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Abstract——Fractional-order control (FOC) has gained signifi‐
cant attention in power system applications due to their ability 
to enhance performance and increase stability margins. In grid-
connected converter (GCC) systems, the synchronous reference 
frame phase-locked loop (SRF-PLL) plays a critical role in grid 
synchronization for renewable power generation. However, 
there is a notable research gap regarding the application of 
FOC to the SRF-PLL. This paper proposes a fractional-order 
SRF-PLL (FO-SRF-PLL) that incorporates FOC to accurately 
track the phase angle of the terminal voltage, thereby improv‐
ing the efficiency of grid-connected control. The dynamic per‐
formance of the proposed FO-SRF-PLL is evaluated under 
varying grid conditions. A comprehensive analysis of the small-
signal stability of the GCC system employing the FO-SRF-PLL 
is also presented, including derived small-signal stability condi‐
tions. The results demonstrate that the FO-SRF-PLL significant‐
ly enhances robustness against disturbances compared with the 
conventional SRF-PLL. Furthermore, the GCC system with the 
FO-SRF-PLL maintains stability even under weak grid condi‐
tions, showing superior stability performance over the SRF-
PLL. Finally, both simulation and experimental results are pro‐
vided to validate the analysis and conclusions presented in this 
paper.

Index Terms——Small-signal stability, grid-connected converter 
(GCC) system, fractional-order control (FOC), fractional-order 
synchronous reference frame phase locked loop (FO-SRF-PLL).

I. INTRODUCTION

FRACTIONAL-ORDER elements (FOEs) and fractional-
order control (FOC) have garnered significant interest in 

recent years within the electrical engineering community due 
to their enhanced flexibility and versatility in circuit design 
and applications [1], [2]. Similarly, FOC has emerged as a 

promising approach for improving system performance and 
efficiency [3]. In renewable energy systems, FOEs and FOC 
provide a powerful framework for modeling system dynam‐
ics, which can be precisely described using fractional-order 
(FO) differential equations.

Recent advances have explored several novel applications 
of FOEs. For example, a high-power FO capacitor based on 
power converters has been proposed [4], and FO models of 
filter inductors have been implemented within the control 
bandwidth of converters [5]. An FO modeling and analysis 
method for direct current (DC)-DC converters using FO in‐
ductors and capacitors was proposed in [6]. Additionally, an 
FO virtual capacitor aimed at active damping in multi-paral‐
leled grid-connected current-source inverters has been intro‐
duced [7]. These innovations highlight the potential of FOEs 
to enhance the performance and efficiency of power electron‐
ic systems. In this paper, we use the FO model to describe 
the dynamics of transmission lines.

FOC, in particular, has gained significant attention as a 
control strategy for power and power electronic systems. Nu‐
merous studies have explored various FOC techniques, in‐
cluding FO proportional-integral-derivative (FOPID) control, 
FO sliding mode control (FOSMC), and FO terminal sliding 
mode control (FOTSMC). FOC has been successfully ap‐
plied to enhance the robustness of multilevel converter inte‐
gration into power grids [8], improve power quality in grid-
connected photovoltaic (PV) systems [9], and optimize out‐
put voltage tracking in DC-DC buck converters [10]. Further‐
more, FOC has been utilized in passivity-based FOSMC [11] 
and robust fuzzy FOTSMC for grid-connected converter 
(GCC) systems [12]. It has also been applied in voltage and 
frequency control for microgrids [13], voltage control for 
high-voltage direct current (HVDC) transmission systems 
[14], robust controller design [15], and the experimental en‐
hancement of fuzzy FOPID controllers for variable-speed 
wind energy conversion systems [16]. These studies demon‐
strate the broad applicability and advantages of FOC in pow‐
er systems and power electronic applications.

Phase-locked loops (PLLs) are a core component of mod‐
ern power systems and power electronics. The synchronous 
reference frame PLL (SRF-PLL) has become the standard 
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for grid-connected renewable energy systems due to its effi‐
ciency, controllability, and adaptability. Several advanced 
PLL designs have been proposed to address power quality is‐
sues under abnormal grid conditions, such as enhanced PLL, 
dual second-order generalized integrator PLL, and double 
SRF-PLL [17]. Comparative analyses have shown that while 
SRF-PLL may not be as robust under certain grid conditions 
as some of the more advanced PLLs, it remains the predomi‐
nant choice for grid connection in renewable energy systems 
[18], [19].

The application of fractional calculus to PLLs has also 
shown promising results. In [20], an FO analog PLL 
(FOAPLL) was introduced, demonstrating enhanced capture 
range and reduced lock time compared with the traditional 
integer-order analog PLL (IOAPLL). Subsequent studies 
[21], [22] analyzed the bandwidth, locking range, and tran‐
sient response of FOAPLL, while [23] highlighted its superi‐
or performance in noisy environments. However, fractional 
calculus has yet to be applied to SRF-PLL in grid-connected 
control systems. Inspired by the FOAPLL model, this paper 
proposes an FO-SRF-PLL using FOPID control, aiming to 
improve the accuracy and performance of terminal voltage 
phase tracking.

Despite the growing use of FOEs and FOC in power sys‐
tems, their application to SRF-PLL for grid-connected renew‐
able energy systems remains unexplored. This paper intro‐
duces the FO-SRF-PLL for grid-connected control systems 
and investigates the small-signal stability of GCC systems 
employing the FO-SRF-PLL. The contributions of this paper 
are described as follows.

1) The FO-SRF-PLL, utilizing FOPID control for terminal 
voltage phase tracking in GCC systems, is proposed. The 
FO-SRF-PLL outperforms its integer-order counterpart in 
terms of faster response, higher tracking accuracy, and quick‐
er settling time under varying grid conditions.

2) A linearized model of GCC systems with FO-SRF-PLL 
is derived, along with stability criteria specific to these sys‐
tems.

3) Small-signal stability conditions for GCC systems em‐
ploying the FO-SRF-PLL are derived. Simulation and experi‐
mental results demonstrate that the FO-SRF-PLL significant‐
ly improves small-signal stability, especially in weak grid 
connections, compared with conventional SRF-PLL.

The remainder of this paper is organized as follows. Sec‐
tion II evaluates the performance of the proposed FO-SRF-
PLL. Section III presents the linear model derivation of the 
GCC system with FO-SRF-PLL. The stability analysis is dis‐
cussed in Section IV. Section V presents simulation and ex‐
perimental results under varying grid conditions to validate 
the proposed FO-SRF-PLL. Finally, Section VI concludes 
this paper.

II. PERFORMANCE EVALUATION OF FO-SRF-PLL 

A. FO-SRF-PLL

The FO-SRF-PLL is developed by applying the FOPID 
controller proposed in [24] to the conventional SRF-PLL. 

Figure 1 shows the structural block diagram of the FO-SRF-
PLL, where the FO proportional-integral (FOPI) controller 
and FO integrator (FOI) are used in the FO-SRF-PLL. In 
Fig. 1, Vga, Vgb, and Vgc are the input three-phase voltages; 
Vgd and Vgq are the d-axis and q-axis voltages obtained by 
coordinate transformation, respectively; Kp and Ki are the 
proportional gain and integral gain of the FOPI controller, re‐
spectively; ω0 is the nominal frequency; and α is the order 
of the FOPI controller and the FOI. The output of the FOI is 
the phase angle θp estimated by the FO-SRF-PLL. The con‐
ventional SRF-PLL can be seen as a special case of the FO-
SRF-PLL with α = 1.

Figure 2 shows the linear model of the proposed FO-SRF-
PLL, where Vg0 is the magnitude of the input voltage; xp is 
the output of the FOI in the FOPI controller; and θ is the 
phase of the input voltage. The closed-loop transfer function 
of the estimated phase θp to the actual phase θ is:

θp( )s

θ ( )s
=

Vg0( )Kp sα +Ki

s2α +Vg0 Kp sα +Vg0 Ki

(1)

In this paper, the subscript “0” is used to denote the 
steady-state value of the variable or variable vector.

B. Implementation of FO-SRF-PLL

The implementation of an FOPID controller typically re‐
quires a rational approximation. The Oustaloup filter algo‐
rithm (OFA) [25] is commonly used for the continuous-time 
approximation in the numerical implementation of FO sys‐
tems. Within the considered frequency band (ωbωh ), sα can 

be approximated by:

G (s) =K∏
k = 1

N s +ω′k
s +ωk

(2)

where N is the order of the filter; K =ωα
h; ω′k =ωbω

( )2k - 1 - α N
u  

ωk =ω2α N
u ω′k and ωu = ωh ωb .

In the paper, the above FOA is used for realization of 
FOPID controllers, and the approximated FOPID transfer 
function is:

H ( )s =Kp +Ki(K∏
k = 1

N s +ω′k
s +ωk )

-α

(3)
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Fig. 1.　Structural block diagram of FO-SRF-PLL.
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Fig. 2.　Linear model of FO-SRF-PLL.
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With respect to the digital implementation, the Tustin dis‐
cretization method is used for FO-SRF-PLL [26].

C. Performance Evaluation of FO-SRF-PLL

The performance of the proposed FO-SRF-PLL is evaluat‐
ed under varying grid conditions. To simulate realistic grid 
operations, the 9-bus test system described in [18] is used, 
as shown in Fig. 3 (active and reactive power flows are in 
MW and Mvar, respectively). The system is modeled in 
MATLAB/Simulink, with bus 6 selected as the point of com‐
mon coupling (PCC) for integrating the GCC system. The 
testing scheme and implementation details are provided in 
Table I.

Table II provides the performance evaluation metrics of 
PLL, including locking time, overshoot/undershoot, and set‐
tling time. Locking time refers to the duration required from 
receiving the input signal to achieving signal lock. The PCC 
voltage Vabc, q-axis voltage Vq, and estimated phase θ under 
different test conditions are depicted in Figs. 4-8.

Table II and Figs. 4-8 show that the locking time of the 
SRF-PLL is significantly longer than that of the FO-SRF-
PLL. Across various test scenarios, the locking time of the 
SRF-PLL is at least ten times longer than that of the FO-
SRF-PLL. Furthermore, the GCC system using the FO-SRF-
PLL exhibits a lower transient peak overshoot/undershoot 
and a quicker recovery response compared with the SRF-
PLL.

In general, the FO-SRF-PLL demonstrates a significantly 
faster locking time, reduced undershoot/overshoot and short‐
er settling time compared with the SRF-PLL. This enhanced 
performance allows for quicker and more accurate tracking 
of the desired phase in the GCC system.

G2 G3

G1

163.0 (6.7)

1  1.040?0°

3

4  1.026?-2.2°

5
6  1.013?-3.7°

8

9
1.025?9.3°

1.026?3.7°

0.996?-4.0°

1.025?4.7°

71.6 (27)

85.0 (-10.9)

1.032?2.0°

100 (35)
Load C

Load B
100 (30)

Load A

125 (50)

1.016?0.7°
2

7

Fig. 3.　Power flow diagram of test system.

TABLE I
TESTING SCHEME AND IMPLEMENTATION DETAILS

Testing scheme

Conducted on test 
system

Utilizing a three-
phase programma‐
ble voltage source

Condition

Under-voltage

Over-voltage

Load rise

Phase jump

Frequency 
step

Implementation detail

An inductive load of +j150 Mvar 
connected to bus 6 at 60 ms

A capacitive load of -j80 Mvar con‐
nected to bus 6 at 60 ms

Load at buses 6 and 9 increased by 
100 MW + j100 Mvar at 60 ms

Phase jump of π/6 radians at 50 ms

Frequency step of 2 Hz at 50 ms

TABLE Ⅱ
PERFORMANCE EVALUATION METRICS OF PLL

Condition

Under-voltage

Over-voltage

Load rise

Phase jump

Frequency 
step

PLL

SRF-PLL

FO-SRF-PLL

SRF-PLL

FO-SRF-PLL

SRF-PLL

FO-SRF-PLL

SRF-PLL

FO-SRF-PLL

SRF-PLL

FO-SRF-PLL

Locking 
time (ms)

46.5

4.4

46.5

4.4

46.5

4.4

25.0

1.2

25.0

1.2

Overshoot/un‐
dershoot (%)

5.9

0.4

100.0

88.8

9.5

1.5

49.2

47.1

61.0

59.0

Settling 
time (ms)

23.5

2.9

30.0

5.4

7.3

2.0

16.0

1.0

16.0

1.0

V
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b
c 

(p
.u

.)
θ

 (
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Fig. 4.　Transient response to under-voltage conditions.
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Fig. 5.　Transient response to over-voltage conditions.
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III. LINEAR MODEL DERIVATION OF GCC SYSTEM WITH 
FO-SRF-PLL 

Figure 9 shows the configuration of the GCC system in re‐

newable energy systems, where V is the converter output 
voltage; Vg is the PCC voltage; I is the converter output cur‐
rent; Vb is the grid voltage; Id and Iq are the d- and q-axis 
components of the GCC output current, respectively; Idref 
and Iqref are the reference values of the d- and q-axis cur‐
rents of the current control loop, respectively; θp is the 
phase angle estimated by the PLL; Lf is the filter inductance; 
and Lg is the transmission line inductance.

The GCC system shown in Fig. 9 is commonly used in 
PV or wind power systems, employing closed-loop control 
of the output current. The closed-loop control of the output 
current in the GCC system is realized in d-q coordinate. 
Moreover, in practical scenarios, the bandwidth of the inner 
loop of the current control is typically much greater than 
that of the PLL. Therefore, when assessing the stability of 
small disturbances associated with the PLL dynamics, it is 
reasonable to consider the output current of the GCC as 
equal to the current reference value provided by the inner 
loop of the current control. Consequently, the GCC can be 
represented as a constant current source, i. e., Id0 + jIq0. 
Hence, we can obtain:

DId + jDIq = 0 (4)

In the paper, prefix D refers to a small increment of the 
variable or variable vector.

Figure 10 shows the equivalent circuit and phasor diagram 
of the GCC system in the d-q coordinate, where Vg0Ð0 is 
the PCC voltage; Xg is the transmission line reactance; and 
Vb0Ð- δ is the voltage of the alternating current (AC) grid. 
From Fig. 10, the voltage amplitude Vg0 can be obtained as:

Vg0 = V 2
b0 - I 2

d0 X 2
g - Iq0 Xg (5)

The d-q coordinate is aligned by continuously tracking the 
phase angle of PCC voltage using the PLL. From Fig. 2, the 
FO differential equations of FO-SRF-PLL can be obtained as:
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Fig. 6.　Transient response to load rise conditions.
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Fig. 7.　Transient response to a phase jump.

V
a
b
c 

(p
.u

.)

1

0

-1

1

0

-1

V
q
 (

p
.u

.)
θ

 (
ra

d
)

10

5

0 20 40 60
Time (ms)

80 100

FO-SRF-PLL
SRF-PLL

FO-SRF-PLL
SRF-PLL

Va

Vb

Vc

Fig. 8.　Transient response to a frequency step.

DC

power

supply 

dq

abc

Grid
V

PCC

GCC

GCC

Vg(abc)

Iabc

PLL

Vgd

Vgq

Id

Id

Iq
θp

θp

θp

Vgd

Vgq

PI

I

Idref

Lf Lg

Vg Vb

dq

abc

+ +

+

ω0Lf

+ + +

+

+
+

�

Iq

PIIqref +

ω0Lf

+ �

�

Main-circuit diagram

Control diagram

Fig. 9.　Configuration of GCC system in renewable energy systems.
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dα xp

dtα
=KiVg0( )θ - θp

dαθp

dtα
=KpVg0( )θ - θp + xp

(6)

Figure 11 shows the relationship between the d-q coordi‐
nate and the common x-y coordinate. The PLL utilizes the 
tracked phase of the PCC voltage to determine the orienta‐
tion of the d-axis in the common x-y coordinate.

Dθ =
é

ë

ê
êê
ê
ê
ê
-

Vgy0

V 2
g0

Vgx0

V 2
g0

ù

û

ú
úú
ú
ú
ú é

ë

ê
êê
ê ù

û

ú
úú
úDVgx

DVgy

=
é

ë

ê
êê
ê
ê
ê
-

Vgy0

V 2
g0

Vgx0

V 2
g0

ù

û

ú
úú
ú
ú
ú
DVgxy (7)

where subscript x and y are used to indicate the x and y com‐
ponent of the variable or variable vector in the common x-y 
coordinate.

Then, we have:

é

ë

ê
êê
ê ù

û

ú
úú
úIx

Iy

= é
ë
êêêê ù

û
úúúúcos θp -sin θp

sin θp cos θp

é

ë

ê
êê
ê ù

û

ú
úú
úId

Iq

é

ë

ê
êê
ê ù

û

ú
úú
úId

Iq

= é
ë
êêêê ù

û
úúúúcos θp sin θp

-sin θp cos θp

é

ë

ê
êê
ê ù

û

ú
úú
úIx

Iy

(8)

Thus, from (4) and (8), we can obtain:

DIxy =
é
ë
êêêê ù

û
úúúúDIx

DIy

= é
ë
êêêê ù

û
úúúú-Iy0

Ix0

Dθp (9)

The linearization of (6) is:

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

dαDxp

dtα
=KiVg0( )Dθ -Dθp           

dαDθp

dtα
=KpVg0( )Dθ -Dθp +Dxp

(10)

From (7), (9) and (10), we can obtain:

ì

í

î

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïïï
ï

ï

ï

ï

ï

ï

ï

dαDX
dtα

=ADX +BDVgxy

DIxy =CDX

DX = é
ë
êêêê ù

û
úúúúDxp

Dθp

A = é
ë
êêêê ù

û
úúúú0 -KiVg0

1 -KpVg0

B =

é

ë

ê

ê

ê

ê
êê
ê

ê

ê

ê ù

û

ú

ú

ú

ú
úú
ú

ú

ú

ú-
KiVgy0

Vg0

KiVgx0

Vg0

-
KpVgy0

Vg0

KpVgx0

Vg0

C = é
ë
êêêê ù

û
úúúú0 -Iy0

0 Ix0

(11)

The FO model of transmission lines is built as:

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

Xg

ω0

dα Ix

dtα
=Vgx -Vbx +Xg Iy

Xg

ω0

dα Iy

dtα
=Vgy -Vby -Xg Ix

(12)

Ignoring the dynamics of the grid, the linearization of 
(12) is:

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

dαDIx

dtα
=
ω0

XL

DVgx +Dω0 Iy

dαDIy

dtα
=
ω0

XL

DVgy -Dω0 Ix

(13)

Or, equivalently, we can obtain:

DVgxy =Xg

é

ë

ê

ê

ê

ê
êê
ê

ê

ê

ê ù

û

ú

ú

ú

ú
úú
ú

ú

ú

úsα

ω0

-1

1
sα

ω0

DIxy = ( Xg sα

ω0

U1 +XgU2 )DIxy (14)

where U1 =
é
ë
êêêê ù

û
úúúú1 0

0 1
; and U2 =

é
ë
êêêê ù

û
úúúú0 -1

1 0
.

Let P0 and Q0 be the steady-state active and reactive pow‐
er outputs of the GCC system, then we have:

ì
í
î

ïïP0 = Ix0Vgx0 + Iy0Vgy0

Q0 = Ix0Vgy0 - Iy0Vgx0

(15)

From (9), (11), (14), and (15), we can obtain:

dαDX
dα

= (U1 -
Xg

ω0

BC ) -1

(A +Xg BU2C )DX =AcDX    (16)
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Fig. 10.　Equivalent circuit and phasor diagram of GCC system in d-q coor‐
dinate. (a) Equivalent circuit. (b) Phasor diagram.
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Next, the objective is to analyze the stability of sys‐
tem (16).

IV. SMALL-SIGNAL STABILITY ANALYSIS OF GCC SYSTEM 
WITH FO-SRF-PLL 

In fractional calculus, the FO linear time-invariant (FO-
LTI) system is represented as follows:

{Dq x =Ax +Bu
y =Cx

(18)

where Dq = dq dtq is the fractional differential operator; and 
q is the order of derivation.

It has been demonstrated that the system in (18) is stable 
when (19) is satisfied [27], where eig (A) denotes the eigen‐
values of matrix A, and the argument of eig (A) is denoted 

by arg (eig (A) ). Figure 12 shows the stable and unstable re‐

gions of system in (18) with 0 < q £ 1.

| arg (eig (A) ) | qπ
2

(19)

The following theorem establishes a crucial condition for 
confining the eigenvalues of a matrix within specific sectors. 
It serves as the foundation for establishing a direct association 
between the stability of LTI systems and FO-LTI systems.

Theorem 1 [28]: if and only if the LTI system in (20) is as‐
ymptotically stable, the system in (18) with 0 < q £ 1 is unsta‐
ble.
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In this paper, the objective is to determine the parameters 
that render the FO-LTI system in (21) stable.

DαDX =AcDX (21)

where 0 < α £ 1 is given.
From theorem 1, the equivalent LTI system in terms of 

stability for the FO-LTI system (21) can be expressed as:
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(22)

Therefore, the instability of the GCC system with the FO-
SRF-PLL is equivalent to the stability of the system in (22). 
The system in (22) has the following characteristic polynomial:

P ( )s = s4 + a3 s3 + a2 s2 + a1 s + a0 = 0 (23)
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(24)

Supplementary Material A demonstrates that the instability 

conditions of the system described by (21) are given by (25) 
and further verifies the correctness of (25).
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(25)

Supplementary Material B demonstrates that the GCC sys‐
tem described by (16) is unstable if and only if conditions in 
(26) are satisfied. The small-signal instability conditions in 
(26) can be utilized to evaluate the stability of the GCC sys‐
tem.
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Fig. 12.　Stable and unstable regions of system in (18) with 0 < q £ 1.
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For α = 1, it can be proven that the GCC system employing 
SRF-PLL is stable if and only if conditions in (27) are satisfied.
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It can be observed from (26) that the stability of the sys‐
tem is influenced by the operating conditions of the GCC 
system as well as the values of Kp and Ki in the FO-SRF-PLL.

V. SIMULATION AND EXPERIMENTAL RESULTS 

A. Simulation Results

The system shown in Fig. 9 has been built in MATLAB/
Simulink to verify the accuracy of the theoretical analysis in 
this paper. Assume that the system operates with a power 
factor of 1 and the nominal voltage is 1 p.u., which implies 
Q0 = 0, i.e., Iq0 = 0. For ease of calculation, let Vb0 = 10 3 »
1.054, and α = 0.5. Thus, we can obtain:

Vg0 = 10 - 9I 2
d0 X 2

g 3 (28)

To facilitate a comparative analysis of the stability of 
GCC the system with the SRF-PLL and FO-SRF-PLL, the 
following stability conditions are provided for the system 
when SRF-PLL is employed, as well as the instability condi‐
tions when FO-SRF-PLL with α = 0.5 is utilized.

From (27) and (28), the stability conditions for the GCC 
system with the SRF-PLL are obtained.
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From (26) and (28), when the FO-SRF-PLL with α = 0.5 
is utilized, the GCC system is unstable if and only if:
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Three tests have been conducted to validate the theoretical 
analysis. The results regarding the impact of the PLL control 
parameters Kp and Ki on the small-signal stability of the sys‐
tem are presented below. Moreover, the impacts of the trans‐
mission line reactance Xg and the steady-state active power 
P0 are detailed in Supplementary Material C.

To evaluate the impact of Kp, we have conducted the fol‐
lowing test. The reactance of the transmission line is fixed 
to be Xg = 1, and Id0 = 1 3. Thus, Vg0 = 1, and P0 =Vg0 Id0 = 1 3. 

Ki is fixed to be ω2
0 (ω0 = 2πf = 120π). From (29), the stabili‐

ty condition for the GCC system with SRF-PLL is:

125.66 » 40π =
1
3
ω0 <Kp < 3ω0 = 360π » 1130.97 (31)

Supplementary Material D shows that there does not exist 
a value of Kp that would lead to instability in the GCC sys‐
tem with the FO-SRF-PLL. The nonlinear simulation results 
are depicted in Figs. 13-16. For all these tests, P corre‐
sponds to the active power output from the GCC. At 0.1 s of 
simulation, the active power output from the GCC in the ex‐
ample system increases by 10% for 100 ms.

It can be observed from Figs. 13-16 that when the value 
of Kp exceeds the upper and lower limits obtained in (31), 
the GCC system with SRF-PLL becomes unstable, whereas 
the system with FO-SRF-PLL remains unaffected by the 
changes of Kp.

To evaluate the impact of Ki, the following test is conduct‐
ed. The system parameters are set to the same as before, and 
the value of Kp is fixed to be ω0 3. From (29), the stability 

condition for the GCC system with the SRF-PLL is:

0 0.1 0.2 0.3 0.4 0.5
0.28

0.30

0.32

0.34

0.36

0.38

0

-0.2

0.2

0.4

0.6

0.8

Time (s)

(a)

0 0.1 0.2 0.3 0.4 0.5
Time (s)

(b)

0 0.1 0.2 0.3 0.4 0.5

-1

-2

0

1

2

V
a

b
c 

w
h

en

K
p
=

1
3

5
 (

p
.u

.)

-1

-2

0

1

2

V
a

b
c 

w
h

en

K
p
=

4
0

π
 (

p
.u

.)

-1

-2

0

1

2

V
a

b
c 

w
h

en

K
p
=

1
1

5
 (

p
.u

.)

θ
 (

ra
d

)

Time (s)

P
 (

p
.u

.)

Kp=135; Kp=115Kp=40π; Kp=135; Kp=115Kp=40π;

Va; Vb; Vc

(c)

Fig. 13.　Results of nonlinear simulation with variation of Kp in SRF-PLL. 
(a) P. (b) θ. (c) Vabc.

1096



ZHANG et al.: SMALL-SIGNAL STABILITY OF GRID-CONNECTED CONVERTER SYSTEM IN RENEWABLE ENERGY SYSTEMS WITH...

Kiω
2
0 » 1.42 ´ 105 (32)

Similarly, there is no value of Ki that would result in insta‐
bility of the GCC system with the FO-SRF-PLL. The nonlin‐
ear simulation results are depicted in Figs. 17 and 18. Clear‐
ly, while the GCC system with the SRF-PLL loses stability 
due to the value of Ki exceeding the range obtained in (32), 
the system with the FO-SRF-PLL remains stable.

This test effectively validates the accuracy of the instabili‐
ty conditions by varying the control parameters of the PLL. 
Furthermore, it can be observed that when the system stabili‐
ty is constrained by the values of Kp and Ki in the GCC sys‐
tem with SRF-PLL, the stability of the system remains unaf‐

fected by the values of Kp and Ki in the GCC system with 
FO-SRF-PLL. This finding highlights the robustness of the 
proposed FO-SRF-PLL in maintaining system stability under 
varying control parameters.

B. Experimental Results

This subsection aims to evaluate the performance of the pro‐
posed FO-SRF-PLL and to verify the correctness of the theo‐
retical analysis through experimental results. A hardware-in-
the-loop (HIL) experimental platform is established, as shown 
in Fig. 19, and the main parameters are detailed in Table III.
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1)　Performance Evaluation of FO-SRF-PLL
The performance of the FO-SRF-PLL is evaluated under a 

phase jump condition. The transient response to a phase 
jump of π 3 radians at 100 ms is shown in Fig. 20. The PCC 
voltage response, q-axis voltage response, and phase angle 
tracking output results using the SRF-PLL and FO-SRF-PLL 
under the phase jump condition are shown in Fig. 20(a) and 
20(b), respectively. Table IV presents the performance evalu‐

ation metrics, including locking time, overshoot, and settling 
time. Experimental results show that the FO-SRF-PLL exhib‐
its faster locking time, reduced overshoot, and shorter set‐
tling time.

2)　Verification of Small-signal Stability Analysis
The experimental waveforms of PCC voltage and active 

power of the GCC system when Kp changes are given in the 
test (Id0 = 10 A, Lg = 7.5 mH, Ki = 300). When Kp increases 
and decreases, the experimental results of the GCC system 
with the SRF-PLL and the FO-SRF-PLL are shown in Figs. 
21 and 22, respectively. The active power output increases 
by 10% within 150 to 160 ms. From the experimental re‐
sults, it is clear that when Kp increases from 10 to 15 or de‐
creases from 10 to 0.1, the GCC system with the SRF-PLL 
loses stability. In contrast, the GCC system with the FO-
SRF-PLL remains stable even when Kp increases from 10 to 
50 or decreases from 10 to 0.01. While the GCC system us‐
ing the SRF-PLL loses stability due to the change of Kp, the 
GCC system with the FO-SRF-PLL can remain stable.
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Fig. 19.　HIL experimental platform.

TABLE Ⅲ
MAIN EXPERIMENTAL PARAMETERS

Parameter

DC-side voltage Vdc

Filter inductor Lf

Grid impedance Lg

Grid phase voltage Vb

Switching frequency fw

Sampling frequency fs

Order of Oustaloup 
filter N

Value

200 V

5.25 mH

3-15 mH

78 V

10 kHz

10 kHz

5

Parameter

OFA parameters (ωbωh )

PLL proportional gain Kp

PLL integral gain Ki

Current loop proportional 
coefficient Kcp

Current loop integral 
coefficient Kci

Current reference of d-
axis Id0

Current reference of d-
axis Iq0

Value

(10-2105 )

0.01-50

300-5000

0.15
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10-30 A

0

-100

0

100

V
a
b
c 

(V
)

-30
-40

-20
-10

0
10

V
q
 (

V
)

0 50 100 150

0
-2

2
4
6

Time (ms)
(b)

0 50 100 150
-2

Time (ms)
(a)

θ
 (

ra
d
)

Va

Vb

Vc

Va

Vb

Vc

0
2
4
6

θ
 (

ra
d
)

-100

0

100

V
q
 (

V
)

-100

0

100

V
a
b
c 

(V
)

Fig. 20.　PCC voltage, q-axis voltage, and phase angle tracking output re‐
sults under phase angle jump condition. (a) SRF-PLL. (b) FO-SRF-PLL.

TABLE Ⅳ
PERFORMANCE EVALUATION METRICS UNDER PHASE ANGLE JUMP 

CONDITION

Type

SRF-PLL

FO-SRF-PLL

Locking time (ms)

55.2

5.6

Overshoot (%)

5800

870

Settling time (ms)

38

6
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The experimental waveforms of PCC voltage and output 
active power of the GCC system during variations in Ki are 
presented in this test, with Id0 = 10 A Lg = 7.5 mH Kp = 10. 
The results of the GCC system with the SRF-PLL and the 
FO-SRF-PLL are shown in Fig. 23. It is evident from the re‐
sults that as Ki increases from 300 to 3000, the GCC system 
with the SRF-PLL loses stability, while the GCC system 
with the FO-SRF-PLL remains stable even when Ki increas‐
es from 300 to 5000. Compared with the SRF-PLL, the 
GCC system with FO-SRF-PLL has a lower risk of instabili‐
ty when Ki changes.

The experimental results of PCC voltage and output active 
power of the GCC system when Id0 changes are given in this 
test, with Lg = 7.5 mH Kp = 10 and Ki = 300. The results of 
the GCC system with the SRF-PLL and the FO-SRF-PLL 
are shown in Fig. 24. It can be observed from the results 
that when Id0 changes, i. e., P0 changes, the GCC system 
with SRF-PLL loses stability, whereas the GCC system with 
FO-SRF-PLL remains stable. Compared with the SRF-PLL, 
the stability of the GCC system with FO-SRF-PLL is less af‐
fected by changes in P0.

The experimental results under varying Lg with Id0 = 10 A,
Kp = 10, and Ki = 300 are shown in Fig. 25. It can be ob‐
served that as Lg increases, the instability risk of the GCC 
system with SRF-PLL increases, while the stability of the 
GCC system using FO-SRF-PLL is not affected.

V
a

V
b

V
c

V
a

V
b

V
c

-100

-200

0

100

200

V
a
b
c
 (

V
)

0 50 100 150 200 250 300
-1000

0

1000

2000

3000

Time (ms)
(a)

0 50 100 150 200 250 300
Time (ms)

(b)

P
 (

W
)

-100

0

100

V
a
b
c
 (

V
)

-500

0

500

1000

1500

P
 (

W
)

K
i
 increases from 300 to 3000

K
i
 increases from 300 to 5000

Fig. 23.　Experimental results of GCC system when Ki increases. (a) SRF-
PLL. (b) FO-SRF-PLL.
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In summary, the performance of the FO-SRF-PLL pro‐
posed in this paper is significantly superior to that of the 
SRF-PLL. The locking time and settling time are consider‐

ably shorter, and the maximum error value during step 
changes is reduced. Furthermore, the GCC system using 
SRF-PLL tends to lose stability under small disturbances 
when the control and operating parameters change, whereas 
the GCC system with FO-SRF-PLL remains stable. The ex‐
perimental results verify the effectiveness of the proposed 
FO-SRF-PLL.

VI. CONCLUSION

This paper introduces an FO-SRF-PLL for accurate phase 
angle tracking of the terminal voltage in GCC systems. The 
stability conditions of GCC system with FO-SRF-PLL are 
derived and analyzed. Through simulation and experimental 
results, several useful conclusions are drawn as follows.

1) The utilization of the FO-SRF-PLL demonstrates re‐
duced undershoot, faster response, and shorter settling time. 
These improved performances enable quicker and more pre‐
cise tracking of the desired phase in GCC system.

2) GCC system with the SRF-PLL may become unstable 
due to changes in the PLL control parameters. However, the 
stability of GCC system with FO-SRF-PLL is less likely to 
be affected by variations in control parameters.

3) As the steady-state active power and the transmission 
line reactance increase, GCC system with FO-SRF-PLL ex‐
hibits greater stability compared with that with the SRF-
PLL. Notably, even with extremely weak grid connections, 
GCC system with the FO-SRF-PLL remains stable.

Further research and investigation are required to explore 
the potential applications of FOC and FOEs in renewable en‐
ergy systems and their impact on system stability. This paper 
serves as an initial exploration, and future work should fo‐
cus on expanding the understanding of these techniques and 
their implementation.
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