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Abstract——This paper presents a holistic pricing and distribut‐
ed scheduling framework for multi-microgrid system (MMGS) 
that considers the supply‒demand relationships of the coupled 
electricity‒carbon market to promote collaborative market trad‐
ing within the MMGS for economic and environmental benefit 
improvement. Initially, an operation model of each microgrid is 
developed by synthetically considering electricity−carbon opera‐
tional constraints related to generation units and energy storage 
units. Then, a collaborative optimization strategy of the MMGS 
is established according to the Nash bargaining game (NBG) 
model with the objective of maximizing overall operational reve‐
nue. To determine the trading schedule, an accelerated predic‐
tion-correction-based alternating direction method of multipli‐
ers (PCB-ADMM) algorithm is employed to derive the optimal 
scheduling strategy of MMGS in a distributed manner, ensuring 
the privacy preservation of individual microgrids. For electricity−
carbon pricing, a supply − demand ratio (SDR) based pricing 
strategy is proposed to dynamically update electricity and car‐
bon allowance prices, which fundamentally guides and incentiv‐
izes each microgrid to trade within the MMGS preferentially 
rather than with an upstream distribution network. Finally, a 
study case verifies the effectiveness of the proposed framework 
in enhancing the operation economy and environmental friendli‐
ness of the entire MMGS.

Index Terms——Electricity market, carbon allowance market, 
distributed optimization, microgrid, Nash bargaining game, al‐
ternating direction method of multipliers (ADMM), distributed 
scheduling.

I. INTRODUCTION 

TO achieve the ultimate goal of “carbon peak and car‐
bon neutrality” in the energy industry, various countries 

worldwide have placed increasing emphasis on the “safety, 
efficiency, cleanliness, and low-carbon” operation [1], [2] of 
electric power systems. A microgrid (MG), which locally co‐

ordinates and regulates a series of distributed energy sources 
and loads, is considered an essential component of future dis‐
tribution systems [3], [4]. In addition, traditional MGs tend 
to adopt a centralized energy scheduling and trading scheme, 
where insufficient or excessive electricity can be balanced 
only through transactions with upstream distribution net‐
work. In this case, MGs can only passively accept trading 
prices assigned by upstream distribution network; thus, it is 
imperative to develop an elastic marketization mechanism to 
effectively incentivize MGs to engage in energy sharing [5].

To address this issue, the concept of a multi-microgrid sys‐
tem (MMGS) has been proposed to form a functionally inter‐
active and mutualistic subsystem comprising a group of net‐
worked MGs. Owing to flexible power and information ex‐
change among networked MGs, the collaboration of multiple 
MGs not only enhances operational stability and reliability, 
but also creates space for additional economic revenue by 
fully utilizing the idle capacity of each MG [6]. The develop‐
ment of the MMGS platform fosters direct information and 
energy exchange among MGs, which further introduces a 
market-based peer-to-peer (P2P) energy trading scheme and 
increases MG revenue [7].

Many studies have investigated the scheduling and pricing 
strategies of MMGS, as shown in Table I, where SDR stands 
for supply−demand ratio. The existing scheduling strategies 
for MMGS can be classified into two categories, game-
based and nongame-based, with the game-based strategies 
further divided into cooperative and noncooperative games. 
In the nongame-based scheduling strategies, [8] aimed to 
minimize the annual total cost in multiple scenarios, account‐
ing for the power exchange among MGs. This strategy sig‐
nificantly reduced the total costs and achieved the global op‐
timality. However, it employed a centralized optimization ap‐
proach, overlooking the privacy and security requirements of 
individual MGs. As an improvement, distributed decision 
methods have been explored and adopted in many works, 
where the alternating direction method of multipliers (AD‐
MM) was widely utilized [9]-[11], effectively ensuring priva‐
cy protection requirements while minimizing the total opera‐
tion costs of the entire system. In fact, as a rational and au‐
tonomous participant in an MMGS, each MG would be un‐
willing to cooperate if its own benefits were sacrificed com‐
pared with those of independent operation. To promote coop‐
eration and coordination among MGs, some studies have es‐
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tablished a cooperative game-based scheduling strategy to 
maximize and allocate overall benefits. Reference [12] pro‐
posed a strategy based on the Shapley value theory to allo‐
cate benefits according to the contribution of each MG in 
the cooperative alliance. However, when faced with prob‐
lems involving many MGs, the strategies based on Shapley 
value theory often suffer from issues such as long computa‐
tion time and low solution quality. As an alternative ap‐

proach, [13]-[16] established a cooperative game strategy for 
multiple MGs using the Nash bargaining game (NBG) mod‐
el. This strategy maximizes the Nash product of the benefit 
of each MG as the objective function, and decomposes the 
problem into two subproblems: maximizing the benefit of co‐
alition and evenly allocating the cooperative benefit. This 
strategy considers both individual interests and social bene‐
fits, aiming to achieve Pareto efficiency.

The noncooperative game strategy considers the leader −
follower relationship between MGs and the main grid. A bi‐
level optimization model based on the Stackelberg game was 
adopted in [17], [18], where the upper-level main grid deter‐
mines the time-of-use transaction prices, and the lower-level 
MGs determine the power exchange schedules with the main 
grid according to the prices. Through iterative modification 
of prices and power exchange schedules, a Stackelberg game 
equilibrium is achieved, where none of the MGs is willing 
to change its power exchange schedule any more. For the 
noncooperative game strategies, each MG operates indepen‐
dently to maximize its own benefit. The competitive relation‐
ship hinders collaboration among MGs, which usually leads 
to a loss of Pareto efficiency and social welfare optimality.

Determining collaborative prices is another crucial factor 
in the trading process among multiple MGs. References [8]-
[11] set fixed prices, neglecting complex dynamics between 
prices and trading schedules. References [19] and [20] devel‐
oped a pricing strategy considering supply−demand relation‐
ships, which reflects the commodity attributes of electricity 
and is computationally convenient in determining the elec‐
tricity prices to motivate inter-transactions within MMGS. 
References [21] and [22] proposed a pricing strategy based 
on the auction mechanism, where MGs utilize smart con‐
tracts to conduct multiple rounds of bidding to ultimately 
achieve transaction matching. This strategy can fully lever‐
age the advantages of blockchain networks, such as transpar‐
ency in public information and tamper-proof transaction da‐
ta. However, it relies heavily on smart meters to collect and 
evaluate fluctuations in market prices, rendering the overall 
process relatively complex. Reference [23] utilized the mar‐

ginal pricing, which determines prices on the basis of the 
calculation of marginal cost increments with clear physical 
meanings. Nevertheless, in practical applications, marginal 
pricing is highly sensitive to the physical parameters and op‐
erating conditions of the power grid. Specifically, grid con‐
gestion significantly impacts electricity prices, leading to ex‐
cessive price volatility risks for power generators and users. 
Game-based strategies are also widely used for price determi‐
nation, especially those based on NBG model. It realizes 
benefit allocation by formulating P2P collaborative prices. In 
this process, [13] and [14] employ a symmetric pricing allo‐
cation strategy, which means that each MG receives a rela‐
tively equal allocation of benefits, regardless of the individu‐
al contribution of each MG. References [15] and [16] adopt‐
ed the asymmetric NBG (A-NBG) model, which further 
quantifies the contribution of each entity during collabora‐
tion, and more benefits are distributed to entities with great‐
er contribution proportions. However, in the strategies based 
on NBG/A-NBG model, trading plans are previously deter‐
mined before prices, and prices only affect the actual bene‐
fits of MGs, but cannot affect trading schedules. Further‐
more, it requires significant computational resources to han‐
dle larger system sizes and may encounter convergence diffi‐
culties.

The aforementioned studies focus mainly on MMGS pric‐
ing and scheduling strategies for the electricity market, 
where carbon emissions are considered a secondary aspect 
of electricity production. With the steady progress towards 
the goal of “carbon neutrality”, China has been promoting 
the carbon allowance market, where transaction mechanisms 
such as carbon allowance trading and tradable green certifi‐

TABLE I
COMPARISON OF PRICING AND SCHEDULING STRATEGIES FOR MMGS

Reference

[8]-[11]

[12]

[13], [14]

[15], [16]

[17], [18]

[19]

[20]

[21], [22]

[23]

This paper

Pricing

Fixed 
price

√√

SDR

√√
√√

√√

Bidding

√√

Marginal 
price

√√

NBG

Symmetric 
NBG

√√

Asymmetric 
NBG

√√

Scheduling

Game-based

Cooperative game

NBG

√√
√√

√√

Shapley

√√

Noncooperative 
game: Stackelberg

√√

√√

Nongame-based: 
global optimization

√√

√√

√√
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cate have gradually emerged to promote clean energy and re‐
duce carbon emissions [24]. For the MMGS, there is a com‐
plex interdependence and a strong correlation between elec‐
tricity generation and carbon emissions. Since the cost of 
trading carbon allowance is a crucial part of the total costs 
of MGs, MGs are forced to consider carbon allowance pric‐
es during the energy optimization scheduling, which in turn 
affects the electricity trading and the formulation of clearing 
prices. Ultimately, effective coordination between the elec‐
tricity and carbon allowance markets promotes the goals of 
energy conservation and emission reduction. Reference [25] 
introduced the carbon allowance trading into the scheduling 
process while considering the impact of wind power uncer‐
tainty, and demonstrated the conduciveness of carbon allow‐
ance trading to reduce costs under the mandatory limitations 
of carbon emissions. Reference [26] further elaborated on 
the impact of the carbon allowance trading mechanism on 
the output of thermal power units.

The aforementioned studies provide significant theoretical 
discussions on the role of carbon allowance trading, but 
overlook the exploration of their synergistic effects with elec‐
tricity trading mechanisms. As the direct target of policy im‐
plementation, more detailed analyses of both electricity and 
carbon allowance trading are required by dispatching sys‐
tems to explore the effectiveness of coupled electricity−car‐
bon market policy designs. Reference [27] explored the im‐
pact of carbon allowance trading policies on power genera‐
tion planning in an integrated environment of the electricity 
market, carbon allowance market, and fuel market, enabling 
power generation companies to reasonably balance the rela‐
tionship between emission reduction and profitability in a 
multi-interactive market context. However, this study focused 
more on the response of power generation companies to car‐
bon emission policies. MGs typically include power sources 
and loads of both electric and thermal energy, so the impact of 
the coupled electricity−carbon market on the MMGS requires 
further investigation. In [28], a bilevel operational optimiza‐
tion model for the MMGS considering carbon allowance 
trading and demand response was established, which pro‐
motes the sharing of carbon allowance and electric energy, 
effectively reducing the total operation cost and total carbon 
emissions of the MMGS. Reference [29] further considered 
the trading processes of thermal energy and natural gas, and 
established a low-carbon economic dispatch model suitable 
for an integrated electricity‒heat‒gas supply system.

Through an investigation and analysis of existing re‐
search, studies on pricing of the coupled electricity−carbon 
market are still lacking. Among the current pricing strate‐
gies, transaction prices obtained through heuristic algorithms 
exhibit strong randomness and relatively ambiguous physical 
meanings. While prices derived from market principles and 
the bidding process have relatively clear physical implica‐
tions, they rely on more accurate unit model information 
that is often difficult to obtain, and the calculation process is 
comparatively complex. In strategies based on the traditional 
NBG model, the dispatch schedule of the system is deter‐
mined first, and then the collaborative prices are accordingly 
set, which fails to reflect the response process of individual 

MGs to price changes. The Stackelberg-based strategy can 
capture the interactive iteration between MGs and the upper-
level market. However, owing to its nature as a noncoopera‐
tive game, it cannot account for synergistic collaboration 
among MGs and has difficulty balancing a fair distribution 
of benefits. Additionally, as independently operating and self-
governing entities, MGs usually adopt distributed strategies 
when making decisions about electricity and carbon allow‐
ance trading and operation scheduling. However, the in‐
crease of decision variables, especially integer variables, in 
the individual optimization model of MGs may render fast 
convergence ineffective.

In this paper, we propose a pricing and distributed sched‐
uling framework for the MMGS oriented towards the cou‐
pled electricity−carbon market. First, a comprehensive opera‐
tion model for a typical MG is established. Then, an innova‐
tive pricing strategy is established, which considers the sup‐
ply−demand relationships of the coupled electricity−carbon 
market within the MMGS. Next, an NBG-based optimization 
strategy for MMGS is developed, and an accelerated PCB-
ADMM-based algorithm is developed to solve the optimal 
trading and scheduling schemes. The collaborative prices, as 
well as the trading and scheduling schemes, are iteratively 
and adaptively updated until the results reach equilibrium. Fi‐
nally, an elaborate numerical study demonstrates that the pro‐
posed framework can effectively enhance the willingness of 
MGs to participate in collaborative electricity−carbon market 
and achieve benefit allocation.

The main contributions of this paper are as follows:
1) A novel pricing strategy that considers the supply−de‐

mand relationships of the coupled electricity−carbon market 
within the MMGS is proposed. This strategy more accurate‐
ly reflects the dynamic relationship between prices and sup‐
ply−demand in the coupled electricity−carbon market during 
all periods, compensating for the shortcomings of NBG-
based strategies.

2) Under the pricing strategy, an NBG-based optimization 
strategy of MMGS is established to further optimize electrici‐
ty and carbon allowance trading, as well as operation sched‐
uling of the MMGS. This strategy ensures the fairness of the 
benefits gained by each MG while also demonstrating the re‐
sponse process of the MG scheduling to changes in market 
prices, reflecting market dynamics and objective economic 
principles.

3) An accelerated PCB-ADMM algorithm is adopted to 
solve the fully distributed trading and scheduling problems 
of the MMGS. By adopting variable step size updating and 
a block coordinate descent (BCD) loop, the convergence can 
be better guaranteed, and the convergence speed can also be 
increased compared with that of the classical ADMM algo‐
rithm, particularly for problems involving integer variables 
in mathematical formulations.

II. COLLABORATIVE OPERATION ARCHITECTURE OF MMGS 

The basic architecture of the MMGS studied in this paper 
is illustrated in Fig. 1. From the perspective of the physical 
network, all MGs of the MMGS are connected to a common 
upstream distribution network and a common natural gas net‐
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work. The distribution lines function as entitative energy 
paths for MGs to deliver electric power from/to their coun‐
terparts or upstream distribution networks. From the perspec‐
tive of a communication and control network (cyber net‐
work), each MG is governed and managed by a local mi‐
crogrid controller (L-MGC), which plays a crucial role in de‐
termining and regulating: ① the power generation of control‐
lable units within the MG, such as photovoltaic (PV) sys‐
tems, wind turbines (WTs), gas turbines (GTs), and gas boil‐
ers (GBs); ② charging/discharging power of the energy stor‐
age system (ESS); ③ electricity and carbon allowance trad‐
ed with neighboring MGs in the MMGS; and ④ electricity 
and carbon allowance traded with the upstream distribution 
network.

In addition to L-MGCs corresponding to every local MG, 
one global microgrid controller (G-MGC) governs the entire 
MMGS. As shown in Fig. 1, the L-MGC of each MG com‐
municates with the G-MGC to exchange guidance informa‐
tion to achieve dynamic optimal operation. The G-MGC cal‐
culates the actual electric power/gas flow at the feeder/pipe‐
line at the MG boundary and reports it to the distribution 
network operators (DNOs) and gas network operators 
(GNOs) as reference loads.

A. Exchange Process of System Energy

According to the external trading and internal scheduling 
instructions assigned by the L-MGC, the controllable units 
of each MG are regulated to the target value. At the macro‐
scopic level, the electric power flows out from or into MGn 
are denoted by P s

n and P b
n, respectively, which comprise the 

electric power traded with the upstream distribution network 

and the electric power traded among MGn and its counter‐
parts. Similar to the upstream distribution network, a com‐
mon natural gas distribution network is also connected to 
each MG, and FnGas represents the amount of natural gas 
purchased by MGn, which is used to supply the GT and GB.

B. Exchange Process of System Information

After completing the decision-making process, each L-
MGC uploads its own electricity and carbon allowance trad‐
ing results to the G-MGC through a private network. After 
trading schedules are gathered from all MGs, the G-MGC 
determines and updates the unified electricity price and car‐
bon allowance price within the MMGS according to current 
supply‒demand information and then broadcasts pricing sig‐
nals to each L-MGC. All L-MGCs can also communicate 
with one another, enabling them to exchange electricity and 
carbon information and achieve P2P interactions. As shown 
in Fig. 1, Sn represents the decision results of the electricity 
and carbon allowance trading of MGn; λM2M represents the 
unified trading price broadcast from the G-MGC; P ij

M2M repre‐
sents the electricity traded between MGi and MGj; and T ij

M2M 
represents the carbon allowance traded between MGi and 
MGj.

III. COLLABORATIVE OPERATION MODEL OF MMGS 

A. Energy Flow Model

Without loss of generality, we suppose that each investi‐
gated MG comprises one or more types of the aforemen‐
tioned equipment, such as PV, WT, ESS, GT, or GB devices. 
Under this setting, it is possible to schedule conventional 
and renewable energy sources synergistically and to supply 
electric and thermal loads to energy consumers with greater 
flexibility.
1)　Electric and Thermal Power Generation Units

1) The GT model is formulated as [30]:

PGTt = LGHVηGT FGTt (1)

QGTt =PGTtηr /ηGT (2)

0 £PGTt £PGTmax (3)

where FGTt is the hourly usage of natural gas by the GT; 
PGTt and QGTt are the electric and thermal power generated 
by the GT during period t, respectively; and PGTmax is the up‐
per limit of the electric power generation of the GT; LGHV is 
the heating value of natural gas, which is typically taken as 
9.7 kW·h/m3; and ηGT and ηr are the electric power genera‐
tion efficiency and heat recovery efficiency of the GT, re‐
spectively.

2) The GB model is formulated as:

QGBt = LGHVηGB FGBt (4)

0 £QGBt £QGBmax (5)

where FGBt is the hourly usage of natural gas by the GB; 
QGBt is the thermal power generated by the GB during peri‐
od t; ηGB is the thermal energy conversion efficiency of the 
GB; and QGBmax is the upper limit of the thermal power out‐
put of the GB.

ELectric power flow; Gas flow; Information flow
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Fig. 1.　Basic architecture of MMGS.
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2)　ESS
The ESS model is formulated as:

SESt + 1 = SESt + (ηcha Pchat -Pdistη
-1
dis ) (6)

ì

í

î

ïïïï

ïïïï

0 £Pchat £UES PESmax

0 £Pdist £(1 -UES )PESmax

SESmin £ SESt £ SESmax

(7)

where SESt is the initial electric energy of the ESS at the be‐
ginning of period t; ηcha and ηdis are the charging and dis‐
charging efficiencies of the ESS, respectively; Pchat and Pdist 
are the charging and discharging power of the ESS during 
period t, respectively; UES is a binary variable indicating the 
charging (1) or discharging (0) state of the ESS during peri‐
od t; PESmax is the maximum charging or discharging power 
of the ESS; and SESmin and SESmax are the lower and upper 
limits of the ESS capacity, respectively.

B. Carbon Allowance Trading Model

As an administrative measure to restrict carbon emission, 
a certain amount of free initial carbon allowance is allocated 
to power generation enterprises by government regulatory 
agencies, and excessive emissions are severely penalized. 
Moreover, power generation enterprises are allowed to pur‐
chase and sell carbon allowance through the carbon allow‐
ance market, which provides additional revenues and costs 
[28]. The carbon allowance trading model of MGs typically 
comprises three parts: an initial carbon allowance model, an 
actual carbon emission model, and a carbon allowance trad‐
ing cost model.

1) The initial carbon allowance of each MG during period 
t is expressed as:

T 0
CO2t

= ηRES
CO2

(PPVt +PWTt )+ η
GT
CO2

PGTt + η
GB
CO2

QGBt (8)

where PPVt is the power generation of PV units during peri‐
od t; PWTt is the power generation of WT units; and ηRES

CO2
, 

ηGT
CO2

, and ηGB
CO2

 are the carbon allowance allocation coeffi‐

cients of the renewable energy source (WT and PV), GT, 
and GB, respectively.

2) The actual carbon emission for an MG during period t 
is expressed as:

TCO2t
= βCO2GT PGTt + βCO2GB PGBt (9)

where βCO2GT and βCO2GB are the carbon emission coeffi‐

cients for the GT and GB, respectively.
3) The carbon allowance trading cost of an MG is ex‐

pressed as:

CCO2
=∑

t

(vb
M2GtT

b
M2Gt - vs

M2GtT
s
M2Gt + vM2MtTM2Mt ) (10)

where vb
M2Gt and vs

M2Gt are the prices at which the carbon al‐
lowance is purchased from or sold to the upstream distribu‐
tion network by each MG during period t, respectively; 
vM2Mt is the carbon allowance trading price with counterpart 
MGs; T b

M2Gt and T s
M2Gt are the carbon allowances purchased 

from and sold to the upstream distribution network by each 
MG, respectively; and TM2Mt = T b

M2Mt - T s
M2Mt is the total 

amount of carbon allowance traded with counterpart MGs, 

and a positive value indicates that the MG macroscopically 
purchases carbon allowance from other counterpart MGs.

C. Optimization Model for a Single MG

1)　Objective Function
Each MG optimizes its internal controllable unit output 

and external electricity and carbon allowance trading sched‐
ule to minimize its total operation cost. Therefore, the objec‐
tive function for each MG can be expressed as:

CMG =CM2G +CM2M +CGas +CCO2
+COP +CEM -CSUB -CDR

(11)

ì

í

î

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

CM2G =∑
t

(λb
M2Gt P

b
M2Gt - λ

s
M2Gt P

s
M2Gt )

CM2M =∑
t

λM2Mt PM2Mt

CGas =∑
t

λGast (FGBt +FGTt )

COP =∑
t
∑

m

λm Pmt

CEM =∑
t
∑

n

λn Pnt

CSUB =∑
t

pG (PPVt +PWTt )

CDR =∑
t

pDR (P in
DRt +P de

DRt )

(12)

where CMG is the total operation cost of the MG; CM2G is the 
payment for electricity trading with the upstream distribution 
network; λb

M2Gt and λs
M2Gt are the electricity prices for pur‐

chasing and selling electricity, respectively, which are as‐
signed by the DNO; P b

M2Gt and P s
M2Gt are the electric power 

purchased from and sold to the upstream distribution net‐
work, respectively; CM2M is the payment for electricity trad‐
ing with counterpart MGs; PM2Mt =P b

M2Mt -P s
M2Mt is the total 

electric power traded with counterpart MGs, and P b
M2Mt and 

P s
M2Mt are the total electric power purchased from and sold 

to counterpart MGs during period t, respectively; λM2Mt is 
the electricity price for interactive trading between MGs, 
which can be flexibly regulated by the G-MGC; CGas is the 
cost of natural gas procurement; λGast is the natural gas 
price; COP is the cost of equipment operation and mainte‐
nance; Pmt and λm are the output power and maintenance 
cost coefficient of device m (e. g., GT, GB, WT, PV, and 
ESS), respectively; CEM is the environmental cost of gas 
emissions; λn is the environmental penalty cost coefficient 
for pollutant-emitting device n (e.g., GT and GB); Pnt is the 
corresponding output of pollutant-emitting device n; CSUB is 
the subsidized revenue from renewable energy power genera‐
tion; pG is the subsidized price per unit of renewable energy 
power generation; CDR is the subsidized revenue gained due 
to demand response participation; pDR is the subsidized price 
per unit of electric power adjustment; and P in

DRt and P de
DRt are 

the power increase and decrease during period t due to de‐
mand response, respectively.
2)　Constraints

To ensure the stability of MG operations, the following op‐
erational constraints must be satisfied.
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1) Electric/thermal power balance constraints:

ì
í
î

ïï
ïï

PLt =PGTt +PESt +PDRt +PPVt +PWTt +P b
t -P s

t

QLt =QGBt +QGTt
(13)

where PLt and QLt are the electric and thermal loads of the 
MG during period t, respectively; PESt is the power supplied 
by the ESS during period t; PDRt =P de

DRt -P in
DRt is the load ad‐

justment amount due to demand response participation; P b
t =

P b
M2Gt +P b

M2Mt is the total purchased electric power of the 
MG during period t; and P s

t =P s
M2Gt +P s

M2Mt is the total sold 
electric power of the MG during period t.

2) Carbon allowance balance constraints:

T 0
CO2t

+ T b
t = TCO2t

+ T s
t (14)

where T b
t = T b

M2Gt + T b
M2Mt is the total carbon allowance of the 

MG bought from the upstream and carbon allowance mar‐
kets during period t; and T s

t = T s
M2Gt + T s

M2Mt is the total car‐
bon allowance of the MG sold to the upstream and carbon 
allowance markets during period t.

Unlike the strict real-time balance in the electricity mar‐
ket, the carbon allowance balance is often checked and 
cleared over a relatively long time horizon (such as one 
month or one year [29], depending on the carbon allowance 
market policy) in the current stage. Therefore, constraint 
(14) is actually stricter, necessitating the balance during each 
short time period and naturally ensuring balance over a long 
time horizon. To further explore the shifting flexibility of 
carbon allowance trading, carbon allowance trading can be 
scheduled on a longer time scale in future follow-up studies, 
i. e., medium- and long-term market before the day-ahead 
market in this work.

3) Electric power trading constraints:

ì

í

î

ïïïï

ï
ïï
ï

0 £P b
*t £U E*

bt P bmax
*

0 £P s
*t £U E*

st P smax
*

U E*
bt +U E*

st £ 1

    * ={M2MM2G} (15)

where the superscript max represents the maximum value of 
corresponding variables; and U E*

bt  and U E*
st  are the binary 

variables representing the state of power purchase or sale, re‐
spectively, which cannot be set to be 1 simultaneously.

4) Carbon allowance trading constraints:

ì

í

î

ïïïï

ï
ïï
ï

0 £ T b
*t£U C*

bt T bmax
*

0 £ T s
*t£U C*

st T smax
*

U C*
bt +U C*

st £ 1

    * ={M2MM2G} (16)

where U C*
bt  and U C*

st  are the binary variables representing 
the state of carbon allowance purchase or sale, respectively, 
which cannot be set to be 1 simultaneously.

5) Demand response constraints:

ì

í

î

ïïïï

ï
ïï
ï

0 £P in
DRt £U in

DRtη
in
DR PLt

0 £P de
DRt £U de

DRtη
de
DR PLt

U in
DRt +U de

DRt £ 1

(17)

where ηin
DR and ηde

DR are the percentile ranges within which 
the load power can be adjusted; and U in

DRt and U de
DRt are the 

binary variables representing the state of load increase or de‐
crease during the demand response, respectively. For the 

case where both U in
DRt and U de

DRt are 0, the MG does not par‐
ticipate in the demand response.

IV. COLLABORATIVE PRICING MODELS WITHIN MMGS 

As key factors dominating MMGS operation, electricity 
and carbon allowance prices greatly affect the collaborative 
scheduling and trading plans of the MMGS. This paper pres‐
ents a pricing strategy that considers the supply−demand re‐
lationship, which is tractable to determine reasonable elec‐
tricity and carbon allowance prices within the MMGS. Refer‐
ring to [19], the collaborative pricing models can be ob‐
tained as follows.

A. Collaborative Electricity Pricing Model

After autonomous optimization, the power surplus/deficit 
of the MMGS during every time period can be evaluated, di‐
rectly affecting collaborative electricity prices. To be more 
specific, we use P sup

t  to represent the total electricity supply 
of the MMGS during period t, which is calculated by adding 
up electricity sold of MGi at that time, i. e., P sup

t =∑
i

P s
it. 

And we use P de
t  to represent the total electricity demand of 

the MMGS during period t, which is the sum of the electrici‐
ty purchased by MGi at that time, i.e., P de

t =∑
i

P b
it.

1) When P sup
t <P de

t , define the SDR of the electricity dur‐
ing period t by χ E

t = P sup
t P de

t , and the collaborative electricity 
price is determined by:

λM2Mt =
λb

M2Gt (λ
b
M2Gt + λ

s
M2Gt )

λb
M2Gt (1 + χ

E
t )+ λs

M2Gt (1 - χ
E
t )

(18)

2) When P sup
t >P de

t , define the demand− supply ratio of the 
electricity during period t by δE

t = P de
t P sup

t = 1 χ E
t , and the 

collaborative electricity price is determined by:

λM2Mt =
λs

M2Gt (λ
b
M2Gt + λ

s
M2Gt )

λs
M2Gt (1 + δ

E
t )+ λb

M2Gt (1 - δ
E
t )

(19)

3) When P sup
t =P de

t ¹ 0, the collaborative electricity price is 
determined by:

λM2Mt = (λb
M2Gt + λ

s
M2Gt ) 2 (20)

This situation can be regarded as the boundary case, i. e., 
χ E

t = 1, of the two cases above, where the clearing price 
keeps continuous over the entire definitional domain 
of χ E

t > 0.

B. Collaborative Carbon Allowance Pricing Model

Similarly, we use T sup
t  to represent the total carbon allow‐

ance supply of the MMGS during period t, which is the sum 
of the carbon allowance sold by MGi at that time, i.e, T sup

t =∑
i

T s
it. And we use T de

t  to represent the total carbon allow‐

ance demand of the MMGS during period t, which is the 
sum of the carbon allowance purchased by MGi at that time, 
i.e., T de

t =∑
i

T b
it.

1) When T sup
t < T de

t , the collaborative carbon allowance 
price is determined by:

vM2Mt =
vb

M2Gt (v
b
M2Gt + vs

M2Gt )

vb
M2Gt (1 + χ

C
t )+ vs

M2Gt (1 - χ
C
t )

(21)
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where χ C
t = T sup

t T de
t  is the SDR of carbon allowance during 

period t.
2) When T sup

t > T de
t , the collaborative carbon allowance 

price is determined by:

vM2Mt =
vs

M2Gt (v
b
M2Gt + vs

M2Gt )

vs
M2Gt (1 + δ

C
t )+ vb

M2Gt (1 - δ
C
t )

(22)

where δC
t = T de

t T sup
t = 1 χ C

t  is the demand − supply ratio of 
carbon allowance during period t.

3) When T sup
t = T de

t ¹ 0, the collaborative carbon allowance 
price is determined by:

vM2Mt = (vb
M2Gt + vs

M2Gt ) 2 (23)

C. Dynamic Mechanism Analysis of Price

Taking the collaborative electricity price as an example 
for analysis, the dynamic curve of market price as a function 
of SDR is shown in Fig. 2(a), where λa = (λb

M2Gt + λ
s
M2Gt ) 2. 

The aforementioned collaborative electricity pricing model 
ensures that the collaborative electricity price curve is al‐
ways located between the purchase and sale price levels of 
the upstream distribution network, enhancing the profitabili‐
ty of transaction participants and strengthening the willing‐
ness of various MGs to engage in collaboration. Similarly, 
the dynamic curve of collaborative carbon allowance price 
as a function of SDR follows the same pattern.

In addition, under the proposed pricing strategy, the collab‐
orative electricity/carbon allowance price smoothly decreases 
as the SDR increases. The mechanism and reasonableness 
can be explained by analyzing the supply‒demand relation‐
ship of the electricity/carbon allowance market during differ‐
ent periods. Still taking the electricity market for demonstra‐
tion, Fig. 2(b) illustrates the demand curve (red solid curve 
D) and supply curve (blue solid curve S) with their intersec‐
tion point E as the original market equilibrium point. Sup‐
pose that more output power can be generated during a cer‐
tain period, which would result in the supply curve shifting 
to the right from S to S1 (more supply quantity can be ac‐
cessed for the same price). Thus, the market equilibrium 
point would change from point E to F, indicating a decrease 
in the market price during this period. Therefore, it can be 
deduced that the price tends to decrease with a higher SDR 
value, which aligns with Fig. 2(a). Similarly, with higher 
electric and thermal loads during peak-load periods, the de‐
mand curve shifts from D to D1, and the market equilibrium 
point changes from point E to G, indicating an increase in 
the market price. This indicates that the price will be higher 
if a lower SDR value appears during some periods, as illus‐
trated in Fig. 2(a).

V. NBG-BASED OPTIMIZATION STRATEGY OF MMGS AND 
DISTRIBUTED SOLUTION METHOD 

This section first establishes an NBG-based optimization 
strategy that is easy to solve in a distributed manner by refer‐
ring to the collaborative prices. This strategy accounts for 
the balance of operation gains among the participant MGs in 
the MMGS. Subsequently, an improved accelerated PCB-AD‐
MM algorithm is employed to solve the NBG-based optimi‐
zation model.

A. NBG-based Optimization Strategy

As an independent entity in an MMGS, each MG is con‐
sidered rational. Consequently, it is assumed that an MG 
will not engage in MMGS collaboration unless its operation 
revenue can be improved by collaboration. To achieve equi‐
librium of the complex game relationships among MGs, 
NBG model is adopted to develop the collaborative optimiza‐
tion of MMGS. In this work, we use the reduction in the op‐
eration cost of an MG after collaboration to represent the in‐
crease in operation revenue or benefit. Thus, the NBG mod‐
el for collaborative optimization of MMGS can be formulat‐
ed as follows:

ì

í

î

ï
ïï
ï

ï
ïï
ï

max∏
i

(C 0
MGi -CMGi )

s.t. C 0
MGi ³CMGi

       (1)-(11) (13)-(17)

(24)

where C 0
MGi is the total operation cost of MGi before partici‐

pating in collaboration; and CMGi is the operation cost of 
MGi after participating in collaboration.

Owing to the Pareto efficiency and convexity of the NBG 
problem, [31] demonstrated that an equilibrium solution for 
the NBG problem (24) exists and is unique, where the maxi‐
mization of the Nash product of the increase in the revenue 
of all MGs is guaranteed. The proof indicates that in the 
NBG model, if the objective function is continuous over a 
bounded and compact feasible region of decision variables, a 
finite upper bound of the objective function must exist. As 
shown in (24), the decision variables of the NBG model re‐
fer to the power exchanged among MGs occurring within a 
finite range, and the continuous objective function is the 
product of the incremental revenue of the MG. Therefore, 
the conditions for the existence of a Nash bargaining solu‐
tion are satisfied.

Since (24) is a nonconvex and nonlinear optimization 
problem, it is difficult to solve directly. The analysis reveals 
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Fig. 2.　Dynamic curves of market price. (a) Price curves related to SDR. 
(b) Price curves related to supply and demand variations.
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that the nonconvex and nonlinear nature of the problem 
stems from two aspects: the objective function of the Nash 
product and the binary variables in the constraints. For the 
problem of products in the objective function, since the natu‐
ral logarithmic function is a monotonically increasing con‐
vex function, we take the negative logarithm of (24) to trans‐
form the original problem of maximizing the Nash product 
into minimizing the summation of a series of negative loga‐
rithmic functions (25).

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

min
ì
í
î

ü
ý
þ

-∑
i

ln(C 0
MGi -CMGi )

s.t. C 0
MGi ³CMGi

       (1)-(11)(13)-(17)

(25)

Owing to the coupling variables P ij
M2Mt and T ij

M2Mt in CMGi, 
which represent the electric power and carbon allowance 
traded between MGi and MGj, respectively, the consistency 
constraints in (26) should be met.

ì
í
î

ïï
ïï

P ij
M2Mt +P ji

M2Mt = 0

T ij
M2Mt + T ji

M2Mt = 0
(26)

B. Solution Method Based on Accelerated PCB-ADMM Algo‐
rithm

In this work, we adopt an improved accelerated PCB-AD‐
MM algorithm [32] to solve the reformulated model (25) in 
a distributed manner, which can improve the convergence 
performance of ADMM algorithm and accelerate the conver‐
gence speed, especially for multi-block separable problems 
comprising various binary or integer variables.

For convenience of expression, we use Ni to represent the 
set of MGs connected to MGi, and | Ni | represents the num‐
ber of elements in set Ni. Based on (25), the augmented La‐
grangian function for each MG is established as:

Li =-ln(C 0
MGi -CMGi )+∑

jÎNi

[ (ψ ij )T (P ij
M2M +P ji

M2M )+

(ζ ij )T (T ij
M2M +T ji

M2M )+
ρ
2
 P ij

M2M +P ji
M2M

2

2
+

ù
û
úúúúρ

2
 T ij

M2M +T ji
M2M

2

2

(27)

where P ij
M2M = ∪

t = 1:T

P ij
M2Mt and T ij

M2M = ∪
t = 1:T

T ij
M2Mt are the vec‐

tors of power and carbon allowance purchased/sold by MGi 
from/to MGj during all periods, respectively; P ji

M2M =∪
t = 1:T

P ji
M2Mt and T ji

M2M = ∪
t = 1:T

T ji
M2Mt are the vectors of corre‐

sponding consistent variables from the perspective of MGj; 
ψ ij and ζ ij are the related Lagrange multiplier vectors con‐
cerning electricity and carbon allowance trading constraints 
(26) during all periods, respectively; and ρ is the penalty co‐
efficient.

PCB-ADMM algorithm is a modified ADMM algorithm 
dedicated to multi-block separable convex optimization prob‐
lems that implement distributed collaboration by sequentially 
carrying out two fundamental steps: prediction and correc‐
tion. For the prediction step, a BCD loop is used, i. e., pre‐
dicting each subproblem block in sequence following the or‐
der of 1→ 2→ ...→ n→ n - 1→ ...→ 2. For the correction 

step, a simple convex combination of two iteration points is 
computed from the prediction step and previous iteration. 
Owing to the block-separating and loop iteration procedure, 
the PCB-ADMM algorithm can accelerate the convergence 
speed more effectively than the traditional ADMM algo‐
rithm, especially for problems with multi-block separable 
convex optimization and integer variables [32]. The MMGS 
studied in this paper involves multiple MGs and therefore 
can be naturally regarded as a multi-block optimization prob‐
lem. To further increase the convergence speed, this paper in‐
corporates a dynamic penalty factor into the original PCB-
ADMM algorithm. The procedure for solving the coopera‐
tive operation model of the MMGS based on the accelerated 
PCB-ADMM algorithm is shown in Algorithm 1, where ρ0 
is the initial value of the penalty factor, which is set to be 
10-6; τ is the adjustment factor, which is set to be 0.15; α is 
the correction step size, which is set to be 0.95; and γ is the 
iteration residual.

C. Overall Solution Process

In summary, the overall solution process for pricing and 
distributed scheduling of the MMGS is described as follows.

Step 1: the G-MGC decides and broadcasts collaborative 
electricity price λM2Mt and collaborative carbon allowance 
price vM2Mt to all L-MGCs. Then, L-MGCs perform iterative 
decisions based on accelerated PCB-ADMM algorithm ac‐
cording to these prices, until the iteration residual γ is less 
than the preset threshold 10-2.

Step 2: each L-MGC transmits its final trading decisions 

Algorithm 1: accelerated PCB-ADMM algorithm

Set iteration counter k = 0
Initialization For MGi and MGj (ijÎNi), set initial values, including: 
① Lagrange multipliers ψ ij (0), ζ ij (0); ② coupling variables P ij

M2M (0), 
T ij

M2M (0); and ③ penalty coefficient ρ(0)

Do:

Prediction For MGi, use P͂ ij
M2M (k) and T͂ ij

M2M (k) to backup current values 
of coupling variables

   Forward prediction: for j = 12...| Ni |,
      fix ψmi (k)ζ mi (k)P mi

M2M (k)T mi
M2M (k)    mÎ [ ]1: || Ni \{ j}

      update [P ij
M2M (k); T ij

M2M (k)]¬ arg min Li (P
ij
M2M; T ij

M2M )

   Backward prediction: for j = | Ni | | Ni | - 1...2,

      fix ψmi (k)ζ mi (k)P mi
M2M (k)T mi

M2M (k)    mÎ [ ]2: || Ni \{ j}

      update [P ij
M2M (k); T ij

M2M (k)]¬ arg min Li (P
ij
M2M; T ij

M2M )

Communication For MGi and MGj (ijÎNi), share local prediction val‐
ues of coupling variables: P ij

M2M (k)P ji
M2M (k)T ij

M2M (k)T ji
M2M (k)

Correction For MGi and j = 12...| Ni |,
   ψ ij (k + 1)=ψ ij (k)+ αρ(k)(P ij

M2M (k)+P ji
M2M (k))

   ζ ij (k + 1)= ζ ij (k)+ αρ(k)(T ij
M2M (k)+T ji

M2M (k))

   P ij
M2M (k + 1)=P ij

M2M (k)- α(P͂ ij
M2M (k)-P ij

M2M (k))

   T ij
M2M (k + 1)=T ij

M2M (k)- α(T͂ ij
M2M (k)-T ij

M2M (k))

   ρ(k + 1)= ρ0ekτ

Communication For each MGi and MGj (ijÎNi), share corrected cou‐

pling variables and multipliers: P ij
M2M (k + 1), P ji

M2M (k + 1), T ij
M2M (k + 1), 

T ji
M2M (k + 1), ψ ij (k + 1), ζ ij (k + 1)

Accumulate iteration counter: k¬ k + 1
Until:

γ =  P ij
M2M (k + 1)+P ji

M2M (k + 1)
2

2
+  T ij

M2M (k + 1)+T ji
M2M (k + 1)

2

2
£ 10-2

1033



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 13, NO. 3, May 2025

to the G-MGC, according to which the G-MGC assesses 
SDRs in both the electricity and carbon allowance markets 
during each period.

Step 3: the G-MGC updates the electricity and carbon al‐
lowance prices following (18)-(23) and broadcasts them to L-
MGCs as in Step 1.

Step 4: L-MGCs initiate a new round of distributed sched‐
uling according to the latest trading prices, as in Step 2.

The overall solution process is iteratively conducted until 
the variances of electricity and carbon allowance prices are 
less than the preset threshold 10-4.

VI. CASE STUDY 

A. System Parameters and Operation Framework Settings

The MMGS illustrated in Fig. 1 is used in this paper, which 
comprises 4 independent MGs. MG1, MG2, and MG3 are inte‐
grated energy systems that include WT, PV, ESS, and GT, 
whose parameters are adopted from [30]. MG4 is a solar ener‐
gy storage plant that consists of PV and ESS. The investigated 
scheduling period is set to be 24 hours and is equally divided 
into 24 intervals. The power generation of PV and WT and 
load curves for each MG are shown in the Appendix A. The 
electricity purchase and sale prices of upstream distribution 
network are shown in the Appendix A Table AI. The carbon al‐
lowance purchase and sale prices of upstream distribution net‐
work are 0.025 and 0.05 ¥/kg, respectively.

To validate the effectiveness and rationality of the pro‐
posed strategies, comparative analyses are conducted on 4 
different operation frameworks of the MMGS.

Framework 1: no P2P electricity and carbon allowance 
trading exists within the MMGS. Each MG can participate 
in electricity‒carbon trading only with the upstream distribu‐
tion network.

Framework 2: P2P electricity trading exists within the 
MMGS, but P2P carbon allowance trading is not available.

Framework 3: P2P electricity and carbon allowance trad‐
ing exist within the MMGS. The NBG model in [14] is ad‐
opted for both pricing and scheduling.

Framework 4: P2P electricity and carbon allowance trad‐
ing exist within the MMGS. The proposed SDR-based pric‐
ing and NBG-based optimization strategies are adopted.

B. Analysis of Convergence Performance

The results of the iterative convergence process are shown 
in Fig. 3.

The curves labeled 1-24 in Fig. 3(a) and Fig. 3(b) repre‐
sent the price iteration curves for each time period. It can be 
found that both the electricity and carbon allowance prices 
tend to stabilize after 5 iterations. Moreover, comparisons of 
iteration residuals γ among ADMM algorithm, PCB-ADMM 
algorithm, accelerated ADMM algorithm with variable step 
sizes (denoted as algorithm A), and accelerated PCB-AD‐
MM algorithm with variable step sizes (denoted as algorithm 
B) are shown in Fig. 3(d). The ADMM and PCB-ADMM al‐
gorithms with fixed penalty factors require 110 iterations 
and 107 iterations, respectively, for the dual residual to 
achieve convergence. However, the number of iterations un‐
der algorithms A and B are reduced to 64 and 42, respectively. 

The results indicate that the accelerated PCB-ADMM algo‐
rithm adopted in this work performs better with sufficient ac‐
curacy and rapid convergence.

C. Analysis of Pricing and Distributed Scheduling Results

1)　Results of Collaborative Optimization
By solving the Framework 4, the transaction results of 
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each MG are obtained and shown in Fig. 4. The following 
conclusions can be drawn from the transaction results.

1) Each MG can maintain power balance during every pe‐
riod. Owing to the higher procurement cost of natural gas, 
high-cost GTs operate during periods of high electricity de‐
mand when the purchase price is higher, such as during peri‐

ods of 9-22 hours for MG1. Additionally, the generation of 
renewable energy sources provides free carbon allowance. 
Therefore, in cases where there is a greater contribution 
from renewable energy sources, selling the electricity gener‐
ated by the GT can generate additional revenue, as observed 
during periods of 23-24 hours and 1-8 hours for MG2.

2) In the case of a power deficit, each MG is designed to 
prioritize the fulfillment of the requisite electricity through 
P2P trading within the MMGS. Only when the electricity 
supply is unable to meet the electricity demand, MGs resort 
to purchasing electricity from the upstream distribution net‐
work. For instance, MG1 purchases a total of 1545.54 kW 
of electricity from the upstream distribution network.

3) Each MG has the ability to store a proportion of its en‐
ergy through energy storage devices during periods of sur‐
plus generation or low electricity prices. The stored energy 
can then be used during periods of insufficient renewable en‐
ergy power generation or high electricity prices. For exam‐
ple, MG1 has an average energy storage power of 120.3 kW 
during periods of 1-7 hours and an average energy discharge 
power of 160 kW during periods of 19-24 hours.

4) Additionally, each MG can actively respond to peak 
shaving requirement of the upstream distribution network by 
reducing its load during high-demand periods to receive cer‐
tain subsidy revenues. For example, MG1 reduces its load 
by an average of 347.52 kW during the high-demand periods 
of 8-22 hours.
2)　Trading Results of Carbon Allowance Market

The trading results of carbon allowance market is shown 
in Fig. 5. According to the results shown in Fig. 5(a), MG1 
is the main carbon allowance buyer, with an average pur‐
chase of 65.33 kg of carbon allowance during each period. 
MG4 is the main carbon allowance seller, with an average 
sale of 80.14 kg of carbon allowance during each period. 
MG3 has higher renewable energy power generation during 
periods of 10-16 hours and lower GT power generation, re‐
sulting in greater carbon emission allowance sales during 
these periods, with an average value of 46.37 kg.

As for total carbon emission and total carbon emission 
costs of MMGS, when P2P carbon allowance trading is un‐
available (Framework 2), each MG reduces its GT power 
generation by exchanging electricity among MGs, reducing 
the total carbon emission by 1.39%. In Frameworks 3 and 4, 
the coupled electricity‒carbon market among MGs is consid‐
ered, which encourages MGs to retain carbon allowance for 
trading to obtain more benefits. Therefore, the total carbon 
emissions under Frameworks 3 and 4 decrease by 5.95% 
and 4.88%, respectively. Figure 5(a) shows that MGs with 
high carbon emissions purchase carbon allowance from other 
MGs with surplus carbon allowance, thereby reducing the 
cost. Therefore, after considering P2P carbon allowance trad‐
ing in Frameworks 3 and 4, the total carbon emission costs 
are reduced by 32.47% and 31.88%, respectively.
3)　Results of Electricity and Carbon Allowance Prices

In Framework 4, the clearing electricity prices and carbon 
allowance prices among multiple MGs are characterized via 
the collaborative pricing model in Section IV. The calcula‐
tion results of electricity price curve and carbon allowance 
price curve are shown in Fig. 6.
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Fig. 4.　Transaction results of each MG under collaborative optimization. 
(a) MG1. (b) MG2. (c) MG3. (d) MG4.
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In Fig. 6(a), the collaborative electricity prices during 
most periods are close to the selling prices of the upstream 
distribution network. This is due to the fact that the MMGS 
experiences supply‒demand imbalance during nonpeak elec‐

tricity consumption periods. For example, during periods of 
23-24 hours and 1-7 hours, the average collaborative electric‐
ity price is 0.37 ¥/kWh. However, during the peak electricity 
consumption period, the solar energy storage plant in MG4 
provides a large amount of electricity, resulting in collabora‐
tive electricity prices lower than the selling prices of the up‐
stream distribution network, with an average reduction of 
0.4 ¥/kWh. In operation frameworks without P2P carbon al‐
lowance trading (Frameworks 1 and 2), the carbon allow‐
ance of different MGs can be traded only with the upstream 
distribution network. The results show that during high elec‐
tricity price periods of 12-15 hours and 19-22 hours, the to‐
tal output of thermal power units without P2P carbon allow‐
ance trading increases by 728.86 kW on average. This indi‐
cates that the MG tends to utilize surplus carbon allowance 
for power generation when the collaborative price is high, in 
order to sell more electricity and generate more revenues, 
thus leading to an increase in electricity sales and a corre‐
sponding decrease in electricity prices. However, during the 
low electricity price periods of 7-10 hours, renewable energy 
power generation is lower, and the initial carbon allowance 
of the MG is limited, with an average decrease of 14.5% 
compared with that of the peak electricity consumption peri‐
od, and the total electricity sales without considering P2P 
carbon allowance trading exhibit an average decline of 182.9 
kW compared with that considering P2P carbon allowance 
trading. This indicates that when carbon allowance is insuffi‐
cient, the MG selects to prioritize meeting its own electricity 
demand, which results in a reduction in electricity sales and 
a corresponding increase in electricity prices. It can be con‐
cluded that considering P2P carbon allowance trading pro‐
cess during the operation of the MMGS has an impact on 
the operational strategies of the MG.

Figures 5(a) and 6(b) show that during periods of 1-6 
hours and 19-24 hours, all the MGs act as carbon allowance 
buyers. Therefore, the collaborative carbon allowance prices 
during these periods attain the carbon allowance selling 
price of the upstream distribution network, which is 0.05 
¥/kg. However, with the activation of the PV units, MG3 
and MG4 are allocated with a substantial carbon allowance, 
which results in an increase in the carbon allowance supply 
in the carbon allowance market and a corresponding de‐
crease in the collaborative carbon allowance price, which 
drops to 0.0302 ¥/kg.

D. Comparative Analysis Under Different Operation Frame‐
works of MMGS

The costs of individual MGs and the total costs of the 
MMGS under different operation frameworks are shown in 
Table II.
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Fig. 6.　Calculation results of electricity and carbon allowance prices dur‐
ing each trading period. (a) Electricity price. (b) Carbon allowance price.

TABLE Ⅱ
COST COMPARISON UNDER DIFFERENT OPERATION FRAMEWORKS

Framework

1

2

3

4

Cost (¥)

MG1

38854.1

36250.8

34651.2

34869.9

MG2

20514.5

20310.9

17511.6

20118.6

MG3

18654.5

18139.6

15651.6

17672.2

MG4

-6596.8

-9999.2

-10399.0

-14268.0

Total cost 
(¥)

71426.3

64702.1

57414.8

58392.4
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Fig. 5.　Trading results of carbon allowance market. (a) Carbon allowance 
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In Framework 1, where there is no collaboration among 
MGs, the deficit and surplus electricity of each MG can be 
balanced only through transactions with the upstream distri‐
bution network, resulting in the worst economic perfor‐
mance. Compared with those of Framework 2, the costs of 
each MG in Frameworks 3 and 4 are significantly lower. 
This indicates that the framework considering P2P electricity 
and carbon allowance trading inspires collaboration and re‐
duces the costs of MGs, greatly enhancing economic perfor‐
mance. Framework 3 achieves a relatively equitable distribu‐
tion of revenue by traditional NBG model to determine both 
trading prices and schedules. Compared with the case of in‐
dependent operation, Framework 3 yields even a relatively 
increase in revenue for each MG, with an increase of approx‐
imately ¥3502.9. However, due to the shortcoming of tradi‐
tional NBG-based pricing strategies adopted in previous 
works, the actual market principle between prices and mar‐
ket supply−demand levels cannot be reflected. Although the 
results in Framework 3 achieve idealized revenue allocation, 
it is difficult to reflect the situation where the trading plans 
of MGs change with market prices in the actual market trad‐
ing process. Framework 4 more accurately reflects the dy‐
namic relationship between the scheduling strategy and the 
market price. By comparing Fig. 4 and Fig. 6, it can be ob‐
served that the MMGS is in a state of short supply for the 
majority of the trading process, particularly during the peak 
electricity consumption periods of 11-14 hours. Therefore, 
the income of the primary power supplier MG4 increases by 
¥4169 compared with that of Framework 3, whereas the 
costs of MG1, MG2, and MG3, as demanders, increase by 
¥518.7, ¥2607, and ¥2020.6, respectively, which more accu‐
rately reflects the rationality of actual market. Additionally, 
the total cost under Framework 4 increases by only ¥977.6 
(1.7% in percentage) compared with that under Framework 
3, indicating that the overall benefit under Framework 4 de‐
viates little from the optimal benefit obtained under Frame‐
work 3.

E. Influence Analysis Under Interaction with an Upstream 
Distribution Network

To explore the influence of operation scheduling and col‐
laborative willingness of the MMGS when it responds to the 
demand response adjustment of the upstream distribution net‐
work, a comparative analysis is conducted on the costs ob‐
tained under a demand response adjustment margin of 10% 
(i.e., the situation investigated in aforementioned results) and 
those obtained under a demand response adjustment margin 
of 20%. The results are presented in Table III.

As shown in Table III, the total cost decreases by ¥8796.3 
when the adjustment margin increases from 10% to 20%, in‐

dicating that increasing the participation in demand response 
interactions with the upstream distribution network can in‐
crease the total profitability of the MMGS.

Among all the MGs, the main beneficiaries are MG1, 
MG2, and MG3, which earn extra benefits from demand re‐
sponse subsidies by further reducing their load demand. 
However, the load demand reduction also increases the SDR 
and decreases the collaborative electricity price. Consequent‐
ly, a lower collaborative electricity price results in a further 
decrease in the benefit for the primary power supplier MG, 
such as MG4 in this study. This reveals an implicit risk that 
although the supplier MG is not directly involved in demand 
response, it may suffer from benefit loss due to price fluctua‐
tions. In this case, the overall demand response benefits 
must be reallocated to ensure that the benefits of the suppli‐
er MG are not affected.

VII. CONCLUSION 

Taking coupled electricity− carbon market within MMGS 
into full consideration, this study focuses on operation opti‐
mization of multiple MGs with diverse stakeholders. A holis‐
tic operational framework, which comprises the SDR-based 
pricing strategy and the NBG-based optimization strategy, is 
constructed to promote collaborative electricity and carbon 
allowance trading within the MMGS, which effectively in‐
creases the economic and environmental revenue. The effec‐
tiveness and rationality of the proposed framework are veri‐
fied and analyzed through case studies.

The framework proposed in this paper holds practical sig‐
nificance for realizing trading in the coupled electricity‒car‐
bon market of the MMGS. In future research, the impacts of 
power generation uncertainty on renewable energy and trad‐
ing strategies under power flow constraints will be consid‐
ered. The issue of how MMGS can more effectively interact 
with upstream distribution networks, especially during peri‐
ods of peak demand or grid instability, is also a topic that 
warrants further in-depth exploration.

APPENDIX A 
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TABLE Ⅲ
COST COMPARISON UNDER DIFFERENT ADJUSTMENT MARGINS

Adjustment 
margin (%)

10

20

Cost (¥)

MG1

34869.9

30403.6

MG2

20118.6

17146.1

MG3

17672.2

14038.9

MG4

-14268.0

-11992.6

Total 
cost (¥)

58392.4

49596.1
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TABLE AI
ELECTRICITY PURCHASE AND SALE PRICES OF DISTRIBUTION NETWORK

Time period (hour)

12-14, 19-22

8-11, 15-18

23-24, 0-7

Sale price (¥/kWh)

0.2

0.2

0.2

Purchase price (¥/kWh)

1.20

0.75

0.40
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