
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 14, NO. 1, January 2026

Current and Future Applications of Artificial 
Intelligence in Power Systems: A Critical 

Appraisal
Ricardo J. Bessa, Fellow, IEEE, Spyros Chatzivasileiadis, Senior Member, IEEE, Ning Zhang, 

Senior Member, IEEE, Chongqing Kang, Fellow, IEEE, and Nikos Hatziargyriou, Life Fellow, IEEE

Abstract——This paper provides an overview of the application 
potential of artificial intelligence (AI) in power systems and 
points towards prospective developments in the fields of AI that 
are promised to play a transformative role in the evolution of 
power systems. Among the basic requirements, also imposed by 
regulation in some places, are trustworthiness and interpretabil‐
ity. Large language models, foundation models, as well as neuro-
symbolic and compound AI models, appear to be the most 
promising emerging AI paradigms. Finally, the trajectories 
along which the future of AI in power systems might evolve are 
discussed, and conclusions are drawn.

Index Terms——Artificial intelligence (AI), power system, gener‐
ative AI, interpretability, large language model, neuro-symbolic 
AI, trustworthiness.

I. INTRODUCTION 

THERE are numerous definitions of artificial intelligence 
(AI) in the literature. One influential proposal comes 

from François Chollet, who defines intelligence as “the skill-
acquisition efficiency of a system over a scope of tasks, with 
respect to priors, experience, and generalization difficulty” 
[1]. In simpler terms, intelligence refers to the ability of a 

system to efficiently learn new tasks and improve its skills, 
while leveraging prior knowledge, inductive biases, and 
structural assumptions.

In power systems, this translates into systems that can con‐
tinuously learn from data and enhance their performance, 
while incorporating prior knowledge about physical compo‐
nents. Such systems should be capable of moving toward 
higher generality, adapting and evolving to perform new and 
diverse tasks. This trajectory extends beyond traditional ma‐
chine learning (ML) and advances into AI and generative AI, 
ultimately pointing toward the long-term goal of artificial 
general intelligence.

AI implementations have already been deployed in practi‐
cal power systems and embedded into energy stakeholders’  
daily operations (e.g., see [2] for a recent compilation of re‐
al-world applications reported by system operators). As dis‐
cussed in the companion paper [3], practical applications of 
AI algorithms primarily include the use of various types of 
now considered classical models (e.g., linear regression, tree-
based models, and neural networks (NNs)) for the estimation 
and forecast (short-term, long-term) of a variety of variables 
and parameters, including electricity market prices and/or 
bidding strategies, electrical energy production (including re‐
newables), power demand, and loading of lines. From the 
network operation perspective, estimation of the expected so‐
lar generation and electric vehicle charging demand has been 
used to a certain extent to define the required volume of en‐
ergy flexibility that will need to be acquired (e.g., via balanc‐
ing and flexibility markets or direct contracts) to avoid grid 
congestion events and to facilitate the deployment of de‐
mand response programs and the increase of integration of 
renewable energy sources (RESs). Advancements in AI are 
also triggering a paradigm shift in power system protection, 
while predictive maintenance, fault detection and location, 
assets, and outage management are other areas with already 
somewhat mature AI applications. It is clear, however, that 
advancing toward a new generation of AI models with high‐
er accuracy and reduced computational requirements is essen‐
tial to exploit the growing volume and heterogeneity of avail‐
able data and to provide more effective decision-support 
tools. Moreover, new requirements for trustworthiness and 
interpretability are imposed by practical needs and legisla‐
tion like the European Union AI Act.
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What makes the transition to the new generation of AI ap‐
plications possible for power systems is the availability of re‐
liable, high-quality data. Smart grids, enabled by technolo‐
gies like smart meters, Internet of Things (IoT) devices, re‐
mote sensing (e. g., satellite images), and advanced sensors, 
greatly increase data availability and enable more sophisticat‐
ed management and optimization of energy systems. Smart 
meters now provide granular, real-time consumption data, 
supporting both grid operators and consumers in managing 
demand and efficiency, although some regions face regulato‐
ry constraints such as general data protection regulation 
(GDPR) in Europe. IoT sensors and phasor measurement 
units (PMUs) further enhance monitoring by collecting di‐
verse, high-frequency data for diagnostics and stability as‐
sessment, while wide area monitoring systems (WAMSs) use 
these inputs to analyze grid behavior across large areas. Inte‐
grating these with robust cybersecurity and data management 
is essential due to the scale and sensitivity of this informa‐
tion. Advanced communication protocols, 5G communication 
technology, and edge computing ensure secure, efficient data 
transmission and processing. Together, these advancements—
from high-fidelity sensing and secure data infrastructures to 
the exponential growth in computational power and special‐
ized AI software frameworks, as discussed in the companion 
paper [4] —have significantly enhanced the feasibility of 
training and deploying large-scale data-driven models for 
power system applications.

In this paper, the application potential of AI in several ar‐
eas of power systems is first overviewed. This includes real-
time decision-making, forecasting, operational and long-term 
planning, security and stability, as well as power system con‐
trol and simulation. Then, the critical requirements of inter‐
pretability and trustworthiness are explained. The capability 
of AI to interpret model-driven approaches and the provision 
of explainable and trustworthy AI tools (safe-by-design, NN 
verification, worst-case guarantees) are discussed. Finally, 
the application of emerging AI methods, i.e., large language 
models (LLMs), foundation models (FMs), neuro-symbolic 
AI, compound AI, and human−AI co-working is briefly pre‐
sented.

II. APPLICATION POTENTIAL OF AI IN POWER SYSTEMS 

A. Real-time Decision-making

The increasing integration of RESs and the rising occur‐
rence of both natural and human-made perturbations intro‐
duce significant operational challenges for power systems. 
These include increased uncertainty, reduced system inertia, 
and the need for faster and more informed decisions. To en‐
sure secure and reliable system operation under these condi‐
tions, advancements in real-time monitoring and decision-
support software are essential, particularly in enabling the 
timely identification and application of remedial and preven‐
tive control actions.

Traditional optimization-based tools such as power flow, 
state estimation, and optimal power flow (OPF) continue to 
play a critical role in supporting human operators. However, 

AI methods can complement these tools by, for instance, 
generating real-time action recommendations for contingency 
scenarios by leveraging their ability for fast inference. More‐
over, AI methods are particularly well-suited to operate un‐
der conditions of partial observability and uncertainty, where 
conventional optimization may struggle or require excessive 
computational resources.

Among AI methods, reinforcement learning (RL) is gain‐
ing interest for deriving remedial actions for congestion man‐
agement under N－1 conditions. Its ability to learn policies 
that map system states to control actions enables fast adapta‐
tion to system state changes, offering, for instance, a poten‐
tial tool for real-time topological changes, redispatch, and de‐
mand-side flexibility activation [5]. In parallel, supervised 
learning approaches have been employed to construct surro‐
gate models (or proxies) such as power flow computation 
and dynamic security assessment. These models enable rapid 
contingency analysis and severity classification by approxi‐
mating the outputs of more computationally intensive simula‐
tions [6].

Network topology information plays an essential role in 
applications such as voltage control and congestion manage‐
ment. As a result, graph neural networks (GNNs) have 
emerged as powerful architectures capable of capturing the 
spatial dependencies and structural characteristics of power 
grids. GNNs have been employed in both supervised and RL 
settings. However, challenges remain in representing the cas‐
cading propagation of events, where a disconnection in one 
region can affect distant areas of the grid. Recent efforts 
have focused on integrating domain-specific physical knowl‐
edge such as physics-informed GNNs [7] or influence 
graphs into GNN architectures [8].

Furthermore, the integration of AI with constrained mathe‐
matical optimization problems opens promising avenues for 
scaling decision-making to large-scale systems. One example 
is the use of a self-supervised primal-dual learning frame‐
work to approximate the optimal solutions for large-scale se‐
curity-constrained OPF, thus reducing the computational bur‐
den while preserving security constraints [9].

Another emerging application is the intelligent processing 
of alarm data. With the growing complexity of modern pow‐
er systems, alarm flooding has become a critical issue, often 
overwhelming operators and weakening their ability to identi‐
fy and respond to the most consequential events [10]. To ad‐
dress this, classical ML techniques (clustering, text mining, 
among others) are being combined with natural language pro‐
cessing techniques and LLMs to process, classify, and priori‐
tize alarms in real-time. These AI-based systems can also 
support ex-post analysis of alarm sequences, providing valu‐
able insights into root causes and system dynamics during 
disturbances.

B. Forecasting in Power Systems

Forecasting forms the backbone of operational and long-
term planning of modern power systems. As the system be‐
comes increasingly complex with the integration of RESs, 
the proliferation of smart meters, and the liberalization of 
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electricity markets, the demand for high-resolution (both spa‐
tial and temporal), adaptive, and robust (e.g., to missing or 
erroneous data) forecasting tools is greater than ever. AI-
based forecasting methods have emerged as powerful alterna‐
tives to traditional statistical techniques, offering, in several 
cases, enhanced accuracy and flexibility across multiple fore‐
casting tasks. In power systems, forecasting can be broadly 
categorized into three key applications: load forecasting, 
RES generation forecasting, and electricity price forecasting. 
These forecasts and their associated uncertainties also serve 
as critical inputs for several operational planning tasks such 
as dynamic reserve allocation and market result validation.

Load forecasting is essential for balancing supply and de‐
mand on multiple time scales. It primarily encompasses sev‐
eral scenarios, including system-level forecasting, regional-
level forecasting, bus-level forecasting, user group-level fore‐
casting, and individual user-level forecasting. As electricity 
consumption patterns become increasingly complex and di‐
verse, for example, due to the growth of behind-the-meter 
distributed energy resources such as rooftop photovoltaic 
(PV) systems, new challenges arise in accurately forecasting 
load demand. To enhance forecasting accuracy under such 
conditions, AI-based cloud detection models and forecasting 
methods increasingly leverage recurrent architectures and at‐
tention mechanisms to capture complex spatiotemporal de‐
pendencies [11]. With the widespread deployment of smart 
meters, personalized load forecasting has also become in‐
creasingly relevant. Recent studies propose adaptive person‐
alization strategies that fine-tune global models using user-
specific data only when beneficial, thereby balancing gener‐
alization and specificity [12]. Privacy and computational con‐
straints are addressed by federated learning frameworks [12], 
which allow collaborative model training among cloud, edge 
servers, and edge devices while minimizing communication 
and memory overhead.

RES generation forecasting, especially for wind and PV 
power, introduces additional challenges due to the high vari‐
ability and spatiotemporal correlation. AI models are particu‐
larly effective at learning complex, nonlinear relationships 
between historical generation and meteorological features. 
Hybrid methods that combine physical knowledge (e.g., nu‐
merical weather prediction) with ML have been shown to 
outperform purely data-driven or physics-based methods, 
while sky cameras and satellite images processed by vision 
transformer-based models enhance the performance in short‐
er-term periods [13]. Probabilistic forecasting has become a 
research focus, aiming to capture forecast uncertainty via en‐
semble learning, quantile regression, or diffusion-based gen‐
erative methods. These methods are crucial for integrating 
RESs into system operation and providing reserve margins 
consistent with forecast confidence levels [14]. In operation‐
al planning, the effective integration of such uncertainty in‐
formation into decision-making remains a pressing chal‐
lenge. This includes not only improving the visualization 
and communication of uncertainty to human operators but al‐
so designing decision-support algorithms that strike a bal‐
ance between computational tractability and model interpret‐

ability.
Electricity price forecasting is another critical task for mar‐

ket operators, retailers, and participants. A variety of interre‐
lated factors, including demand, supply, market rules, renew‐
able energy penetration, and cross-border exchanges, influ‐
ence price dynamics. AI methods such as gradient boosting, 
long short-term memory networks, and transformers have 
been employed to capture nonlinear dependencies and re‐
gime changes in price series. Compared to traditional time-
series-based methods, AI methods better handle non-station‐
arity and uncertainty by incorporating a wide range of exoge‐
nous variables. These methods, however, still face challenges 
related to data quality, interpretability, and robustness against 
sudden market shocks or policy changes.

Taken together, AI methods have significantly advanced 
state-of-the-art power system forecasting. They offer im‐
proved predictive accuracy, scalability to high-dimensional 
inputs, and the ability to incorporate heterogeneous data 
sources. However, several challenges remain: the risk of 
overfitting in personalized models, the difficulty of deploy‐
ing large models in edge environments, and the interpretabili‐
ty of “black-box” architectures in safety-critical applications. 
Addressing these challenges is crucial for the reliable and 
transparent deployment of AI in power system forecasting 
and remains an active area of research. A promising direc‐
tion is decision-focused learning, which integrates ML with 
constrained optimization and trains models to directly im‐
prove downstream decision quality rather than forecasting ac‐
curacy. Such methods have been explored for operational re‐
silience, including proactive scheduling and early interven‐
tion strategies [15].

C. Operational and Long-term Planning

AI methods are increasingly reshaping the computational 
landscape of power system operation, offering new pathways 
to handle the complexity, scale, and uncertainty of real-time 
decision-making tasks. Core optimization problems such as 
power flow, economic dispatch (ED), and unit commitment 
(UC) often require solving large-scale, nonlinear, and mixed-
integer formulations under stringent time constraints. Tradi‐
tional mathematical solvers can become computational bottle‐
necks in such settings, particularly with high-resolution spa‐
tiotemporal data and frequent changes in load and RES out‐
put. Two principal lines of AI-enhanced methodologies have 
emerged to address this: ① end-to-end prediction-based ap‐
proximations; and ② hybrid model-accelerated solvers.

End-to-end prediction-based approximations directly ap‐
proximate optimal solutions, aiming to replace traditional op‐
timization pipelines with data-driven models [16]. However, 
their application remains constrained by their limited general‐
izability to unseen conditions, lack of guarantees on con‐
straint satisfaction, and dependence on extensive offline train‐
ing. To solve these problems, transfer learning and GNN 
methods that account for topological variations have been in‐
creasingly applied [17]. Alternatively, hybrid model-accelerat‐
ed solvers embed AI modules into classical optimization 
frameworks to accelerate tasks such as constraint screening, 
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warm-starting, or surrogate modeling, while retaining estab‐
lished structures.

One representative application is in data-driven power 
flow modeling. Rather than solving nonlinear algebraic equa‐
tions in every iteration of an optimization, ML models such 
as partial least squares [18] or lifting-dimension regressions 
[19] can approximate the mappings between nodal injections 
and voltage or angle variables with high fidelity. These surro‐
gates significantly reduce computation time in iterative solv‐
ers, particularly in distribution grids where topology or pa‐
rameter uncertainty undermines model-based methods [20].

In large-scale UC with grid constraints, the combination 
of model-driven formulation and data-driven variable/con‐
straint reduction has proven especially powerful. Recent 
methods leverage offline solution databases and clustering of 
nodal net load profiles to identify redundant or inactive con‐
straints and binary variables, thus reducing the problem size 
before online optimization. These reductions enhance compu‐
tational tractability while preserving solution quality and fea‐
sibility. Moreover, such methods have been adapted to sto‐
chastic and robust UC formulations, including those with 
scenario-based uncertainty representations and reserve co-op‐
timization [21].

Beyond acceleration, AI methods are also being used to 
improve robustness and adaptability in dispatch and schedul‐
ing. For instance, AI classifiers or learning-based constraint 
approximators can be embedded into rolling optimization 
frameworks to eliminate infeasible regions or suggest high-
quality initializations rapidly. Reference [22] uses ML to 
learn active constraints and accelerate optimization, while 
[23] uses decision trees to learn the active sets and solve 
large mixed-integer linear programs successfully, which are 
intractable to solve with conventional commercial solvers.

In contrast to the real-time demands of operation, long-
term planning tasks such as RES siting, power grid expan‐
sion, or security of electricity supply assessment typically in‐
volve long-term horizons and more profound uncertainty. AI 
can effectively construct uncertainty sets and generate scenar‐
ios. Probabilistic modeling tools such as copula-based sam‐
pling or flexible Bayesian models enable planners to accu‐
rately represent correlated and non-Gaussian uncertainties.

Dimensionality reduction techniques further help to retain 
the tractability of the resulting long-term planning models 
[24]. Recent work explores how data-driven models can en‐
hance operational planning by balancing economic cost and 
risk, and improve long-term transmission expansion through 
scenario generation under high integration of RESs [25], 
[26]. These contributions align with hybrid and uncertainty-
aware AI strategies in power system decision-making.

Although the integration of AI into long-term planning is 
still in its early stages compared to its more established role 
in operational optimization, several advances developed for 
operational time horizons can already be leveraged to accel‐
erate simulation and scenario analysis in planning tasks. 
Nonetheless, long-term planning introduces additional chal‐
lenges (e.g., modeling weather scenarios under climate 
change or forecasting demand driven by emerging loads like 

electric vehicles and data centers) that require new AI devel‐
opments. In this context, generative AI holds significant po‐
tential, particularly for producing realistic and diverse scenar‐
ios that better capture future uncertainties.

In summary, AI has demonstrated substantial value in ac‐
celerating and enhancing operational decision-making in 
power systems, particularly through hybrid formulations that 
retain domain structure while exploiting learned approxima‐
tions. Emerging techniques such as decision-focused learning 
[15] and differentiable optimization layers [27] allow models 
to directly optimize decision quality and integrate seamlessly 
with classical solvers. Future research should focus on en‐
hancing the scalability and accuracy of end-to-end models 
across diverse network topologies, improving the interpret‐
ability and reliability of AI models, and developing efficient 
simulation FMs tailored for long-term planning of power sys‐
tems.

D. Security and Stability

The increasing penetration of RESs has raised critical con‐
cerns over the security and stability of power systems. Tradi‐
tional model-based stability assessment and control methods 
are often too computationally intensive or structurally rigid 
to accommodate the diversity and uncertainty inherent in the 
operation of power systems under high integration of RESs. 
Against this drawback, AI methods have emerged as promis‐
ing tools to enhance both power system security and stabili‐
ty assessment, by learning embeddable security and stability 
constraints for power system optimization, particularly in 
power systems dominated by inverter-based resources.

AI has been widely adopted for stability assessment and 
prediction across various stability dimensions, including volt‐
age, frequency, and rotor angle stability. These assessment 
tasks are often framed as classification or regression prob‐
lems, utilizing supervised learning on simulated or measured 
data. For example, real-time transient stability assessment 
models based on decision trees, NNs, and ensemble methods 
have been extensively studied and are now considered for 
practical deployment due to their speed and accuracy [28], 
[29]. Transfer learning techniques further enable these mod‐
els to generalize across unseen faults or operation conditions 
with limited retraining [30]. Physics-informed neural net‐
works (PINNs) have also been explored to embed differen‐
tial-algebraic equations into stability assessment models, en‐
hancing physical consistency and data efficiency in scenarios 
like transient stability assessment of microgrid [31]. Mean‐
while, integrating data-driven and physics-based models for 
frequency stability, such as combining system frequency re‐
sponse models with ML estimators, offers a hybrid approach 
that maintains interpretability while improving robustness 
[32]. Recent studies also highlight the cyber-vulnerability of 
data-driven stability assessment models, especially under ad‐
versarial attacks that manipulate input measurements without 
violating physical limits, revealing the need for resilient and 
secure design of AI models [33].

Recent advances have pushed AI beyond stability assess‐
ment toward embedding learned security and stability rules 
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directly into optimization models. These efforts aim to 
bridge the gap between high-fidelity assessments and real-
time operational optimization such as UC and ED. One rep‐
resentative paradigm is the extraction of stability constraints 
from data using ML models that approximate the feasible re‐
gion boundary. For example, optimal decision trees [34] and 
sparse oblique decision trees [35] have been proposed to de‐
rive interpretable and linearly embeddable security rules, 
which can be included in optimization models using big-M 
formulations [36], [37]. Various methods have been devel‐
oped in the voltage stability domain to learn rules from simu‐
lation data, such as regression trees, support vector ma‐
chines, or convex polyhedrons, and embed them into ED or 
UC problems as stability constraints. When properly regular‐
ized and localized, these learned constraints have demonstrat‐
ed the ability to significantly improve stability margins with‐
out sacrificing computational efficiency [38].

A significant challenge in this line of work is transform‐
ing non-convex, nonlinear stability boundaries into tractable, 
embeddable forms. Several studies have introduced convex 
approximations using multiple polyhedrons or semidefinite 
relaxations to address this, enabling efficient integration into 
mixed-integer or conic programming models. Furthermore, 
constraint learning frameworks have been proposed to itera‐
tively refine the constraint set based on geometric alignment 
and local data consistency, thereby ensuring both reliability 
and tightness of the embedded constraints [39]. These tech‐
niques offer a pathway to encode previously intractable phys‐
ical constraints into scalable optimization solvers, potentially 
transforming the way we co-optimize security and econom‐
ics in future power systems.

In summary, data-driven approaches to stability assess‐
ment and rule embedding represent a significant step toward 
achieving secure, efficient, and intelligent operation in pow‐
er systems with high penetration of RESs. While stability as‐
sessment tasks benefit from advances in general-purpose AI 
models, embedding security and stability constraints into op‐
timization workflows requires customized architectures that 
honor domain knowledge and operational tractability. Ongo‐
ing research continues to explore new forms of hybridization 
between physics-based and data-driven techniques, with a 
particular focus on convexity, scalability, and robustness.

E. Power System Control and Simulation

As modern power systems become increasingly complex 
and converter-dominated, traditional model-based methods to 
simulation and control often face limitations in terms of flex‐
ibility and computational cost. Data-driven methods have 
emerged as practical tools to support faster simulation and 
more adaptive control.

AI models often replace specific physical modules or 
serve as full-system surrogates in simulation tasks. For exam‐
ple, power electronic converters with proprietary internal log‐
ic can be modeled using “black-box” or “grey-box” AI-
based models that track their dynamic behavior under vari‐
ous conditions. However, accurately modeling inverter dy‐
namics for electro-magnetic transient (EMT) simulations re‐

mains highly challenging in practice due to their intricate 
nonlinear control loops and high-dimensional internal states 
(e.g., up to 17 states), making surrogate construction a non-
trivial research problem [40]. These surrogates reduce the 
computational burden of EMT simulations and facilitate 
hardware-in-the-loop applications [41]. Hybrid frameworks 
combining physics-based and data-driven components have 
also been developed, enabling more accurate outage estima‐
tion and counterfactual resilience assessment [42]. More re‐
cently, a new approach, involving a PINN-based simulator 
called PINNSim [43], has emerged. It utilizes PINNs to cap‐
ture the dynamics of individual components (lines, genera‐
tors, loads) and replaces the conventional numerical integra‐
tion method with a solver tailored for NNs, potentially 
achieving solution speeds that are orders of magnitude high‐
er. At the moment, it has been shown that PINNs can cap‐
ture the dynamics of whole power systems 20-1000 times 
faster than conventional Runge-Kutta solvers for root mean 
square (RMS) -based dynamic simulations [44], and PINNs 
can capture the equivalent model of a wind farm 25-100 
times faster than PSCAD for EMT simulations [45]. Integrat‐
ing just a single PINN in an EMT simulation, to replace on‐
ly the phase-locked-loop (PLL) controller of a single genera‐
tor in a 9-bus system, has been shown to achieve 4-5 times 
acceleration compared to the PSCAD implementation [46]. 
Therefore, we expect that PINNSim has the potential to be 
approximately 10-100 times faster than conventional solvers, 
especially for EMT simulations.

In control, RL has gained traction for tasks like voltage 
regulation, where deep RL agents can autonomously learn 
control strategies through simulation. Multi-agent architec‐
tures such as those using the multi-agent deep deterministic 
policy gradient algorithm allow decentralized agents to coor‐
dinate voltage control with limited communication and local 
measurements, showing strong performance across varying 
loads and topologies [47]. As discussed in Section II-A, re‐
cent efforts have also demonstrated the promise of deep RL 
and hybrid methods for more common control tasks such as 
network topology optimization and generation redispatch, 
further expanding the role of AI in real-time grid operation.

Recent advances have also explored projection-based ar‐
chitectures to improve safety guarantees. For example, feasi‐
bility restoration networks such as FRMNet [48] and con‐
straint-satisfying neural layers such as GLinSAT [49] incor‐
porate projection mechanisms or differentiable optimization 
modules, thereby ensuring that the learned control actions in‐
herently comply with power system constraints. These meth‐
ods offer a promising direction for embedding constraint sat‐
isfaction directly into AI-based decision-making and control 
processes. In fact, safe RL is rapidly emerging as an enabler 
of autonomous decision-making in future power systems. By 
moving beyond ad hoc reward penalization toward princi‐
pled constraint-aware learning, emerging techniques, includ‐
ing projection and trust-region methods, Lyapunov-based sta‐
bility guarantees, shielding and safety layers for action cor‐
rection, barrier and primal-dual formulations, and uncertain‐
ty-aware Gaussian-process and robust learning approaches 
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[50], provide complementary mechanisms to directly encode 
physics, operational limits, and risk into learning agents.

In summary, AI-driven simulation and control methods are 
proving increasingly valuable for enhancing responsiveness, 
efficiency, and insight in modern power systems. While deep 
learning and RL offer new possibilities for approximating 
complex dynamics and learning control strategies, their real-
world application remains challenging. In particular, ensur‐
ing scalability across large state-action spaces, guaranteeing 
constraint satisfaction in safety-critical operations, and main‐
taining accuracy and efficiency under limited training data 
are all active research problems. These challenges are espe‐
cially pronounced in continuous or hybrid control tasks such 
as voltage regulation, where traditional optimization methods 
often remain competitive.

III. INTERPRETABILITY AUGMENTATION OF MODEL-DRIVEN 
APPROACHES USING AI 

A. Improve Interpretability of Model-driven Approaches

In the AI literature, interpretability and explainability are 
typically discussed in the context of understanding the out‐
puts of ML models, as discussed in Section IV. However, in 
a distinct and complementary setting, AI can also be used to 
improve the interpretability of traditional model-driven or 
mathematical approaches, which have long been foundation‐
al in power systems and are widely trusted by human opera‐
tors and decision-makers. One key contribution lies in im‐
proving the interpretability of outputs from complex mathe‐
matical models, particularly in the presence of uncertainty, a 
challenge that often impedes effective decision-making. For 
instance, optimization results under stochastic conditions can 
be challenging to interpret without additional tools or tech‐
niques [51].

To address this, statistical and ML methods originally de‐
veloped for improving the explainability of AI systems are 
being adapted to interpret optimization outcomes. These 
methods help deconstruct and explain different components 
of mathematical models. For instance, [52] proposes a meth‐
od for generating coherent local explanations across multiple 
components of an optimization problem. This method draws 
inspiration from local interpretable model-agnostic explana‐
tions, which is a widely used technique in explainable AI.

A practical application of this hybrid method can be found 
in dynamic electricity pricing for electric vehicle charging. 
In such settings, a surrogate AI model can approximate the 
behavior of a complex stochastic optimization algorithm. Ex‐
plainability techniques, particularly those based on Shapley 
values, can then be applied to explain how different input 
features such as forecasted demand or carbon intensity influ‐
ence pricing decisions. This improves both the transparency 
and communicability of results to decision-makers operating 
under uncertainty [53].

This shows a promising direction where AI is not only in‐
tegrated with operation research for improved performance 
(as discussed in Section II) but also leveraged to extract in‐
terpretable insights that support trust, understanding, and in‐

formed action. Other potential applications are the OPF un‐
der uncertainty or RES market trading.

B. Explain Large-scale Energy Systems

The growing interconnection of cross-country power sys‐
tems and the integration of electricity markets have signifi‐
cantly increased the complexity and volume of data to be an‐
alyzed, which often encompasses spatiotemporal dimensions. 
This requires advanced analytical techniques to handle large-
scale datasets and generate interpretable and actionable in‐
sights for long-term planning and operational decision-mak‐
ing of power systems in increasingly complex and RES-inte‐
grated power systems.

Traditional correlation-based methods frequently fall short 
in this setting, as they may detect coincidental or spurious re‐
lationships that do not reflect underlying system dynamics. 
In contrast, causal inference techniques present a more ro‐
bust framework by identifying cause-and-effect relationships 
among variables. This highlights the increasing relevance of 
causal AI in large-scale power system analytics by uncover‐
ing true causal mechanisms [54]. This trend opens the door 
to the application, in energy systems, of the causal forecast‐
ing concept [55], where predictive models are informed by 
causal structures, leading to more resilient and explainable 
predictive analysis.

Established rule-based methods are helpful to explain pow‐
er system events, for instance, to identify key drivers (e.g., 
excess demand, limited generation capacity, and interconnec‐
tion congestion) of scarcity events from data simulated by 
the ENTSO-E’s Pan-European electricity market model [56]. 
Nonetheless, modern AI explainability techniques based on 
Shapley values [57] are increasingly employed to interpret 
complex behaviors in power systems, including the identifi‐
cation and analysis of critical events like transient stability 
violations, and uncover the influence of various power sys‐
tem variables on stability margins [58]. The neuro-symbolic 
AI models discussed in Section V-B can also be used to gen‐
erate explanations in the shape of mathematical equations.

In that respect, multimodal LLMs are emerging as a prom‐
ising tool to process data types (e. g., time series, textual, 
and visual) and can be used to explain events such as fault 
diagnosis in wind turbines [59]. However, additional re‐
search is needed to address limitations in LLMs, particularly 
their challenges in efficiently handling large-scale datasets 
and extracting causal relationships without domain-specific 
knowledge. While knowledge graphs are not AI models 
themselves, they play a crucial supporting role in AI systems 
by offering structured, semantically rich representations that 
can be combined with LLMs to improve reasoning and factu‐
al consistency [59]. Nevertheless, their interpretability re‐
mains challenging for end-users unless complemented by ef‐
fective visualization or summarization tools.

IV. TRUSTWORTHY AND INTERPRETABLE AI 

As presented in Section II, there is a wide range of appli‐
cations where AI can benefit power system operations. How‐
ever, none of these AI tools will gain widespread practical 

28



BESSA et al.: CURRENT AND FUTURE APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN POWER SYSTEMS: A CRITICAL APPRAISAL

application if they cannot be trusted. First, the intended us‐
ers, who are usually the electricity utilities, will avoid adopt‐
ing any tool they cannot understand and trust. Second, regu‐
lations to enforce the trustworthiness of these tools are grad‐
ually being established. The European Union AI Act [60], 
which is the first attempt in the world to enforce rules for 
AI, designates the supply of electricity as critical infrastruc‐
ture and considers the AI tools deployed in the power sys‐
tem as high-risk AI systems. For those, additional require‐
ments are applied. For example, high-risk AI providers must 
design their AI tools to “achieve appropriate levels of accura‐
cy, robustness, and cybersecurity”, and “establish a quality 
management system to ensure compliance”. High-risk AI 
tools must also “allow human oversight”. But can the high-
risk AI providers “explain” their AI tools and offer guaran‐
tees about their accuracy and robustness? This is where the 
methods for trustworthy and interpretable AI become essen‐
tial.

The most popular tool to interpret AI models is the SHAP 
toolbox, a Python toolbox based on SHapley Additive exPla‐

nations [57]. Essentially, the SHAP toolbox uses input-out‐
put sensitivities to determine how the inputs change when 
applying marginal changes to the output. Through this, the 
user gains valuable insights into feature importance, i. e., 
which inputs a specific output mostly depends on, and how 
changes to these inputs affect the output. SHAP toolbox can 
be applied to any AI model, including regression models 
with exogenous variables such as autoregressive integrated 
moving average with exogenous inputs (ARIMAX), decision 
trees, NNs, and transformer models, as it focuses on the in‐
teraction between inputs and outputs. Figure 1 shows an out‐
put example of SHAP toolbox for an NN performing solar 
PV forecasting [61], where the x-axis represents the NN out‐
put (solar PV forecast for the next 1 hour, in kWh), and the 
y-axis lists the five most important features for this model, 
along with the impact of high or low values for each feature. 
The SHAP toolbox has already been used in a number of 
power system applications, e.g., [58], [61], and a useful over‐
view of the explainable AI tools for power systems is provid‐
ed in [62].

Although interpretability can help a lot in understanding 
and better use of AI tools that are often considered a “black 
box”, it cannot provide guarantees about the performance of 
an AI tool; for instance, “Will my AI tool always perform 
the appropriate remedial action to avoid the blackout?” or 
“Will it always determine an optimal set-point without vio‐
lating any of the constraints?”. These are questions that ex‐
tend beyond interpretability and require approaches that can 
provide guarantees.

Based on the existing literature for power systems, we can 
currently distinguish among three families of methods: ① AI 
tools that are designed to be safe; ② verification methods 
for AI tools performing classification tasks, e.g., determining 
if an operating point is stable or unstable; and ③ methods 
that extract guarantees about the worst-case performance of 
an AI tool.

In the existing literature on trustworthy AI tools for power 
systems, the majority of research focuses on the first family 
of methods: AI tools that are safe by design. This family in‐
cludes three main approaches.

First, to “clamp” the AI output. Considering that most 

constraints are upper and lower bounded, such as by voltage 
limits, generator limits, and controller limits, a reliable op‐
tion is to constrain the AI output so that it does not violate 
these bounds. For example, if an AI tool aims to determine 
the power set-point of a generator, it is easy to “adjust” any 
output that violates its bounds by “clamping” it to the clos‐
est permissible value before sending it as a control action to 
the generator [63]. Obviously, implementing the clamped 
control actions is sub-optimal compared to the performance 
the AI tool was trained to achieve. Considering the large, 
nonlinear nature of power system applications, even small 
perturbations of the AI output could potentially lead to a sig‐
nificant deterioration in performance. This is something that 
must be assessed through extensive simulations and case 
studies, and if clamping results in unacceptably poor perfor‐
mance, then the AI developers should adjust the training of 
their tool. Second, to develop so-called dependable AI tools, 
where the NN structure for AI-based controllers is designed 
to prevent vanishing gradients or with built-in closed loop 
stability guarantees [64]. A third main approach in this fami‐
ly includes AI tools that function as the first stage of a two-
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Fig. 1.　Output example of SHAP toolbox for an NN performing solar PV forecasting.
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stage framework, and are followed by a conventional algo‐
rithm trusted by utilities (and human experts) to verify and 
ensure compliance with safety-critical constraints. Successful 
examples have been shown to use RL to pick the five best 
candidates for line switching, which are then passed to a 
conventional optimization tool to determine if re-dispatching 
is necessary to maintain the system safe under each of the 
five new topologies. Then, the tool picks the action with the 
lowest re-dispatching [65]. Such an approach has won the 
competition organized by the French Transmission System 
Operator, RTE, on “learning to run a power network”. Simi‐
larly, AI tools can also be used to predict an optimal set-
point, which is then passed to a power flow or OPF to deter‐
mine the closest feasible operating point. Similar to the 
“clamping” approach, these approaches “distort” the AI out‐
put to enforce safety constraints, which can impact the over‐
all performance of the tool.

In order to maintain the performance of AI tools while sat‐
isfying critical constraints, which is the main challenge in 
this first family of methods, approaches such as the so-
called “differentiable layers” have been proposed. The idea 
here is that we encode power flow constraints or an optimi‐
zation problem (e. g., minimizing re-dispatching subject to 
constraints) in differentiable layers through which we can 
backpropagate during NN training. In those cases, the NN 
can learn to deliver outputs that offer optimal re-dispatching 
or satisfy the power flow constraints. Differentiable layers 
cannot guarantee NN performance, but they can drive NN 
training to learn outputs that require minimal adjustments 
when passed through conventional second-stage algorithms, 
resulting in improved performance [66].

The second family of methods revolves around verifica‐
tion. These are rigorous methods that offer formal guaran‐
tees about the performance of an AI tool, and they are pri‐
marily developed for NNs. The AI community is using them 
for the purpose of verifying the performance of NNs in self-
driving cars or in image classification in the healthcare sec‐
tor, e.g., when using AI tools to read magnetic resonance im‐
aging images and determine if a patient has cancer. Assum‐
ing that the NN uses ReLU activation functions, there is an 
exact transformation that embeds the whole NN in a mixed-
integer linear optimization problem [67]. Through this opti‐
mization, we can determine input regions for which the NN 
maintains the same classification. This can help us map the 
complete output domain of the NN in a rigorous manner and 
anticipate its performance. Let us emphasize that NN verifi‐
cation does not require sampling and does not verify just for 
discrete points; instead, it delivers guarantees about the clas‐
sification for continuous input regions. Figure 2 shows an ac‐
tual result from a power system security assessment prob‐
lem, which used a NN to classify safe from unsafe points 
[68]. PG2 and PG3 are the normalized active power outputs 
for generators G2 and G3, respectively, in this test power 
system. The figure presents the computed regions around 
four verification samples in which classification is guaran‐
teed not to change. The illustrated green, blue, and red 
points in the figure are not necessary for the verification; we 
have only generated them to demonstrate that NN verifica‐

tion can indeed accurately determine continuous regions 
where the classification does not change.

Similarly, NN verification can be used to systematically 
identify adversarial points in an NN classification. Signifi‐
cant progress has been made over the past five years, and 
several NN verification algorithms are now available. For in‐
stance, αβ-crown is the algorithm that has won the NN veri‐
fication competition for the past years. It is open-source and 
available also for power system researchers to use and tailor 
to their problems [69]. Although it started with the verifica‐
tion of NNs containing ReLU activation functions, it has re‐
cently been extended to consider any activation func‐
tion [70].

The third family of methods focuses on extracting worst-
case guarantees about the performance of an AI tool. Such 
methods can apply well to NNs performing regression or 
control tasks. To the best of our knowledge, such methods 
were first proposed for the field of power systems [71], and 
later, similar methods were proposed in the automatic con‐
trol community [72]. The main reason that such methods 
seemed to have appeared first in power systems is that in 
contrast with the usual application domains of the AI com‐
munity (computer vision, natural language processing, fore‐
casting, etc.), where there is no efficient way to model imag‐
es, text, or price interdependencies from first principles, pow‐
er systems are physics-based systems with well-established 
and trusted numerical models. As a result, we can combine 
the NN verification algorithms discussed in the previous 
paragraph with the equations that model the power flows in 
a single optimization problem. This allows us to determine, 
for example, for which NN input we have the largest viola‐
tion of the line flow limit across the whole continuous input 
domain of the NNs. Similarly, one can check for any other 
critical constraint. Reference [71] found that the worst-case 
violations can be 3-7 times greater than those identified by 
discrete sampling of the input domain (i.e., by assessing all 
the points used for training and testing the NN).

The challenge with this family of methods is its scalabili‐
ty. Working towards directions to boost scalability, [73] used 
graphics processing units (GPUs) and introduced a transfor‐
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mation to the αβ-crown, enabling efficient assessment of line 
flow violations. This method achieved a speedup of over 
100 times compared to the dominant commercial solvers. 
However, there are still challenges to be addressed when we 
consider nonlinear constraints or differential equations that 
are necessary to verify, e.g., if an NN is an accurate repre‐
sentation of an inverter dynamic model. Assessing violations 
of nonlinear constraints transforms the optimization problem 
from a mixed-integer linear program to a mixed-integer non‐
linear program, which is usually much harder to solve. The 
task becomes even more difficult if we need to consider 
state-space models with differential equations for verifica‐
tion, where discretization is probably the only viable path 
forward [74]. Similarly, the task to extract worst-case guaran‐
tees for NNs that, instead of the ReLU, employ tanh or oth‐
er non-piecewise linear activation functions becomes more 
difficult. In that case, worst-case guarantees might not be 
tight or exact. However, as we mentioned earlier, αβ-crown 
has already incorporated such activation functions for the 
verification of NNs that perform classification tasks. We ex‐
pect that the algorithms developed for tools like αβ-crown 
can form the basis for extracting worst-case guarantees in 
NNs performing regression tasks as well.

In summary, trustworthy and interpretable AI for power 
systems is a growing field that is expected to gain signifi‐
cant importance, as AI tools will likely not be deployed in 
safety-critical power system operation if they are not trust‐
worthy. In Europe, there are efforts to develop testing and 
experimentation facilities (TEFs) for AI in the energy sector 
[75], [76], where AI vendors can submit their AI tools, and 
independent entities can test, verify, and certify that these 
tools comply with all safety constraints of the intended us‐
ers, e.g., utilities. This appears to be the first step toward es‐
tablishing standards and certification for AI tools in the ener‐
gy sector.

V. EMERGING AI METHODS AND PARADIGMS 

A. LLMs and Foundation Models

While still in the early (but fast) deployment stage, LLMs 
are promising in supporting unstructured information process‐
ing and interactive decision-making workflows across long-
term planning, operation, and control domains.

One of the most immediate applications lies in document 
understanding and knowledge retrieval. Power system opera‐
tors often rely on lengthy technical reports, operating manu‐
als, or regulatory documents to guide decisions. LLMs can 
process such unstructured textual data and support summari‐
zation, question answering, and compliance-related checks. 
When combined with retrieval-augmented generation (RAG), 
these capabilities gain improved factual grounding and trace‐
ability. This approach has been demonstrated in tasks such 
as parsing grid codes and regulatory orders to answer specif‐
ic technical questions with more reliable, context-aware out‐
puts [77]. For instance, by employing multi-agent frame‐
works with error-feedback loops, hallucination-induced exe‐
cution errors can be reduced significantly, achieving simula‐
tion success rates of over 96% while ensuring high retrieval 

precision for complex grid codes [78].
Beyond document understanding, LLMs are also being ex‐

plored as interactive agents that facilitate optimization or 
control workflows in power systems. By translating user in‐
structions or preferences into structured queries or decision 
objectives, these models can help bridge the gap between hu‐
man−system interactions. While still in a prototypical stage, 
some applications of LLMs in scenarios such as explaining 
electric vehicle charging tariffs to end-users [79] or perform‐
ing real-time OPF with linguistic stipulations from grid 
codes or operational handbooks [80] underline their ability 
to interpret unstructured language, translate it into formal‐
ized constraints, and generate context-aware guidance. These 
examples demonstrate how LLMs can overcome limitations 
of traditional rule-based or manually configured systems, par‐
ticularly their inability to process free-form text or adapt to 
heterogeneous documentation formats, and suggest the poten‐
tial of LLMs to support decision-making by providing inter‐
pretable, text-grounded recommendations (e. g., translating 
linguistic rules into optimization-ready inputs, as discussed 
in Section III-A) and automating parts of the configuration 
process.

While current applications of LLMs remain largely in the 
proof-of-concept stage, their long-term potential in power 
systems is significant. An urgent need is to construct a com‐
prehensive and multimodal knowledge database for power 
systems and develop deep reasoning LLMs for power sys‐
tem operation analysis, leveraging techniques like RAG and 
Chain-of-Thought.

In parallel, advances in transformer-based architectures, 
particularly in the context of LLMs, have motivated the de‐
velopment of FMs aimed at general-purpose AI tasks [81]. 
An FM can be defined as a pre-trained model trained in a 
self-supervised manner on large and diverse datasets span‐
ning multiple distributions, with the capacity to generalize ef‐
fectively to previously unseen datasets.

In the energy sector, particularly for power grids, the ap‐
plication of FMs is still in its early stages of development. 
One notable initiative is the open-source project GridFM, 
which aims to develop scalable FMs for steady-state power 
system analysis, including AC power flow, state estimation, 
contingency analysis, and OPF [82]. GridFM leverages trans‐
former-based encoder-decoder architectures pre-trained on 
synthetic grid datasets, which is a strategy adopted to ad‐
dress the significant barriers associated with sharing real-
world grid data. These pre-trained models can subsequently 
be fine-tuned using internal (confidential) datasets specific to 
grid operators.

FMs exhibit excellent next token prediction skills, making 
them well-suited for various energy system applications such 
as time series data imputation, anomaly detection, and fore‐
casting. Furthermore, they show potential to emulate physics-
based simulations with high accuracy and computational effi‐
ciency [83], without relying on strict a priori assumptions. 
This capability could significantly accelerate power system 
simulations compared to traditional numerical methods, 
which iteratively solve partial differential equations, thereby 
opening avenues for transient stability analysis and real-time 
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operation support.
In contrast to conventional AI methods, which are typical‐

ly trained for narrow, task-specific goals, FMs offer broader 
and more scalable value for power systems by enabling 
cross-domain generalization, unifying diverse data modali‐
ties, and achieving fast inference across multiple applications 
without requiring retraining. Moreover, model sharing be‐
tween utilities, complemented by internal fine-tuning, can fa‐
cilitate collaboration while preserving data confidentiality. 
For instance, in load forecasting, FMs enable a single model 
to forecast across multiple substations, including those with 
limited historical data, thereby reducing the operation and 
maintenance burden of maintaining a separate model for 
each power grid node.

However, several key challenges must be addressed. Access 
to realistic, large-scale, and representative grid data (e.g., to‐
pology, load, and generation measurements) remains a signif‐
icant obstacle, delayed by confidentiality concerns and insuf‐
ficient incentives for data sharing. Overcoming this barrier 
will likely require advances in synthetic data generation, fed‐
erated learning, and development of data spaces and data 
marketplaces that incentivize secure and responsible data ex‐
change [84].

Finally, it is essential to recognize that FMs inherit the 
risks associated with AI technologies, such as vulnerability 
to adversarial attacks, sensitivity to out-of-distribution data, 
and challenges regarding model interpretability. Addressing 
these risks is fundamental to ensuring the safe and reliable 
deployment of FMs in critical infrastructure domains [85].

B. Neuro-symbolic AI and Compound AI

Operational and long-term planning of power systems is 
supported by decades of accumulated knowledge, derived 
from modeling various assets and systems, as well as the 
practical experience of human operators and planners. This 
body of knowledge has been formalized through model-driv‐
en approaches (e.g., OPF, analytical sensitivity indices), en‐
coded into rule-based expert systems (e. g., protection sys‐
tems), and embedded in the mental models of human opera‐
tors.

In parallel, digitalization efforts—notably the deployment 
of advanced data collection devices such as smart meters, 
smart sensors, wide-area monitoring systems, and 5G com‐
munication technologies—enable the massive data flows nec‐
essary for modern AI applications, as noted in Section I. Cre‐
ating digital twins further enhances this ecosystem by gener‐
ating high-fidelity synthetic data.

However, there is a need for AI methods that do not mere‐
ly replace existing knowledge with purely data-driven solu‐
tions, which often demand large volumes of training data. 
These are usually perceived by decision-makers as “black-
box” models with limited interpretability and transparency 
(potentially aggravating human algorithm aversion) and may 
struggle to comply with emerging regulatory frameworks 
such as the European Union AI Act [60], as discussed in 
Section IV.

A promising paradigm to address these challenges is 
knowledge-assisted learning, also commonly referred to as 

neuro-symbolic learning in the AI literature [85], [86]. In 
this framework, prior knowledge, including expert system 
rules, differential equations, conservation laws, and human 
cognitive models, can be ① integrated into the training pro‐
cess and architecture of ML models [87], and ② used to 
evolve or augment expert systems that learn from data 
through interaction with a (digital) environment [88]. The re‐
sulting systems can be purely data-driven models (e. g., 
NNs), rule-based expert systems, or a hybrid architecture 
combining rule-based, model-driven, and data-driven compo‐
nents optimally.

The symbolic structure of these models can be significant‐
ly enhanced by the semantic reasoning capabilities offered 
by recent advances in LLMs and large concept models (LC‐
Ms) [89]. LLMs and LCMs can continuously evolve hybrid 
AI systems by incorporating feedback (e.g., via reward func‐
tions) obtained either directly from the environment or hu‐
man experts [90].

A promising direction of evolution is the development of 
compound AI systems [91], where multiple components, in‐
cluding physics-based models, LLMs, statistically-driven 
models, and traditional controllers (e.g., proportional-integral-
derivative (PID) controllers), interact in a coordinated and 
optimal manner. This approach is particularly appealing in 
contexts such as control rooms, where AI components must 
coexist and interoperate with conventional power system 
analysis tools, including power flow analysis and state esti‐
mation, and function as reliable assistants to human opera‐
tors within a workflow of tools that need to be optimized.

Finally, the semantic reasoning capabilities of small lan‐
guage and concept models that can be deployed at edge de‐
vices can be further explored by agentic models [4], [92], le‐
veraging the neuro-symbolic architectures discussed above. 
These models can operate autonomously, perceiving their en‐
vironment (e. g., grid state) and making context-aware deci‐
sions (e.g., active power set-point for a distributed energy re‐
source). By leveraging the semantic processing power of lan‐
guage models, agentic systems can pursue goal-oriented ac‐
tions while maintaining self-reflection and adaptability, capa‐
bilities essential for operating effectively in complex and dy‐
namic environments.

C. Human−AI Co-working Interfaces

The compound AI concept can be extended beyond techni‐
cal components to encompass the whole socio-technical sys‐
tem, integrating human operators as essential elements [85]. 
For instance, this extension aims to optimize the bi-direction‐
al information exchange between AI-based decision systems 
and human agents, explicitly considering aspects such as un‐
certainty quantification (e.g., by alerting human agents when 
recommended actions have low confidence levels), co-learn‐
ing between humans and AI, and key human dimensions. 
The key human dimensions include: ① exploration, enabling 
humans to learn and investigate domain-specific knowledge, 
e.g., by providing a protected environment to test decisions, 
their effects, and AI capabilities and limits; ② animation, 
prompting human reflection and active contribution, e.g., by 
triggering the human to formulate hypotheses that explain 
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observed phenomena; and ③ mirroring, whereby the AI re‐
flects individualized patterns in human behavior to foster 
awareness of personal biases and variabilities in decision-
making, e. g., the tendency to make riskier decisions at the 
end of a shift.

Advanced human−machine interfaces may also be neces‐
sary to facilitate the seamless integration of AI functional‐
ities into existing legacy systems. Within the European proj‐
ect AI4REALNET [85], the InteractiveAI platform was de‐
veloped as a prototype graphical interface for human−AI in‐
teractions, supporting a bi-directional virtual assistant for 
power grids [93]. This platform is designed as an open and 
extensible framework for industrial applications, enabling 
seamless integration with existing utility tools and operation‐
al workflows. Within this environment, human operators and 
AI agents engage in continuous two-way learning, where the 
AI system updates its internal models based on streaming op‐
erational data and the observed decisions, corrections, and 
preferences expressed by human experts, while the operator 
receives context-aware recommendations grounded in both 
data-driven insights and codified operational knowledge. 
This prototype demonstrates how collaborative decision sys‐
tems can support operators in managing complex real-time 
operations, including disturbance analysis, incident resolu‐
tion, and fault management, by combining explainable AI 
reasoning with visual, conversational, and actionable interfac‐
es.

InteractiveAI platform leverages modular cognitive compo‐
nents such as scenario analysis, natural language-based ex‐
planation modules, and recommendation engines to enable 
transparent human−machine collaboration. For event and no‐
tification management, the platform integrates the Operator‐
Fabric system [94] developed by RTE, which provides struc‐
tured alerting, workflow orchestration, and real-time cross-
team information sharing in grid operations following the hy‐
pervision concept.

Adequate evaluation workflows for human−AI interactions 
are also essential. A relevant real-world example from the 
AI4EALNET is a first trial conducted by TenneT, in which 
the joint control framework was applied to assess user expe‐
rience in a control-room setting [95]. This framework en‐
abled a structured cognitive analysis of human−AI interac‐
tions while evaluating an AI-based congestion management 
system. The evaluation considered key human dimensions, 
including operator acceptance, trust, cognitive workload, and 
overall decision-making performance.

Finally, the interaction between human operators and the 
multitude of grid management tools could be facilitated 
through an LCM, acting as a unified interface to mediate 
knowledge exchange. Such an interface would enable the 
capture of new human knowledge (e.g., sequence of actions 
to solve a congestion problem) and data (e. g., grid state), 
translating them into neuro-symbolic representations used to 
update and evolve the underlying knowledge-assisted AI 
models.

VI. PROSPECTIVE DEVELOPMENTS AND CONCLUSIONS 

The future of AI in power systems might evolve along 

two interdependent trajectories: the rapid development of 
large FMs and the continued refinement of small, task-specif‐
ic models. While the former will have the deepest long-term 
impact, as their general-purpose reasoning and cross-domain 
transfer capabilities can fundamentally reshape how power 
systems are planned and operated, the latter remains indis‐
pensable for safety-critical functions requiring strict guaran‐
tees, particularly in control and protection domains. We antic‐
ipate three key thematic directions for prospective applica‐
tions: ① trustworthiness, ②LLM and FM integration, and 
③ intelligent decision-making.

Trustworthy AI represents the most urgent research priori‐
ty in power systems, as no level of AI capability will trans‐
late into real-world deployment without rigorous guarantees. 
In particular, stability analysis and constraint embedding will 
become more dynamic, data-driven, and integrated into real-
time operation loops, possibly involving physics-informed 
ML. It is also expected that emerging regulatory frameworks 
such as the European Union AI Act will accelerate the need 
for certifiable AI pipelines, making progress and standardiza‐
tion in this area unavoidable in the short term to medium 
term. Future advances will likely involve hybrid mechanisms 
where interpretable rules are continuously updated from 
streaming data and embedded into optimization in tractable 
and certifiable ways. Faster inference and simulation tools 
based on physics-informed neural operators can facilitate rap‐
id fault analysis and contingency screening across a wide 
range of scenarios. Interpretability, robustness to distribution‐
al shifts, and resilience to adversarial inputs will be key ar‐
eas of continued research and system-level validation.

Large models, especially FMs and multimodal LLMs, of‐
fer a transformative path for reshaping how humans interact 
with power system data, knowledge, and operational deci‐
sions. Among emerging AI paradigms, FMs are the most 
strategically promising due to their scalability, generality, 
and potential for shared development across utilities. FMs 
provide a unifying architecture capable of capturing cross-do‐
main patterns and delivering rapid, scalable inference, en‐
abling, together with LLM, not only document analysis and 
knowledge retrieval but also accelerated simulation, decision 
support, and tool integration across diverse tasks. These mod‐
els can function as intelligent agents with deep reasoning 
abilities for scheduling, operational planning, and real-time 
assistance, while benefiting from significantly faster infer‐
ence time compared to traditional numerical methods. LLMs 
are expected to expand toward interactive system monitor‐
ing, semi-automated dispatch, and operator training. In our 
view, establishing domain-adapted FMs should become a 
community-wide effort, as isolated one-off models are un‐
likely to deliver the robustness, interoperability, and reliabili‐
ty required by system operators. However, the practical de‐
ployment of both FMs and LLMs will depend on advances 
in domain adaptation, tighter integration with structured pow‐
er system data (e.g., via RAG mechanisms), and robust safe‐
guards to mitigate hallucinations, distributional shifts, and 
potential misuse.

AI for intelligent decision-making continues to address 
long-standing challenges in solving high-dimensional, nonlin‐
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ear, and combinatorial optimization problems in long-term 
planning, operation, and control. Future developments will 
likely focus on deep integration between model-based solv‐
ers and AI-based components that provide structure-aware 
approximations, warm-starts, and real-time adaptation. We 
anticipate that hybrid solver-AI architectures will emerge as 
the dominant paradigm, given that purely data-driven control‐
lers remain difficult to certify for safety-critical use. RL and 
surrogate modeling will continue to support real-time control 
and fast-response applications, including serving as predic‐
tive approaches to accelerate time-domain simulations. At 
the same time, data-driven decomposition and learning-to-op‐
timize frameworks will push the limits of tractable large-
scale decision-making under uncertainty. We therefore identi‐
fy decision-focused learning as a particularly promising area 
where breakthroughs could materially influence operational 
practice.

In conclusion, AI will continue to play a transformative 
role in the evolution of power systems. Their successful de‐
ployment will require technical innovation, trustworthiness, 
interpretability, and alignment with physical principles. By 
advancing hybrid and compound AI paradigms that combine 
data, models, and domain knowledge, future power systems 
can become more intelligent, resilient, and responsive to 
emerging challenges. We encourage academia and industry 
to prioritize high-fidelity synthetic data generation (e.g., for 
FM training), secure pre-trained model and data sharing 
frameworks (e. g., data spaces and analytics marketplaces), 
transparent evaluation protocols, and certifiable AI compo‐
nents, as these are essential to strengthening trustworthiness 
and enabling future progress.
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