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What Is Making Artificial Intelligence So
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Abstract—Recent progress in artificial intelligence (AI) is
powered by three key elements: algorithmic innovations, special-
ized chips and hardware, and a rich ecosystem of software and
data toolboxes. This paper provides an analysis of these three
key elements, tracing the evolution of Al from symbolic systems
and small, labeled benchmarks to today’s large-scale, genera-
tive, and agentic models trained on web-scale corpora. We re-
view the hardware trajectory from central processing units
(CPUs) to graphics processing units (GPUs), tensor processing
units (TPUs), and custom accelerators, and show how the co-de-
sign of chips and models has unlocked improvements in
throughput and cost by orders of magnitude. On the algorith-
mic side, we cover the deep learning revolution, scaling laws,
pretraining and fine-tuning paradigms, and multimodal and
agentic architectures. We map the modern software stacks, i.e.,
open-source Al frameworks, end-to-end toolchains, and commu-
nity datasets, that make model development reproducible and
widely accessible. Given the environmental and infrastructural
impact of scale, we emphasize the trade-offs in energy, datacen-
ter, and governance. Finally, we identify emerging trends that
reshape how Al is developed and deployed.

Index Terms—Artificial intelligence (Al), deep learning, chip,
algothrithm, toolbox, machine learning, neural network.

I. INTRODUCTION

RTIFICIAL intelligence (Al) is the capability of compu-

tational systems to perform tasks typically associated
with human intelligence, such as learning, reasoning, prob-
lem-solving, perception, and decision-making. It is a field of
research in computer science that develops methods and soft-
ware that enable machines to perceive their environment,
learn from experience/data, and take actions that maximize
their chances of achieving defined goals. Al systems are de-
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signed not only to execute instructions but also to adapt to
new situations, providing solutions in situations where tradi-
tional programming would be insufficient. The widespread
applications of Al include advanced web search engines [1],
recommendation systems [2], virtual assistants [3], autono-
mous vehicles [4], generative and creative tools including
language models [5] and Al art [6], and superhuman perfor-
mance in games [7]. Additionally, AI powers specialized do-
mains such as computer vision [8], which enables machines
to interpret and analyze images and videos, and natural lan-
guage processing (NLP) [9], which allows systems to under-
stand, generate, and interact using human language. Many of
these applications have become so common and useful that
they are no longer perceived as Al by everyday users.

Machine learning (ML), as a central branch of Al, focuses
on enabling systems to improve their performance on tasks
automatically by learning from data. It has been part of Al
from the start and includes several methods. In supervised
learning [10], systems are trained using labeled data, where
inputs are paired with expected outputs, either for classifica-
tion (assigning inputs to specific categories) or regression
(predicting numeric outputs from numeric inputs). Unsuper-
vised learning [10] analyzes data without labels, identifying
patterns and structures to make predictions or detect anoma-
lies. Reinforcement learning [11] teaches systems to make
decisions through feedback, rewarding good actions and pe-
nalizing poor ones so that the agent gradually learns optimal
behaviors. These methods form the backbone of modern Al
applications.

Neural networks [12] are a key type of ML model in-
spired by the structure and function of the human brain.
They consist of interconnected layers of “neurons” that pro-
cess and transform data, allowing the system to model com-
plex, non-linear relationships. Each layer extracts higher-lev-
el features from the input, enabling the network to capture
intricate patterns. Neural networks are widely used in appli-
cations such as image recognition [8], speech processing
[13], predictive analytics [14], and language modeling [15],
making them a very versatile tool for a variety of Al tasks.

Deep learning (DL) [12] is a specialized subset of neural
networks that involves multiple layers, hence “deep” net-
works, which allow the system to learn hierarchical represen-
tations of data. This enables DL models to process high-di-
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mensional, unstructured data such as image, audio, video,
and text, and to automatically extract relevant features with-
out manual intervention. This enables DL to be effective for
many applications that simpler ML methods cannot tackle.
DL has powered major breakthroughs in Al, including self-
driving vehicles that can interpret complex visual environ-
ments [16], NLP systems capable of translation, summariza-
tion, or conversation [17], Al tools that generate realistic
text or art [5], and industrial systems that detect subtle anom-
alies [18]. Despite that, large amounts of task-specific data
are required in order to be trained properly to achieve these
capabilities [19].

In summary, Al is the broadest concept of creating intelli-
gent systems, ML is a data-driven method within Al, neural
networks are a key type of ML model, and DL is a powerful
extension of neural networks designed to handle complex,
high-dimensional data. Understanding this hierarchy helps
clarify the capabilities and applications of these technologies
and sets a baseline for understanding more intricate Al con-
cepts and ideas mentioned in the following sections.

Al has rapidly evolved from a specialized research field
into a foundational technology across many industries. It
leads the state-of-the-art applications in many domains such
as healthcare, finance, transportation, NLP, computer vision
and creativity, and energy. Specifically, for the energy com-
munity, the relevance of Al is twofold: it is both a major
consumer of computational power [20], and a potential en-
abler of more sustainable solutions [21]. The following sec-
tions address these points.

In this paper, the main goal is to highlight the latest tech-
nologies that have driven the rapid rise of Al in recent years,
along with applications that AI and ML have enabled. We
first present a brief history of DL and how it has evolved,
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leading up to today’s prominent generative Al models such
as large language models (LLMs) and diffusion models. We
will also delve deeper into the hardware developments that
have been crucial in meeting the growing demands of Al re-
search and deployment, and finally look at the current land-
scape of Al application and discuss what it means for tech-
nology and energy consumption.

The objective of this paper is to prepare scientists and en-
gineers who have observed the rapid rise of Al only from a
distance, for the challenges and opportunities of the emerg-
ing near-artificial general intelligence (AGI) era. By review-
ing the history and trends of Al, we aim to show how quick-
ly the research in this field has accelerated, and to highlight
how unprepared the society and academic community are for
a transformation of this scale. At the same time, by empha-
sizing the substantial energy consumption associated with
training and deploying large-scale Al models, we seek to
alert the power and clean energy community to the urgent
need for preparation. As Al becomes a driving force across
society, we hope to encourage further research into sustain-
able solutions—efforts that will themselves be supported and
accelerated by the very generative Al tools now reshaping
the field.

II. EVOLUTION OF Al

Figure 1 summarizes the evolution of Al, which serves as
the guide of this section. The timeline tracks the progression
from early symbolic, rule-based systems to statistical ML
and DL. These advancements have enabled the development
of generative Al and LLMs. The timeline ends with the cur-
rent transition to agentic Al, which extends the capabilities
of LLMs from content generation to autonomous reasoning
and task execution.

1950s-1980s 1980s-2010s

L |

2010s-present

2017-present 2025-future

Fig. 1. Evolution of AL

A. From Symbolic Expert Systems to Statistical ML

The earliest developments in Al were dominated by sym-
bolic methods, most notably expert systems, which relied on
explicitly encoded rules and logical reasoning [22]. While
these systems achieved success in highly constrained do-
mains such as medical diagnosis [23] and equipment trouble-
shooting, their scalability and adaptability were limited. The
1990s and 2000s witnessed a paradigm shift toward data-
driven methods, as statistical ML emerged as a more flexible
and generalizable alternative [24]. Unlike symbolic systems,
statistical methods leverage large datasets and probabilistic
models, enabling broader applications such as pattern recog-
nition, speech processing, and predictive modeling. This tran-
sition sets the foundation for the current wave of Al, which
couples powerful algorithms with advances in computing
hardware and specialized frameworks, paving the way for
the large-scale and diverse applications observed nowadays.

Time

B. Revolution of DL: Neural Networks, Convolutional Neu-
ral Networks (CNNs), Recurrent Neural Networks (RNNs),
and Graph Neural Networks (GNNs)

DL [12] refers to neural network models with multiple lay-
ers that can automatically learn the hierarchical representa-
tions of data. Its rise is attributable to improvements in train-
ing algorithms (e.g., back-propagation [25]), activation func-
tions [26], availability of large datasets, and hardware capa-
ble of massive parallel computation. The evolution of deep
architectures has followed a few key threads.

1) Deep feed-forward neural networks. Early multi-layer
perceptrons laid the groundwork, but suffered from limita-
tions such as vanishing gradients and high computational
cost, as they connected all inputs with all outputs.

2) CNNs. Originally inspired by neuroscientific models,
e.g., Neocognitron by Fukushima [27], CNNs became practi-
cal in vision tasks (i.e., image classification and object detec-
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tion), especially after the success of models in [28] and
AlexNet [29], etc. Their spatial hierarchy, parameter sharing,
and pooling operations make them extremely effective and
efficient for grid-structured data.

3) RNNs and variants. Designed for sequential or tempo-
ral data, RNNs (especially long short-term memory (LSTM)
[14] and gated recurrent units (GRUs) [30]) have enabled
the modeling of speech, language, and time-series data, in-
cluding domains where past inputs influence future ones.

Another dimension of revolution is the scaling of data,
models, and compute. After early success, deep networks
have grown in depth, width, and complexity, e.g., ResNets
[31], Inception [32], and become feasible by algorithmic
tricks (residual connections and batch normalization [33]) as
well as hardware advances.

With the success of DL came new applications and indus-
trial adoption across multiple domains. In computer vision,
DL now sets the state-of-the-art in object detection, segmen-
tation, and classification, with CNNs powering many real-
world systems, including face recognition [8] and medical
imaging [34]. For sequence and time-series data, RNNs,
LSTM, and GRU networks are widely used in applications
such as speech recognition [35], machine translation [36], de-
mand forecasting, and anomaly detection. Meanwhile, GNN's
have found application in several key areas: recommender
systems [37], modeling of complex networks (e.g., social
and communication), chemistry through molecular graphs
[38], and, more recently, infrastructure systems.

C. Generative Al

In recent years, the frontier of Al has been dominated by
generative Al, a subfield of Al that uses generative models
to produce new content such as text, image, music, or code
by learning from existing data. Unlike models mentioned so
far that essentially analyze data, generative Al models mimic
human creativity, producing outputs that are sometimes indis-
tinguishable from human-created work, in response to a us-
er’s prompt. The development of modern LLMs is largely
founded upon the transformer architecture introduced in
2017 [15], followed by the introduction of bidirectional en-
coder representations from transformers (BERT) in 2019 [9],
which pioneers bidirectional pre-training for language under-
standing, and subsequent milestones including the develop-
ment of the generative pre-trained transformer (GPT) series
such as GPT-3 in 2020 [5].

A key stepping stone in combining vision and language is
contrastive language-image pre-training (CLIP) in 2021 [39],
which learns joint representations of images and text via
large image-caption datasets and a contrastive learning objec-
tive, enabling the use of visual modalities as inputs too, addi-
tionally to text. For image and other media generation, a key
breakthrough has come with diffusion models, which are fun-
damentally formalized by studies such as denoising diffusion
probabilistic models in 2020 [40], and later made practical
for high-resolution synthesis through latent diffusion models
in 2022 [41]. The latest trend involves multimodal Al (e.g.,
Gemini [42], GPT-4V [43]), which integrates and processes
information from different data types such as text and imag-

es. These models can be developed at massive parameter siz-
es, trained on enormous datasets, and operated using vast
compute infrastructures. In this subsection, we further dis-
cuss some unique characteristics of the generative era, e.g.,
how they are trained, scaled, and become multimodal.

1) Pre-training, Post-training, and Inference

In addition to architecture and scale, generative and agen-
tic models undergo distinct phases in their lifecycle: pre-
training, post-training, and inference. Pre-training is the ini-
tial phase in which a model is exposed to massive amounts
of data in order to learn general representations of language,
vision, or other modalities. Post-training (also called fine-tun-
ing) refines the pre-trained model using labeled or more nar-
rowly focused and curated data, so that it performs well on
specific tasks, styles, or domains. One very common scenar-
io of post-training in the case of LLMs is instruction tuning
[44], [45], where the model is fine-tuned in specific instruc-
tion-following data to enhance its chatbot-like capabilities.
In the more recent era of LLMs, a further phase of align-
ment fine-tuning has emerged, namely reinforcement learn-
ing from human feedback (RLHF) [46]. RLHF uses human
preference judgments to guide the model’s policy via rein-
forcement learning so that its outputs better align with hu-
man value, intent, or a specific task. The integration of RL-
HF has become central in many agentic and interactive LLM
systems, often providing stronger behavioural alignment than
supervised fine-tuning alone.

Finally, inference is the stage when the model is deployed
in real use. Given new inputs (prompts), the model generates
outputs using its learned parameters without further chang-
ing them. Each phase has different computational, data, ener-
gy demands, and trade-offs. Pre-training tends to be compu-
tationally expensive, but is performed only once, while post-
training is a less expensive and shorter process that can be
performed repeatedly for task-specific adaptation. Although a
single LLM inference operation is fast and inexpensive, the
repeated nature of its execution for every user’s prompt
means that its operational expense scales with the usage vol-
ume, leading to cumulative inference cost to ultimately ex-
ceed the initial one-time investment required for pre-training.
2) Scaling of Parameters, Training Corpus, and Compute

The defining characteristic of this era is exponential scal-
ing across three dimensions: the number of parameters, the
size of the training corpus, and the compute required for
training and inference [47], [48].

1) Parameters: early foundational models had modest pa-
rameter counts. GPT-1 in 2018 featured approximately 117
million parameters [17]. BERT Large had around 340 mil-
lion parameters [9]. The leap to GPT-3 in 2020 marked a
monumental jump to roughly 175 billion parameters [5].
Contemporary models, while exact figures are often proprie-
tary, are rumored to lie in the trillion-parameter regime, in-
cluding variants of GPT-4, Llama 4 Behemoth, DeepSeek
V3, and Qwen3-Max.

2) Training corpus: GPT-3 was trained on roughly 300 bil-
lion tokens, but state-of-the-art models now leverage the or-
ders of magnitude of data to be larger. For instance, Deep-
Seek V3 [49] reportedly used 14.8 trillion tokens, while Lla-
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ma 4 [50] and Qwen3-Max [51] are said to incorporate 30-
36 trillion tokens in training.

3) Compute: the energy and hardware demands need to
scale accordingly. The pre-training of GPT-33.14 x 10* float-
ing-point operations per second (FLOPs)(=3640 PetaFLOP-
days (PF-days)). Modern efforts deploy a massive number of
graphics processing units (GPUs): DeepSeek V3 used 2048
NVIDIA H800 GPUs over 2.788 million GPU-hours. The
more ambitious Llama 4 Behemoth project is rumored to
have used up to 32000 GPUs for pre-training. These figures
underscore not only the computational intensity but also the
immense energy, cooling, networking, and logistical over-
heads entailed by training and deploying models at this scale.
3) In-context Learning

An important ability in current generative Al, particularly
within LLMs, is the emergence of “in-context learning”. Un-
like traditional supervised learning, which requires updating
model weights based on vast labeled datasets, in-context
learning allows models to perform tasks based on prompts
provided at the inference time. This leads to two distinct ca-
pabilities: zero-shot learning (ZSL) and few-shot learning
(FSL). ZSL refers to the ability of model to tackle a novel
task without seeing any specific examples, relying solely on
a natural language description of the task [52]. FSL extends
this by providing the model with a small number of demon-
strations (e.g., one to five examples) within the input context
to guide its output [53]. In the context of power systems and
energy grids, these paradigms are not merely convenient fea-
tures; they are crucial for addressing two fundamental chal-
lenges: data scarcity for critical events and computational
sustainability. Specifically, these methods provide a robust
solution to the inherent lack of labeled data for rare, high-im-
pact anomalies such as cascading blackouts or cyber-physi-
cal attacks [54], where it is difficult to construct balanced
training sets [55]. By leveraging pre-trained knowledge and
few examples to identify these events without retraining,
they bypass the need for massive datasets. Furthermore, uti-
lizing models in a “frozen” state rather than performing com-
putationally expensive full fine-tuning could significantly re-
duce the energy overhead, but slightly increase the cost of in-
ference, i.e., in the case of a few-shot scenario.

4) Multimodal Generative Models

While text-based LLMs remain a central pillar, generative
Al has evolved to embrace multimodal architectures. Using
architectures such as CLIP [39] has enabled the use of visual
modalities (e.g., images or videos) as inputs along with text,
which enables a plethora of new applications such as in visu-
al reasoning and understanding, healthcare and medical diag-
nostics, or robotics and autonomous systems. Diffusion mod-
els (e.g., stable diffusion [41], [56], DALL-E [57]) now en-
able high-fidelity image generation, image-to-image transla-
tion, and combinations of modalities (vision+ language).
Multimodal generation models must contend with not only
scaling in parameters and data, but also in the complexity of
inference. Generating a high-resolution image/video or ana-
lyzing multiple images typically incurs more energy and la-
tency compared with processing or generating textual output.

D. Agentic Al: Beyond Generation to Autonomy

Generative models have enabled powerful capabilities in
content synthesis, completion, and cross-modal generation.
Building on this foundation, traditional Al agents act as mod-
ular, task-specific systems that augment language or image
models with tools, prompts, or scripted behaviors. The next
frontier, agentic Al, goes further by planning and acting au-
tonomously over multiple steps to achieve complex goals.
These systems combine multi-agent coordination, dynamic
task decomposition, persistent memory, and orchestrated au-
tonomy, allowing them to adapt and make decisions with the
minimal human intervention in evolving environments. [58],
[59]. In practice, agentic Al interprets natural language
goals, decomposes them into subgoals, plans sequences of
actions, invokes external tools or application programming
interfaces (APIs), observes outcomes, and could replan when
necessary. It thus bridges the gap between high-level intent
and real-world effect [60]. Architecturally, it often adopts or-
chestrator-agent or multi-agent frameworks, where separate
agents specialize (e.g., search, reasoning, tool execution) un-
der coordination.

Agentic Al is important for several reasons. First, it en-
ables more advanced automation of workflow. Instead of
handling isolated tasks, it can carry out complete processes
that include data collection, reasoning, tool use, and result
generation with the minimal oversight by humans. Second, it
reduces the human cognitive load by embedding planning,
coordination, and handling of errors directly into the agent,
rather than relying on humans to manage each subtask.
Third, it enables scalable autonomy, meaning that multiple
agents can collaborate to address complex problems that ex-
ceed the capabilities of a single agent. Current applications
of agentic Al span fields including healthcare, finance, robot-
ics, adaptive software, and autonomous scientific re-
search [61].

Yet, agentic Al comes with challenges. Reliability and ro-
bustness remain the major concerns. The agents may drift,
enter loops, or propose unsafe actions. Coordination failures
or error propagation across agents can lead to cascading fail-
ures [62], [63]. Scalability is another issue. As agent counts
increase, communication overhead and orchestration com-
plexity grow nonlinearly. The scope of task is also con-
strained. In many empirical settings, agentic Al performs
best when tasks remain within moderate complexity or time
horizons. Furthermore, the computational and energy de-
mands of planning, environment simulation, tool invocation,
and error correction loops are substantial and compound the
costs of generative backbones. Finally, governance, over-
sight, alignment, and transparency must be built into the ar-
chitecture to ensure safe deployment of agentic Al

III. HARDWARE: ENGINE THAT POWERS Al

A. From Central Processing Units (CPUs) to GPUs

CPUs represent the primary computational system engi-
neered to efficiently execute sequential instruction streams
across a wide range of application domains including data-
bases, data analytics, scientific simulations, financial model-
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ing, and interactive user applications. They have been opti-
mized to minimize data access latency and maximize single-
threaded performance through sophisticated microarchitectur-
al techniques including branch predictors, prefetchers, out-of-
order execution (dynamically reordering instructions to re-
duce pipeline stalls), and multi-level cache hierarchies that
keep frequently accessed data close to the processing cores
[64]. While modern CPUs incorporate parallelism through
multiple cores, typically ranging from 4 to 64 cores in con-
sumer systems and up to hundreds of cores in high-end serv-
er processors, this parallel capability remains fundamentally
limited compared with specialized architectures. CPUs excel
in applications requiring complex control flow, irregular
memory access patterns, and low-latency responsiveness. Fu-
ture microarchitectural innovations continue to prioritize la-
tency reduction and single-thread performance optimization
over massive parallelism, maintaining the role of CPUs as
the backbone of general-purpose computing systems [64].

GPUs have revolutionized parallel computing by provid-
ing significantly more parallelism than CPUs. They were
originally designed for graphic applications and gaming
workloads that require rendering thousands of pixels simulta-
neously. They feature hardware-managed caches and massive
parallelism with thousands of cores organized in a single-in-
struction multiple-thread (SIMT) execution model, enabling
efficient processing of regular parallel computations [64].
Early GPUs demonstrated impressive performance potential
in gaming applications, prompting GPU manufacturers to
quickly modify their microarchitectures for general-purpose
GPUs (GP-GPUs). GPUs introduce double-precision floating-
point support, enhancing the instruction sets for mathemati-
cal operations, and improving memory controllers to support
diverse applications ranging from scientific computing to
cryptographic processing [65]. Moreover, GPUs have been
specifically designed to provide substantially higher memory
bandwidth than CPUs, typically delivering five to ten times
more bandwidth. This is because their thousands of parallel
cores necessitate massive data throughput to maintain the
computational efficiency [66]. However, early GPU genera-
tions consumed significantly more energy, often requiring
two to three times than CPUs. Recent architectural advances
have focused significant efforts on improving their perfor-
mance-per-watt ratios, making them increasingly attractive
for a wide range of applications [67].

GP-GPUs have also enabled significant advancements in
programmability. Early GPUs were limited to fixed-function
graphic pipelines, creating programming burdens for non-
graphic computations. However, high-level programming lan-
guages such as NVIDIA’s compute unified device architec-
ture (CUDA) [68] and the open standard OpenCL [69] have
fundamentally transformed GPU accessibility, providing de-
velopers with familiar C-like programming models and com-
prehensive software development kits [70], [71]. These pro-
gramming frameworks abstract the underlying hardware com-
plexity while exposing fine-grained control over thread exe-
cution, memory hierarchy management, and inter-core com-
munication. Additionally, GPU vendors have invested heavi-
ly in optimizing compilers, debugging tools, and perfor-

mance profilers, while introducing automatic optimization
techniques that significantly reduce the programming com-
plexity barrier, thereby making the computation of GP-GPUs
accessible to a broader range of developers [71].

ML and DL workloads, henceforth named as AI work-
loads, inherently fit well on GPUs due to their embarrassing-
ly parallel computational characteristics. They primarily con-
sist of massive matrix-matrix multiplications, element-wise
operations, and linear algebra kernels that exhibit regular da-
ta access patterns [72], [73]. GPUs provide the essential mas-
sive parallelism needed for training and serving ML models.
To support the thousands of simultaneous computations exe-
cuted by GPU cores, GPUs have been enhanced with ad-
vanced memory technologies including three-dimensional
(3D) memory stacking techniques and high-bandwidth mem-
ory (HBM) [74]. This architectural alignment has resulted in
significant performance benefits for Al workloads, and given
the growing commercial importance of Al applications, GPU
architects have transformed GPU microarchitectures to more
effectively accommodate Al-specific computational require-
ments. Specifically, GPUs have been enhanced with special-
ized tensor cores [75] designed to accelerate matrix opera-
tions, alongside support for mixed-precision formats that bal-
ance the computational throughput with numerical accuracy.
GPU manufacturers have progressively expanded numerical
format support beyond traditional 32-bit floating-point
(FP32) to include 16-bit floating-point (FP16) for memory
efficiency, 16-bit brain floating-point (BF16) for improved
numerical stability, and lower precision formats such as 8-bit
integer (INTS), 4-bit integer (INT4), and recently 4-bit float-
ing-point (FP4). Additionally, modern GPUs incorporate ad-
vanced interconnect technologies such as NVLink and opti-
mized multi-GPU communication protocols to enable effi-
cient multi-GPU parallelism [65]. As increasingly large DL
models such as LLMs cannot fit within single GPU memory
constraints due to their substantial parameter counts, effi-
cient multi-GPU communication becomes essential for high-
performance distributed training, fine-tuning, inference, and
serving across multiple GPU devices [76]. Complementing
these hardware advances, the software ecosystem has ma-
tured significantly with comprehensive development frame-
works and sophisticated compilers that automatically opti-
mize Al workloads for GPU architectures, thereby maximiz-
ing hardware utilization for Al applications [77], [78].

Although GPUs enable high performance in AI work-
loads, the latest high-end GPU architectures are extremely
power-hungry, consuming substantial energy and contribut-
ing significantly to carbon emissions due to their design
characteristics including thousands of parallel cores operat-
ing at high frequencies and extensive memory bandwidth ca-
pabilities [67]. Generative Al models, which contain billions
to trillions of parameters, have necessitated the deployment
of these energy-intensive GPUs, and, more importantly, re-
quire multi-GPU configurations for training and inference,
exponentially increasing energy consumption and carbon
emissions [79]. Architectural advancements such as special-
ized compute units such as Tensor Cores inherently result in
elevated energy densities and thermal design challenges that



12 JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 14, NO. 1, January 2026

further exacerbate energy consumption. Consequently, the en-
ergy efficiency and carbon footprint reduction have emerged
as critical microarchitectural design challenges that must be
addressed to ensure the sustainable development of Al [80].

B. Tensor Processing Units (TPUs) and Al Accelerators

Al accelerators represent a new generation of specialized
processors designed exclusively for AI computations, emerg-
ing as purpose-built alternatives to GPUs. While GPUs have
demonstrated significant improvements of performance over
CPUs for Al workloads due to their parallel architecture,
they were originally designed for graphics rendering and car-
ried substantial overhead from graphic-specific hardware
characteristics that were unnecessary for Al computations.
To this end, technology companies have developed dedicated
Al accelerators that aim to optimize multiple aspects of the
chip architecture specifically tailored for Al, including spe-
cialized matrix multiplication units, optimized memory hier-
archies for access patterns to Al data, custom numerical pre-
cision formats, and streamlined instruction sets tailored for
tensor operations. These Al accelerators typically feature
large on-chip memory to minimize the expensive off-chip da-
ta movement, systolic array architectures for efficient matrix
computations, and custom interconnects designed for multi-
chip scaling of large Al models. Unlike GPUs that must bal-
ance graphics and compute workloads, Al accelerators
achieve significantly higher performance per watt and faster
training and inference time by dedicating their entire silicon
area and design complexity exclusively to Al algorithms.

TPUs represent the first commercially available Al acceler-
ators, introduced in 2016 as purpose-built processors for neu-
ral network computations [81]. TPUs employ a systolic array
architecture, where data flow through a grid of processing el-
ements in a synchronized manner. TPUs enable highly effi-
cient matrix-matrix multiplication operations that are funda-
mental computational kernels in AI workloads. Originally,
TPUs are designed specifically for CNNs and inference
workloads, featuring 8-bit integer arithmetic and large on-
chip memory to minimize data movement costs. Subsequent
generations (TPU V2, V3, and V4) have expanded their ca-
pabilities to support training workloads, floating-point preci-
sion, and diverse Al model architectures including transform-
ers and RNNs [82]. Compared with GPUs, TPUs achieve su-
perior performance per watt and faster execution time for Al
workloads by optimizing data flow based hardware support
for tensor operations.

Apart from Google, other major cloud providers have also
developed custom Al accelerators to optimize performance
and reduce costs for their specific infrastructure and Al
workloads. Specifically, Amazon Web Services (AWS) offers
two types of Al accelerators: (D trainium chips for training,
and (2 inferentia chips for inference, featuring custom in-
struction sets, high-bandwidth memory, vector processing en-
gines, and optimized interconnects designed to integrate
seamlessly with AWS cloud services [83], [84]. Similarly,
Microsoft’s Maia accelerators employ co-optimization of
both hardware and software, which is specifically tailored
for Azure’s Al services, featuring advanced memory hierar-

chies and interconnects designed for large-scale distributed
training [85]. These cloud-native Al accelerators offer signifi-
cant advantages including lower total cost of ownership, opti-
mized performance for cloud-specific Al workloads, seam-
less integration with cloud services and frameworks, and the
ability to scale efficiently across thousands of accelerators in
datacenter deployments.

Specialized Al accelerator companies have developed inno-
vative architectures targeting different aspects of Al perfor-
mance. Graphcore’s intelligence processing units (IPUs) in-
clude thousands of high-performance parallel cores, where
each core and its locally accessible in-processor memory
unit form a tile, and data are exchanged among tiles using a
bulk synchronous parallel model, enabling efficient model
parallelism for large Al models [86]. Cerebras’ wafer-scale
engine (WSE) represents an extreme method by utilizing an
entire silicon wafer as a single chip with over 800000 cores
and 40 GB of on-chip memory, delivering hundreds of Pet-
aFLOPs of Al compute throughput and enabling unprecedent-
ed parallelism for training massive Al models [87]. Intel’s
Gaudi accelerators focus on scalable training through Ether-
net-based interconnects and mixed-precision capabilities, of-
fering flexible deployment options, cost-effective scaling,
and generality in supporting a wide variety of Al models
and frameworks [88]. These specialized Al architectures pro-
vide key benefits including significantly reduced memory
bottlenecks, higher computational density, improved energy
efficiency, and optimized performance for specific Al model
types and scaling scenarios.

Lastly, neural processing units (NPUs) represent a distinct
category of Al accelerators characterized by their integration
into system-on-chip (SoC) architectures and optimization for
diverse deployment scenarios. NPUs feature specialized Al
instruction sets, variable precision arithmetic support, and en-
ergy-efficient designs that consume significantly less energy
than CPUs or GPUs, while being highly optimized for ma-
trix-matrix and matrix-vector computational kernels [89]. Ex-
amples include Apple’s Neural Engine [90] integrated into
mobile and desktop processors, Qualcomm’s Hexagon
NPUs in Snapdragon SoCs [91], and dedicated edge devices
such as Google’s Edge TPU [92]. NPUs work alongside
CPUs and GPUs to handle AI workloads, which are ideal
for mobile and battery-powered devices. Unlike larger Al ac-
celerators, NPUs prioritize energy efficiency and real-time
processing capabilities, making them particularly suitable for
edge computing applications including smart phones, Inter-
net of Things (IoT) devices, autonomous vehicles, and em-
bedded systems where energy constraints and latency require-
ments are critical, while maintaining sufficient computational
capability for Al inference and lightweight training tasks.

C. Specialized Hardware: Application-specific Integrated
Circuits (ASICs), Field-programmable Gate Arrays (FPGAs),
and Neuromorphic Computing

Apart from GPUs and Al accelerators discussed above,
ASICs are more specialized for Al acceleration. ASICs are
built for specific workloads, and feature custom silicon de-
signs optimized for specific neural network architectures and
Al applications. Unlike general-purpose Al accelerators,
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ASICs are designed from the ground up for the particular Al
workloads. Since they have dedicated hardware designs for
target Al workloads, they consistently outperform more gen-
eral-purpose accelerators (e.g., CPUs or GPUs) in both per-
formance and energy comsuption, as they enable extreme op-
timization by eliminating unnecessary functionality and hard-
wiring specific computational patterns directly into silicon
[93]. ASICs serve two primary domains: large-scale training
and inference in datacenters, and resource-constrained edge
Al applications [94]. Notable examples include Google’s
TPUs for cloud-scale operations, along with other special-
ized architectures such as NPUs, IPUs, and WSEs. In the
edge computing space, Apple’s Neural Engine and Hua-
wei’s Ascend processors demonstrate how ASICs enable on-
device Al capabilities while maintaining strict power and
thermal constraints. A few other examples include Tesla’s
full self-driving (FSD) [95] chip optimized specifically for
computer vision in autonomous vehicles, Meta’s Training
and Inference Accelerator (MTIA) [96] designed for their
specific recommendation and language models, and Hailo’s
Al processors targeting edge inference applications. ASICs
achieve superior performance per watt and cost efficiency
for their target applications by dedicating every transistor to
specific computational requirements, featuring custom data-
paths, optimized memory hierarchies, and specialized arith-
metic units that perfectly match the target neural network op-
erations. Thus, ASICs are well-suited in application-specific
and high-volume deployment scenarios, where workload
characteristics are well-defined and stable.

Although ASICs enable high performance, they can be dif-
ficult to program and modify once fabricated. FPGAs offer
an attractive trade-off between the flexibility of software-
based development and the high performance of custom
hardware. Unlike general-purpose GPUs with fixed architec-
tures that cannot be reprogrammed, FPGAs feature reconfig-
urable logic blocks that can be programmed to implement
custom digital circuits optimized for specific Al workloads.
FPGAs provide reconfigurability that enables application-spe-
cific optimization, resulting in reduced latency and energy
consumption. Designers can implement domain-specific opti-
mizations and tailor circuits to specific workloads, achieving
exceptional performance per watt [97]. FPGAs are typically
used in Al applications that require ultra-low latency such as
autonomous vehicle control systems and edge inference,
where fast response time in miliseconds is critical, and they
also excel in edge computing and IoT applications. Major
FPGA vendors such as Intel (formerly Altera) and AMD
Xilinx have developed Al-specific architectures, e.g., the Ver-
sal Adaptive Compute Acceleration Platform (ACAP) [98],
which combines traditional FPGA fabric with dedicated Al
engines, high-bandwidth memory interfaces, and integrated
processing cores. Microsoft’s Project Brainwave [99] exem-
plifies by deploying FPGAs across Azure datacenters to ac-
celerate Al inference services with consistently low latency,
but FPGAs are also used by other cloud providers (e.g., Mi-
crosoft, AWS, Huawei, and Baidu) for scalable Al inference.
The key advantage of FPGAs lies in their ability to imple-
ment custom precision arithmetic formats, create optimized

dataflow architectures that minimize memory access over-
head, and adapt to evolving Al algorithms through reconfigu-
ration [97]. This makes them particularly well-suited for Al
applications where computational requirements may change
over time, such as low-latency inference in real-time Al ap-
plications.

Neuromorphic computing is fundamentally different for
Al processing, as it mimics the structure and operation of bi-
ological neural networks (i.e., the way human brains oper-
ate) through event-driven, asynchronous computation. This
contrasts with the synchronous clock-based operation of tra-
ditional digital processors. These neurological and biological
mechanisms are modeled through spiking neural networks
(SNNs), which are composed of spiking neurons and synaps-
es that replicate human brain’s event-driven signaling, result-
ing in sparse and asynchronous computation [100], [101]. In-
stead of following the traditional von Neumann architec-
tures, where computation and memory are physically separat-
ed, neuromorphic systems integrate processing and memory
in a highly parallel, event-driven manner [102]. As computa-
tions occur only when spikes are present, neuromorphic sys-
tems achieve extremely low energy consumption relatively
to all the accelerators described above. By both storing and
processing data within individual neurons, they deliver lower
latency and faster computation compared with von Neumann
architectures. Neuromorphic chips such as Intel’s Loihi 2,
IBM’s TrueNorth, and BrainChip’s Akida implement SNNs
where information is encoded in the timing and frequency of
discrete events (spikes) rather than continuous numerical val-
ues, enabling ultra-low energy consumption for specific Al
tasks such as pattern recognition, sensory processing, and
adaptive learning [100]. In academia, early implementations
include Stanford University’s Neurogrid [103], a mixed ana-
log-digital multichip system capable of simulating a million
neurons with billions of synaptic connections in real time.
Research hub Interuniversity —Microelectronics  Centre
(IMEC) developed a self-learning neuromorphic chip, while
the European Union’s Human Brain Project [104] produced
large-scale neuromorphic machines. The neuromorphic sys-
tems can be well-suited for applications that require real-
time processing with the minimal energy consumption such
as robotics control and brain-computer interfaces, achieving
higher energy efficiency by several orders of magnitude com-
pared with traditional processors for certain workloads. How-
ever, neuromorphic computing still remains largely experi-
mental.

D. Datacenters and Supercomputing Infrustructure for Al at
Scale

State-of-the-art Al workloads have evolved to unprecedent-
ed computational and memory requirements by incorporating
billions to trillions of parameters to achieve high-quality per-
formance. This trend necessitates immense compute and
memory capabilities that far exceed those of single comput-
ing nodes, requiring massive datacenter and supercomputing
infrastructure to support Al training and deployment. LLMs
such as GPT-4 and Llama require hundreds to thousands of
high-end GPUs for training and hundreds of GPUs even for
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inference workloads, consuming PetaFLOPs of computation-
al resources, generating terabytes of intermediate data, and
consuming megawatts of power. These models demand enor-
mous computational throughput alongside high-bandwidth
memory systems and networks, as well as advanced storage
technologies to manage massive datasets and model check-
points [105]. This emerging trend has fundamentally trans-
formed AI development from single-node computing to com-
plex distributed systems, where thousands of accelerators
must be coordinated across datacenter networks with sophis-
ticated interconnects, making supercomputing infrastructure
an essential prerequisite for advancing the frontiers of Al re-
search and deployment.

Datacenters have undergone fundamental transformations
to accommodate the demanding requirements of Al work-
loads. They have evolved from traditional server architec-
tures to heterogeneous computing environments that inte-
grate diverse Al accelerators including GPUs, TPUs, and spe-
cialized Al chips with massive compute and memory capabil-
ities, featuring heterogeneous hardware characteristics to ac-
commodate different types of emerging Al workloads, with
all these nodes interconnected over high-bandwidth networks
within and across computing nodes [106]. The power and
thermal challenges are unprecedented, with individual GPUs
consuming 250-700 W power and Al clusters requiring thou-
sands of these accelerators, necessitating megawatts of pow-
er delivery and sophisticated cooling solutions, alongside
specialized power infrastructure featuring redundant power
supplies, advanced power distribution units, and backup sys-
tems to ensure continuous operation. To address the require-
ments of latency and performance, these heterogeneous com-
puting nodes have been integrated with high-bandwidth net-
working architectures featuring InfiniBand EDR/HDR/NDR
(100/200/400 Gbit/s), high-speed Ethernet (100 GbE/400
GbE), and custom interconnect solutions organized in multi-
tier topologies designed to minimize communication bottle-
necks during distributed training and serving [106], [107].
Additionally, fast interconnection technologies are integrated
within computing nodes, including NVLink 4.0 [108] provid-
ing 900 GB/s bidirectional bandwidth between GPU accelera-
tors, peripheral component interconnect express (PCle) 5.0
interfaces, and emerging compute express link (CXL) [109]
technology that enables cache-coherent memory sharing and
pooling across heterogeneous processors within a node. To
further enhance the compute and communication throughput,
manufacturers have developed dedicated switches and net-
work devices such as NVIDIA’s Quantum InfiniBand
switches and Mellanox Spectrum Ethernet switches [107],
some of which integrate lightweight cores and perform the
computation as data are being exchanged among Al accelera-
tors. Finally, these Al facilities integrate advanced storage
systems including parallel file systems (e.g., Lustre file sys-
tem, IBM Spectrum Scale, BeeGFS) [110], [111] and high-
performance object storage to enable efficient access to mas-
sive datasets measured in petabytes for Al training work-
loads, while providing the necessary input/output (I/O)
throughput to supply Al accelerators with data efficiently,
without pipeline bottlenecks that would underutilize expen-

sive computational resources.

Supercomputers designed specifically for Al workloads
represent the pinnacle of distributed computing systems, fea-
turing massive clusters of specialized accelerators optimized
for neural network training and inference at unprecedented
scales. Notable Al supercomputers include NVIDIA’s DGX
SuperPOD systems such as the DGX A100 SuperPOD with
up to 140 computing nodes containing 1120 A100 GPUs in-
terconnected via NVLink and InfiniBand HDR, delivering
more than 400 PetaFLOPs of Al performance [112].
Google’s TPU Pods [113] featuring up to 4096 TPU V4
chips in a single Pod with 1.1 exaflops of computational ca-
pacity, and Microsoft’s supercomputing infrastructure built
on Azure with over 14400 H100 GPUs is specifically de-
signed for training LLMs [106]. These systems feature so-
phisticated multi-node architectures with hundreds to thou-
sands of computing nodes, hierarchical memory systems
spanning the high-bandwidth memory of GPU (up to 80 GB
HBM2e per GPU), node-level double data rate (DDR) mem-
ory (up to 2 TB per node), and shared parallel storage sys-
tems measured in petabytes. Advanced fault tolerance mecha-
nisms include checkpoint and restart capabilities, redundant
networking paths, and proactive hardware monitoring to
maintain reliability across millions of components. Further-
more, these supercomputers employ specialized job schedul-
ing systems such as Slurm and Kubernetes with Al-aware re-
source management that optimize the allocation of GPUs,
and provide efficient resource sharing among concurrent Al
workloads while managing energy consumption and thermal
constraints across the entire facility.

Moreover, hyperscale cloud providers have established
global networks of specialized datacenters to serve the com-
putational demands of leading Al companies and researchers
worldwide. Major cloud providers offer dedicated Al infra-
structure including AWS with EC2 P4d instances [114] fea-
turing 8 NVIDIA A100 GPUs per node and P5 instances
[115] with H100 GPUs, supporting companies such as An-
thropic for Claude model training, Google Cloud Platform
for providing TPU pods used by organizations for LLM de-
velopment, and Azure for offering NDv2/NDv4 instances
[116] with up to 8 V100/A100 GPUs per node, while host-
ing GPT models of OpenAl through their strategic partner-
ship and dedicated supercomputing infrastructures. Special-
ized Al cloud providers such as CoreWeave, Lambda Labs,
Paperspace, and RunPod have emerged to offer GPU-fo-
cused infrastructure with competitive pricing and Al-opti-
mized configurations, often providing faster deployment and
more flexible resource allocation than traditional cloud gi-
ants. These cloud platforms deliver the infrastructure as a
service (IaaS) capabilities including on-demand GPU clus-
ters that can scale from single instances to thousands of ac-
celerators within minutes. The geographic distribution of
cloud Al infrastructure spans multiple continents with strate-
gically located datacenters in North America (AWS US-West-
2, Google US-Centrall), Europe (EU-West, EU-Central), and
Asia-Pacific (Asia-Southeast, Asia-Northeast) regions, en-
abling Al companies to deploy models closer to end-users
for reduced latency while serving millions of users globally.
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E. Energy Consumption and Environmental Footprint of Al

The rapid exponential scaling of contemporary Al models,
from billions to trillions of parameters, together with the con-
comitant growth in dataset size and continuous large-scale
service deployment, has induced a distinct and rapidly grow-
ing set of energy and infrastructure challenges. Large cloud
datacenters that host training and serving workloads are dom-
inated by energy-intensive accelerators and substantial facili-
ty support systems (cooling, power distribution, networking,
and storage). These facilities therefore generate two concep-
tually distinct classes of carbon emissions that must be ac-
counted for in any comprehensive environmental assessment:
embodied emissions incurred during the manufacture, trans-
port, and end-of-life disposal of hardware components, and
operational emissions incurred by the energy consumed in
training, inference, and the ancillary facility systems re-
quired to keep the hardware and services available [105]. At
the scale of modern Al services, these contributions are non-
trivial: analyses of high-volume conversational systems esti-
mate the daily energy consumption on the order of that con-
sumed by hundreds of thousands of households (for exam-
ple, energy demand comparable to the daily electricity usage
of approximately 180000 households), and information and
communication technology (ICT) is projected by sectoral
analyses to account for a significant portion of global emis-
sions over the next decade. These magnitudes emphasize
that Al growth is not only a computing or economic prob-
lem, but a systemic challenge for power system sustainabili-
ty [105], [117].

Energy consumption is concentrated in two lifecycle phas-
es, i.e., training and inference, but their relative importance
depends strongly on the deployment scale and use patterns.
Training very large models remains extraordinarily energy-in-
tensive; however, when models are widely deployed for in-
ference, the aggregate energy consumed by serving can dom-
inate the lifecycle of a model. Recent empirical studies indi-
cate that architectural and training environment choices can
produce very large reductions in training energy (e.g., [118]
reports reductions on the order of 80.7% under certain opti-
mizations with only negligible loss in task correctness),
whereas detailed measurements of inference on modern ac-
celerators reveal that per-query energy is sensitive to model
architecture and sequence length. For example, measure-
ments on frontier models running on H100-class hardware
yield median per-query energies on the order of 0.34 Wh un-
der typical token lengths, rising to 4.32 Wh for token
lengths increased by 15 times. Extrapolating these per-query
costs to population-scale workloads produces daily energy
demands on the order of 10°10° Wh [119]. Under realistic
conditions, serving 1 billion queries per day has been esti-
mated to require on the order of 0.8 GWh energy. Work-
loads with a non-negligible fraction of much longer queries
(e.g., 10%) could raise that figure toward 1.8 GWh per day
absent countervailing efficiency improvements, though mod-
est system and software efficiency gains can materially re-
duce these totals [119]. These quantitative examples illus-
trate how modest changes in per-query energy or fraction of
long queries could translate into very large shifts in absolute

energy demand once services reach the global scale [80]

Beyond the energy consumption by direct computing, fa-
cility-level overhead significantly amplifies the lifecycle en-
ergy and emissions. Cooling, uninterruptible power supplies,
power distribution losses, networking equipment, and storage
subsystems impose additional loads that are captured, albeit
imperfectly, by facility metrics such as power usage effec-
tiveness (PUE). In inefficient facilities, these overheads can
effectively double or triple the energy attributable to raw
compute, so careful attention is indispensable for facility de-
sign, siting, and operations. Macro-scale data contextualize
the sectoral impact: recent assessments place the energy con-
sumption of datacenters in the hundreds of terawatt-hours
per year (for example, IEA/Nature [120] estimates for 2022
are in the range of 240-340 TWh, roughly 1%-1.3% of glob-
al electric power demand), underscoring that trends in Al de-
ployment will interact materially with broader efforts in pow-
er system planning and decarbonization.

As the environmental consequences of Al are inherently
coupled to power system operations and long-term infrastruc-
ture planning, it is vital to point out the importance of trans-
parent, lifecycle-aware reporting and of coordinated system
planning. To be both standardized and reproducible, energy
accounting must ideally incorporate measured per-query ener-
gy, PUE-normalized facility loads, embodied emissions (am-
ortized using realistic lifecycle assumptions), and the carbon
intensity of purchased as well as onsite electricity. It will en-
able objective comparison of architectural choices and de-
ployment strategies, and will allow researchers and power
system operators to evaluate the system-level implications of
shifts in Al demand. Mitigation is therefore not solely a mat-
ter of hardware design or algorithmic optimization, but re-
quires alignment across hardware innovation, datacenter engi-
neering, model development, operational policy, energy pro-
curement, and regulatory frameworks. Only by combining
rigorous measurement and reporting with these multi-layered
interventions can the community both quantify the true costs
of large-scale Al and identify the most effective levers for re-
ducing its footprint.

However, it is imperative to differentiate between the in-
creasing energy demands of Al and the established workload
of traditional datacenter operations. According to the Electric
Power Research Institute (EPRI), Al applications currently
represent only 10%-20% of electricity consumption of data-
centers, meaning the vast majority of consumption is still
driven by traditional activities such as cloud computing,
streaming, and data retrieval [121]. Data from the Interna-
tional Energy Agency (IEA) supports this conclusion, esti-
mating that while the global electricity consumption of data-
centers reached 460 TWh in 2022, this figure could double
to over 1000 TWh by 2026 largely due to the rapid scaling
of Al workloads [122]. This shift is highlighted by the differ-
ence in computational intensity as a single Chat-GPT query
is estimated to require 2.9 Wh of electricity, where a stan-
dard Google Search consumes only 0.3 Wh. Thus, while tra-
ditional infrastructure constitutes the current bulk of the ener-
gy footprint, Al is the decisive factor in its projected expo-
nential growth.
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IV. TOOLBOXES, FRAMEWORKS, AND EMERGING
APPLICATIONS

A. Rise of Open-source AI Frameworks

The adoption of open-source Al frameworks has had a
transformative impact on the field, promoting the standard-
ization of Al workflows, enhancing scientific reproducibility,
and democratizing access to state-of-the-art model develop-
ment.

1) Definition of AI Frameworks

An Al framework (also known as an ML or DL frame-
work) is a software system that provides the abstractions, li-
braries, and APIs needed to build, train, evaluate, and deploy
Al models. By handling low-level tasks such as tensor opera-
tions, automatic differentiation, computational graph optimi-
zation, and distribution across hardware such as GPUs or
TPUs, Al frameworks allow researchers and engineers to fo-
cus on high-level model architecture rather than rebuilding
foundational components. As the field has matured, analyses
have shown that Al frameworks must balance competing de-
mands, by trading off research flexibility, performance, hard-
ware support, and production readiness [123].

2) Evolution of Major DL Frameworks

The evolution of major DL frameworks follows a shift
from early constrained systems such as Theano [124] toward
more open, community-driven, and dynamic paradigms. This
trend gave rise to PyTorch [125], which supported a dynam-
ic style that offered greater usability and flexibility for re-
search. In contrast, TensorFlow [123] continued to specialize
in large-scale industrial applications, leveraging its static
computation graph for highly optimized and distributed de-
ployment. Today, ecosystem has become more specialized,
with key platforms consolidating their roles. JAX [126]
emerged to serve the scientific Al community, offering high-
performance differentiable programming for exceptional
speed and automatic vectorization. Unifying this diverse
landscape is the Hugging Face ecosystem, which functions
as a central platform providing model hubs [127] and stan-
dardized datasets [128]. This facilitates community-driven
fine-tuning and transfer learning, enabling seamless model
sharing across all major frameworks. This standardization ef-
fect was particularly transformative for NLP, where plat-
forms such as Hugging Face created a unified ecosystem
around the transformer architecture [127]. In contrast, com-
puter vision tasks have historically required more specialized
data preprocessing and pipelines, making their workflows
more difficult for standardization and reproduction.

3) End-to-end Toolchain

Beyond core frameworks, a complete Al pipeline requires
a coordinated toolchain to manage the entire model lifecycle,
from development to production. This process can be broken
down into three key stages as follows.

1) Building and training: in this initial phase, researchers
use frameworks such as PyTorch, TensorFlow, and JAX to
construct neural architectures and manage training loops. Ex-
periment management and hyperparameter optimization tools
are also essential, as reproducible optimization has been
shown to reduce outcome variance and improve comparabili-

ty across experiments.

2) Validation and evaluation: once a model is trained, it
must be rigorously validated to ensure generalization, robust-
ness, fairness, and reproducibility. This process extends be-
yond simple accuracy metrics to include cross-validation,
out-of-domain testing, uncertainty quantification, and analy-
sis under distribution shift.

3) Deployment and serving: the final stage converts vali-
dated models into production services, which is a task that
presents unique challenges for LLMs due to their immense
size and computational cost. To make the production servic-
es feasible, a suite of optimization techniques are employed.
Quantization, for instance, reduces the numerical precision
of model weights, drastically cutting the memory footprint
and increasing the speed. Other prevalent methods include
knowledge distillation [129], where smaller and more effi-
cient student models are trained to replicate the behavior of
larger teacher models, and pruning [130], [131], which re-
moves redundant or low-importance parameters to reduce
memory footprint and computational cost while preserving
the performance of the models.

To manage the high demands of real-time inference, spe-
cialized serving frameworks have become essential. Modern
engines such as vLLM [132] and SGLang [133] are de-
signed specifically for high-throughput LLM serving. These
specialized toolboxes represent a critical evolution from gen-
eral-purpose model servers, providing the performance neces-
sary for modern generative Al applications. Together, the
toolboxes across these pipeline stages form an integrated eco-
system designed to support reproducibility, low-latency infer-
ence, versioning, and smooth updates under the realistic con-
straints of production hardware and environments.

B. Modern Software Stacks

The dramatic shift from simple training loops to modern
software stacks has transformed large-scale Al from an ex-
perimental slog into an engineering discipline where efficien-
cy is engineered at every layer. Naive epoch-by-epoch code
quickly runs into memory, bandwidth, and latency ceilings.
GPUs are idle waiting on small kernels, interconnects be-
come bottlenecks, and energy costs explode, which become
conditions that make models with billions of parameters im-
practical. Modern software stacks expose and exploit device
characteristics across layers so that raw compute is convert-
ed into usable model capacity at scale.

At the foundation are low-level libraries that provide high-
performance primitives and access to hardware features. Li-
braries such as CUDA and cuDNN expose optimized convo-
lution, reduction, and collective kernels, and the program-
ming model for modern GPUs, removing the need for frame-
work authors to reimplement low-level kernels for each gen-
eration of device. Building on these primitives, DL compil-
ers and graph-lowering systems (e.g., XLA [134], Torch-
Script [135], TVM [77], TensorRT [136]) translate high-level
model descriptions into fused, device-tuned kernels and opti-
mized execution graphs, reducing the launch of kernel over-
head, improving locality, and enabling cross-operator optimi-
zations that deliver large throughput gains.
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Complementing the compilation are parallelization strate-
gies that match the algorithmic structure to hardware. Data
parallelism shards minibatches across workers, and when
combined with careful scaling and warmup of learning rate,
it enables efficient training with very large batch sizes. For
models with billions of parameters, parallelism shards
weights and activations across devices so that each individu-
al GPU hosts only a fraction of a very large model (e.g.,
Megatron [137]). Recent systems combine these dimensions
and demonstrate training with sizes that are previously unre-
achievable.

End-to-end optimization closes the deployment loop.
Mixed-precision training (FP16/FP32) halves memory band-
width and compute cost without harming accuracy when it is
applied correctly. Quantization, pruning, and activation or
weight compression further shrink footprints for inference.
And the production runtimes (open neural network exchange
(ONNX) runtime [138], DeepSpeed [139], VLLM [132],
etc.) operationalize these techniques for high-throughput and
low-latency serving. The consequence is that efficiency is
now a first-class research problem. Modern stacks and sys-
tems-level innovations convert the compute and energy into
model capabilities in a far more effective manner, shifting
the central question from “can we train this model” to “how
cheaply, quickly, and sustainably can we train and serve it”.
This co-design of software and hardware yields remarkably
higher performance per watt and per GPU-hour, enabling ex-
periments and deployments that were previously infeasible.

C. Role of Data in AI' s Success

The scale, diversity, and curation of data are often deci-
sive behind modern Al performance. While model architec-
tures and training techniques attract increasing attention, the
underlying datasets enable, constrain, and sometimes bias
what models can learn. This subsection outlines the histori-
cal progression from small datasets to web-scale corpora,
highlights open data ecosystems that support reproducibility,
examines the data quality challenges, addresses ethical and
legal constraints, and presents data-focused trends that shift
emphasis from model-first to data-first practices.

1) From Small Datasets to Web-scale Corpora

Early breakthroughs in computer vision and NLP were
driven by carefully labeled task-specific datasets such as Im-
ageNet [140] and COCO [141], which enabled systematic
benchmarking and architecture-driven improvement. Over
the last decade, however, the field shifted toward massive,
loosely curated corpora, ¢.g., Common Crawl [142] for web
text, LAION [143] for large-scale image-text pairs, and The
Pile [144] for diverse text sources, which now power con-
temporary large language and multimodal models. The move
toward web-scale data has brought dramatic gains through
sheer exposure to linguistic and visual variety, but also intro-
duced new issues around noise, redundancy, and provenance.
2) Open Data Ecosystems Supporting Reproducibility

Community-maintained platforms and efforts such as Hug-
ging Face datasets [128] and the BigScience initiative [145]
have become central to reproducible research by distributing
cleaned, documented datasets and standard loading APIs.
These resources lower the barrier of entrance, enable apples-

to-apples comparisons, and encourage better dataset version-
ing and provenance tracking through community curation.
3) Data Quality Challenges: The Hidden Engineering

High-performing models require more than volume. Quali-
ty engineering is critical. Common problems include label
noise, uninformative or duplicated examples, long-tail distri-
butional gaps, and dataset contamination (e.g., evaluation ex-
amples leaking into training), which are issues highlighted
as part of the broader engineering risks in deployed ML
models. Mitigating these problems requires a toolbox of tech-
niques such as deduplication, filtering, manual vetting, strati-
fied sampling, careful split construction, and substantial com-
pute and human effort. Moreover, biases encoded in source
data (demographic, cultural, topical) directly translate into
model behavior, making dataset construction and auditing es-
sential engineering tasks rather than afterthoughts [146].
4) Ethical and Legal Constraints

Large-scale data collection raises complex ethical and le-
gal questions. Copyright and ownership of scraped content,
consent for personal data, privacy-sensitive information, and
the downstream harms of biased or toxic material are all cen-
tral concerns. Responsible dataset governance demands clear
documentation (e. g., datasheets or data cards), provenance
tracking, and opt-out and takedown mechanisms with feasi-
ble and legal review [146]. Transparent documentation and
modular dataset design are practical steps that facilitate safer
research and deployment.
5) Data-focused Trends

Recent trends emphasize improving data rather than solely
scaling models. Synthetic data generation, active data selec-
tion (prioritized sampling and curriculum learning), and tar-
geted human annotation for rare or high-value cases are
growing strategies. At the same time, modern generative
pipelines increasingly combine these data-centric practices
with behavioral and reasoning techniques, e.g., instruction
tuning and RLHF to align model behavior, “thinking” or rea-
soning-augmented methods (chain-of-thought prompting, self-
consistency, and tree-of-thoughts) that expose internal delib-
eration and improve the solving process of complex prob-
lem, and inference-time tactics such as retrieval-augmented
generation and tool use. Together, synthetic or curated data,
active selection, targeted annotation, RLHF, and thinking
models form a complementary toolbox that often yields fast-
er, more reliable, and more compute-efficient improvements
than blind model scaling, and they slot naturally into the da-
ta-focused Al workflow of iterative measurement, targeted
correction, and retraining.

D. Emerging Applications in Power Systems

To date, the application of Al in power systems has pri-
marily functioned as an analytical layer focused on observa-
tion and prediction. Established techniques such as LSTM
networks and random forests are now standard for load and
generation predictions and non-intrusive load monitoring.
Similarly, CNNs have found widespread application in pre-
dictive maintenance, utilizing computer vision to detect
faults in transmission lines or thermal anomalies in substa-
tion equipment. While these applications have significantly
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improved observability, the next phase of power system evo-
lution demands a shift from passive analysis to active auton-
omous control. This transition is being driven by agentic Al,
which moves beyond simple data synthesis to autonomous
decision-making. In advanced distribution management sys-
tems (ADMSs) and virtual power plants (VPPs), agentic Al
architectures can replace static optimization tools. Unlike tra-
ditional models, these agents operate as orchestrators capable
of multi-step reasoning, which interprets natural language
goals to coordinate deterministic power flow solvers and eco-
nomic scheduling algorithms [147], [148]. This could allow
for self-healing capabilities where the system can autono-
mously isolate faults and quickly reconfigure its topology,
supporting human operators during critical events. This kind
of autonomy requires a fundamental change in how the pow-
er system is represented and computed. GNNs are emerging
as the superior architecture for digital twins, as they natural-
ly encode the non-Euclidean network topology better than
traditional models [149]. Furthermore, the deployment of
these advanced models is becoming increasingly decentral-
ized. To mitigate cloud latency in mission-critical assets
such as protection relays, algorithms are migrating to the
Edge by utilizing the NPUs and low-power FPGAs dis-
cussed in Section III to execute inference directly at the
smart meter level [150], [151]. This convergence of autono-
mous agents, topological reasoning, and edge hardware repre-
sents the cutting-edge of Al-enabled power systems.

V. CONCLUSION

A key conclusion of this paper is the explosion of Al tech-
nology. With a historical review of Al algorithms, special-
ized hardware, and improved toolboxes, we have witnessed
how the Al community has transformed from its early stages
in the 1980s to the state-of-the-art progresses in many scien-
tific domains. DL has enabled technologies with unprecedent-
ed capabilities. We must note the acceleration in this do-
main, e.g., the rise of foundational architectures such as the
transformer [15] has radically altered what is feasible. The
Al research community has expanded greatly, and open-
source platforms along with a far larger group of researchers
and developers have turned advances into shared, rapidly re-
usable artifacts. This is a key reason why Al breakthroughs
now compound far faster than in many mature engineering
fields.

Despite the recent rapid expansion of capabilities, many
contemporary advances in Al are best characterized as engi-
neering refinements and scale-driven improvements rather
than fundamentally new theoretical breakthroughs. The pre-
dominant trajectory, i.e., bigger models, more parameters,
and ever-larger datasets, has yielded impressive empirical
gains, but the scale alone is unlikely to constitute a path to
AGI. Moreover, much of the effective training signal in cur-
rent pipelines is synthetic, produced by models themselves.
Consequently, new models frequently learn from the outputs
of prior models rather than from fresh, independent traces of
human cognition. The structured, deliberative patterns of hu-
man thought that would most directly advance human-like
reasoning remain difficult to obtain at scale, and methods

such as RLHF continue to depend on substantial human in-
tervention that does not scale trivially to the continuous su-
pervision a truly general system would require.

Research on hardware and systems will therefore remain
indispensable. Continued progress in accelerators, memory
hierarchies, and co-design of compiler and toolchain will un-
lock new levels of energy and cost efficiencies for both Al
training and inference, and will enable new deployment
modes including on-device and private processing. Neverthe-
less, efficiency gains are frequently outpaced by rising de-
mand. As Al spreads across products and industries, com-
pute and energy requirements continue to grow. This tension
argues for intensified co-design of software and hardware,
where software is explicitly developed to leverage hardware
features such as sparsity, quantization, and model partition-
ing, and hardware is engineered to support the algorithmic
patterns that materially improve the efficiency.

Looking beyond current technologies and architectures,
compute-in-memory (CIM) and quantum computing stand
out as incoming technologies with the potential to fundamen-
tally shift the Al hardware paradigm. CIM addresses the crit-
ical energy costs of data movement by performing calcula-
tions directly within memory arrays. This offers a way to by-
pass the physical traffic jam between the processor and stor-
age that usually slows down computations [152]. Simultane-
ously, quantum machine learning (QML) promises to revolu-
tionize the algorithmic efficiency by handling high-dimen-
sional optimization landscapes and probabilistic sampling
tasks that are currently impossible for classical hardware
[153]. While these technologies are not yet certain replace-
ments for standard hardware, they represent leaps that could
redefine the efficiency and capability of future Al systems.

Ecosystems and toolchains are likewise consolidating to-
ward integrated, modular stacks. A prevailing trend is the
emergence of comprehensive platforms that unite model re-
positories, dataset registries, evaluation suites, fine-tuning
pipelines, monitoring, and safety tooling, mostly with open-
source implementations. Using small, specialized Al models
with tools (such as retrieval and agents) facilitate to build,
check, and change the system. It also boosts reuse, letting
teams quickly update shared models and data.

Several research directions merit particular emphasis. Mul-
timodality, lifelong learning, and causal and compositional
reasoning are likely to be more consequential than further in-
creases in parameter count. Scalable alternatives to intensive
human supervision, i.e., improved preference learning, active
learning, scalable self-play, higher-fidelity simulation, and
more principled synthetic-data generation, will be critical to
reduce dependence on costly manual labeling. Equally essen-
tial are robust evaluation frameworks, interpretability and
runtime monitoring tools, and mechanisms that permit safe,
accountable deployment across domains.

A final and equally important topic is to regulate the appli-
cation of Al systems. The total energy consumed by Al not
only depends on hardware efficiency, but also on how often
and how heavily users invoke the Al services. Therefore, pol-
icies and design choices that promote energy-aware usage
are essential for any effort to reduce emissions. In practice,
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this means setting default options that favor smaller, faster
models for everyday tasks, helping users understand when
large, high-capacity models are actually needed, and making
it easy to switch to lower-energy alternatives when perfor-
mance differences are minimal. These demand-side measures
mirror familiar conservation habits in other areas, where
small individual choices collectively have a massive impact.
Embedding energy awareness into product design, deploy-
ment policies, and public guidance complements the techni-
cal work being done at the hardware, software, and power
system levels.

In summary, future progress will be a co-evolution of soft-
ware, hardware, toolboxes, and community practices. Scaling
will remain an important lever, but achieving more general,
robust, and human-aligned intelligence will require better da-
ta (not merely more data), smarter algorithms, hardware-
aware designs, richer tooling and evaluation, and sustained
interdisciplinary engagement with multiple scientific do-
mains. Only through such an integrated program can techno-
logical advances be aligned with the supply of low-carbon
electricity, as well as the broader goals of society for safety,
fairness, and resilience.
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