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A Brief History of Application of Artificial 
Intelligence to Power Systems
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Abstract——This paper tries to summarize the attempts to ap‐
ply artificial intelligence (AI) to power systems, particularly 
power system planning and operations which require significant 
computer analysis. Although the term AI was coined earlier, 
this paper considers the beginning to be in the 1980s when the 
first expert systems were applied to power engineering. Of 
course, many of the analytical techniques applied can be traced 
to earlier statistical analysis and pattern recognition. The con‐
cept of expert systems was very much in line with the concept 
of AI. The various methods for applying AI to power systems 
are traced here. The historical journey in this paper closes with 
the great explosion of AI applications in the last decade when 
almost all power system analysis is trying to utilize AI tech‐
niques to help the transformation of the power system into a 
more efficient and carbon-free system. This proliferation of re‐
search in the application of AI is covered in the other papers in 
this series.

Index Terms——Artificial intelligence, expert system, knowl‐
edge-based system, artificial neural network.

I. INTRODUCTION

FOR decades, the concept of artificial intelligence (AI) 
has been envisioned for many disciplines. The develop‐

ment of expert systems or knowledge-based systems was 
widely known in the 1970s, e.g., Feiggenbaum’s application 
in medicine diagnosis at Stanford University, USA. AI and 
other related applications, such as pattern recognition, have 
been proposed earlier; however, the application of expert sys‐
tems to power systems began to emerge in early 1980s. An 
updated collection of AI applications to power systems is 
documented in a comprehensive book [1], where applica‐
tions of intelligent system techniques are discussed, includ‐
ing expert systems, artificial neural networks (ANNs), fuzzy 
systems, decision trees, genetic algorithms, multi-agent sys‐
tems, heuristic optimization, and unsupervised learning and 
hybrid methods.

A notable event that was followed by a series of activities 
was a well-attended panel session at 1985 IEEE Power In‐

dustry Computer Application (PICA) Conference on AI appli‐
cations to power systems, where technical subjects including 
alarm processing, power system restoration, and reactive 
power/voltage control were discussed [2] - [4]. In 1986, a 
workshop on system operations was organized by CIGRE in 
Paris, France. Encouraged by the high level of interest, a 
new series of symposia on expert system applications to 
power (ESAP) System was inaugurated in 1988. As ANNs 
began to capture the attention of the industry and research 
communities, the workshop on ANN applications to Power 
System (ANNPS) was established in 1991. To facilitate the 
synergy of AI technologies and communities, ESAP and AN‐
NPS were integrated in 1994 to form the current Intelligent 
System Applications to Power (ISAP) System symposia. Ac‐
cording to the papers presented at ISAP 1994, 60 papers 
were applications for expert systems, 35 papers for ANNs, 
20 papers for fuzzy sets, and an additional 6 papers for heu‐
ristic search. The techniques in these papers were applied to 
real time control, operation, operation planning, and system 
planning in power systems. Since then, ISAP has been orga‐
nized about every 2 years. The last ISAP took place in Buda‐
pest, Hungary, in 2024. In 1996, IEEE PES created a perma‐
nent base of activities for the AI-related applications under 
the Subcommittee on Intelligent System Applications as part 
of the then newly formed Technical Committee on Power 
System Analysis, Computing, and Economics (PSACE).

II. EXPERT SYSTEMS AND KNOWLEDGE-BASED SYSTEMS

The ultimate goal of an expert system is to clone a human 
expert on a specialized subject. The knowledge captured 
from the human expert can be represented in various forms 
such as rules, logic, study cases, and models. Thus, an ex‐
pert system performs reasoning based on its knowledge base 
and the inference procedure. As an example, a rule-based 
system has a rule base and an inference procedure to search 
through the If-Then structures to reach a conclusion driven 
by the available data and information. The motivation of ex‐
pert system development for power system applications is to 
capture and store the knowledge of experienced system oper‐
ators or planners. Thus, the knowledge learned from years of 
experience and lessons learned will not be lost as experts 
move or retire. Power system analysis often requires compu‐
tational algorithms, such as power flow and dynamic simula‐
tions. A rule-based system interfaced with numeric algo‐
rithms is referred to as a knowledge-based system.

Early applications of knowledge-based system applications 
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to power systems can be found in [5]. Among various ESAP 
systems, the more established area for real-world deploy‐
ment is probably power system restoration. Distribution ser‐
vice restoration is one of the pioneering areas of expert sys‐
tem applications. The restorative actions used by distribution 
system operators using remote-controlled switches include 
fault isolation, service restoration, and load transfer among 
available feeders. For safety, the service restoration plan de‐
veloped by the expert system and distribution power flow 
tools need to be approved by distribution system operators. 
The concept and algorithm development evolved, over about 
20 years, from a Ph. D. dissertation at the University of 
Washington, USA to a large-scale implementation and de‐
ployment at all distribution operation centers of the Korean 
Electric Power Company, Korea [6], [7]. With extensive 
availability of remote-controlled switches or smart switches, 
on the Korean distribution feeders, the knowledge-based sys‐
tem demonstrated significant reduction of the service restora‐
tion time and improved reliability indices such as system av‐
erage interruption duration index (SAIDI).

The application at the transmission level of power system 
restoration started as a knowledge-based system that incorpo‐
rates power system dispatchers’ knowledge and experience 
concerning actions and constraints in a power system restora‐
tion scenario. To adapt the restoration strategy to diverse sys‐
tem configurations and resource availability, a set of generic 
restoration building blocks and restoration actions was de‐
signed that can be tailored and integrated for various power 
systems and restoration strategies. Setting the targets during 
the different stages of power system restoration is a critical 
and complex task. The methodology of restoration mile‐
stones is the key concept to allow the targets and associated 
restorative actions to be determined [8] - [10]. The computa‐
tional tools of Power System Restoration, Optimal Blackstart 
Capability (OBC v10.0), and System Restoration Navigator 
(SRN v13) have been developed with support from Electric 
Power Research Institute (EPRI), USA, and distributed to 
electric power industry for about 10 years.

As mentioned earlier, voltage/var control is one of the ear‐
ly application areas for expert systems or rule-based systems 
[4]. The reactive power/voltage control problem is complex 
and nonlinear that involves continuous controls, e.g., genera‐
tor excitation system, and discrete control devices, e.g., trans‐
former tap changers. Empirical rules of power system opera‐
tors play a significant role in the operational environment of 
power grids. Although heuristic rules can best be captured in 
a rule base, it is also necessary to integrate the optimization 
tools to handle the computational tasks [11].

Alarm processing is also one of the early AI applications 
[3]. Alarms are created by the energy management systems 
(EMSs) to alert system operators concerning the power sys‐
tem condition, e.g., breaker operations, violations of voltage 
or line flow limits, and changes in the remote terminal unit 
(RTU) communication status. Numerous alarms can be trig‐
gered by a severe event on the power system, making it chal‐
lenging for system operators to respond to the alarms. Practi‐
cal ideas, such as setting the priority or use of visualization 
tools, have been integrated in modern EMSs. A model-based 

method considering the cause-effect relationship of physical 
devices, such as transformers, can be used to synthesize 
alarms, increasing the information content [12].

Fault diagnosis is the task to identify the fault type(s) and 
location(s) as well as possible malfunctioning of protective 
devices. The design of proactive relays is logic-based, e. g., 
if the primary protection relays on two sides of a line are 
triggered, then the fault is located within the line. Hence, 
logic reasoning based on the protective and switching devic‐
es is a natural tool for fault diagnosis. An expert system for 
fault diagnosis using information from protection and switch‐
ing devices has been developed and implemented [13]. Also, 
at the substation level, an advanced guidance system has 
been developed and deployed in an advanced 500 kV substa‐
tion [14]. For the sub-transmission lines with automatic 
switching devices, a logic-based system serves as a decision 
support tool to identify the fault location and restorative ac‐
tions for customers served from the lines [15].

There are several stages in the development of expert sys‐
tem applications: proof of concept, prototyping, implementa‐
tion, field test, and practical use. Most of the applications in 
the literature are in the proof of concept and prototyping 
stages. Verification and validation are critical steps in the de‐
velopment and maintenance of a knowledge-based system. 
As the power system conditions and scenarios vary, it is nec‐
essary to modify the knowledge base to ensure that the sys‐
tem performances, i. e., accuracy and computational speed, 
meet the practical requirements. This task could be time-con‐
suming and there is no assurance that the knowledge base 
will be able to handle any scenario that may emerge. An in‐
complete knowledge base may cause the knowledge-based 
system to be brittle in the sense that, it is not able to pro‐
vide a proper conclusion even if the change of scenarios is 
modest. The other hurdle of practicality is the use of special‐
ized software tools for the knowledge base (including rule 
base) implementation. The maintenance of these special 
tools requires expertise that is not available in the existing 
skill set of power grids.

III. ANNS

ANNs are computational models of neural nets that per‐
form perception and other related tasks. This is in contrast 
with a logic reasoning task that depends on the available 
knowledge and data. Various ANN models exist, including 
multi-layered perceptron (MLP), Hopfield neural networks, 
and Kohonen’s self-organizing feature map. A collection of 
ANNPS is available in [16]. Possibly, the most popular 
ANN model is that of an MLP. An MLP consists of the in‐
put nodes, output nodes, and the hidden layers (one or more) 
of neurons between the inputs and outputs. Each neuron in 
the hidden layer has an activation function. The connections 
between inputs and the hidden layer as well as the hidden 
layer and outputs are weighted. These weights are deter‐
mined by the training procedure. As the training proceeds 
with a set of training cases, the weights are adjusted itera‐
tively until the training process is complete based on the 
training set. The widely adopted back propagation algorithm 
is used to reduce the discrepancies between the predicted 
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output and actual output, resulting in a set of weights mini‐
mizing the errors. Mathematically, the MLP can be viewed 
as a tool to model nonlinear relationships between the inputs 
and outputs.

Hopfield neural networks can be visualized as a dynamic 
system with a number of neurons, each of which has a state 
variable [17]. Each pair of neurons is connected by a synap‐
tic connection with a weight. Neurons receive sensory or oth‐
er inputs. The classic Hopfield neural networks have neurons 
with binary state values, while the extended models have 
continuous state values with upper and lower bounds. Start‐
ing with given initial state values of the neurons, a Hopfield 
neural network behaves like a dynamic system with time 
varying state values. The dynamic system has a Lyapunov 
function that guides the network dynamics to converge to a 
local minimum (which may or may not be global), in a man‐
ner similar to a dynamic system converging to a stable equi‐
librium point. The optimization model of a Hopfield neural 
network provides opportunities for applications in power sys‐
tems. An example is to determine the optimal configuration 
of a large number of feeders following an outage. This is a 
combinatorial optimization problem where, for each feeder 
connected between two substations on two sides of the line, 
the problem is to determine which substation should be used 
to serve the feeder load while maintaining a radial configura‐
tion of the distribution system [18].

Kohonen’s self-organizing feature map is a tool for learn‐
ing-classification tasks. The basic function of a Kohonen net 
is to map an N-dimensional vector to a 2-dimensional neural 
network while preserving the topological property. The map‐
ping from an N-dimensional input vectors to a simpler 2-di‐
mensional lattice neural networks provides clusters of neu‐
rons on the map that help to visualize different patterns em‐
bedded in the input vectors. The applicability is best illustrat‐
ed by the application to power system security analysis 
based on acquired measurements [19]. A power system oper‐
ating condition is secure if no violations of the operating lim‐
its will occur for each and every contingency in a pre-speci‐
fied list of events; and insure otherwise. With extensive com‐
putation offline, it is possible to determine the anticipated 
measurements such as line power flows and bus voltages. 
These results serve as a training set for the Kohonen’s self-
organizing feature map. With adequate training, the 2-dimen‐
soinal neural network will display various patterns of insecu‐
rity for an input vector, which may or may not be part of 
the training set. An example of a cluster of neurons indicat‐
ing insecurity is one that represents overload of specific line 
and/or load that cannot be met within the operating con‐
straints. The power industry has long computed and utilized 
the nomograms that provide the boundaries of power system 
security for critical measurements based on numerous simula‐
tions of steady state and dynamic operating conditions. The 
neural network provides a systematic method to provide the 
critical security information in a different setting.

A well-established ANNPS is short term load forecasting 
[20]. Various ANN methods have been proposed over the 
1990s. A practical ANN tool that has been developed and ad‐
opted for practical use by the power industry is the ANN 

short term load forecaster (ANNSTLF), sponsored by EPRI 
[21]. This tool provides the forecasted base load as well as 
the change of load. Humidity and wind speed are also con‐
sidered in the development. The methodology is a multi-lay‐
er feedforward perceptron. The activation function of the hid‐
den layer neuron as well as the output layer is a sigmoid 
function, which is a nonlinear transfer function. The weights 
are initially determined by training with back propagation. 
The weights are adaptive in the sense that they are updated 
on a daily basis. With test results from a good number of 
utility systems, the tool is able to achieve an average load 
forecasting error within 2%-3%.

Although ANN can be very computationally efficient and 
it does not require an explicit knowledge base, a common 
hurdle for practical deployment is the lack of an explanation 
of the conclusions reached, which is important for power 
system operational tasks where safety and security are criti‐
cal requirements. The other consideration is whether the 
training set is sufficient, such that the ANN will provide reli‐
able results for the scenarios that are not encountered in 
training.

IV. OTHER INTELLIGENT SYSTEM TECHNIQUES

A. Fuzzy Logic

Fuzzy logic is a mathematical technique to handle uncer‐
tainty or imprecision. A simple example is the description of 
“high” or “low” in daily language. Although the term ap‐
pears to be binary or crisp, the reality is that there is a grad‐
ual transition between high and low. The use of a fuzzy 
membership function provides a continuous function that 
bridges high and low. The fuzzy set concepts can be applied 
to logic reasoning. Functional relations are available to com‐
bine fuzzy membership functions describing different quanti‐
ties. It is typical to combine fuzzy membership functions 
and use the maximum or minimum operator to derive a con‐
clusion with an integrated fuzzy membership function. It is 
also possible to defuzzify the conclusion by taking the cen‐
ter of gravity of the fuzzy set for conclusion and then use 
the maximum value of the membership as the crisp conclu‐
sion.

Further techniques are available to extend the fuzzy con‐
cepts for the study of possibility or necessity. These tech‐
niques allow the fuzzy sets to be used to derive whether one 
event is possible (or a necessity) given the status of another 
event. A fuzzy inference system is the one that can be de‐
ployed to generate the fuzzy rules based on a training set. 
The fuzzy inference system is particularly important when 
the number of fuzzy variables is large and the logic between 
various fuzzy variables cannot be easily identified [22].

Fuzzy set is a fundamental technique to handle uncertain‐
ties that has been incorporated in various applications to 
power systems with other modeling and computational tech‐
niques [23]. Computational tools are widely available in 
computational software packages. Fuzzy load and generation 
levels are incorporated in an optimal power flow method to 
determine the range of distribution for the uncertain line 

3



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 14, NO. 1, January 2026

flows [24]. Fuzzy techniques have been used to combine var‐
ious indicators of transformers to determine the belief and 
plausibility based on dissolved gas analysis and other tech‐
niques [25]. The fuzzy inference system has been proposed 
as a tool for electricity market price forecasting [26]. A 
fuzzy rule base is generated for forecasting based on training 
cases. A desirable feature of the fuzzy inference system is 
that it provides an interpretation of how the results are ob‐
tained. This is in contrast to a traditional algorithm such as 
least-squared estimation where no explanation is provided.

B. Multi-agent System

The concept of an “agent” has existed for decades as part 
of the AI literature. Probably, the most important feature of 
an agent-based system is that an agent is designed with the 
ability to act autonomously and not rely on a central com‐
mand. A multi-agent system has multiple agents that may or 
may not be cooperative, i. e., agents may be competing to 
serve their individual interest, e. g., agents in a competitive 
electricity market. On the other hand, multiple agents work‐
ing to maintain power system security would be cooperative. 
They collaborate to handle different aspects of the overall 
technical objective.

To achieve a high level of productivity, a well-known 
mechanism to facilitate the agent communication is the aver‐
age consensus algorithm, where agents communicate with 
their adjacent agents as the agents work toward a consensus 
strategy. These agent-based algorithms have been developed 
for control and communications based on system theoretic 
methods. Agent-based standards have been developed by the 
Software Standard Organization, Foundation for Intelligent 
Physical Agents (FIPA). Various agent specifications, e. g., 
agent communication language, have been created using the 
FIPA standard.

Multi-agent-based systems have been applied to various ar‐
eas of power system engineering [27], [28]. An application 
to transformer diagnosis has an architecture with the informa‐
tion layer, corroboration layer, interpretation layer, and data 
layer [29]. Several agents are designed for the diagnostic 
tasks, including the transfer diagnosis agent, backpropaga‐
tion neural agent, K-means clustering agent, and feature vec‐
tor extraction agent, monitoring the partial discharge activi‐
ties of the transformer. Another application to physical secu‐
rity monitoring of the substations is based on remote moni‐
tored and controllable video cameras installed at the substa‐
tion. These pan, tilt, and zoom (PTZ) video cameras serve as 
multi-agents that perform detection and identification of an 
intruder at a substation based on image processing. Then, 
these agents collaborate to track the movement of the intrud‐
er and conduct the impact analysis of potential actions of the 
intruder. The multi-agent-based technology was demonstrat‐
ed at a major transmission substation in Europe [30].

C. Genetic Algorithms and Decision Trees

Genetic algorithms are heuristic search methods to deal 
with a combinatorial explosion of the search space for large-
scale optimization problems. The basic method is to generate 
candidate solutions referred to as chromosomes, analogous 

to the genetic information encoded by DNA. A new chromo‐
some is formed from an old one by mutation, through which 
a small random change is made to the old one. Another tech‐
nique is crossover, in which two existing chromosomes are 
split at some dividing point and the pieces are rearranged to 
form two new chromosomes, each with a piece from one of 
the original chromosomes. Each string has a fitness value. 
The higher the fitness value is, the more copies the string 
will have in a mating pool. Strings in the pool are grouped 
in couples. Each couple of strings in the pool can swap their 
bits in the crossover procedure. The search procedure may 
converge to an optimum point, which may be local or glob‐
al. Generally, there is no guarantee for genetic algorithms to 
find the global optimal solution. However, there are search 
techniques that help to escape from the convergence to a lo‐
cal optimum so that further search will be performed to find 
improved optimum points. Beyond the basic genetic algo‐
rithms, there are other heuristic search methods such as evo‐
lutionary strategies, simulated annealing, particle swarm opti‐
mization, artificial bee colony, and tabu search. They have 
been applied to various power system topics including unit 
commitment, economic dispatch, forecasting tasks in power 
system operation and planning [31].

A genetic algorithm has been developed for distribution 
network planning [32]. The multi-stage planning, which is a 
combinatorial search problem, is to determine a list of up‐
grades for the distribution network based on the load 
growth. As the genetic algorithm proceeds with mutation 
and crossover, each candidate solution is evaluated by a fit‐
ness function, which incorporates the cost of upgrades, elec‐
trical losses, reliability, and voltage drops. As a result, the in‐
feasible candidate solutions will be removed in the search 
process. The result of the heuristic search is a set of feasible 
options of the distribution network planning. The other appli‐
cation is the use of tabu search for distribution feeder loss 
minimization [33], which is a combinatorial problem as it in‐
volves the on/off status of manual or remote-controlled 
switches on the feeders in the distribution system. The key 
concept of the tabu search is to maintain a prohibited list to 
help escape from the trap of a local optimum, thereby en‐
hancing the hill climbing search. Parallel tabu search increas‐
es the computational performance and accuracy.

A decision tree represents the conditions under which deci‐
sion options are applicable. Decision trees can be construct‐
ed by statistical or machine learning techniques. A tutorial 
with example applications can be found in [34]. A well-
known technique is “learning from examples”, in which 
learning samples are classified into groups based on the “en‐
tropy” of each group such that each group is as “pure” as 
possible. A good application area is that of transient stability 
assessment, which is a complex task that currently requires 
extensive computation of the system dynamics. On-line tran‐
sient stability depends on the construction of decision trees 
with the most relevant attributes. The application in [35] us‐
es the attribute of critical clearing time, which is the maxi‐
mum operating time for breakers to clear the fault before 
transient instability occurs.
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V. LESSONS LEARNED 

Among the many proposed AI applications to power sys‐
tems, relatively few have reached the stage of practical de‐
ployment in real-world power systems. Although control cen‐
ter vendors have developed some applications and some 
power companies have deployed locally developed applica‐
tions, no AI application has become commonly-used stan‐
dard practice in the power industry. However, the research 
experience as noted above has been positive and the recent 
explosion of AI applications especially in large language 
modeling and computer vision in other fields has increased 
research efforts in the application of AI to power systems.

Today, the field of AI has spawned many sub-fields that 
are rapidly growing in their capability and applicability. 
Probably, the sub-field that is of the most research interest is 
machine learning (or deep learning). This is a direct follow-
on from the work mentioned in Section III on ANN (with 
the “deep” referring to the multiple levels of neural net‐
works). Just as the previous ANN applications showed prom‐
ise in predictions, the machine learning applications being re‐
searched now are also powerful techniques in predicting not 
just load demand but also solar generation, wind generation, 
and battery charging.

The application of expert systems in the past (Section II) 
had not yielded widespread deployment in power systems be‐
cause of difficulties in constructing the knowledge base and 
developing the inference engine. However, in recent years, 
the sub-field of expert systems has made major strides in ap‐
plying to other fields like health and medicine. One problem 
was the difficulty of gathering the expertise of power system 
operators from interviews by experts. Today, this could be 
augmented by data bases of collected relay and control cen‐
ter data from real-time recordings, but this remains a major 
hurdle. More control operations can certainly be automated, 
but the idea of completely eliminating the human operator is 
still far off.

The ability to handle natural languages has been an impor‐
tant sub-field of AI. This is a subject that has rarely been ex‐
plored in power system applications. An example is the AI 
system that was developed to analyze a high volume of nu‐
merical results from testing of various relays and write a 
concise evaluation report in natural language for the engi‐
neers and managers. Given the highly capable AI natural lan‐
guage platforms available today, it will be beneficial to look 
into applications in the power industry environment.

There are other sub-fields of AI that can be useful to pow‐
er companies in work areas other than power system plan‐
ning and operation. For example, computer vision (image 
recognition) can be quite useful for asset maintenance and 
management and are already being deployed in limited 
ways. Another sub-field, robotics, has seen huge advances in 
many areas, especially manufacturing, and crawling robots 
for transmission line monitoring have been proposed.

Any successful deployment of AI applications in a practi‐
cal environment will rely on the supporting power system in‐
frastructure, including personnel, software, hardware, field 
testing, and maintenance. As an example, a successful imple‐
mentation of an AI system to support decision making of dis‐

tribution service restoration [6], [7] requires the distribution 
systems to have a high-level deployment of smart switches, 
which is usually the case in densely populated urban areas 
with a high level of distribution automation.

In cases where specialized AI development tools, such as 
a rule-based inference engine or neural network models, are 
utilized, the expertise has to be available in the industry en‐
vironment to support the maintenance, upgrading, and train‐
ing functions. As in other sophisticated computer-based 
tools, e.g., EMS or distribution management system, the AI 
tools will require power company personnel to have the ex‐
pertise needed for applying and maintaining these tools.

VI. CONCLUSION

In this paper, a brief overview of the application of AI to 
power system planning and operation is presented. It pro‐
vides a broad brush coverage of the research efforts in the 
1980s and 1990s when the term AI was not commonly used. 
The application of two fields, i.e., expert system/knowledge-
based system and ANN, to power systems is covered in 
more detail than the application of fuzzy logic, multi-agent 
systems, genetic algorithms, and other techniques which 
were also tried by some researchers. The choice of these top‐
ics to include in this paper was made on the promising re‐
sults shown in these research applications even though none 
of them went beyond prototypes and field implementations 
to widely-adopted commercial applications. Moreover, these 
techniques and methods have fed directly, if not inspired, the 
present explosion today into the application of AI in power 
systems.
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