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Abstract——Recent progress in artificial intelligence (AI) is 
powered by three key elements: algorithmic innovations, special‐
ized chips and hardware, and a rich ecosystem of software and 
data toolboxes. This paper provides an analysis of these three 
key elements, tracing the evolution of AI from symbolic systems 
and small, labeled benchmarks to today’s large-scale, genera‐
tive, and agentic models trained on web-scale corpora. We re‐
view the hardware trajectory from central processing units 
(CPUs) to graphics processing units (GPUs), tensor processing 
units (TPUs), and custom accelerators, and show how the co-de‐
sign of chips and models has unlocked improvements in 
throughput and cost by orders of magnitude. On the algorith‐
mic side, we cover the deep learning revolution, scaling laws, 
pretraining and fine-tuning paradigms, and multimodal and 
agentic architectures. We map the modern software stacks, i.e., 
open-source AI frameworks, end-to-end toolchains, and commu‐
nity datasets, that make model development reproducible and 
widely accessible. Given the environmental and infrastructural 
impact of scale, we emphasize the trade-offs in energy, datacen‐
ter, and governance. Finally, we identify emerging trends that 
reshape how AI is developed and deployed.

Index Terms——Artificial intelligence (AI), deep learning, chip, 
algothrithm, toolbox, machine learning, neural network.

I. INTRODUCTION 

ARTIFICIAL intelligence (AI) is the capability of compu‐
tational systems to perform tasks typically associated 

with human intelligence, such as learning, reasoning, prob‐
lem-solving, perception, and decision-making. It is a field of 
research in computer science that develops methods and soft‐
ware that enable machines to perceive their environment, 
learn from experience/data, and take actions that maximize 
their chances of achieving defined goals. AI systems are de‐

signed not only to execute instructions but also to adapt to 
new situations, providing solutions in situations where tradi‐
tional programming would be insufficient. The widespread 
applications of AI include advanced web search engines [1], 
recommendation systems [2], virtual assistants [3], autono‐
mous vehicles [4], generative and creative tools including 
language models [5] and AI art [6], and superhuman perfor‐
mance in games [7]. Additionally, AI powers specialized do‐
mains such as computer vision [8], which enables machines 
to interpret and analyze images and videos, and natural lan‐
guage processing (NLP) [9], which allows systems to under‐
stand, generate, and interact using human language. Many of 
these applications have become so common and useful that 
they are no longer perceived as AI by everyday users.

Machine learning (ML), as a central branch of AI, focuses 
on enabling systems to improve their performance on tasks 
automatically by learning from data. It has been part of AI 
from the start and includes several methods. In supervised 
learning [10], systems are trained using labeled data, where 
inputs are paired with expected outputs, either for classifica‐
tion (assigning inputs to specific categories) or regression 
(predicting numeric outputs from numeric inputs). Unsuper‐
vised learning [10] analyzes data without labels, identifying 
patterns and structures to make predictions or detect anoma‐
lies. Reinforcement learning [11] teaches systems to make 
decisions through feedback, rewarding good actions and pe‐
nalizing poor ones so that the agent gradually learns optimal 
behaviors. These methods form the backbone of modern AI 
applications.

Neural networks [12] are a key type of ML model in‐
spired by the structure and function of the human brain. 
They consist of interconnected layers of “neurons” that pro‐
cess and transform data, allowing the system to model com‐
plex, non-linear relationships. Each layer extracts higher-lev‐
el features from the input, enabling the network to capture 
intricate patterns. Neural networks are widely used in appli‐
cations such as image recognition [8], speech processing 
[13], predictive analytics [14], and language modeling [15], 
making them a very versatile tool for a variety of AI tasks.

Deep learning (DL) [12] is a specialized subset of neural 
networks that involves multiple layers, hence “deep” net‐
works, which allow the system to learn hierarchical represen‐
tations of data. This enables DL models to process high-di‐
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mensional, unstructured data such as image, audio, video, 
and text, and to automatically extract relevant features with‐
out manual intervention. This enables DL to be effective for 
many applications that simpler ML methods cannot tackle. 
DL has powered major breakthroughs in AI, including self-
driving vehicles that can interpret complex visual environ‐
ments [16], NLP systems capable of translation, summariza‐
tion, or conversation [17], AI tools that generate realistic 
text or art [5], and industrial systems that detect subtle anom‐
alies [18]. Despite that, large amounts of task-specific data 
are required in order to be trained properly to achieve these 
capabilities [19].

In summary, AI is the broadest concept of creating intelli‐
gent systems, ML is a data-driven method within AI, neural 
networks are a key type of ML model, and DL is a powerful 
extension of neural networks designed to handle complex, 
high-dimensional data. Understanding this hierarchy helps 
clarify the capabilities and applications of these technologies 
and sets a baseline for understanding more intricate AI con‐
cepts and ideas mentioned in the following sections.

AI has rapidly evolved from a specialized research field 
into a foundational technology across many industries. It 
leads the state-of-the-art applications in many domains such 
as healthcare, finance, transportation, NLP, computer vision 
and creativity, and energy. Specifically, for the energy com‐
munity, the relevance of AI is twofold: it is both a major 
consumer of computational power [20], and a potential en‐
abler of more sustainable solutions [21]. The following sec‐
tions address these points.

In this paper, the main goal is to highlight the latest tech‐
nologies that have driven the rapid rise of AI in recent years, 
along with applications that AI and ML have enabled. We 
first present a brief history of DL and how it has evolved, 

leading up to today’s prominent generative AI models such 
as large language models (LLMs) and diffusion models. We 
will also delve deeper into the hardware developments that 
have been crucial in meeting the growing demands of AI re‐
search and deployment, and finally look at the current land‐
scape of AI application and discuss what it means for tech‐
nology and energy consumption.

The objective of this paper is to prepare scientists and en‐
gineers who have observed the rapid rise of AI only from a 
distance, for the challenges and opportunities of the emerg‐
ing near-artificial general intelligence (AGI) era. By review‐
ing the history and trends of AI, we aim to show how quick‐
ly the research in this field has accelerated, and to highlight 
how unprepared the society and academic community are for 
a transformation of this scale. At the same time, by empha‐
sizing the substantial energy consumption associated with 
training and deploying large-scale AI models, we seek to 
alert the power and clean energy community to the urgent 
need for preparation. As AI becomes a driving force across 
society, we hope to encourage further research into sustain‐
able solutions−efforts that will themselves be supported and 
accelerated by the very generative AI tools now reshaping 
the field.

II. EVOLUTION OF AI 

Figure 1 summarizes the evolution of AI, which serves as 
the guide of this section. The timeline tracks the progression 
from early symbolic, rule-based systems to statistical ML 
and DL. These advancements have enabled the development 
of generative AI and LLMs. The timeline ends with the cur‐
rent transition to agentic AI, which extends the capabilities 
of LLMs from content generation to autonomous reasoning 
and task execution.

A. From Symbolic Expert Systems to Statistical ML

The earliest developments in AI were dominated by sym‐
bolic methods, most notably expert systems, which relied on 
explicitly encoded rules and logical reasoning [22]. While 
these systems achieved success in highly constrained do‐
mains such as medical diagnosis [23] and equipment trouble‐
shooting, their scalability and adaptability were limited. The 
1990s and 2000s witnessed a paradigm shift toward data-
driven methods, as statistical ML emerged as a more flexible 
and generalizable alternative [24]. Unlike symbolic systems, 
statistical methods leverage large datasets and probabilistic 
models, enabling broader applications such as pattern recog‐
nition, speech processing, and predictive modeling. This tran‐
sition sets the foundation for the current wave of AI, which 
couples powerful algorithms with advances in computing 
hardware and specialized frameworks, paving the way for 
the large-scale and diverse applications observed nowadays.

B. Revolution of DL: Neural Networks, Convolutional Neu‐
ral Networks (CNNs), Recurrent Neural Networks (RNNs), 
and Graph Neural Networks (GNNs)

DL [12] refers to neural network models with multiple lay‐
ers that can automatically learn the hierarchical representa‐
tions of data. Its rise is attributable to improvements in train‐
ing algorithms (e.g., back-propagation [25]), activation func‐
tions [26], availability of large datasets, and hardware capa‐
ble of massive parallel computation. The evolution of deep 
architectures has followed a few key threads.

1) Deep feed-forward neural networks. Early multi-layer 
perceptrons laid the groundwork, but suffered from limita‐
tions such as vanishing gradients and high computational 
cost, as they connected all inputs with all outputs.

2) CNNs. Originally inspired by neuroscientific models, 
e.g., Neocognitron by Fukushima [27], CNNs became practi‐
cal in vision tasks (i.e., image classification and object detec‐
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Fig. 1.　Evolution of AI.
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tion), especially after the success of models in [28] and 
AlexNet [29], etc. Their spatial hierarchy, parameter sharing, 
and pooling operations make them extremely effective and 
efficient for grid-structured data.

3) RNNs and variants. Designed for sequential or tempo‐
ral data, RNNs (especially long short-term memory (LSTM) 
[14] and gated recurrent units (GRUs) [30]) have enabled 
the modeling of speech, language, and time-series data, in‐
cluding domains where past inputs influence future ones.

Another dimension of revolution is the scaling of data, 
models, and compute. After early success, deep networks 
have grown in depth, width, and complexity, e. g., ResNets 
[31], Inception [32], and become feasible by algorithmic 
tricks (residual connections and batch normalization [33]) as 
well as hardware advances.

With the success of DL came new applications and indus‐
trial adoption across multiple domains. In computer vision, 
DL now sets the state-of-the-art in object detection, segmen‐
tation, and classification, with CNNs powering many real-
world systems, including face recognition [8] and medical 
imaging [34]. For sequence and time-series data, RNNs, 
LSTM, and GRU networks are widely used in applications 
such as speech recognition [35], machine translation [36], de‐
mand forecasting, and anomaly detection. Meanwhile, GNNs 
have found application in several key areas: recommender 
systems [37], modeling of complex networks (e. g., social 
and communication), chemistry through molecular graphs 
[38], and, more recently, infrastructure systems.

C. Generative AI

In recent years, the frontier of AI has been dominated by 
generative AI, a subfield of AI that uses generative models 
to produce new content such as text, image, music, or code 
by learning from existing data. Unlike models mentioned so 
far that essentially analyze data, generative AI models mimic 
human creativity, producing outputs that are sometimes indis‐
tinguishable from human-created work, in response to a us‐
er’s prompt. The development of modern LLMs is largely 
founded upon the transformer architecture introduced in 
2017 [15], followed by the introduction of bidirectional en‐
coder representations from transformers (BERT) in 2019 [9], 
which pioneers bidirectional pre-training for language under‐
standing, and subsequent milestones including the develop‐
ment of the generative pre-trained transformer (GPT) series 
such as GPT-3 in 2020 [5].

A key stepping stone in combining vision and language is 
contrastive language-image pre-training (CLIP) in 2021 [39], 
which learns joint representations of images and text via 
large image-caption datasets and a contrastive learning objec‐
tive, enabling the use of visual modalities as inputs too, addi‐
tionally to text. For image and other media generation, a key 
breakthrough has come with diffusion models, which are fun‐
damentally formalized by studies such as denoising diffusion 
probabilistic models in 2020 [40], and later made practical 
for high-resolution synthesis through latent diffusion models 
in 2022 [41]. The latest trend involves multimodal AI (e.g., 
Gemini [42], GPT-4V [43]), which integrates and processes 
information from different data types such as text and imag‐

es. These models can be developed at massive parameter siz‐
es, trained on enormous datasets, and operated using vast 
compute infrastructures. In this subsection, we further dis‐
cuss some unique characteristics of the generative era, e.g., 
how they are trained, scaled, and become multimodal.
1)　Pre-training, Post-training, and Inference

In addition to architecture and scale, generative and agen‐
tic models undergo distinct phases in their lifecycle: pre-
training, post-training, and inference. Pre-training is the ini‐
tial phase in which a model is exposed to massive amounts 
of data in order to learn general representations of language, 
vision, or other modalities. Post-training (also called fine-tun‐
ing) refines the pre-trained model using labeled or more nar‐
rowly focused and curated data, so that it performs well on 
specific tasks, styles, or domains. One very common scenar‐
io of post-training in the case of LLMs is instruction tuning 
[44], [45], where the model is fine-tuned in specific instruc‐
tion-following data to enhance its chatbot-like capabilities. 
In the more recent era of LLMs, a further phase of align‐
ment fine-tuning has emerged, namely reinforcement learn‐
ing from human feedback (RLHF) [46]. RLHF uses human 
preference judgments to guide the model’s policy via rein‐
forcement learning so that its outputs better align with hu‐
man value, intent, or a specific task. The integration of RL‐
HF has become central in many agentic and interactive LLM 
systems, often providing stronger behavioural alignment than 
supervised fine-tuning alone.

Finally, inference is the stage when the model is deployed 
in real use. Given new inputs (prompts), the model generates 
outputs using its learned parameters without further chang‐
ing them. Each phase has different computational, data, ener‐
gy demands, and trade-offs. Pre-training tends to be compu‐
tationally expensive, but is performed only once, while post-
training is a less expensive and shorter process that can be 
performed repeatedly for task-specific adaptation. Although a 
single LLM inference operation is fast and inexpensive, the 
repeated nature of its execution for every user’s prompt 
means that its operational expense scales with the usage vol‐
ume, leading to cumulative inference cost to ultimately ex‐
ceed the initial one-time investment required for pre-training.
2)　Scaling of Parameters, Training Corpus, and Compute

The defining characteristic of this era is exponential scal‐
ing across three dimensions: the number of parameters, the 
size of the training corpus, and the compute required for 
training and inference [47], [48].

1) Parameters: early foundational models had modest pa‐
rameter counts. GPT-1 in 2018 featured approximately 117 
million parameters [17]. BERT Large had around 340 mil‐
lion parameters [9]. The leap to GPT-3 in 2020 marked a 
monumental jump to roughly 175 billion parameters [5]. 
Contemporary models, while exact figures are often proprie‐
tary, are rumored to lie in the trillion-parameter regime, in‐
cluding variants of GPT-4, Llama 4 Behemoth, DeepSeek 
V3, and Qwen3-Max.

2) Training corpus: GPT-3 was trained on roughly 300 bil‐
lion tokens, but state-of-the-art models now leverage the or‐
ders of magnitude of data to be larger. For instance, Deep‐
Seek V3 [49] reportedly used 14.8 trillion tokens, while Lla‐
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ma 4 [50] and Qwen3-Max [51] are said to incorporate 30-
36 trillion tokens in training.

3) Compute: the energy and hardware demands need to 
scale accordingly. The pre-training of GPT-33.14 ´ 1023 float‐
ing-point operations per second (FLOPs) (» 3640 PetaFLOP-
days (PF-days)). Modern efforts deploy a massive number of 
graphics processing units (GPUs): DeepSeek V3 used 2048 
NVIDIA H800 GPUs over 2.788 million GPU-hours. The 
more ambitious Llama 4 Behemoth project is rumored to 
have used up to 32000 GPUs for pre-training. These figures 
underscore not only the computational intensity but also the 
immense energy, cooling, networking, and logistical over‐
heads entailed by training and deploying models at this scale.
3)　In-context Learning

An important ability in current generative AI, particularly 
within LLMs, is the emergence of “in-context learning”. Un‐
like traditional supervised learning, which requires updating 
model weights based on vast labeled datasets, in-context 
learning allows models to perform tasks based on prompts 
provided at the inference time. This leads to two distinct ca‐
pabilities: zero-shot learning (ZSL) and few-shot learning 
(FSL). ZSL refers to the ability of model to tackle a novel 
task without seeing any specific examples, relying solely on 
a natural language description of the task [52]. FSL extends 
this by providing the model with a small number of demon‐
strations (e.g., one to five examples) within the input context 
to guide its output [53]. In the context of power systems and 
energy grids, these paradigms are not merely convenient fea‐
tures; they are crucial for addressing two fundamental chal‐
lenges: data scarcity for critical events and computational 
sustainability. Specifically, these methods provide a robust 
solution to the inherent lack of labeled data for rare, high-im‐
pact anomalies such as cascading blackouts or cyber-physi‐
cal attacks [54], where it is difficult to construct balanced 
training sets [55]. By leveraging pre-trained knowledge and 
few examples to identify these events without retraining, 
they bypass the need for massive datasets. Furthermore, uti‐
lizing models in a “frozen” state rather than performing com‐
putationally expensive full fine-tuning could significantly re‐
duce the energy overhead, but slightly increase the cost of in‐
ference, i.e., in the case of a few-shot scenario.
4)　Multimodal Generative Models

While text-based LLMs remain a central pillar, generative 
AI has evolved to embrace multimodal architectures. Using 
architectures such as CLIP [39] has enabled the use of visual 
modalities (e.g., images or videos) as inputs along with text, 
which enables a plethora of new applications such as in visu‐
al reasoning and understanding, healthcare and medical diag‐
nostics, or robotics and autonomous systems. Diffusion mod‐
els (e.g., stable diffusion [41], [56], DALL·E [57]) now en‐
able high-fidelity image generation, image-to-image transla‐
tion, and combinations of modalities (vision + language). 
Multimodal generation models must contend with not only 
scaling in parameters and data, but also in the complexity of 
inference. Generating a high-resolution image/video or ana‐
lyzing multiple images typically incurs more energy and la‐
tency compared with processing or generating textual output.

D. Agentic AI: Beyond Generation to Autonomy

Generative models have enabled powerful capabilities in 
content synthesis, completion, and cross-modal generation. 
Building on this foundation, traditional AI agents act as mod‐
ular, task-specific systems that augment language or image 
models with tools, prompts, or scripted behaviors. The next 
frontier, agentic AI, goes further by planning and acting au‐
tonomously over multiple steps to achieve complex goals. 
These systems combine multi-agent coordination, dynamic 
task decomposition, persistent memory, and orchestrated au‐
tonomy, allowing them to adapt and make decisions with the 
minimal human intervention in evolving environments. [58], 
[59]. In practice, agentic AI interprets natural language 
goals, decomposes them into subgoals, plans sequences of 
actions, invokes external tools or application programming 
interfaces (APIs), observes outcomes, and could replan when 
necessary. It thus bridges the gap between high-level intent 
and real-world effect [60]. Architecturally, it often adopts or‐
chestrator-agent or multi-agent frameworks, where separate 
agents specialize (e.g., search, reasoning, tool execution) un‐
der coordination.

Agentic AI is important for several reasons. First, it en‐
ables more advanced automation of workflow. Instead of 
handling isolated tasks, it can carry out complete processes 
that include data collection, reasoning, tool use, and result 
generation with the minimal oversight by humans. Second, it 
reduces the human cognitive load by embedding planning, 
coordination, and handling of errors directly into the agent, 
rather than relying on humans to manage each subtask. 
Third, it enables scalable autonomy, meaning that multiple 
agents can collaborate to address complex problems that ex‐
ceed the capabilities of a single agent. Current applications 
of agentic AI span fields including healthcare, finance, robot‐
ics, adaptive software, and autonomous scientific re‐
search [61].

Yet, agentic AI comes with challenges. Reliability and ro‐
bustness remain the major concerns. The agents may drift, 
enter loops, or propose unsafe actions. Coordination failures 
or error propagation across agents can lead to cascading fail‐
ures [62], [63]. Scalability is another issue. As agent counts 
increase, communication overhead and orchestration com‐
plexity grow nonlinearly. The scope of task is also con‐
strained. In many empirical settings, agentic AI performs 
best when tasks remain within moderate complexity or time 
horizons. Furthermore, the computational and energy de‐
mands of planning, environment simulation, tool invocation, 
and error correction loops are substantial and compound the 
costs of generative backbones. Finally, governance, over‐
sight, alignment, and transparency must be built into the ar‐
chitecture to ensure safe deployment of agentic AI.

III. HARDWARE: ENGINE THAT POWERS AI

A. From Central Processing Units (CPUs) to GPUs

CPUs represent the primary computational system engi‐
neered to efficiently execute sequential instruction streams 
across a wide range of application domains including data‐
bases, data analytics, scientific simulations, financial model‐

10



VLACHOS et al.: WHAT IS MAKING ARTIFICIAL INTELLIGENCE SO SUCCESSFUL TODAY: A NEW GENERATION OF...

ing, and interactive user applications. They have been opti‐
mized to minimize data access latency and maximize single-
threaded performance through sophisticated microarchitectur‐
al techniques including branch predictors, prefetchers, out-of-
order execution (dynamically reordering instructions to re‐
duce pipeline stalls), and multi-level cache hierarchies that 
keep frequently accessed data close to the processing cores 
[64]. While modern CPUs incorporate parallelism through 
multiple cores, typically ranging from 4 to 64 cores in con‐
sumer systems and up to hundreds of cores in high-end serv‐
er processors, this parallel capability remains fundamentally 
limited compared with specialized architectures. CPUs excel 
in applications requiring complex control flow, irregular 
memory access patterns, and low-latency responsiveness. Fu‐
ture microarchitectural innovations continue to prioritize la‐
tency reduction and single-thread performance optimization 
over massive parallelism, maintaining the role of CPUs as 
the backbone of general-purpose computing systems [64].

GPUs have revolutionized parallel computing by provid‐
ing significantly more parallelism than CPUs. They were 
originally designed for graphic applications and gaming 
workloads that require rendering thousands of pixels simulta‐
neously. They feature hardware-managed caches and massive 
parallelism with thousands of cores organized in a single-in‐
struction multiple-thread (SIMT) execution model, enabling 
efficient processing of regular parallel computations [64]. 
Early GPUs demonstrated impressive performance potential 
in gaming applications, prompting GPU manufacturers to 
quickly modify their microarchitectures for general-purpose 
GPUs (GP-GPUs). GPUs introduce double-precision floating-
point support, enhancing the instruction sets for mathemati‐
cal operations, and improving memory controllers to support 
diverse applications ranging from scientific computing to 
cryptographic processing [65]. Moreover, GPUs have been 
specifically designed to provide substantially higher memory 
bandwidth than CPUs, typically delivering five to ten times 
more bandwidth. This is because their thousands of parallel 
cores necessitate massive data throughput to maintain the 
computational efficiency [66]. However, early GPU genera‐
tions consumed significantly more energy, often requiring 
two to three times than CPUs. Recent architectural advances 
have focused significant efforts on improving their perfor‐
mance-per-watt ratios, making them increasingly attractive 
for a wide range of applications [67].

GP-GPUs have also enabled significant advancements in 
programmability. Early GPUs were limited to fixed-function 
graphic pipelines, creating programming burdens for non-
graphic computations. However, high-level programming lan‐
guages such as NVIDIA’s compute unified device architec‐
ture (CUDA) [68] and the open standard OpenCL [69] have 
fundamentally transformed GPU accessibility, providing de‐
velopers with familiar C-like programming models and com‐
prehensive software development kits [70], [71]. These pro‐
gramming frameworks abstract the underlying hardware com‐
plexity while exposing fine-grained control over thread exe‐
cution, memory hierarchy management, and inter-core com‐
munication. Additionally, GPU vendors have invested heavi‐
ly in optimizing compilers, debugging tools, and perfor‐

mance profilers, while introducing automatic optimization 
techniques that significantly reduce the programming com‐
plexity barrier, thereby making the computation of GP-GPUs 
accessible to a broader range of developers [71].

ML and DL workloads, henceforth named as AI work‐
loads, inherently fit well on GPUs due to their embarrassing‐
ly parallel computational characteristics. They primarily con‐
sist of massive matrix-matrix multiplications, element-wise 
operations, and linear algebra kernels that exhibit regular da‐
ta access patterns [72], [73]. GPUs provide the essential mas‐
sive parallelism needed for training and serving ML models. 
To support the thousands of simultaneous computations exe‐
cuted by GPU cores, GPUs have been enhanced with ad‐
vanced memory technologies including three-dimensional 
(3D) memory stacking techniques and high-bandwidth mem‐
ory (HBM) [74]. This architectural alignment has resulted in 
significant performance benefits for AI workloads, and given 
the growing commercial importance of AI applications, GPU 
architects have transformed GPU microarchitectures to more 
effectively accommodate AI-specific computational require‐
ments. Specifically, GPUs have been enhanced with special‐
ized tensor cores [75] designed to accelerate matrix opera‐
tions, alongside support for mixed-precision formats that bal‐
ance the computational throughput with numerical accuracy. 
GPU manufacturers have progressively expanded numerical 
format support beyond traditional 32-bit floating-point 
(FP32) to include 16-bit floating-point (FP16) for memory 
efficiency, 16-bit brain floating-point (BF16) for improved 
numerical stability, and lower precision formats such as 8-bit 
integer (INT8), 4-bit integer (INT4), and recently 4-bit float‐
ing-point (FP4). Additionally, modern GPUs incorporate ad‐
vanced interconnect technologies such as NVLink and opti‐
mized multi-GPU communication protocols to enable effi‐
cient multi-GPU parallelism [65]. As increasingly large DL 
models such as LLMs cannot fit within single GPU memory 
constraints due to their substantial parameter counts, effi‐
cient multi-GPU communication becomes essential for high-
performance distributed training, fine-tuning, inference, and 
serving across multiple GPU devices [76]. Complementing 
these hardware advances, the software ecosystem has ma‐
tured significantly with comprehensive development frame‐
works and sophisticated compilers that automatically opti‐
mize AI workloads for GPU architectures, thereby maximiz‐
ing hardware utilization for AI applications [77], [78].

Although GPUs enable high performance in AI work‐
loads, the latest high-end GPU architectures are extremely 
power-hungry, consuming substantial energy and contribut‐
ing significantly to carbon emissions due to their design 
characteristics including thousands of parallel cores operat‐
ing at high frequencies and extensive memory bandwidth ca‐
pabilities [67]. Generative AI models, which contain billions 
to trillions of parameters, have necessitated the deployment 
of these energy-intensive GPUs, and, more importantly, re‐
quire multi-GPU configurations for training and inference, 
exponentially increasing energy consumption and carbon 
emissions [79]. Architectural advancements such as special‐
ized compute units such as Tensor Cores inherently result in 
elevated energy densities and thermal design challenges that 
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further exacerbate energy consumption. Consequently, the en‐
ergy efficiency and carbon footprint reduction have emerged 
as critical microarchitectural design challenges that must be 
addressed to ensure the sustainable development of AI [80].

B. Tensor Processing Units (TPUs) and AI Accelerators

AI accelerators represent a new generation of specialized 
processors designed exclusively for AI computations, emerg‐
ing as purpose-built alternatives to GPUs. While GPUs have 
demonstrated significant improvements of performance over 
CPUs for AI workloads due to their parallel architecture, 
they were originally designed for graphics rendering and car‐
ried substantial overhead from graphic-specific hardware 
characteristics that were unnecessary for AI computations. 
To this end, technology companies have developed dedicated 
AI accelerators that aim to optimize multiple aspects of the 
chip architecture specifically tailored for AI, including spe‐
cialized matrix multiplication units, optimized memory hier‐
archies for access patterns to AI data, custom numerical pre‐
cision formats, and streamlined instruction sets tailored for 
tensor operations. These AI accelerators typically feature 
large on-chip memory to minimize the expensive off-chip da‐
ta movement, systolic array architectures for efficient matrix 
computations, and custom interconnects designed for multi-
chip scaling of large AI models. Unlike GPUs that must bal‐
ance graphics and compute workloads, AI accelerators 
achieve significantly higher performance per watt and faster 
training and inference time by dedicating their entire silicon 
area and design complexity exclusively to AI algorithms.

TPUs represent the first commercially available AI acceler‐
ators, introduced in 2016 as purpose-built processors for neu‐
ral network computations [81]. TPUs employ a systolic array 
architecture, where data flow through a grid of processing el‐
ements in a synchronized manner. TPUs enable highly effi‐
cient matrix-matrix multiplication operations that are funda‐
mental computational kernels in AI workloads. Originally, 
TPUs are designed specifically for CNNs and inference 
workloads, featuring 8-bit integer arithmetic and large on-
chip memory to minimize data movement costs. Subsequent 
generations (TPU V2, V3, and V4) have expanded their ca‐
pabilities to support training workloads, floating-point preci‐
sion, and diverse AI model architectures including transform‐
ers and RNNs [82]. Compared with GPUs, TPUs achieve su‐
perior performance per watt and faster execution time for AI 
workloads by optimizing data flow based hardware support 
for tensor operations.

Apart from Google, other major cloud providers have also 
developed custom AI accelerators to optimize performance 
and reduce costs for their specific infrastructure and AI 
workloads. Specifically, Amazon Web Services (AWS) offers 
two types of AI accelerators: ① trainium chips for training, 
and ② inferentia chips for inference, featuring custom in‐
struction sets, high-bandwidth memory, vector processing en‐
gines, and optimized interconnects designed to integrate 
seamlessly with AWS cloud services [83], [84]. Similarly, 
Microsoft’s Maia accelerators employ co-optimization of 
both hardware and software, which is specifically tailored 
for Azure’s AI services, featuring advanced memory hierar‐

chies and interconnects designed for large-scale distributed 
training [85]. These cloud-native AI accelerators offer signifi‐
cant advantages including lower total cost of ownership, opti‐
mized performance for cloud-specific AI workloads, seam‐
less integration with cloud services and frameworks, and the 
ability to scale efficiently across thousands of accelerators in 
datacenter deployments.

Specialized AI accelerator companies have developed inno‐
vative architectures targeting different aspects of AI perfor‐
mance. Graphcore’s intelligence processing units (IPUs) in‐
clude thousands of high-performance parallel cores, where 
each core and its locally accessible in-processor memory 
unit form a tile, and data are exchanged among tiles using a 
bulk synchronous parallel model, enabling efficient model 
parallelism for large AI models [86]. Cerebras’ wafer-scale 
engine (WSE) represents an extreme method by utilizing an 
entire silicon wafer as a single chip with over 800000 cores 
and 40 GB of on-chip memory, delivering hundreds of Pet‐
aFLOPs of AI compute throughput and enabling unprecedent‐
ed parallelism for training massive AI models [87]. Intel’s 
Gaudi accelerators focus on scalable training through Ether‐
net-based interconnects and mixed-precision capabilities, of‐
fering flexible deployment options, cost-effective scaling, 
and generality in supporting a wide variety of AI models 
and frameworks [88]. These specialized AI architectures pro‐
vide key benefits including significantly reduced memory 
bottlenecks, higher computational density, improved energy 
efficiency, and optimized performance for specific AI model 
types and scaling scenarios.

Lastly, neural processing units (NPUs) represent a distinct 
category of AI accelerators characterized by their integration 
into system-on-chip (SoC) architectures and optimization for 
diverse deployment scenarios. NPUs feature specialized AI 
instruction sets, variable precision arithmetic support, and en‐
ergy-efficient designs that consume significantly less energy 
than CPUs or GPUs, while being highly optimized for ma‐
trix-matrix and matrix-vector computational kernels [89]. Ex‐
amples include Apple’s Neural Engine [90] integrated into 
mobile and desktop processors, Qualcomm’s Hexagon 
NPUs in Snapdragon SoCs [91], and dedicated edge devices 
such as Google’s Edge TPU [92]. NPUs work alongside 
CPUs and GPUs to handle AI workloads, which are ideal 
for mobile and battery-powered devices. Unlike larger AI ac‐
celerators, NPUs prioritize energy efficiency and real-time 
processing capabilities, making them particularly suitable for 
edge computing applications including smart phones, Inter‐
net of Things (IoT) devices, autonomous vehicles, and em‐
bedded systems where energy constraints and latency require‐
ments are critical, while maintaining sufficient computational 
capability for AI inference and lightweight training tasks.

C. Specialized Hardware: Application-specific Integrated 
Circuits (ASICs), Field-programmable Gate Arrays (FPGAs), 
and Neuromorphic Computing

Apart from GPUs and AI accelerators discussed above, 
ASICs are more specialized for AI acceleration. ASICs are 
built for specific workloads, and feature custom silicon de‐
signs optimized for specific neural network architectures and 
AI applications. Unlike general-purpose AI accelerators, 
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ASICs are designed from the ground up for the particular AI 
workloads. Since they have dedicated hardware designs for 
target AI workloads, they consistently outperform more gen‐
eral-purpose accelerators (e.g., CPUs or GPUs) in both per‐
formance and energy comsuption, as they enable extreme op‐
timization by eliminating unnecessary functionality and hard‐
wiring specific computational patterns directly into silicon 
[93]. ASICs serve two primary domains: large-scale training 
and inference in datacenters, and resource-constrained edge 
AI applications [94]. Notable examples include Google’s 
TPUs for cloud-scale operations, along with other special‐
ized architectures such as NPUs, IPUs, and WSEs. In the 
edge computing space, Apple’s Neural Engine and Hua‐
wei’s Ascend processors demonstrate how ASICs enable on-
device AI capabilities while maintaining strict power and 
thermal constraints. A few other examples include Tesla’s 
full self-driving (FSD) [95] chip optimized specifically for 
computer vision in autonomous vehicles, Meta’s Training 
and Inference Accelerator (MTIA) [96] designed for their 
specific recommendation and language models, and Hailo’s 
AI processors targeting edge inference applications. ASICs 
achieve superior performance per watt and cost efficiency 
for their target applications by dedicating every transistor to 
specific computational requirements, featuring custom data‐
paths, optimized memory hierarchies, and specialized arith‐
metic units that perfectly match the target neural network op‐
erations. Thus, ASICs are well-suited in application-specific 
and high-volume deployment scenarios, where workload 
characteristics are well-defined and stable.

Although ASICs enable high performance, they can be dif‐
ficult to program and modify once fabricated. FPGAs offer 
an attractive trade-off between the flexibility of software-
based development and the high performance of custom 
hardware. Unlike general-purpose GPUs with fixed architec‐
tures that cannot be reprogrammed, FPGAs feature reconfig‐
urable logic blocks that can be programmed to implement 
custom digital circuits optimized for specific AI workloads. 
FPGAs provide reconfigurability that enables application-spe‐
cific optimization, resulting in reduced latency and energy 
consumption. Designers can implement domain-specific opti‐
mizations and tailor circuits to specific workloads, achieving 
exceptional performance per watt [97]. FPGAs are typically 
used in AI applications that require ultra-low latency such as 
autonomous vehicle control systems and edge inference, 
where fast response time in miliseconds is critical, and they 
also excel in edge computing and IoT applications. Major 
FPGA vendors such as Intel (formerly Altera) and AMD 
Xilinx have developed AI-specific architectures, e.g., the Ver‐
sal Adaptive Compute Acceleration Platform (ACAP) [98], 
which combines traditional FPGA fabric with dedicated AI 
engines, high-bandwidth memory interfaces, and integrated 
processing cores. Microsoft’s Project Brainwave [99] exem‐
plifies by deploying FPGAs across Azure datacenters to ac‐
celerate AI inference services with consistently low latency, 
but FPGAs are also used by other cloud providers (e.g., Mi‐
crosoft, AWS, Huawei, and Baidu) for scalable AI inference. 
The key advantage of FPGAs lies in their ability to imple‐
ment custom precision arithmetic formats, create optimized 

dataflow architectures that minimize memory access over‐
head, and adapt to evolving AI algorithms through reconfigu‐
ration [97]. This makes them particularly well-suited for AI 
applications where computational requirements may change 
over time, such as low-latency inference in real-time AI ap‐
plications.

Neuromorphic computing is fundamentally different for 
AI processing, as it mimics the structure and operation of bi‐
ological neural networks (i. e., the way human brains oper‐
ate) through event-driven, asynchronous computation. This 
contrasts with the synchronous clock-based operation of tra‐
ditional digital processors. These neurological and biological 
mechanisms are modeled through spiking neural networks 
(SNNs), which are composed of spiking neurons and synaps‐
es that replicate human brain’s event-driven signaling, result‐
ing in sparse and asynchronous computation [100], [101]. In‐
stead of following the traditional von Neumann architec‐
tures, where computation and memory are physically separat‐
ed, neuromorphic systems integrate processing and memory 
in a highly parallel, event-driven manner [102]. As computa‐
tions occur only when spikes are present, neuromorphic sys‐
tems achieve extremely low energy consumption relatively 
to all the accelerators described above. By both storing and 
processing data within individual neurons, they deliver lower 
latency and faster computation compared with von Neumann 
architectures. Neuromorphic chips such as Intel’s Loihi 2, 
IBM’s TrueNorth, and BrainChip’s Akida implement SNNs 
where information is encoded in the timing and frequency of 
discrete events (spikes) rather than continuous numerical val‐
ues, enabling ultra-low energy consumption for specific AI 
tasks such as pattern recognition, sensory processing, and 
adaptive learning [100]. In academia, early implementations 
include Stanford University’s Neurogrid [103], a mixed ana‐
log-digital multichip system capable of simulating a million 
neurons with billions of synaptic connections in real time. 
Research hub Interuniversity Microelectronics Centre 
(IMEC) developed a self-learning neuromorphic chip, while 
the European Union’s Human Brain Project [104] produced 
large-scale neuromorphic machines. The neuromorphic sys‐
tems can be well-suited for applications that require real-
time processing with the minimal energy consumption such 
as robotics control and brain-computer interfaces, achieving 
higher energy efficiency by several orders of magnitude com‐
pared with traditional processors for certain workloads. How‐
ever, neuromorphic computing still remains largely experi‐
mental.

D. Datacenters and Supercomputing Infrustructure for AI at 
Scale

State-of-the-art AI workloads have evolved to unprecedent‐
ed computational and memory requirements by incorporating 
billions to trillions of parameters to achieve high-quality per‐
formance. This trend necessitates immense compute and 
memory capabilities that far exceed those of single comput‐
ing nodes, requiring massive datacenter and supercomputing 
infrastructure to support AI training and deployment. LLMs 
such as GPT-4 and Llama require hundreds to thousands of 
high-end GPUs for training and hundreds of GPUs even for 
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inference workloads, consuming PetaFLOPs of computation‐
al resources, generating terabytes of intermediate data, and 
consuming megawatts of power. These models demand enor‐
mous computational throughput alongside high-bandwidth 
memory systems and networks, as well as advanced storage 
technologies to manage massive datasets and model check‐
points [105]. This emerging trend has fundamentally trans‐
formed AI development from single-node computing to com‐
plex distributed systems, where thousands of accelerators 
must be coordinated across datacenter networks with sophis‐
ticated interconnects, making supercomputing infrastructure 
an essential prerequisite for advancing the frontiers of AI re‐
search and deployment.

Datacenters have undergone fundamental transformations 
to accommodate the demanding requirements of AI work‐
loads. They have evolved from traditional server architec‐
tures to heterogeneous computing environments that inte‐
grate diverse AI accelerators including GPUs, TPUs, and spe‐
cialized AI chips with massive compute and memory capabil‐
ities, featuring heterogeneous hardware characteristics to ac‐
commodate different types of emerging AI workloads, with 
all these nodes interconnected over high-bandwidth networks 
within and across computing nodes [106]. The power and 
thermal challenges are unprecedented, with individual GPUs 
consuming 250-700 W power and AI clusters requiring thou‐
sands of these accelerators, necessitating megawatts of pow‐
er delivery and sophisticated cooling solutions, alongside 
specialized power infrastructure featuring redundant power 
supplies, advanced power distribution units, and backup sys‐
tems to ensure continuous operation. To address the require‐
ments of latency and performance, these heterogeneous com‐
puting nodes have been integrated with high-bandwidth net‐
working architectures featuring InfiniBand EDR/HDR/NDR 
(100/200/400 Gbit/s), high-speed Ethernet (100 GbE/400 
GbE), and custom interconnect solutions organized in multi-
tier topologies designed to minimize communication bottle‐
necks during distributed training and serving [106], [107]. 
Additionally, fast interconnection technologies are integrated 
within computing nodes, including NVLink 4.0 [108] provid‐
ing 900 GB/s bidirectional bandwidth between GPU accelera‐
tors, peripheral component interconnect express (PCIe) 5.0 
interfaces, and emerging compute express link (CXL) [109] 
technology that enables cache-coherent memory sharing and 
pooling across heterogeneous processors within a node. To 
further enhance the compute and communication throughput, 
manufacturers have developed dedicated switches and net‐
work devices such as NVIDIA’s Quantum InfiniBand 
switches and Mellanox Spectrum Ethernet switches [107], 
some of which integrate lightweight cores and perform the 
computation as data are being exchanged among AI accelera‐
tors. Finally, these AI facilities integrate advanced storage 
systems including parallel file systems (e.g., Lustre file sys‐
tem, IBM Spectrum Scale, BeeGFS) [110], [111] and high-
performance object storage to enable efficient access to mas‐
sive datasets measured in petabytes for AI training work‐
loads, while providing the necessary input/output (I/O) 
throughput to supply AI accelerators with data efficiently, 
without pipeline bottlenecks that would underutilize expen‐

sive computational resources.
Supercomputers designed specifically for AI workloads 

represent the pinnacle of distributed computing systems, fea‐
turing massive clusters of specialized accelerators optimized 
for neural network training and inference at unprecedented 
scales. Notable AI supercomputers include NVIDIA’s DGX 
SuperPOD systems such as the DGX A100 SuperPOD with 
up to 140 computing nodes containing 1120 A100 GPUs in‐
terconnected via NVLink and InfiniBand HDR, delivering 
more than 400 PetaFLOPs of AI performance [112]. 
Google’s TPU Pods [113] featuring up to 4096 TPU V4 
chips in a single Pod with 1.1 exaflops of computational ca‐
pacity, and Microsoft’s supercomputing infrastructure built 
on Azure with over 14400 H100 GPUs is specifically de‐
signed for training LLMs [106]. These systems feature so‐
phisticated multi-node architectures with hundreds to thou‐
sands of computing nodes, hierarchical memory systems 
spanning the high-bandwidth memory of GPU (up to 80 GB 
HBM2e per GPU), node-level double data rate (DDR) mem‐
ory (up to 2 TB per node), and shared parallel storage sys‐
tems measured in petabytes. Advanced fault tolerance mecha‐
nisms include checkpoint and restart capabilities, redundant 
networking paths, and proactive hardware monitoring to 
maintain reliability across millions of components. Further‐
more, these supercomputers employ specialized job schedul‐
ing systems such as Slurm and Kubernetes with AI-aware re‐
source management that optimize the allocation of GPUs, 
and provide efficient resource sharing among concurrent AI 
workloads while managing energy consumption and thermal 
constraints across the entire facility.

Moreover, hyperscale cloud providers have established 
global networks of specialized datacenters to serve the com‐
putational demands of leading AI companies and researchers 
worldwide. Major cloud providers offer dedicated AI infra‐
structure including AWS with EC2 P4d instances [114] fea‐
turing 8 NVIDIA A100 GPUs per node and P5 instances 
[115] with H100 GPUs, supporting companies such as An‐
thropic for Claude model training, Google Cloud Platform 
for providing TPU pods used by organizations for LLM de‐
velopment, and Azure for offering NDv2/NDv4 instances 
[116] with up to 8 V100/A100 GPUs per node, while host‐
ing GPT models of OpenAI through their strategic partner‐
ship and dedicated supercomputing infrastructures. Special‐
ized AI cloud providers such as CoreWeave, Lambda Labs, 
Paperspace, and RunPod have emerged to offer GPU-fo‐
cused infrastructure with competitive pricing and AI-opti‐
mized configurations, often providing faster deployment and 
more flexible resource allocation than traditional cloud gi‐
ants. These cloud platforms deliver the infrastructure as a 
service (IaaS) capabilities including on-demand GPU clus‐
ters that can scale from single instances to thousands of ac‐
celerators within minutes. The geographic distribution of 
cloud AI infrastructure spans multiple continents with strate‐
gically located datacenters in North America (AWS US-West-
2, Google US-Central1), Europe (EU-West, EU-Central), and 
Asia-Pacific (Asia-Southeast, Asia-Northeast) regions, en‐
abling AI companies to deploy models closer to end-users 
for reduced latency while serving millions of users globally.
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E. Energy Consumption and Environmental Footprint of AI

The rapid exponential scaling of contemporary AI models, 
from billions to trillions of parameters, together with the con‐
comitant growth in dataset size and continuous large-scale 
service deployment, has induced a distinct and rapidly grow‐
ing set of energy and infrastructure challenges. Large cloud 
datacenters that host training and serving workloads are dom‐
inated by energy-intensive accelerators and substantial facili‐
ty support systems (cooling, power distribution, networking, 
and storage). These facilities therefore generate two concep‐
tually distinct classes of carbon emissions that must be ac‐
counted for in any comprehensive environmental assessment: 
embodied emissions incurred during the manufacture, trans‐
port, and end-of-life disposal of hardware components, and 
operational emissions incurred by the energy consumed in 
training, inference, and the ancillary facility systems re‐
quired to keep the hardware and services available [105]. At 
the scale of modern AI services, these contributions are non-
trivial: analyses of high-volume conversational systems esti‐
mate the daily energy consumption on the order of that con‐
sumed by hundreds of thousands of households (for exam‐
ple, energy demand comparable to the daily electricity usage 
of approximately 180000 households), and information and 
communication technology (ICT) is projected by sectoral 
analyses to account for a significant portion of global emis‐
sions over the next decade. These magnitudes emphasize 
that AI growth is not only a computing or economic prob‐
lem, but a systemic challenge for power system sustainabili‐
ty [105], [117].

Energy consumption is concentrated in two lifecycle phas‐
es, i. e., training and inference, but their relative importance 
depends strongly on the deployment scale and use patterns. 
Training very large models remains extraordinarily energy-in‐
tensive; however, when models are widely deployed for in‐
ference, the aggregate energy consumed by serving can dom‐
inate the lifecycle of a model. Recent empirical studies indi‐
cate that architectural and training environment choices can 
produce very large reductions in training energy (e.g., [118] 
reports reductions on the order of 80.7% under certain opti‐
mizations with only negligible loss in task correctness), 
whereas detailed measurements of inference on modern ac‐
celerators reveal that per-query energy is sensitive to model 
architecture and sequence length. For example, measure‐
ments on frontier models running on H100-class hardware 
yield median per-query energies on the order of 0.34 Wh un‐
der typical token lengths, rising to 4.32 Wh for token 
lengths increased by 15 times. Extrapolating these per-query 
costs to population-scale workloads produces daily energy 
demands on the order of 108-109 Wh [119]. Under realistic 
conditions, serving 1 billion queries per day has been esti‐
mated to require on the order of 0.8 GWh energy. Work‐
loads with a non-negligible fraction of much longer queries 
(e.g., 10%) could raise that figure toward 1.8 GWh per day 
absent countervailing efficiency improvements, though mod‐
est system and software efficiency gains can materially re‐
duce these totals [119]. These quantitative examples illus‐
trate how modest changes in per-query energy or fraction of 
long queries could translate into very large shifts in absolute 

energy demand once services reach the global scale [80]
Beyond the energy consumption by direct computing, fa‐

cility-level overhead significantly amplifies the lifecycle en‐
ergy and emissions. Cooling, uninterruptible power supplies, 
power distribution losses, networking equipment, and storage 
subsystems impose additional loads that are captured, albeit 
imperfectly, by facility metrics such as power usage effec‐
tiveness (PUE). In inefficient facilities, these overheads can 
effectively double or triple the energy attributable to raw 
compute, so careful attention is indispensable for facility de‐
sign, siting, and operations. Macro-scale data contextualize 
the sectoral impact: recent assessments place the energy con‐
sumption of datacenters in the hundreds of terawatt-hours 
per year (for example, IEA/Nature [120] estimates for 2022 
are in the range of 240-340 TWh, roughly 1%-1.3% of glob‐
al electric power demand), underscoring that trends in AI de‐
ployment will interact materially with broader efforts in pow‐
er system planning and decarbonization.

As the environmental consequences of AI are inherently 
coupled to power system operations and long-term infrastruc‐
ture planning, it is vital to point out the importance of trans‐
parent, lifecycle-aware reporting and of coordinated system 
planning. To be both standardized and reproducible, energy 
accounting must ideally incorporate measured per-query ener‐
gy, PUE-normalized facility loads, embodied emissions (am‐
ortized using realistic lifecycle assumptions), and the carbon 
intensity of purchased as well as onsite electricity. It will en‐
able objective comparison of architectural choices and de‐
ployment strategies, and will allow researchers and power 
system operators to evaluate the system-level implications of 
shifts in AI demand. Mitigation is therefore not solely a mat‐
ter of hardware design or algorithmic optimization, but re‐
quires alignment across hardware innovation, datacenter engi‐
neering, model development, operational policy, energy pro‐
curement, and regulatory frameworks. Only by combining 
rigorous measurement and reporting with these multi-layered 
interventions can the community both quantify the true costs 
of large-scale AI and identify the most effective levers for re‐
ducing its footprint.

However, it is imperative to differentiate between the in‐
creasing energy demands of AI and the established workload 
of traditional datacenter operations. According to the Electric 
Power Research Institute (EPRI), AI applications currently 
represent only 10%-20% of electricity consumption of data‐
centers, meaning the vast majority of consumption is still 
driven by traditional activities such as cloud computing, 
streaming, and data retrieval [121]. Data from the Interna‐
tional Energy Agency (IEA) supports this conclusion, esti‐
mating that while the global electricity consumption of data‐
centers reached 460 TWh in 2022, this figure could double 
to over 1000 TWh by 2026 largely due to the rapid scaling 
of AI workloads [122]. This shift is highlighted by the differ‐
ence in computational intensity as a single Chat-GPT query 
is estimated to require 2.9 Wh of electricity, where a stan‐
dard Google Search consumes only 0.3 Wh. Thus, while tra‐
ditional infrastructure constitutes the current bulk of the ener‐
gy footprint, AI is the decisive factor in its projected expo‐
nential growth.
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IV. TOOLBOXES, FRAMEWORKS, AND EMERGING 
APPLICATIONS

A. Rise of Open-source AI Frameworks

The adoption of open-source AI frameworks has had a 
transformative impact on the field, promoting the standard‐
ization of AI workflows, enhancing scientific reproducibility, 
and democratizing access to state-of-the-art model develop‐
ment.
1)　Definition of AI Frameworks

An AI framework (also known as an ML or DL frame‐
work) is a software system that provides the abstractions, li‐
braries, and APIs needed to build, train, evaluate, and deploy 
AI models. By handling low-level tasks such as tensor opera‐
tions, automatic differentiation, computational graph optimi‐
zation, and distribution across hardware such as GPUs or 
TPUs, AI frameworks allow researchers and engineers to fo‐
cus on high-level model architecture rather than rebuilding 
foundational components. As the field has matured, analyses 
have shown that AI frameworks must balance competing de‐
mands, by trading off research flexibility, performance, hard‐
ware support, and production readiness [123].
2)　Evolution of Major DL Frameworks

The evolution of major DL frameworks follows a shift 
from early constrained systems such as Theano [124] toward 
more open, community-driven, and dynamic paradigms. This 
trend gave rise to PyTorch [125], which supported a dynam‐
ic style that offered greater usability and flexibility for re‐
search. In contrast, TensorFlow [123] continued to specialize 
in large-scale industrial applications, leveraging its static 
computation graph for highly optimized and distributed de‐
ployment. Today, ecosystem has become more specialized, 
with key platforms consolidating their roles. JAX [126] 
emerged to serve the scientific AI community, offering high-
performance differentiable programming for exceptional 
speed and automatic vectorization. Unifying this diverse 
landscape is the Hugging Face ecosystem, which functions 
as a central platform providing model hubs [127] and stan‐
dardized datasets [128]. This facilitates community-driven 
fine-tuning and transfer learning, enabling seamless model 
sharing across all major frameworks. This standardization ef‐
fect was particularly transformative for NLP, where plat‐
forms such as Hugging Face created a unified ecosystem 
around the transformer architecture [127]. In contrast, com‐
puter vision tasks have historically required more specialized 
data preprocessing and pipelines, making their workflows 
more difficult for standardization and reproduction.
3)　End-to-end Toolchain

Beyond core frameworks, a complete AI pipeline requires 
a coordinated toolchain to manage the entire model lifecycle, 
from development to production. This process can be broken 
down into three key stages as follows.

1) Building and training: in this initial phase, researchers 
use frameworks such as PyTorch, TensorFlow, and JAX to 
construct neural architectures and manage training loops. Ex‐
periment management and hyperparameter optimization tools 
are also essential, as reproducible optimization has been 
shown to reduce outcome variance and improve comparabili‐

ty across experiments.
2) Validation and evaluation: once a model is trained, it 

must be rigorously validated to ensure generalization, robust‐
ness, fairness, and reproducibility. This process extends be‐
yond simple accuracy metrics to include cross-validation, 
out-of-domain testing, uncertainty quantification, and analy‐
sis under distribution shift.

3) Deployment and serving: the final stage converts vali‐
dated models into production services, which is a task that 
presents unique challenges for LLMs due to their immense 
size and computational cost. To make the production servic‐
es feasible, a suite of optimization techniques are employed. 
Quantization, for instance, reduces the numerical precision 
of model weights, drastically cutting the memory footprint 
and increasing the speed. Other prevalent methods include 
knowledge distillation [129], where smaller and more effi‐
cient student models are trained to replicate the behavior of 
larger teacher models, and pruning [130], [131], which re‐
moves redundant or low-importance parameters to reduce 
memory footprint and computational cost while preserving 
the performance of the models.

To manage the high demands of real-time inference, spe‐
cialized serving frameworks have become essential. Modern 
engines such as vLLM [132] and SGLang [133] are de‐
signed specifically for high-throughput LLM serving. These 
specialized toolboxes represent a critical evolution from gen‐
eral-purpose model servers, providing the performance neces‐
sary for modern generative AI applications. Together, the 
toolboxes across these pipeline stages form an integrated eco‐
system designed to support reproducibility, low-latency infer‐
ence, versioning, and smooth updates under the realistic con‐
straints of production hardware and environments.

B. Modern Software Stacks

The dramatic shift from simple training loops to modern 
software stacks has transformed large-scale AI from an ex‐
perimental slog into an engineering discipline where efficien‐
cy is engineered at every layer. Naïve epoch-by-epoch code 
quickly runs into memory, bandwidth, and latency ceilings. 
GPUs are idle waiting on small kernels, interconnects be‐
come bottlenecks, and energy costs explode, which become 
conditions that make models with billions of parameters im‐
practical. Modern software stacks expose and exploit device 
characteristics across layers so that raw compute is convert‐
ed into usable model capacity at scale.

At the foundation are low-level libraries that provide high-
performance primitives and access to hardware features. Li‐
braries such as CUDA and cuDNN expose optimized convo‐
lution, reduction, and collective kernels, and the program‐
ming model for modern GPUs, removing the need for frame‐
work authors to reimplement low-level kernels for each gen‐
eration of device. Building on these primitives, DL compil‐
ers and graph-lowering systems (e. g., XLA [134], Torch‐
Script [135], TVM [77], TensorRT [136]) translate high-level 
model descriptions into fused, device-tuned kernels and opti‐
mized execution graphs, reducing the launch of kernel over‐
head, improving locality, and enabling cross-operator optimi‐
zations that deliver large throughput gains.
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Complementing the compilation are parallelization strate‐
gies that match the algorithmic structure to hardware. Data 
parallelism shards minibatches across workers, and when 
combined with careful scaling and warmup of learning rate, 
it enables efficient training with very large batch sizes. For 
models with billions of parameters, parallelism shards 
weights and activations across devices so that each individu‐
al GPU hosts only a fraction of a very large model (e. g., 
Megatron [137]). Recent systems combine these dimensions 
and demonstrate training with sizes that are previously unre‐
achievable.

End-to-end optimization closes the deployment loop. 
Mixed-precision training (FP16/FP32) halves memory band‐
width and compute cost without harming accuracy when it is 
applied correctly. Quantization, pruning, and activation or 
weight compression further shrink footprints for inference. 
And the production runtimes (open neural network exchange 
(ONNX) runtime [138], DeepSpeed [139], vLLM [132], 
etc.) operationalize these techniques for high-throughput and 
low-latency serving. The consequence is that efficiency is 
now a first-class research problem. Modern stacks and sys‐
tems-level innovations convert the compute and energy into 
model capabilities in a far more effective manner, shifting 
the central question from “can we train this model” to “how 
cheaply, quickly, and sustainably can we train and serve it”. 
This co-design of software and hardware yields remarkably 
higher performance per watt and per GPU-hour, enabling ex‐
periments and deployments that were previously infeasible.

C. Role of Data in AI’ s Success

The scale, diversity, and curation of data are often deci‐
sive behind modern AI performance. While model architec‐
tures and training techniques attract increasing attention, the 
underlying datasets enable, constrain, and sometimes bias 
what models can learn. This subsection outlines the histori‐
cal progression from small datasets to web-scale corpora, 
highlights open data ecosystems that support reproducibility, 
examines the data quality challenges, addresses ethical and 
legal constraints, and presents data-focused trends that shift 
emphasis from model-first to data-first practices.
1)　From Small Datasets to Web-scale Corpora

Early breakthroughs in computer vision and NLP were 
driven by carefully labeled task-specific datasets such as Im‐
ageNet [140] and COCO [141], which enabled systematic 
benchmarking and architecture-driven improvement. Over 
the last decade, however, the field shifted toward massive, 
loosely curated corpora, e.g., Common Crawl [142] for web 
text, LAION [143] for large-scale image-text pairs, and The 
Pile [144] for diverse text sources, which now power con‐
temporary large language and multimodal models. The move 
toward web-scale data has brought dramatic gains through 
sheer exposure to linguistic and visual variety, but also intro‐
duced new issues around noise, redundancy, and provenance.
2)　Open Data Ecosystems Supporting Reproducibility

Community-maintained platforms and efforts such as Hug‐
ging Face datasets [128] and the BigScience initiative [145] 
have become central to reproducible research by distributing 
cleaned, documented datasets and standard loading APIs. 
These resources lower the barrier of entrance, enable apples-

to-apples comparisons, and encourage better dataset version‐
ing and provenance tracking through community curation.
3)　Data Quality Challenges: The Hidden Engineering

High-performing models require more than volume. Quali‐
ty engineering is critical. Common problems include label 
noise, uninformative or duplicated examples, long-tail distri‐
butional gaps, and dataset contamination (e.g., evaluation ex‐
amples leaking into training), which are issues highlighted 
as part of the broader engineering risks in deployed ML 
models. Mitigating these problems requires a toolbox of tech‐
niques such as deduplication, filtering, manual vetting, strati‐
fied sampling, careful split construction, and substantial com‐
pute and human effort. Moreover, biases encoded in source 
data (demographic, cultural, topical) directly translate into 
model behavior, making dataset construction and auditing es‐
sential engineering tasks rather than afterthoughts [146].
4)　Ethical and Legal Constraints

Large-scale data collection raises complex ethical and le‐
gal questions. Copyright and ownership of scraped content, 
consent for personal data, privacy-sensitive information, and 
the downstream harms of biased or toxic material are all cen‐
tral concerns. Responsible dataset governance demands clear 
documentation (e. g., datasheets or data cards), provenance 
tracking, and opt-out and takedown mechanisms with feasi‐
ble and legal review [146]. Transparent documentation and 
modular dataset design are practical steps that facilitate safer 
research and deployment.
5)　Data-focused Trends

Recent trends emphasize improving data rather than solely 
scaling models. Synthetic data generation, active data selec‐
tion (prioritized sampling and curriculum learning), and tar‐
geted human annotation for rare or high-value cases are 
growing strategies. At the same time, modern generative 
pipelines increasingly combine these data-centric practices 
with behavioral and reasoning techniques, e. g., instruction 
tuning and RLHF to align model behavior, “thinking” or rea‐
soning-augmented methods (chain-of-thought prompting, self-
consistency, and tree-of-thoughts) that expose internal delib‐
eration and improve the solving process of complex prob‐
lem, and inference-time tactics such as retrieval-augmented 
generation and tool use. Together, synthetic or curated data, 
active selection, targeted annotation, RLHF, and thinking 
models form a complementary toolbox that often yields fast‐
er, more reliable, and more compute-efficient improvements 
than blind model scaling, and they slot naturally into the da‐
ta-focused AI workflow of iterative measurement, targeted 
correction, and retraining.

D. Emerging Applications in Power Systems

To date, the application of AI in power systems has pri‐
marily functioned as an analytical layer focused on observa‐
tion and prediction. Established techniques such as LSTM 
networks and random forests are now standard for load and 
generation predictions and non-intrusive load monitoring. 
Similarly, CNNs have found widespread application in pre‐
dictive maintenance, utilizing computer vision to detect 
faults in transmission lines or thermal anomalies in substa‐
tion equipment. While these applications have significantly 
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improved observability, the next phase of power system evo‐
lution demands a shift from passive analysis to active auton‐
omous control. This transition is being driven by agentic AI, 
which moves beyond simple data synthesis to autonomous 
decision-making. In advanced distribution management sys‐
tems (ADMSs) and virtual power plants (VPPs), agentic AI 
architectures can replace static optimization tools. Unlike tra‐
ditional models, these agents operate as orchestrators capable 
of multi-step reasoning, which interprets natural language 
goals to coordinate deterministic power flow solvers and eco‐
nomic scheduling algorithms [147], [148]. This could allow 
for self-healing capabilities where the system can autono‐
mously isolate faults and quickly reconfigure its topology, 
supporting human operators during critical events. This kind 
of autonomy requires a fundamental change in how the pow‐
er system is represented and computed. GNNs are emerging 
as the superior architecture for digital twins, as they natural‐
ly encode the non-Euclidean network topology better than 
traditional models [149]. Furthermore, the deployment of 
these advanced models is becoming increasingly decentral‐
ized. To mitigate cloud latency in mission-critical assets 
such as protection relays, algorithms are migrating to the 
Edge by utilizing the NPUs and low-power FPGAs dis‐
cussed in Section III to execute inference directly at the 
smart meter level [150], [151]. This convergence of autono‐
mous agents, topological reasoning, and edge hardware repre‐
sents the cutting-edge of AI-enabled power systems.

V. CONCLUSION 

A key conclusion of this paper is the explosion of AI tech‐
nology. With a historical review of AI algorithms, special‐
ized hardware, and improved toolboxes, we have witnessed 
how the AI community has transformed from its early stages 
in the 1980s to the state-of-the-art progresses in many scien‐
tific domains. DL has enabled technologies with unprecedent‐
ed capabilities. We must note the acceleration in this do‐
main, e.g., the rise of foundational architectures such as the 
transformer [15] has radically altered what is feasible. The 
AI research community has expanded greatly, and open-
source platforms along with a far larger group of researchers 
and developers have turned advances into shared, rapidly re‐
usable artifacts. This is a key reason why AI breakthroughs 
now compound far faster than in many mature engineering 
fields.

Despite the recent rapid expansion of capabilities, many 
contemporary advances in AI are best characterized as engi‐
neering refinements and scale-driven improvements rather 
than fundamentally new theoretical breakthroughs. The pre‐
dominant trajectory, i. e., bigger models, more parameters, 
and ever-larger datasets, has yielded impressive empirical 
gains, but the scale alone is unlikely to constitute a path to 
AGI. Moreover, much of the effective training signal in cur‐
rent pipelines is synthetic, produced by models themselves. 
Consequently, new models frequently learn from the outputs 
of prior models rather than from fresh, independent traces of 
human cognition. The structured, deliberative patterns of hu‐
man thought that would most directly advance human-like 
reasoning remain difficult to obtain at scale, and methods 

such as RLHF continue to depend on substantial human in‐
tervention that does not scale trivially to the continuous su‐
pervision a truly general system would require.

Research on hardware and systems will therefore remain 
indispensable. Continued progress in accelerators, memory 
hierarchies, and co-design of compiler and toolchain will un‐
lock new levels of energy and cost efficiencies for both AI 
training and inference, and will enable new deployment 
modes including on-device and private processing. Neverthe‐
less, efficiency gains are frequently outpaced by rising de‐
mand. As AI spreads across products and industries, com‐
pute and energy requirements continue to grow. This tension 
argues for intensified co-design of software and hardware, 
where software is explicitly developed to leverage hardware 
features such as sparsity, quantization, and model partition‐
ing, and hardware is engineered to support the algorithmic 
patterns that materially improve the efficiency.

Looking beyond current technologies and architectures, 
compute-in-memory (CIM) and quantum computing stand 
out as incoming technologies with the potential to fundamen‐
tally shift the AI hardware paradigm. CIM addresses the crit‐
ical energy costs of data movement by performing calcula‐
tions directly within memory arrays. This offers a way to by‐
pass the physical traffic jam between the processor and stor‐
age that usually slows down computations [152]. Simultane‐
ously, quantum machine learning (QML) promises to revolu‐
tionize the algorithmic efficiency by handling high-dimen‐
sional optimization landscapes and probabilistic sampling 
tasks that are currently impossible for classical hardware 
[153]. While these technologies are not yet certain replace‐
ments for standard hardware, they represent leaps that could 
redefine the efficiency and capability of future AI systems.

Ecosystems and toolchains are likewise consolidating to‐
ward integrated, modular stacks. A prevailing trend is the 
emergence of comprehensive platforms that unite model re‐
positories, dataset registries, evaluation suites, fine-tuning 
pipelines, monitoring, and safety tooling, mostly with open-
source implementations. Using small, specialized AI models 
with tools (such as retrieval and agents) facilitate to build, 
check, and change the system. It also boosts reuse, letting 
teams quickly update shared models and data.

Several research directions merit particular emphasis. Mul‐
timodality, lifelong learning, and causal and compositional 
reasoning are likely to be more consequential than further in‐
creases in parameter count. Scalable alternatives to intensive 
human supervision, i.e., improved preference learning, active 
learning, scalable self-play, higher-fidelity simulation, and 
more principled synthetic-data generation, will be critical to 
reduce dependence on costly manual labeling. Equally essen‐
tial are robust evaluation frameworks, interpretability and 
runtime monitoring tools, and mechanisms that permit safe, 
accountable deployment across domains.

A final and equally important topic is to regulate the appli‐
cation of AI systems. The total energy consumed by AI not 
only depends on hardware efficiency, but also on how often 
and how heavily users invoke the AI services. Therefore, pol‐
icies and design choices that promote energy-aware usage 
are essential for any effort to reduce emissions. In practice, 
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this means setting default options that favor smaller, faster 
models for everyday tasks, helping users understand when 
large, high-capacity models are actually needed, and making 
it easy to switch to lower-energy alternatives when perfor‐
mance differences are minimal. These demand-side measures 
mirror familiar conservation habits in other areas, where 
small individual choices collectively have a massive impact. 
Embedding energy awareness into product design, deploy‐
ment policies, and public guidance complements the techni‐
cal work being done at the hardware, software, and power 
system levels.

In summary, future progress will be a co-evolution of soft‐
ware, hardware, toolboxes, and community practices. Scaling 
will remain an important lever, but achieving more general, 
robust, and human-aligned intelligence will require better da‐
ta (not merely more data), smarter algorithms, hardware-
aware designs, richer tooling and evaluation, and sustained 
interdisciplinary engagement with multiple scientific do‐
mains. Only through such an integrated program can techno‐
logical advances be aligned with the supply of low-carbon 
electricity, as well as the broader goals of society for safety, 
fairness, and resilience.
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