and tokenizers without retraining from scratch, the model fu‐
sion lowers the barriers to developing powerful LLMs and 
contributes to a more open and collaborative AI ecosystem.

In the power and energy domain, the deployment of large-
scale AI models is often constrained by limited data, high 
computational cost, and strict reliability requirements. Model 
fusion provides a promising solution by enabling the integra‐
tion of multiple specialized models without training a single 
large monolithic network. Model fusion could be effective in 
applications such as load and renewable generation forecast‐
ing, security assessment, economic dispatch, and electricity 
market analysis.

The remainder of this paper is organized as follows. Sec‐
tion II reviews the development of model fusion methods, 
tracing their evolution and key paradigms. Section III dis‐
cusses recent advancements, including the model merging 
scaling law and the knowledge distillation-based fusion. Sec‐
tion IV presents applications of model fusion, using the ener‐
gy domain as a representative example, and outlines future 
research directions and emerging challenges.

II. DEVELOPMENT OF MODEL FUSION METHODS 

A. Parameter-level Model Merging

Integrating the capabilities of different models is an impor‐
tant research focus to build a multitask model. Therefore, re‐
searchers have explored methods to merge multiple models.

Early fusion techniques primarily focused on parameter-
level model merging, which means direct integration of mod‐
el parameters. Reference [24] simply combines source mod‐
els to build a multitask model based on the weighted aver‐
age weights of the source models. Also, Model Soup [11] is 
proposed in a similar way. After fine-tuning the pretrained 
models with different parameter configurations, Model Soup 
averages the weights of the source models to combine multi‐
ple models. Merging models by weighted average weights 
can be observed as combination of different task vectors 
from different models.

The task-vector-based model merging paradigm starts 
from a shared pretrained model θbase, which serves as a com‐
mon initialization for multiple domain-specific fine-tuning 
processes. Each fine-tuned model θ SFT

tk
 represents the adapta‐

tion of the base model to a particular domain or task tk, such 
as mathematics, coding, or scientific reasoning. The goal of 
merging is to integrate these specialized capabilities into a 
single unified model θmerge without requiring additional large-

scale retraining. The basic formulation can be expressed as:

θmerge = θbase + ∑
k = 1

K

λk ( )θ SFT
tk

- θbase (1)

where λk is the scaling coefficient controlling the overall con‐
tribution of the kth fine-tuned model; K is the number of 
source domains; and θ SFT

tk
- θbase is the task vector of the 

task tk.
This linear formulation follows the principle underlying 

task arithmetic (TA) [25], reflecting the assumption that 
knowledge acquired in different tasks can be approximately 
superposed in the parameter space. Despite its simplicity, 
this linear merging rule has been found to produce surpris‐
ingly strong performance when the fine-tuned models share 
a similar architecture and pretraining distribution.

However, recent studies reveal that the real-world parame‐
ter landscapes are highly non-linear, and pure linear composi‐
tion may lead to conflicts or interference across domains. To 
address this, a number of variants introduce stochastic and 
adaptive mechanisms to enhance the robustness and general‐
ization. Typical strategies include: ① random parameter 
dropout to mitigate co-adaptation and reduce noise accumula‐
tion across merged directions; ② noise injection or denois‐
ing regularization to smooth the parameter manifold and pre‐
vent overfitting to specific domain biases; and ③ rescaling 
and normalization of task vectors based on their magnitude 
or fisher information, aligning their relative contributions be‐
fore aggregation.

TIES-merging [14] is proposed to address the interferenc‐
es by resolving the sign conflicts when merging parameters 
and selecting the parameters that align with the final sign for 
merging. Similarly, DARE [13] is proposed to reduce most 
of the difference of parameters between the pretrained mod‐
els and the fine-tuned models to mitigate the interferences in 
merging methods. Merging methods combine models of spe‐
cific tasks to a multitask model without additional training, 
which is friendly to individuals or corporations with limited 
computational resources. CALM [15] enables a model to ex‐
tend various capabilities by composition with other models 
using cross-attention. CALM does not modify parameters 
from the source models, and only some additional parame‐
ters are learned from a small amount of data. Therefore, it 
does not need mass data. However, the composition with oth‐
er models reduces the flexibility and lack of adaptability.

These refinements effectively relax the linearity constraint 
in (1), leading to improved stability and consistent gains 
across diverse merging densities and task similarities. While 
effective, all these merging methods are restricted to homo‐
geneous model families and cannot fuse heterogeneous to‐
kenizers or sizes; they also suffer from “interference” when 
models specialize in conflicting skills, failing to capture the 
strengths of diverse specialized models.

B. Knowledge Distillation-based Fusion

Knowledge distillation-based fusion has emerged as a 
more flexible paradigm [26] - [28], as it enables the integra‐
tion of heterogeneous models with varying architectures and 
sizes. Such fusion can be performed at both the logits level 
and the data level, offering greater adaptability across di‐
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verse model types.
1)　Logits-level Fusion

In logits-level fusion, the new model (called the pivot 
model) learns by observing the confidence scores, known as 
logits, produced by several expert models when they answer 
the same question. These logits reflect the probability that 
each model assigns to every possible answer, not just the fi‐
nal choice. By aligning its own predictions with these de‐
tailed confidence patterns, the pivot model can absorb nu‐
anced knowledge such as how certain or uncertain the ex‐
perts are about different options. Importantly, this process 
does not require the expert models to have the same internal 
structure or even use the same vocabulary, making it a flexi‐
ble way to combine knowledge from diverse source models 
into a single and more efficient model.

FuseLLM [16] creates a unified model by distillation. Fu‐
seLLM fuses the probabilistic matrices from multiple source 
models, which can be taken as teacher models, and then us‐
es the fused probabilistic matrices to train the target model, 
which is taken as the student model. The researchers believe 
the probabilistic distributions can represent the inherent 
knowledge of the models, so fusing multiple probabilistic 
matrices to train a model can combine the knowledge of dif‐
ferent specific domains. However, fusing multiple models si‐
multaneously lacks adaptability because it does not seamless‐
ly support inclusion of a new model to the fusion model. 
Therefore, FuseChat [17], another method fusing models 
through the probabilistic matrices, is proposed to resolve the 
limitation. Instead of fusing multiple models all at once, 
FuseChat selects a pivot model and fuses other source mod‐
els with the pivot model pairwise by distillation, and then 
merges all the fused models to get the final model. FuseChat 
is a plug-and-play method, which makes it easy to add a 
new model to the final fused model. However, since differ‐
ent models usually have differences in the conversation tem‐
plates and vocabularies, token alignment is needed to ad‐
dress the mapping between the probabilistic matrices from 
the source models to be fused. FuseChat does not give any 
systematic methods to resolve the problems brought by the 
conversation templates.

Researchers introduce universal logit distillation (ULD) 
[29] loss to address the limitation that the models do not 
share the same vocabulary and tokenizer in the distillation. 
The proposed solution is close to the solutions to optimal 
transport, but it does not provide a mapping for different 
models and it is also difficult for ULD to solve the align‐
ment thoroughly. Dual-space knowledge distillation (DSKD) 
[30] unifies the output spaces of the student model and 
teacher model in distillation. For the student model and 
teacher model with different vocabularies, DSKD utilizes the 
cross-attention mechanism to learn the token alignment auto‐
matically instead of constructing mapping matrices. Howev‐
er, the performance is limited when the student model is rela‐
tively small.

Most logits correspond to low-probability categories, 
which contribute little to the distillation process but increase 
the computational burden. InfiFusion [18] enhances the ULD 
framework by incorporating top-K logit selection and logit 

standardization. These innovations effectively suppress the 
noise from low-probability tokens and improve the robust‐
ness of knowledge alignment across models with diverse vo‐
cabularies and output distributions. Moreover, InfiFusion sup‐
ports both pairwise fusion and unified multi-source fusion, 
thus providing flexibility for different deployment scenarios 
while maintaining superior computational efficiency. InfiFu‐
sion demonstrates superior performance in reasoning, cod‐
ing, mathematics, and instruction-following tasks through ex‐
tensive experiments on multiple benchmarks.

InfiGFusion [19] introduces a novel graph-on-logits distil‐
lation (GLD) mechanism, which models token co-activation 
patterns as graphs and aligns semantic dependencies between 
source and pivot models using an efficient approximation of 
Gromov-Wasserstein distance. This structure-aware design 
enables InfiGFusion to capture relational knowledge that tra‐
ditional token-wise distillation overlooks. Its effectiveness is 
particularly evident in complex reasoning tasks, where se‐
mantic dependencies across tokens are essential for correct 
inference.
2)　Data-level Fusion

The data-level fusion involves training a new model on re‐
sponses generated by expert models. Expert models act as tu‐
tors, providing specialized knowledge through their outputs, 
which serve as training material. This captures knowledge 
from closed-source models without requiring internal access, 
making it practical and modular.

The theoretical foundation stems from knowledge distilla‐
tion work [31], which demonstrates that teacher-generated se‐
quences can effectively transfer capabilities to student mod‐
els. The rise of LLMs has accelerated the research on data-
level fusion, focusing on instruction-following, reasoning, 
and domain-specific tasks.

Instruction synthesis represents the most extensive re‐
search area within data-level fusion. Techniques like Evol-In‐
struct [32] iteratively enhance the instruction complexity, 
while instruction fusion [33] combines different instruction 
types. Models like Alpaca [34], Vicuna [35], and Koala [36] 
demonstrate the effectiveness by training on diverse conver‐
sational data [37].

For reasoning capabilities, the Orca series [38], [39] pio‐
neer augmenting responses with step-by-step explanations us‐
ing Chain-of-Thought methodologies. Subsequent research 
works including MAmmoTH [40] and Mixed Distillation 
[41] extend these techniques to mathematical domains. Re‐
cent advances include DeepSeek-R1 [42], which leverages 
curated datasets for direct distillation to open-source models 
like Qwen [43] and LLaMA [44], and HuatuoGPT-o1 [45], 
which uses GPT-4o [46] to generate self-correcting reason‐
ing processes.

Researchers have developed prompting strategies for con‐
trolling data diversity [47]-[49] and augmentation techniques 
like AugGPT [50] for semantic enhancement. LLMs serve as 
effective data generators for both natural language under‐
standing and natural language generation tasks [51] - [56]. 
Projects like UltraChat [57] and FireAct [58] demonstrate 
quality-diversity balance and domain-specific applications.

Most research focuses on supervised fine-tuning (SFT), 
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with limited investigation in preference alignment (PA). 
FuseChat 3.0 [59] addresses this by integrating fusion into 
both SFT and direct preference optimization (DPO) phases. 
The weighted-reward preference optimization (WRPO) algo‐
rithm [60] represents advances in policy fusion through 
weighted random optimization of multiple sub-policies.

Traditional preference alignment fusion methods have limi‐
tations: they use only response outputs, discard probabilistic 
information, and focus solely on preferred responses while 
neglecting dispreferred signals. InfiFPO [22] addresses these 
limitations through implicit model fusion based on sequence-
level probabilities, replacing the reference model in DPO 
with a fused source model construction. It incorporates 
length normalization, probability clipping, and max-margin 
fusion strategies, achieving significant improvements in 
mathematics, coding, and reasoning tasks.

Figure 2 illustrates the evolution path of InfiFusion series 
for LLM fusion, including InfiFusion [18], InfiGFusion [19], 
and InfiFPO [22], where P(×) is the probability function; and 
the symbol ≻ represents a preference relation, i. e., the pre‐
ferred responses have a higher priority or satisfaction level 
than the dispreferred responses. Parameter-level model merg‐
ing is inherently limited to fusing the models with identical 
architectures, making the fusion of heterogeneous models a 
critical and increasingly important research area. The output 
of a model, whether represented as a probability distribution 
or as generated text, can be regarded as a reflection of its in‐
ternal knowledge. From this perspective, fusing outputs natu‐
rally enables the integration of underlying knowledge across 
models. Knowledge distillation aligns well with this intuition 
by facilitating knowledge transfer through output alignment.

To provide a more systematic and neutral overview of dif‐
ferent model-fusion paradigms and their key trade-offs, Ta‐
ble I summarizes representative model fusion methods in 
terms of typical prerequisites, training signals, qualitative 
computational costs, and main strengths and limitations.

III. ADVANCEMENTS 

Model fusion has become a key paradigm for integrating 
knowledge from multiple specialized models while avoiding 
the prohibitive cost of retraining. Recent progress has cen‐
tered on two major directions: parameter-level model merg‐
ing and knowledge distillation-based fusion. The former op‐
erates directly in the weight space, combining fine-tuned 
models through arithmetic or statistical rules to obtain a uni‐
fied model with diverse capabilities and minimal computa‐
tion. The latter aligns models at the output or representation 
level, transferring knowledge through supervised or rein‐

forcement signals that preserve semantic and behavioral con‐
sistency across heterogeneous architectures. Both directions 
share a common goal of efficiently consolidating expertise 
from multiple sources, yet they differ fundamentally in mech‐
anism, data requirements, and interpretability.

In this section, we present recent advancements along 
these two lines. We first examine how parameter-level model 
merging has evolved from heuristic strategies into a princi‐
pled and scalable framework, exemplified by the emergence 
of the model merging scaling law. We then discuss advances 
in distillation-based fusion, highlighting recent methodologi‐
cal innovations that improve alignment efficiency and perfor‐
mance across diverse model architectures.

A. Model Merging Scaling Law

Equation (1) in Section II defines a linear combination of 
task vectors, and serves as the foundation for several recent 
techniques discussed in this section. Beyond empirical suc‐
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Fig. 2.　Evolution path of InfiFusion series for LLM fusion.
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cess, model merging is now being examined through the 
lens of scaling laws [61], which describe how the perfor‐
mance scales with factors such as model size, number of ex‐
perts, and domain diversity. Understanding these scaling be‐

haviors provides a quantitative foundation for predicting fu‐
sion efficiency, identifying the optimal trade-offs between re‐
source investment and performance, and guiding the design 
of future multi-model systems.

TABLE I
COMPARISON OF REPRESENTATIVE MODEL FUSION METHODS

Representative 
method

Parameter averag‐
ing (AVG, Mod‐
el Soup)

TA (TA and relat‐
ed task-vector 
methods)

Conflict-aware 
merging (TIES, 
DARE)

Modular composi‐
tion (CALM-
style composi‐
tional augmenta‐
tion)

Logits-level fu‐
sion (FuseLLM, 
FuseChat)

Cross-tokenizer 
logit distillation 
(ULD, DSKD)

Data-level fusion 
(Evol-Instruct, 
Alpaca, Orca, 
etc.)

Advanced logits-
level fusion (In‐
fiFusion, InfiG‐
Fusion)

Preference-based 
fusion (Fuse‐
Chat 3.0, WR‐
PO, InfiFPO)

Typical prerequisite

① Same architecture and 
tokenizer② Checkpoints fine-tuned 
from a common base 
model

① Same architecture and 
tokenizer② Shared pretrained base 
model

① Same architecture and 
tokenizer② Multiple task-specific 
fine-tuned models

Compatible attention/inter‐
face between a base 
model and expert mod‐
ules

Access to teacher logits

① Heterogeneous vocabu‐
laries② Mechanisms for cross-
token alignment required

① No structural compati‐
bility requirement② Access to expert-gener‐
ated sequences

Heterogeneous architec‐
tures and tokenizers sup‐
ported via logit-space 
and graph-based align‐
ment

① Access to preference da‐
ta or implicit preference 
signals from multiple 
sources② Architectures may differ

Training signal

SFT; linear averag‐
ing of model 
weights

SFT; task vectors 
θSFT - θbase com‐
posed linearly

SFT; task vectors 
merged with 
masking/rescal‐
ing to reduce 
conflicts

SFT on adapter/
cross-attention 
modules; source 
models frozen

Logits-based distil‐
lation (e.g., KL, 
OT-style losses) 
into a pivot 
model

Logits-based distil‐
lation with cross-
tokenizer align‐
ment objectives

Supervised fine-
tuning on syn‐
thetic instruc‐
tions, rationales, 
or task solutions

Logits-based distil‐
lation with top-
K selection, stan‐
dardization, and 
graph-on-logits 
objectives

Preference-based 
objectives at pol‐
icy/sequence lev‐
el

Qualitative 
computational 

cost

Low

Low

Low–
Medium

Medium

High

High

Medium–
High

Medium

Medium

Main strength

Extremely simple; without addition‐
al training; convenient for quick 
multitask models

Interpretable view of tasks as direc‐
tions; supporting controlled re-
scaling and combination of capa‐
bilities; easy to analyze effects of 
individual tasks

Mitigating sign conflicts and pa‐
rameter interference; more stable 
than naive averaging when merg‐
ing many experts; maintaining 
low training overhead

Preserving original experts; modu‐
lar and extensible; enabling plug 
in new domain specialists with 
small amounts of data; support‐
ing composition of independently 
trained models

Fusing heterogeneous experts into 
a single deployable model; ex‐
ploiting soft confidence patterns 
rather than hard labels; often 
more robust than simple ensem‐
bling

Explicitly handling tokenizer mis‐
match; enabling logits-level fu‐
sion across different model eco‐
systems; broad fusion applicabili‐
ty

Simple pipeline; reusing closed- or 
open-source experts; naturally 
supporting domain- and reason‐
ing-oriented fusion via curated 
datasets; easy scalability with 
more data

Suppressing low-probability noise; 
capturing structural dependencies 
for complex reasoning; achieving 
strong gains on different bench‐
marks with reduced GPU hours

Combining expertise from several 
models while explicitly aligning 
with human preferences; avoid‐
ing tokenizer conflicts via se‐
quence-level fusion; directly tar‐
geting real-world utility and safe‐
ty

Main limitation

Requiring homogeneous 
tasks and domains; mainly 
used for closely related 
fine-tuned models in the 
same LLM family

Reliable on approximate lin‐
earity of the loss land‐
scape; prone to perfor‐
mance degradation from 
conflicting task vectors

Still restricted to identical 
architectures and vocabu‐
laries; residual interfer‐
ence persisting for highly 
conflicting skills

Increasing inference latency 
and memory footprint; 
less flexible than fully 
merged models

Being dominated by repeat‐
ed teacher inference over 
large corpora in computa‐
tion; cumbersome token 
and prompt alignment

More complex implementa‐
tion; mainly applying to 
fusion of strong but struc‐
turally heterogeneous 
teachers

Discarding fine-grained 
probabilistic information; 
strong performance depen‐
dence on prompt design 
and data filtering

Requiring access to teacher 
logits and curated fusion 
corpora; performance still 
bounded by teacher quality

Requiring high-quality pref‐
erence data or reliable 
proxy rewards; risk of 
propagating teacher biases

1)　Scaling Laws in Deep Learning
Scaling laws describe how the performance of a system 

changes as its fundamental resources such as model size, da‐
ta volume, or computational budget increase. They reveal 
that the performance often follows predictable power-law 

trends rather than arbitrary fluctuations, enabling researchers 
to forecast accuracy and efficiency without exhaustive exper‐
imentation. Classical scaling laws quantify how loss scales 
with model size, data volume, and computational budget, 
leading to parameter/data power-laws and computation-opti‐
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mal trade-offs [62]-[64]. Extensions explore transfer efficien‐
cy, precision and quantization scaling [65], and sparsity-in‐
duced trade-offs [66], among others. Together, these studies 
establish a quantitative framework for reasoning about re‐
source allocation in large-scale model development [67]-[70].
2)　Toward a Scaling Law of Model Merging

While traditional scaling laws focus on how the perfor‐
mance of a single model improves with more parameters or 
data, they do not address composition in weight space: how 
knowledge from multiple pretrained experts can be efficient‐
ly combined. Existing merging studies typically examine on‐
ly a few experts, leaving the relationship between the num‐
ber of merged models and the resulting performance under‐
explored. References [71] and [72] examine this question 
from theoretical and empirical perspectives, identifying the 
factors that influence merging success but without establish‐
ing a unified and predictive framework.

Recent research work [61] empirically analyzes how mod‐
el-merging performance changes with both the number of 
merged experts (K) and the base model size (N). Figure 3 il‐

lustrates representative results of the scaling law, where each 
panel corresponds to one merging method, AVG (averaging 
the weights of different models), TA, TIES, and DARE, 
showing how the cross-entropy loss evolves as more experts 
are merged. This figure is redrawn based on the results re‐
ported in [61], with modifications in visualization style for 
clarity. Reference [61] selects multiple domain-specific ex‐
perts from mathematics, coding, and science, merges them, 
and evaluates the merged models using cross-entropy loss, 
where lower cross-entropy loss indicates better performance. 
They collect results for model merging across model sizes 
from 5 ´ 108 to 3.28 ´ 1010 with 1-9 experts, fit the empirical 
data with functional curves, and validate the fitted relation‐
ship on the base model with size of 7.27 ´ 1010. The dots in 
Fig. 3 represent the empirical results obtained from actual 
merging experiments, while the smooth curves are fitted us‐
ing the model merging scaling law, providing a quantitative 
model that captures the observed relationship among K, N, 
and the performance. Two clear and consistent patterns 
emerge from these fitted curves.

1) Diminishing returns with increasing number of merged 
experts. Across all merging methods, the cross-entropy loss 
decreases monotonically (or nearly so) as the number of 
merged experts increases, following the scaling law. Most of 
the performance improvement occurs early: the curves exhib‐
it a visible “elbow” around K » 5-6, beyond which additional 
experts yield progressively smaller gains. This pattern re‐
flects a diminishing-returns effect in multi-expert fusion, 
where early merging provides rapid benefits while later addi‐
tions contribute marginal improvements.

2) Scaling with model size. It is observed that base mod‐
els with larger sizes not only achieve better accuracy but al‐
so reach saturation more quickly. Moreover, the domain-de‐
pendent tendencies are evident: mathematics-related tasks 
tend to saturate earlier (shorter tails), whereas science-related 
domains continue to benefit from adding experts before pla‐
teauing.

Overall, the alignment between the experimental data 
points and the fitted scaling law curves demonstrates that the 
model-merging performance follows smooth and predictable 
regularities across different merging methods and model siz‐

es. These results provide strong empirical evidence that the 
merging scaling law accurately characterizes the relationship 
among expert count, model capacity, and performance gain, 
transforming model fusion from a heuristic process into a 
quantitatively predictable paradigm.

B. Advances in Knowledge Distillation-based Fusion

Knowledge distillation-based fusion aligns heterogeneous 
models through their output behaviors rather than parameter 
values, enabling integration across architectures or vocabular‐
ies without structural constraints. Recent advances are exem‐
plified by the InfiFusion series [18], [19], [22], as illustrated 
in Fig. 2. Three key stages of evolution could be summa‐
rized: ① instruction alignment, where models are fused by 
matching token-level outputs in instruction-following tasks; ② structure-aware alignment introduced by InfiGFusion, 
which incorporates graph-based reasoning alignment; and ③ 
preference alignment introduced by InfiFPO, which leverag‐
es reward-guided optimization to reflect human feedback. To‐
gether, these developments transform distillation-based fu‐
sion from heuristic knowledge transfer into a principle and 
multi-level framework for aligning heterogeneous LLMs.

N=5×108; N=1.5×109; N=3.1×109; N=7.6×109; N=1.48×1010; N=3.28×1010; N=7.27×1010
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Fig. 3.　Representative results of scaling law across different merging methods. (a) AVG. (B) TA. (c) TIES. (d) DARE.
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1)　InfiFsusion
Distillation-based fusion extends applicability to heteroge‐

neous models by aligning knowledge at the output level. The 
InfiFusion [18] framework introduces mechanisms for align‐
ing token distributions across different vocabularies, support‐
ed by robust objectives such as the optimal transport and dis‐
tance-based alignment. Efficiency and stability are further en‐
hanced through techniques like top-K logit selection and log‐
its standardization, which not only concentrate the optimiza‐
tion on high-confidence outputs but also mitigate discrepan‐
cies caused by heterogeneous model architectures. These 
methodological refinements collectively ensure that the align‐
ment is both semantically meaningful and computationally 
tractable. Based on this, the unified fusion jointly integrates 
multiple source models in a single optimization process, sig‐
nificantly reducing the GPU cost compared with pairwise 
training while delivering competitive or superior perfor‐
mance. For instance, a unified InfiFusion variant attains an 
average score of 79.92, closely matching a pairwise counter‐
part (79.96). Meanwhile, it consumes only about 160 GPU 
hours (less than the 450 GPU hours required by the pairwise 
model) and merely accounts for 0.016% of the GPU hours 
of base model with size of 1.4 ´ 109 required for the full 
training of a comparable foundation model. These results 
demonstrate that the unified fusion not only scales more 
gracefully with the number of source models but also repre‐
sents a fundamental shift from heuristic aggregation toward 
principled and optimization-based objectives for knowledge 
alignment. This makes it particularly relevant in the resource-
constrained scenarios, where practitioners must balance mod‐
el quality against strict limits on training budgets.
2)　InfiGFsusion

Beyond token-level alignment, InfiGFusion [19] incorpo‐
rates relational structures into the fusion process, addressing 
the critical limitation that the token-wise distribution match‐
ing alone often fails to capture higher-order reasoning pat‐
terns. By modeling token co-activation patterns as graphs 
and aligning them across models, InfiGFusion captures struc‐
tural dependencies such as causality, logical consistency, and 
temporal or semantic ordering. This design moves fusion 
closer to reasoning-aware alignment rather than shallows 
probability matching. Empirically, InfiGFusion improves the 
average accuracy from 77.94% (SFT baseline) to 83.79% 
across diverse reasoning benchmarks, with especially large 
gains on multi-step tasks. These improvements illustrate that 
the structure-aware fusion allows models to internalize not 
only what tokens to generate, but also how to reason about 
relationships between them. Importantly, InfiGFusion 
achieves this without incurring prohibitive computational 
overhead, thanks to efficient graph approximation methods 
that summarize relational dependencies in a compact form. 
Such advances highlight a path forward for building fused 
models that exhibit stronger logical consistency, interpretabil‐
ity, and robustness, all of which are crucial for the domains 
such as scientific discovery, law, and energy system optimi‐
zation, where reliable reasoning is indispensable.
3)　InfiFPO

The fusion at the preference alignment stage remains rela‐

tively unexplored, despite its central role in aligning LLMs 
with human values and practical utility. InfiFPO [22] intro‐
duces a sequence-level implicit fusion strategy that circum‐
vents vocabulary conflicts by aligning entire response se‐
quences rather than individual tokens, thereby preserving se‐
mantic coherence across heterogeneous architectures. Built 
upon the FuseRLHF framework, InfiFPO integrates rein‐
forcement learning from human feedback into the fusion pro‐
cess, enabling the pivot model to inherit both preference 
alignment and source model expertise. Reformulated as an 
efficient offline objective, InfiFPO yields substantial gains: 
using Phi-4 as the pivot and multiple models with sizes of 9 ´
109-2.4 ´ 1010, the average score across 11 benchmarks that 
can represent aggregate performance improves from 79.95 to 
83.33, while avoiding expensive online sampling and reward 
model training. This positions preference-aligned fusion as 
both practical and scalable, lowering the barrier to integrat‐
ing alignment into multi-model fusion pipelines. Enhance‐
ment strategies such as length normalization, probability clip‐
ping, and dynamic max-margin fusion further stabilize the 
training and mitigate the risks of overfitting or inheriting bi‐
ased behaviors from source models. Taken together, these in‐
novations elevate preference-aligned fusion into a promising 
direction for future research, as it provides a direct mecha‐
nism for combining heterogeneous LLMs while ensuring 
that the fused models not only achieve strong performance 
but also faithfully reflect human-centered objectives. Look‐
ing ahead, such techniques may become essential in deploy‐
ing safe, robust, and socially aligned AI systems across do‐
mains where decision quality and ethical considerations are 
paramount.

All numerical performance results reported in this subsec‐
tion for InfiGFusion and InfiFPO (including average scores 
and benchmark-level improvements) are quoted directly 
from the corresponding original publications rather than re‐
produced in this review. The benchmark lists, evaluation pro‐
tocols, model scales, tokenizers, and experimental settings 
strictly follow those described in [19] and [22].

C. Operational Sustainability

From an operational perspective, recent advances in the In‐
fi-series provide clear quantitative evidence that the model 
fusion can achieve competitive or superior performance un‐
der substantially reduced computational budgets. Specifical‐
ly, InfiFusion and InfiGFusion integrate multiple source mod‐
els within a single optimization process and require only 
about 160-195 GPU hours, whereas existing logits-level fu‐
sion baselines such as FuseLLM and FuseChat require ap‐
proximately 225 GPU hours and 650 GPU hours, respective‐
ly, under the same model size of 1.4 ´ 1010 and comparable 
evaluation protocols [19]. This reduces GPU hours at the 
training stage by approximately 60%-75% with no loss (and 
often a gain) in average benchmark score, yielding a marked 
energy-efficiency improvement at the fusion stage.

A similar efficiency advantage is observed for the prefer‐
ence-based fusion. In InfiFPO, the preference optimization is 
completed using approximately 55-60 GPU hours, while 
achieving higher average performance than several baselines 
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that rely on comparable or even larger computational bud‐
gets [22]. Compared with the much heavier training pipe‐
lines typically used in reinforcement-learning-based align‐
ment and multi-stage fusion frameworks such as FuseChat, 
InfiFPO achieves stronger alignment effectiveness under an 
order-of-magnitude lower GPU budget, indicating that the ef‐
fective preference alignment can be realized in a highly ener‐
gy-efficient manner.

All in all, InfiGFusion and InfiFPO demonstrate that mod‐
el fusion delivers better performance per unit time than pair‐
wise distillation and multi-stage training. When the hardware 
setup stays the same, the longer these models run, the more 
electricity they use, and the more carbon emissions they pro‐
duce. So, cutting down the time needed to train these mod‐
els directly reduces their environmental impact.

This supports the view that the model fusion constitutes 
not only an effective strategy for capability integration, but 
also a practically sustainable pathway for developing and 
aligning large-scale foundation models.

IV. APPLICATIONS AND FUTURE DIRECTIONS 

The value of model fusion lies not only in methodological 
innovation but also in enabling practical AI deployment 
across diverse domains. Applications in energy, healthcare, 
and finance illustrate the ability of model fusion to integrate 
heterogeneous data for more adaptive decision-making, 
while the growing data scale and model complexity call for 
advances in efficiency, scalability, and multimodality. This 
section first reviews representative applications of model fu‐
sion using the energy domain as an illustrative example, 
then outlines future directions and open challenges that will 
shape the next stage of the field.

A. Applications of Model Fusion

1)　Applications of Parameter-level Model Merging
The applicability of parameter-level model merging spans 

a wide range of domains, including healthcare, finance, ro‐
botics, and industrial systems. For instance, in the energy do‐
main, separate models are often developed for renewable en‐
ergy generation forecasting, equipment condition monitoring, 
and energy market optimization. By merging these models, it 
becomes possible to construct an integrated system that holis‐
tically considers environmental dynamics, infrastructure reli‐
ability, and economic signals. Such a system can improve 
the accuracy of solar and wind power predictions, enable the 
proactive maintenance of generation and storage assets, and 
enhance the decision-making in real-time market operations. 
Ultimately, this contributes to more reliable, efficient, and 
sustainable energy systems.

Beyond these conceptual benefits, concrete use cases in 
modern power and energy systems already begin to align nat‐
urally with fusion-style designs. In the short-term load and 
renewable energy generation forecasting, the ensemble ap‐
proaches combine physical models with diverse machine 
learning predictors to improve the robustness under non-sta‐
tionary weather and demand patterns [73]-[75]. In the asset 
condition monitoring and fault diagnosis, practical deploy‐
ments are inherently multi-source: measurements and inspec‐

tion signals are collected through heterogeneous sensing and 
detection mechanisms, and reliable diagnosis often requires 
aggregating evidence across channels while being robust to 
noise and interference [76], [77]. In the electricity markets 
and dispatch, recent research works on electricity price fore‐
casting have shown that heterogeneous machine learning 
models and ensemble schemes can be combined to enhance 
the accuracy and robustness of day-ahead and longer-horizon 
price predictions [78], [79]. These examples illustrate that 
the power and energy applications often have a natural multi-
source structure, making them particularly well suited to ben‐
efit from principled fusion frameworks.

Thus, the parameter-level model merging offers a scalable 
and modular approach to democratizing AI capabilities 
across specialized tasks and domains. It provides a flexible 
framework for integrating diverse models while preserving 
their unique strengths, thereby facilitating the development 
of comprehensive and adaptive solutions in various applica‐
tion contexts.
2)　Applications of Model Merging Scaling law

The model merging scaling law quantitatively describes 
how the performance of fused models improves as the num‐
ber of merged experts and the base model size increase, of‐
fering a predictive framework for understanding the composi‐
tional efficiency. In the industrial contexts, this law can 
guide the design of scalable and resource-aware AI systems 
by identifying when the inclusion of additional expert mod‐
els produces diminishing performance gains. In the energy 
domain, for instance, the forecasting and optimization tasks 
must account for diverse temporal horizons (e.g., short-term 
load prediction and long-term generation planning), spatial 
variations across regions, and dynamically changing environ‐
mental or market conditions. Traditionally, separate models 
are trained for sub-domains such as wind power forecasting, 
photovoltaic control, and grid stability analysis. By applying 
the model merging scaling law, practitioners can evaluate 
how the predictive accuracy scales with the number of 
merged domain experts and determine an optimal fusion 
point that balances accuracy, computational cost, and energy 
consumption. In practice, this enables adaptive and efficient 
model composition for real-time energy management, lead‐
ing to more reliable, sustainable, and cost-effective power 
system operation.

Beyond the energy domain, the same principle extends nat‐
urally to other data-intensive fields where multiple special‐
ized models coexist. In healthcare, for example, predictive 
systems often combine models trained on different data 
sources such as medical imaging, genomic profiles, and elec‐
tronic health records, each capturing complementary aspects 
of clinical knowledge. The model merging scaling law pro‐
vides a systematic framework for estimating how diagnostic 
accuracy or generalization is improved as more expert mod‐
els are integrated. This helps researchers and practitioners al‐
locate computational resources efficiently while maintaining 
data privacy by avoiding the need for joint retraining. In fi‐
nance, applications such as multi-market forecasting and risk 
modeling rely on models specialized for distinct asset class‐
es or temporal patterns. Scaling analysis helps determine the 
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point at which adding more models yields diminishing re‐
turns, ensuring the computational efficiency in high-frequen‐
cy decision-making environments. Similarly, in manufactur‐
ing and industrial automation, predictive maintenance and 
process optimization often depend on models tuned for spe‐
cific sensors, machinery, or production lines. By quantifying 
the performance improvements as a function of the number 
of merged experts, organizations can plan gradual model in‐
tegration strategies that match available hardware capacity 
and latency requirements.

More broadly, the model merging scaling law marks a 
transition from heuristic and trial-and-error fusion to a quan‐
titative understanding of how composition scales with perfor‐
mance. It provides not only descriptive patterns but also 
practical predictions: a small set of early experiments can be 
used to forecast the entire performance-versus-scale trend, 
guiding the resource allocation before the large-scale deploy‐
ment. This predictive capability supports a new paradigm of 
sustainable AI engineering, in which the model integration 
decisions explicitly account for the computational cost, envi‐
ronmental impact, and system efficiency. By turning model 
merging into a predictable and theoretically grounded pro‐
cess, the model merging scaling law establishes a unified 
foundation for scalable, cost-effective, and environmentally 
responsible AI deployment across scientific and industrial do‐
mains.
3)　Applications of Knowledge Distillation-based Fusion

Model fusion techniques at the logits and data levels offer 
an important degree of flexibility for integrating heteroge‐
neous models, particularly in settings where the parameter-
level alignment is difficult or impractical. These techniques 
are especially relevant to application domains characterized 
by heterogeneous and multi-source data such as modern ener‐
gy systems that combine time-series sensor streams and geo‐
spatial weather information. By enabling the fusion without 
requiring strict architectural compatibility or joint retraining, 
such methods open the door to more versatile and adaptive 
predictive frameworks that can better accommodate the di‐
versity of data inherent in the energy-related applications.

Despite these advantages, the deployment of model fusion 
in energy contexts also presents significant challenges. The 
forecasting and optimization in power and energy systems of‐
ten involve data that vary substantially across temporal hori‐
zons, geographic regions, and operational conditions, making 
the robustness and adaptability of fused models a critical 
concern. Moreover, the real-world scenarios such as distribut‐
ed energy resources, grid balancing, and demand-side man‐
agement impose strict constraints on latency, computational 
efficiency, and resource budgets, underscoring the need for 
compact yet capable models that can be deployed at the 
edge. Finally, as the sustainability becomes a central evalua‐
tion criterion, the energy cost of computation itself must be 
considered alongside the predictive accuracy. This highlights 
the importance of fusion strategies that are not only effective 
in performance but also resource-efficient, scalable, and 
aligned with the broader goal of sustainable energy intelli‐
gence.

While these issues are particularly salient in energy sys‐

tems, the modularity and scalability of fusion methods make 
them equally valuable in other data-intensive fields. In these 
domains, combining models across institutions or data silos 
is often required under strict privacy and interoperability con‐
straints. Model fusion thus represents a versatile tool for 
building high-performing AI systems in complex and data-di‐
verse environments. By enabling the seamless integration of 
models trained on disparate data sources and architectures, 
the fusion techniques pave the way for more robust, adap‐
tive, and sustainability-aware AI solutions across a wide 
range of applications.

B. Future Directions

The future trajectory of model fusion is defined not only 
by methodological innovations but also by its ability to ad‐
dress cross-domain challenges, particularly in the resource-
constrained and energy-sensitive applications. Several interre‐
lated research directions are central to this agenda.

First, a priority involves the development of plug-and-play 
fusion frameworks capable of integrating models across het‐
erogeneous domains, architectures, and training paradigms. 
Current methods remain hindered by mismatches in tokeniz‐
ers, objectives, and parameter scales, limiting their applica‐
bility in real-world pipelines. A modular and dynamic design 
could enable practitioners to integrate domain-specific mod‐
els without full retraining, facilitating continual learning 
while ensuring adaptability in fast-evolving domains such as 
climate modeling and energy system optimization.

Second, the development of computation- and data-effi‐
cient fusion methods is indispensable for broadening partici‐
pation and ensuring sustainability. Although the current fu‐
sion methods already offer significant efficiency gains com‐
pared with full retraining, they still entail non-negligible 
computational and data costs, which can pose barriers to 
broader adoption. Yet in energy-sensitive domains, the com‐
putational efficiency is not only a matter of accessibility but 
also that of sustainability: reducing training and inference en‐
ergy costs is essential for lowering the carbon footprint of 
large-scale AI systems. Techniques such as sparsity, parame‐
ter sharing, and low-resource distillation will be crucial in 
making fusion both equitable and environmentally responsi‐
ble.

Finally, extending fusion methods to multimodal contexts 
introduces both opportunities and unresolved barriers. Inte‐
grating modalities such as language, vision, and sensor data 
can enable richer multimodal inference; however, achieving 
alignment across heterogeneous representation spaces re‐
mains challenging. For instance, in energy applications, fus‐
ing textual reports with satellite imagery and real-time sen‐
sor streams requires principled methods for cross-modal em‐
bedding and distillation to ensure the reliable joint decision-
making.

Taken together, these directions highlight the dual necessi‐
ty of advancing theoretical principles and addressing applica‐
tion-driven challenges. Model fusion must evolve not only 
as a methodological discipline but also as a cross-domain en‐
abler, with energy-efficient and application-aware designs 
serving as critical testbeds for its broader societal impact.
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V. CONCLUSION 

This review surveys the current landscape of research on 
democratizing AI, focusing on improving accessibility, scal‐
ability, and knowledge reuse in large-scale model develop‐
ment. It synthesizes recent progress in model fusion, summa‐
rizing key paradigms and representative techniques such as 
InfiFusion, InfiGFusion, and InfiFPO, which have advanced 
logits-level denoising, structural alignment, and preference-
based sequence fusion. Recent studies on model merging 
scaling laws are also discussed, providing a quantitative per‐
spective on how model performance evolves with the num‐
ber of fused experts and offering theoretical guidance for the 
efficient and sustainable model composition. Furthermore, 
this review examines the practical applications of model fu‐
sion, using the energy domain as a representative case to il‐
lustrate its effectiveness in integrating heterogeneous models 
and enabling adaptive and resource-aware AI systems. Look‐
ing ahead, the future research is expected to move toward 
more general and multimodal fusion frameworks that en‐
hance scalability, reasoning, and interpretability, paving the 
way for flexible and sustainable AI architectures.
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