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Abstract——This paper proposes a novel parallel hybrid deep 
reinforcement learning (DRL) approach to address the real-
time energy management problem for microgrid (MG). As the 
proposed approach can directly approximate a discrete-continu‐
ous hybrid policy, it does not require the discretization of con‐
tinuous actions like regular DRL approaches, which avoids ac‐
curacy degradation and the curse of dimensionality. In addi‐
tion, a novel experience-sharing-based parallel technique is fur‐
ther developed for the proposed approach to accelerate the 
training speed and enhance the training robustness. Finally, a 
safety projection technique is introduced and incorporated into 
the proposed approach to improve the decision feasibility. Com‐
parative numerical simulations with several existing MG real-
time energy management approaches (i.e., myopic policy, model 
predictive control, and regular DRL approaches) demonstrate 
the effectiveness and superiority of the proposed approach.

Index Terms——Deep reinforcement learning, real-time energy 
management, microgrid, hybrid policy, experience-sharing-
based parallel technique, safety projection.

I. INTRODUCTION

DUE to the detrimental effects of fossil fuels on the envi‐
ronment and the decreasing costs of renewable energy 

sources (RESs), RES deployment has witnessed a significant 
upswing worldwide [1]. Microgrid (MG) has emerged as a 
powerful technology for harnessing distributed RESs, en‐
abling the effective integration of diverse energy sources and 
loads to achieve regional power self-balancing [2]. However, 
due to the inherent uncertainty and uncontrollability of 
RESs, the reliable, economical, and intelligent operation of 
MG has become a major challenge [3]. As a vital tool for 
optimizing MG operations, the MG real-time energy manage‐
ment (REM) problem has been extensively studied, leading 
to the development of various approaches [4].

As a classic approach, the myopic policy [5] can provide 

optimal real-time decisions with rapid computation. Howev‐
er, it is concerned only with gains during the current period, 
which leads to less satisfactory optimal decisions for the 
long-term operation of MG [6]. As an improved approach to 
the myopic policy [7], [8], model predictive control (MPC) 
enables decision-making for the current period while consid‐
ering future implications by incorporating near-future fore‐
casting information [9], [10]. However, MPC performance 
can be affected by the accuracy of forecasting information 
and the length of look-ahead time horizon [11].

In recent years, the Markov decision process (MDP)-based 
approaches have emerged as superior and promising alterna‐
tive solutions to the REM problem of MG [12]. Unlike 
MPC, MDP-based approaches mitigate dependence on fore‐
casting data, inherently accommodate the stochastic proper‐
ties of environmental variables, and optimize long-term deci‐
sions by maximizing the expected cumulative rewards [13]. 
In general, MDP-based approaches encompass two major 
branches, i. e., approximate dynamic programming (ADP) 
and deep reinforcement learning (DRL). ADP approaches 
can obtain near-optimal online decisions based on the cur‐
rent system state and well-trained value functions [7], [8], 
[14]. However, ADP approaches are performed under a mod‐
el-based paradigm, which makes their performance highly 
dependent on the modeling accuracy and uncertainty charac‐
terization method. In addition, the necessity of these model-
based approaches to resolving the complex optimization 
problem at each time slot incurs substantial computational 
costs, which greatly impedes real-time decision-making [15].

To address the inherent limitations of model-based ADP 
approaches, a growing trend toward the application of model-
free DRL approaches in the REM of MG has emerged [16]. 
DRL approaches do not rely on explicit models, which 
makes them suitable for complex and uncertain environ‐
ments [17]. Unlike model-based approaches, DRL can rapid‐
ly derive real-time scheduling decisions on millisecond tim‐
escales [15]. Research on DRL-based REM solutions of MG 
has generally been categorized into the following two 
types [16].

1) Value-based approaches. These approaches learn the 
state or state-action values and choose the action with the 
highest value in the state. In [18], a value-based approach 
known as a deep Q-network (DQN) was first utilized in the 
MG REM problem, which represented the start of a new re‐
search area. In [19], a DQN was applied to a more complex 
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MG model that considered uncertainties in loads, RESs, and 
electricity prices. In [20], a variant of the DQN, namely the 
branching dueling Q-network (BDQ) algorithm, was pro‐
posed for the REM problem of MG with distributed battery 
energy storage systems (ESSs). The BDQ algorithm is high‐
ly scalable and allows the outputs of the neural network to 
increase linearly with the number of battery ESSs. Recently, 
a novel NoisyNet-dueling double DQN algorithm was intro‐
duced in [21] for the power allocation of various compo‐
nents within a hydrogen gas station MG, where the NoisyN‐
et can aid efficient exploration and the dueling network can 
generalize learning across actions. However, these studies 
that use value-based approaches cannot handle continuous ac‐
tions, hindering their ability to finely schedule actions such 
as the charging and discharging power of ESSs.

2) Policy-based approaches. These approaches directly 
learn the policy function that maps the state and action, al‐
lowing them to adapt to the continuous action space problem 
through either a deterministic or stochastic policy form. As a 
representative deterministic policy algorithm, a deep deter‐
ministic policy gradient (DDPG) was utilized in [22] to de‐
termine the optimal control strategy for a battery in an MG. 
In [23], a novel finite-horizon DDPG algorithm was devel‐
oped for the REM problem of a smart isolated MG to ad‐
dress the instability problem of DRL and the unique charac‐
teristics of the finite-horizon model. Unlike deterministic pol‐
icy algorithms that output a single value, stochastic policy al‐
gorithms offer probabilistic policies that allow for more di‐
verse and exploratory decision-making processes. Representa‐
tive algorithms in this category include the proximal policy 
optimization (PPO) and asynchronous advantage actor-critic 
(A3C). In [24], the PPO algorithm was used to address the 
REM problem of MG, demonstrating superior performance 
in terms of accuracy and computational stability compared 
with the DQN and DDPG algorithms. In [25], an improved 
A3C algorithm integrating experience replay and a semi-de‐
terministic training phase was proposed to tackle the multi-
task REM problem of MG with multiple sources of flexibili‐
ty.

Although existing research has encouraged the application 
of DRL techniques in the MG REM, these approaches have 
the following limitations. ① Existing DRL approaches are 
limited to handling either discrete or continuous actions. 
This necessitates the discretization of continuous actions 
when confronted with the problems involving a hybrid ac‐
tion space [26], e.g., on/off decisions of dispatchable genera‐
tors (DGs) are discrete actions, while the output power of 
DGs is continuous. However, this discretization not only de‐
grades the accuracy of results, but may also lead to the curse 
of dimensionality. ② Existing DRL approaches often require 
a relatively long training period, which becomes more pro‐
nounced when confronted with a significant increase in the 
action space size [27]. ③ Existing DRL-based MG REM so‐
lutions often ignore network power flow constraints to sim‐
plify the problem, which may lead to safety issues in real-
world applications. In addition, regular DRL approaches in‐
corporate only constraint violations as penalty terms in the 
reward function [28], [29], making it difficult to ensure the 

safety of decisions.
To address these limitations, this paper applies a novel par‐

allel hybrid PPO (PH-PPO) algorithm in the MG REM prob‐
lem with a hybrid action space. The main contributions of 
this paper are summarized as follows.

1) A novel hybrid actor-critic (H-AC) architecture is devel‐
oped using the PH-PPO algorithm. Unlike existing DRL ap‐
proaches that require the discretization of continuous actions 
when confronted with a discrete-continuous hybrid action 
space, the proposed approach adopts the H-AC architecture 
to deal directly and simultaneously with discrete and continu‐
ous actions, leading to faster convergence toward a superior 
solution.

2) An experience-sharing-based parallel technique is devel‐
oped for the PH-PPO algorithm, which allows multiple 
agents to explore different environments simultaneously and 
share their collected experiences. The experience-sharing-
based parallel technique fully utilizes the computational re‐
sources of multicore central processing unit (CPU) and 
graphics processing unit (GPU), resulting in accelerated 
training speed as well as improved training robustness.

3) A safety projection technique is introduced and incorpo‐
rated into the PH-PPO algorithm, which utilizes the prior-do‐
main knowledge of the MG REM to restrict the output ac‐
tions within a feasible range, and greatly enhances the deci‐
sion feasibility.

The remainder of this paper is organized as follows. Sec‐
tion II introduces the mathematical formulation of the MG 
REM problem. Section III reformulates the MDP. Section IV 
presents the PH-PPO algorithm in detail. Section V de‐
scribes case studies. Finally, Section VI concludes this paper.

II. MATHEMATICAL FORMULATION OF MG REM PROBLEM 

We first formulate a mathematical model of MG REM 
problem as a mixed-integer nonlinear programming (MIN‐
LP) problem. A representative MG configuration is consid‐
ered comprising DGs such as micro-gas turbines (MTs) and 
diesel generators (DEs), non-dispatchable generators (NGs) 
such as wind turbines (WTs) and photovoltaic (PV) panels, 
ESSs, electrical loads, and an energy management system 
(EMS). The MG is interconnected to the utility grid, thereby 
engaging in bidirectional power exchange with the utility 
grid.

A. Objective Function

The objective of the MG REM problem is to minimize 
the total operational cost of the MG by efficiently coordinat‐
ing diverse energy resources and demands within the system 
while considering the dynamic nature of RESs and load de‐
mands. Mathematically, the objective can be expressed as:

min
xt

∑
t = 0

T é
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ê
êê
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C SUP
g (oDG

gt )= l SUP
g oDG

gt (1 - oDG
gt -Dt ) (3)

CEX (P EX
t )= pt P

EX
t Dt (4)

C ESS
e (P ESS

et )= l ESS
e |P ESS

et |Dt (5)

where xt is the decision variable; T is the scheduling period; 
t is the index of time; G is the set of DGs; E is the set of 
ESSs; Dt is the time interval; C DG

g  is the fuel cost of DGs 
and is formulated as a quadratic function of the active out‐
put power of dispatchable units P DG

gt , as shown in (2); ag, bg, 
and cg are the fuel cost coefficients; C SUP

g  is the start-up cost 
of DGs and can be calculated by (3); oDG

gt  is the on/off status 
of DGs (1 for operation and 0 for shutdown); l SUP

g  is the 
start-up cost of generator g; CEX is the power exchange cost 
with the utility grid, which settles the trading power P EX

t  by 
real-time price pt, as shown in (4); pt represents both the 
electricity purchasing price and feed-in tariff of the MG and 
is similar to those in [21] and [29]; C ESS

e  is the operational 
cost of ESSs and is proportional to the output power of ES‐
Ss P ESS

et , as shown in (5); and l ESS
e  is the operational cost coef‐

ficient.

B. Constraints

The MG system is governed by the following constraints.
1)　Capacity Constraints

P DG
gminoDG

gt £P DG
gt £P DG

gmaxoDG
gt     "gÎG (6)

where P DG
gmax and P DG

gmin are the upper and lower boundaries 
of the active power generated by the DGs, respectively.
2)　Ramping Rate Constraints

RDG
gdownDt £P DG

gt -P DG
gt -Dt £RDG

gupDt    "gÎG (7)

where RDG
gup and RDG

gdown are the maximum upward and down‐
ward ramping rates of the DGs, respectively.
3)　Minimum On/off Time Constraints

ì
í
î

(oDG
gt -Dt - oDG

gt )(S on
gt -Dt - Tgon )³ 0

(oDG
gt - oDG

gt -Dt )(S
off
gt -Dt - Tgoff )³ 0

    "gÎG (8)

where S on
gt -Dt and S off

gt -Dt are the on and off time counters of 
the unit g until time t -Dt, respectively; and Tgon and Tgoff 
are the minimum on and off time, respectively.
4)　Power Exchange Constraints

P EX
min £P EX

t £P EX
max (9)

where P EX
min and P EX

max are the minimum and maximum power 
exchanges between the MG and utility grid, respectively.
5)　Bus Voltage and Phase Angle Constraints

Uimin £Uit £Uimax    "iÎ I (10)

-π £ δit £ π    "iÎ I (11)

where Uit and δit are the voltage magnitude and phase angle 
of bus i, respectively; Uimin and Uimax are the minimum and 
maximum allowable voltage magnitudes, respectively; and I 
is the set of buses.
6)　Power Flow Constraints

ì

í

î

ïïïï

ï
ïï
ï

∑
sÎ S

Mis P IE
st -P D

it =Uit∑
jÎ I

Ujt (Gij cos δijt +Bij sin δijt )

∑
sÎ S

Mis QIE
st -QD

it =Uit∑
jÎ I

Ujt (Gij sin δijt +Bij cos δijt )
    "iÎ I

(12)

where S = {DGNGESSEX } is the set of injected elements 
including DGs, NGs, ESSs, and power exchanges; Mis is the 
element in the generator-bus incidence matrix (equal to 1 
when generator s is connected to bus i); P D

it and QD
it are the 

active and reactive loads at bus i, respectively; P IE
st and QIE

st 
are the active and reactive output power of the injected ele‐
ment s, respectively; Gij and Bij are the real and imaginary 
parts of row i and column j of the bus admittance matrix, re‐
spectively; and δij is the phase angle difference between bus‐
es i and j.
7)　Transmission Line Capacity Constraints

Pijt = gijU
2
it -UitUjt (gij cos δijt - bij sin δijt ) (13)

Pijmin £Pijt £Pijmax    "ijÎ I (14)

where gij and bij are the conductance and susceptance of the 
line between buses i and j, respectively; and Pijmax and Pijmin 
are the upper and lower limits of the line transmission pow‐
er Pijt between buses i and j, respectively.
8)　ESS Constraints

Two binary variables, uch
et and udis

et, are employed to repre‐
sent the charging and discharging states of the ESS, respec‐
tively. uch

et = 1 and udis
et = 0 indicate the charging mode, where‐

as uch
et = 0 and udis

et = 1 indicate the discharging mode. Let us 
denote the maximum allowed charging and discharging pow‐
er as P ch

emax and P dis
emax, respectively. We then have:

{0 £P ch
et £ uch

et P
ch
emax

0 £P dis
et £ udis

et P
dis
emax

    eÎE (15)

udis
et + uch

et £ 1    eÎE (16)

P ESS
et = udis

et P
dis
et - uch

et P
ch
et    eÎE (17)

where P ch
et and P dis

et  are the charging and discharging power 
of ESSs, respectively. Let us denote the energy amount cur‐
rently stored in ESSs as E ESS

et . The dynamics of E ESS
et  are de‐

scribed as:

E ESS
et =E ESS

et -Dt + η
ch
e P ch

etDt -P dis
et Dt/ηdis

e     eÎE (18)

E ESS
emin £E ESS

et £E ESS
emax    eÎE (19)

where ηch
e  and ηdis

e  are the charging and discharging efficien‐
cies, respectively; and E ESS

emin and E ESS
emax are the minimum and 

maximum energy limits, respectively. Ultimately, the REM 
problem of MG is mathematically formulated as an MINLP 
problem, where the objective function is expressed as (1), 
the constraints are expressed in (6) - (19), and the decision 
variables are defined by:

xt ={P DG
gt Q

DG
gt o

DG
gt P

EX
t Uitδit

PijtP
ch
etP

dis
et u

dis
et u

ch
etP

ESS
et E

ESS
et } (20)

It can be observed that this problem is a highly noncon‐
vex nonlinear problem with mixed decision variables. Ad‐
dressing this problem on a real-time scale can be extremely 
challenging, particularly when accounting for uncertainties. 
A DRL approach is next proposed to address this problem.

III. MDP REFORMULATION 

We next map the mathematical model of the MG REM 
problem to an MDP, which is the mathematical foundation 
and modeling tool for DRL. The purpose of the MDP is to 
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provide a framework for the agent to collaboratively find a 
policy to maximize its total accumulated reward. To achieve 
this, we describe the components of the MDP to ensure that 
its outcome also corresponds to the solution to the MG 
REM problem given in (1)-(19).

An MDP problem consists of a quintuple SAPrγ , 
where S and A are the state space and action space, respec‐
tively; P is the state transition function; r is the reward func‐
tion; and γ is the discount factor. In each step of an MDP, 
the agent observes a state s t from the environment. Based on 
s tÎ S, the agent selects and executes an action a tÎA. Then, 
the environment transitions to the next state s t + 1 according 
to the state transition function p(s t + 1|s ta t ). The environment 
then returns a reward rt (s ta ts t + 1 ) to the agent. This process 
continues through subsequent time steps until the required 
state or a predetermined termination condition is reached. 
These elements are defined as follows.

1) State. The following critical variables are used to form 
the state space:

s t =[oDG
t - 1P

IE
t - 1Q

IE
t - 1P

NG
t QNG

t P D
t Q

D
t Ut - 1P t - 1Etpt ] (21)

where oDG
t - 1, P IE

t - 1, QIE
t - 1, P NG

t , QNG
t , P D

t , QD
t , Ut - 1, P t - 1, and Et 

are the vectors consisting of oDG
gt - 1, P IE

st - 1, QIE
st - 1, P NG

it , QNG
it , 

P D
it, QD

it, Uit - 1, Pijt - 1, and Eet, respectively, and P NG
it  and 

QNG
it  are the output power of NGs.
2) Action. Given the sequential coupling characteristics ex‐

hibited by the output power of the DGs across various time 
periods, this paper adopts the output power increment as the 
action variable to decouple the output power of the DGs. 
Therefore, the action space can be represented by:

a t =[dP DG
t U DG

t oDG
t P ESS

t ] (22)

where dP DG
t  is the active output power increment vector of 

the DGs; U DG
t  is the terminal voltage vector of the DGs; and 

P ESS
t  is the vector consisting of P ESS

et .
3) State transition function. In a real-world MG, state tran‐

sitions occur spontaneously. However, in simulation scenari‐
os, these transitions should be effectively characterized using 
the following formulations: in the next state s t + 1, P IE

gt can be 
computed according to (23); P t and Et + 1 can be determined 
based on (13) and (18); oDG

t , P IE
NGt, QIE

NGt, P IE
ESSt, QIE

ESSt, P D
t + 1, 

QD
t + 1, Ugt, and pt are known states; and the remaining states 

can be calculated through power flow computation in accor‐
dance with (12). In the power flow computation, we choose 
buses connected to DGs (P IE

gt ¹ 0) as PV buses, buses con‐
nected to the utility grid as slack buses, and the remaining 
buses within the network framework as PQ buses. The pow‐
er flow distribution within the power grid is then computed 
using the Newton-Raphson method as:

P IE
gt = dP DG

gt +P IE
gt - 1    "gÎG (23)

4) Reward function. The total cost Ct of the MDP prob‐
lem is defined by (24). To maximize the satisfaction of the 
inequality constraints within the MINLP problem, we intro‐
duce a penalty term Dt to penalize violations, as expressed 
in (25). The reward function rt for the MDP problem is then 
formulated according to the cost and overlimit penalties, as 
expressed in (26).

Ct =∑
gÎG

(C DG
g +C SUP

g )+CEX +∑
eÎE

C ESS
e (24)

Dt =
ì

í

î

ïïïï

ïïïï

|dt - dmin|    dt < dmin

0                  dmin £ d £ dmax

|dt - dmax|    dt > dmax

(25)

rt (s ta ts t + 1 )=-fcCt - fd Dt - ff Ft (26)

where dt is the variable constrained by the inequality con‐
straint; dmin and dmax are the lower and upper limits of the in‐
equality constraint, respectively; Ft is a binary variable that 
equals 1 when the power flow calculation does not converge 
and 0 when it does; and fc, fd, and ff are the cost factor, con‐
straint penalty factor, and power flow penalty factor, respec‐
tively, and ff is a large constant.

Thus, the REM problem of MG is redefined as an MDP 
with a hybrid action space, which can be solved using regu‐
lar DRL approaches. However, the following limitations may 
be encountered: ① inability to directly handle the hybrid ac‐
tion space; ② slow training speed; and ③ suboptimal feasi‐
bility of results. To overcome these limitations, the PH-PPO 
algorithm is applied.

IV. PH-PPO ALGORITHM

This section describes the PH-PPO algorithm in detail, in‐
cluding an H-AC architecture, an experience-sharing-based 
parallel technique, and a safety projection technique that 
helps overcome the three aforementioned limitations.

A. H-AC Architecture

Conventional DRL approaches can only address either a 
continuous or discrete action space. For the aforementioned 
MDP problem with a hybrid action space, a conventional 
DRL approach must first discretize the continuous actions, 
which may lead to decreased accuracy and the curse of di‐
mensionality. For example, if all the continuous actions are 
discretized into Z levels, the action space would consist of 
Z NDG ´ Z NDG ´ 2NDG ´ Z NESS distinct choices (corresponding to ac‐
tions dP DG

t , U DG
t , oDG

t , and P ESS
t , respectively), where NDG 

and NESS are the numbers of DGs and ESSs, respectively. In 
this type of paradigm, the solution accuracy depends on the 
level of discrete granularity. However, an overly fine-grained 
discretization may lead to the curse of dimensionality, and 
thus hinder practical applications. To overcome these limita‐
tions, an H-AC architecture is developed as follows.

The H-AC architecture is grounded in the actor-critic ar‐
chitecture, which is widely employed in DRL approaches. 
The actor-critic architecture consists of two main compo‐
nents: an actor network that selects actions based on the poli‐
cy, and a critic network that estimates the value function to 
compute the gradient of the parameters of the actor network. 
However, the H-AC architecture, which is tailored to address 
the hybrid action space problem, differs from the traditional 
actor-critic architecture which incorporates two actor net‐
works. Figure 1 shows the H-AC architecture, where the dis‐
crete actor network is designed to learn a stochastic policy 
πd to select discrete actions ad

t , and the continuous actor net‐
work learns a stochastic policy π c to choose continuous ac‐
tions ac

t . The hybrid policy π represents the joint distribution 
of independent policy distributions πd and π c. The two actor 
networks share the same state information by sharing the 
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first few layers of the neural network. The critic network is 
used to estimate the state-value function, which is then used 
to compute the advantage function.

The detailed form of policy distributions πd and π c can be 
expressed as:

ì

í

î

ïïïï

ïïïï

π d
i (ad

it|s t ; θ
d )=Cat(ϕi1 (s t )ϕ i2 (s t )...ϕ ik (s t ))

∑
i = 1

Ki

ϕ ik (s t )= 1    i = 12...D
(27)

π c
i (ac

it|s t ; θc )=N(μ i (s t )σi (s t ))    i = 12...C (28)

where ad
it and ac

it are the ith actions of the action vectors ad
t  

and ac
t , respectively; θd and θc are the parameters of the two 

actor networks, respectively; π d
i  and π c

i  are the distributions 
of ad

it and ac
it, respectively; Cat and N are the categorical 

and Gaussian distributions, respectively; Ki is the category 
count of ad

it; ϕ ik is the probability that ad
it outputs ad

ikt; μi 
and σi are the Gaussian distribution parameters of ac

it; ϕ ik, 
μi, and σi are the outputs of the actor network; and D and C 
are the lengths of ad

t  and ac
t , respectively.

Ideologically, the H-AC architecture shares essential simi‐
larities with a fully cooperative multiagent mechanism. It 
employs two actor networks to handle discrete and continu‐
ous actions separately while sharing the observation space, 
state-encoding layer, and critic network to update the param‐
eters of the actor network. This enables direct adaptation to 
the hybrid action space and avoids the negative effects of 
the discretization operation.

B. Hybrid PPO (H-PPO) Algorithm

The H-AC architecture serves only as a foundational 
framework and requires the selection of appropriate policy 
optimization algorithms such as trust region policy optimiza‐
tion [26], PPO, and A3C, during concrete implementation. 
PPO is one of the most state-of-the-art (SOTA) actor-critic 
architecture algorithms in the field of DRL and is known for 
its strong stability and versatility. In addition, PPO has the 
advantage of being easily extended to parallel versions [30]. 
Therefore, we employ the PPO algorithm as the policy opti‐
mization method for both its discrete policy πd and continu‐
ous policy π c within the PH-AC architecture, resulting in an 
H-PPO algorithm. The architecture of the PH-PPO algorithm 
is illustrated in Fig. 2.

In PPO, the actor and critic networks have different loss 
functions and update methods. The parameters of the critic 
network ω are updated through the optimization of the mean-
square error loss function L(ω):

L(ω)=
1
2

(Vtarget (s t ;ω)-V (s t ;ω))2 (29)

Vtarget (s t ;ω)= rt + γV (s t + 1;ω) (30)

ω¬ω - τcriticÑωL(ω) (31)

where V (s t ;ω) is the value of the current state s t estimated 
by the critic network; Vtarget (s t ;ω) is the temporal difference 
(TD) target; and τcritic is the learning rate of the critic net‐
work.

The parameters of the actor network θ are updated 
through the optimization of the objective function L(θ):

L(θ)=E(stat ) π(×; θold ) (min(Rt (θ)Atclip(Rt (θ)1 - ϵ1 + ϵ)At ) (32)

Rt (θ)=
π(at|s t ; θ)
π(at|s t ; θold ) (33)

where θold is the parameter of the actor network under the 
old policy; Rt (θ) is the probability ratio, which serves as a 
metric for assessing the similarity between the new policy 
and old policies; the clip function constrains Rt (θ) within 

Chief (GPU)

Global 
discrete actor

Shared state encoding layer

Shared state encoding layer

Chief (GP

Global critic

Global

buffer

ing layer

…

Workers 

(CPU)

H-PPO

Parallel worker threads

Global 
continuous actor

Environment

L(ω)

Update: 

Δ

ω
L(ω)

Update:

Δ

θ
dJ(θ d)

Update:

Δ

θ
cJ(θ c)

Transitions

(st, at, rt, st+1)

Transitions

(st, at, rt, st+1)

At

V (st;ω), 

V (st+1;ω)

J d(θ d)

πd(θ d)

J c(θ c)

Rd(θ d)t Rc(θ c)t

πd(θ d  )old

πd πc

θ
d

old θ
c

old

πc(θ c)πc(θ c  )old

Clone

Clone Clone

Clone

μ, σ μ, σ

μ, σ

a
d
t a

c
t

st st+1, rt

f f

f

Shared state

(CP

d

f Local 
discrete actor

 encoding layer

U)

μLocal 
continuous actor

Fig. 2.　Architecture of PH-PPO algorithm.

Shared state encoding layering layer

Discrete actor Continuous actor

Critic

Environment

f

at
d

at
c

πd πc

μ, σ

st

st

st+1, rt

V (st;ω)

V (st+1;ω)

V (st;ω)

V (st+1;ω)

st+1, rt

Fig. 1.　H-AC architecture.

995



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 13, NO. 3, May 2025

1 - ϵ and 1 + ϵ, which restricts the magnitude of updates to 
the new policy; ϵ is a hyperparameter that controls the de‐
gree of clipping; and At is the advantage function. PPO ex‐
hibits the characteristics of a small deviation and large vari‐
ance. However, in DRL, deviation can lead to local optima, 
whereas variance can result in low data utilization. There‐
fore, this paper introduces a generalized advantage estima‐
tion (GAE) technique to estimate the advantage function and 
strike a balance between deviation and variance [31]:

At = (1 - λ) ( )δt

1 - λ
+
γλδt + 1

1 - λ
+

(γλ)2δt + 2

1 - λ
+ ... (34)

δt =Vtarget (s t ;ω)-V (s t ;ω) (35)

where λÎ[01] is an additional GAE hyperparameter; and δt 
is the TD error. At this juncture, θ can be updated using the 
gradient ascent as:

θ¬ θ + τactorÑθL(θ) (36)

where τactor is the learning rate of the actor network. In the 
H-PPO algorithm, both discrete and continuous policies have 
their own loss functions, which are indicated in (32). In their 
own loss functions, the probability ratio Rd

t (θd ) considers on‐
ly the discrete policy, whereas Rd

t (θc ) considers only the con‐
tinuous policy.

C. Experience-sharing-based Parallel Technique

In DRL approaches, offline training must sample substan‐
tial amounts of data by interacting with the MG REM simu‐
lator, which often requires significant CPU time consump‐
tion. To mitigate this limitation, we propose an experience-
sharing-based parallel technique for the purpose of develop‐
ing a parallel version of the H-PPO algorithm, which we re‐
fer to as the PH-PPO algorithm.

In the PH-PPO algorithm shown in Fig. 2, the chief 
thread located in the GPU consists of a global continuous ac‐
tor network, a global discrete actor network, and a global 
critic network inherited from the H-PPO algorithm. In addi‐
tion, the PH-PPO algorithm sets up a set of parallel worker 
threads in multicore CPUs, where each worker thread encom‐
passes a local continuous actor network and a local discrete 
actor network. During training, multiple worker threads with 
different random seeds collect data in diverse environments 
and push them into a global buffer located in the chief 
thread. These worker threads are solely responsible for data 
collection and do not engage in gradient calculations or 
transmit gradients to the chief thread. When the global buf‐
fer reaches a cumulative data-quantity threshold, the global 
networks in the chief thread update themselves by reading 
the data. At this point, the worker threads are frozen. After 
the global networks have been updated, they replicate their 
network parameters onto local networks, and the global buf‐
fer is cleared, thus preparing for the subsequent rounds of 
data acquisition and network updates.

The experience-sharing-based parallel technique allocates 
sampling tasks to multicore CPUs and assigns a high-density 
gradient computational task to the GPU, thereby realizing a 
rational distribution of computational resources and accelerat‐
ing the training speed. The experience-sharing-based parallel 
technique also allows multiple agents to explore different en‐

vironment simultaneously and to share their individual expe‐
riences, which helps alleviate the sensitivity of the algorithm 
to random seeds and contributes to better training robustness.

D. Safety Projection Technique

In regular DRL approaches, violations of the operational 
constraints in the MG are often integrated as penalty terms 
into the reward function within the MDP framework [28], as 
shown in (25) and (26). However, this setting cannot fully 
guarantee the feasibility of the obtained decisions, hindering 
their real-world application in REM scenarios of MG with 
stringent security requirements. To mitigate this limitation, 
we introduce a safety projection technique into the PH-PPO 
algorithm that involves policy representation reconstruction 
and action mask (AM) configuration.
1)　Policy Representation Reconstruction

Regular policy-based DRL typically employs a Gaussian 
distribution as the probability distribution for continuous ac‐
tions. However, the unbounded nature of the Gaussian distri‐
bution can cause actions to fall into infeasible areas during 
the online execution stage. To address this issue, the proba‐
bility distribution corresponding to specific actions U DG

t , 
dP DG

t , and P ESS
t  is reconstructed as a bounded Beta distribu‐

tion. Consequently, (28) is superseded by (37), and the out‐
puts of the continuous actor network as shown in Figs. 1 
and 2 now correspond to parameters α and β instead of μ 
and σ, respectively. The use of the Beta distribution helps re‐
strict these actions to a feasible bounded interval, which 
guarantees that the corresponding constraints in (7), (10) 
(DG buses), and (15)-(17) are completely satisfied.

π c
i (ac

t |s t ; θc )=B(αi (s t )βi (s t ))    i = 12...C (37)

where B is the Beta distribution; and αi and βi are the Beta 
distribution parameters of ac

it.
2)　AM Configuration

In regular policy-based DRL, even invalid or unsafe ac‐
tions are assigned a nonzero probability. When random poli‐
cies are used, these invalid or unsafe actions can potentially 
be sampled during the online execution stage, leading to un‐
desirable system behaviors or even system crashes. In addi‐
tion, sampling invalid or unsafe actions can impede policy 
training because the collected experiences related to invalid 
actions are meaningless and can mislead the direction of pol‐
icy updates [32]. To address these issues, we adopt the AM 
configuration, which is designed to enhance the decision fea‐
sibility of agent by identifying and masking invalid and un‐
safe actions that violate either the actual physical constraints 
or predetermined physical rules based on prior physical 
knowledge.

In this paper, the proposed AM is presented in (38), where 
the “if” statement signifies the physical rule utilized to iden‐
tify the invalid or unsafe action, and the “then” statement 
represents the mask that masks out the invalid or unsafe ac‐
tion. AM1 and AM2 are generated using (19) under the con‐
sideration that the output power of the ESSs does not cause 
the stored energy to exceed the upper and lower limits. AM3-
AM7 are based on (6), which takes into account that the on/
off decision action and power increment action of the DGs 
are to be coordinated. Specifically, AM3 ensures that the 
power increment does not cause the output power to exceed 
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its upper and lower limits when DGs are continuously on; 
AM4 ensures the maximum upward ramping rate limits of 
power increment when DGs are start-up; AM5 and AM6 en‐
sure the maximum downward ramping rate limits of power 
increment when DGs are turned off; and AM7 ensures that 
the power increment action is masked when DGs are contin‐
uously off. When the AM configuration is utilized, the corre‐
sponding constraints in (6) and (19) can be guaranteed to be 
fully satisfied.
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AM1: if P ESS
et > 0 then 

P ESS
et = (E ESS

et - clip(E ESS
et -P ESS

et /ηdis
e E ESS

eminE
ESS
emax ))ηdis

e

AM2: if P ESS
et < 0 then 

P ESS
et = (E ESS

et - clip(E ESS
et -P ESS

et η
ch
e E

ESS
eminE

ESS
emax ))/ηch

e

AM3: if oDG
gt - 1 = 1 and oDG

gt = 1 then 

dP DG
gt = clip(dP DG

gt +P IE
gt - 1P

IE
gminP

IE
gmax )-P IE

gt - 1

AM4: if oDG
gt - 1 = 0 and oDG

gt = 1 then 

dP DG
gt = clip(dP DG

gt P
IE
gminR

DG
gupDt)

AM5: if oDG
gt - 1 = 1oDG

gt = 0 and P IE
gt - 1 £-RDG

gdown then

dP DG
gt =-P IE

gt - 1

AM6: if oDG
gt - 1 = 1oDG

gt = 0 and P IE
gt - 1 -RDG

gdown then

oDG
gt = 1dP DG

gt =P IE
gmin -P IE

gt - 1

AM7: if oDG
gt - 1 = 0 and oDG

gt = 0 then
dP DG

gt = 0
(38)

The safety projection technique restricts the output action 
within a feasible range, which ensures that the associated in‐
equality constraints in the MINLP problem are fully satis‐
fied, thereby enhancing the decision feasibility. This tech‐
nique also avoids exploration in the infeasible action inter‐
vals, thereby improving exploration efficiency.

V. CASE STUDY

We first introduce the parameter settings used to imple‐
ment and test the proposed approach. Simulation results and 
comparisons with other SOTA approaches are then presented 
to demonstrate the effectiveness and superiority of the pro‐
posed approach.

A. Parameter Settings

The training and testing are conducted using a typical 15-
bus MG, as illustrated in Fig. 3. In this MG, the injected ele‐
ments include MT, DE, WT, PV, ESS, and utility grid. Ta‐
bles I-III list the parameters of the DGs and ESS. Both the 
resistance and reactance of the MG lines are set to be 0.09 
Ω/km [33]. Table IV lists the transmission distances of the 
MG lines. The wind, solar, and load data used in the simula‐
tions are sourced from historical datasets originating from 
the Grand Est region of France in 2019 [34]. A training data‐
set consisting of 36-day data is created by randomly select‐
ing 3 days from each month of the year, and a test dataset is 
constructed by randomly drawing a sample of 30 days from 
the dataset of 2019. The dynamic electricity price of a South‐
ern California residential area is also adopted [11], as shown 
in Table V. Similar to [10], [23], and [24], the optimization 
horizon T is standardized to be 24 hours, and the time inter‐

val Dt is set to be 1 hour. Table VI lists the hyperparameters 
of the H-PPO algorithm. All simulations are conducted on a 
personal computer with an Intel(R) Core(TM) CPU Model i7-
13700 @ 2.10 GHz with RAM of 16.0 GB and NVIDIA Ge‐
Force GPU Model RTX 3060 @ 12 GB. For the PH-PPO al‐
gorithm, the codes are written using the Python program‐
ming language (version 3.9.7) and the Pytorch package (ver‐
sion 1.13.0).

B. Comparison Studies

A series of case studies are conducted to assess the effec‐
tiveness of the proposed approach for the MG REM problem 
and to showcase its superiority over several SOTA approach‐
es. The performance of the proposed approach is evaluated 
comprehensively, encompassing both the training and test 
phases.
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Fig. 3.　Typical 15-bus MG.

TABLE I
PARAMETERS OF DGS

DG

MT

DE

P DG
max 

(kW)

900

1200

P DG
min 

(kW)

50

80

lSUP ($)

26

30

Ton 
(hour)

1

1

Toff 
(hour)

1

1

RDG
up  

(kW/h)

900

1200

RDG
down 

(kW/h)

-900

-1200

TABLE II
FUEL COST COEFFICIENTS OF DGS

DG

MT

DG

a ($/((kW)2h))

3.472×10-5

3.086×10-5

b ($/kWh)

0.025002

0.016680

c ($)

48

56

TABLE III
PARAMETERS OF ESS

Parameter

P ch
max (kW)

P dis
max (kW)

E ESS
max (kWh)

E ESS
min  (kWh)

Value

400

-400

1800

400

Parameter

lESS ($/kWh)

ηch

ηdis

Value

0.049

0.9

0.9
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1)　Effective Validation of H-AC Architecture
To verify the effectiveness of the H-AC architecture, the 

training process of the H-PPO algorithm is compared with 
that of the existing PPO algorithm. Notably, if we directly 
apply the PPO algorithm by discretizing all continuous ac‐
tions into five levels, the action space is discretized to a size 
of 125000, making it impossible for the PPO algorithm to 
explore and converge efficiently in this REM problem. Thus, 
to facilitate a comparison with the PPO algorithm, we 
choose to set the voltage of the PV bus where the DGs are 
located at a fixed value of 1, which simplifies the AC power 
flow equation, as in [35], [36]. After simplification, the size 
of action space of the PPO algorithm is reduced to 500.

Figure 4 shows the training curves of H-PPO and PPO al‐
gorithms. The curves are averaged over five random seeds, 
where the shaded region shows the standard deviation. Ini‐
tially, when the agent has no knowledge of the environment, 
the selection of actions tends to be random, leading to signif‐
icant variations in rewards. Following multiple interaction 
episodes, experiences are accumulated, and the network pa‐
rameters are optimized accordingly. As the agent learns a bet‐
ter policy, the reward increases gradually until convergence 
is achieved. The figure shows that the H-PPO algorithm con‐
verges after approximately 2500 episodes, whereas the PPO 
algorithm converges after approximately 4000 episodes. The 
H-PPO algorithm exhibits a faster learning speed and higher 
reward as compared with the PPO algorithm. In fact, the 
PPO algorithm has difficulty in rapidly exploring a satisfac‐
tory solution due to the large scale of the action space. Even 
in the most ideal situation, a suboptimal solution can be ap‐

proximated with accuracy depending on the granularity of 
the discretization.

These findings show that for the PPO algorithm, a small 
granularity of discretization can result in the curse of dimen‐
sionality. By contrast, addressing the dimensionality curse by 
increasing the granularity may degrade the accuracy. Achiev‐
ing a satisfactory trade-off between the two poses a signifi‐
cant challenge for the PPO algorithm. Unlike the PPO algo‐
rithm, the H-PPO algorithm can handle the hybrid action 
space directly, effectively avoiding the adverse effects of dis‐
cretization.
2)　Effective Validation of Experience-sharing-based Parallel 
Technique

To demonstrate the effectiveness of the experience-sharing-
based parallel technique, the training process of the PH-PPO 
algorithm with varying numbers of workers (n = 14812) is 
investigated. Because different workers must use different 
random seeds to ensure the diversity of the collected sam‐
ples, each experiment requires that a random seed cluster is 
set up. To test the robustness of the proposed approach, ex‐
periments are repeated using five random seed clusters. Nota‐
bly, when the PH-PPO algorithm employs one worker, it is 
equivalent to the H-PPO algorithm.

Figure 5 shows the training curves. The curves are aver‐
aged over five random seed clusters, where the shaded re‐
gion shows the standard deviation. We can observe that as 
the number of workers increases, the training speed of the 
PH-PPO algorithm also increases noticeably, leading to a sig‐
nificant reduction in the time required to reach convergence. 
This occurs because the experience-sharing-based parallel 
technique can fully utilize the advantages of multicore CPUs 
to parallelize the sampling process, thus increasing the effi‐
ciency at which samples are collected within a limited peri‐
od. The figure also shows that the difference in the conver‐
gence reward between different numbers of workers is negli‐
gible (we utilize an agent trained by eight workers in the 
test phase). Experimental results confirm that the experience-
sharing-based parallel technique can effectively improve the 
training speed without sacrificing accuracy.

With the exception of the speed advantage, we find that 
as the number of workers increases, the shaded region of the 
training curve of the PH-PPO algorithm decreases. This can 
be explained by the ability of the experience-sharing-based 
parallel technique to increase sample diversity, as it can inte‐
grate all samples related to each random seed within the ran‐

TABLE VI
HYPERPARAMETERS OF H-PPO ALGORITHM

Parameter

Actor learning rate μcritic

Critic learning rate μactor

Discount factor γ

Value

1×10-5

5×10-4

0.96

Parameter

GAE hyperparameter λ

Clipping threshold ϵ

Value

0.9

0.2

TABLE V
ELECTRICITY PRICE

Time period

08:00-14:00

14:00-20:00

Price ($/kWh)

0.14

0.24

Time period

20:00-22:00

22:00-08:00

Price ($/kWh)

0.14

0.06
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Fig. 4.　Comparison of training curves of H-PPO and PPO algorithms.

TABLE IV
TRANSMISSION DISTANCES OF MG LINES

Line

L1

L2

L3

L4

L5

L6

L7

From 
bus

1

2

1

4

6

6

8

To 
bus

2

3

4

6

8

10

9

Distance 
(km)

1.6

2.8

0.1

3.4

0.3

0.8

1.2

Line

L8

L9

L10

L11

L12

L13

L14

From 
bus

1

5

7

7

11

12

1

To 
bus

5

7

11

14

12

13

15

Distance 
(km)

1.6

1.9

0.3

0.9

1.2

0.2

0.1
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dom seed cluster to achieve a more comprehensive and unbi‐
ased evaluation. Therefore, once an outlier is sampled by a 
local actor dominated by a specific random seed, the sam‐
ples collected by other local actors can help diminish its ef‐
fects, thus effectively improving the overall training robust‐
ness.

3)　Effective Validation of Safety Projection Technique
To verify the effectiveness of the safety projection tech‐

nique, a comparative study is conducted between the com‐
plete PH-PPO algorithm and a version that excludes the safe‐
ty projection technique. For ease of assessment, we intro‐
duce the notion of a safe action [37], which is defined as an 
action that does not violate system constraints during opera‐
tion.

We use the 30-day test dataset to calculate the safety ac‐
tion ratio of the two versions of the PH-PPO algorithm, as 
shown in Table VII. The version without the safety projec‐
tion technique achieves a safety action ratio of only 92.64%, 
which may be attributed to the agent not having encountered 
scenarios from the test dataset during training. By contrast, 
the version with the safety projection technique can achieve 
a safety action ratio of 99.17%, which may be attributed to 
the use of prior domain knowledge in the safety projection 
technique, ensuring strict adherence to certain inequality con‐
straints. Therefore, we can reasonably conclude that the safe‐
ty projection technique can help improve the feasibility of 
agent decision-making in unseen scenarios.

4)　Comparative Results with Other Approaches
To verify the superiority of the proposed approach, it is 

compared with other SOTA real-time optimization approach‐
es in terms of test results. The SOTA approaches include the 
aforementioned PPO algorithm, myopic policy, and MPC. To 
simulate the effects of sampling errors under these four ap‐
proaches, random numbers following a Gaussian distribution 
N(0σ 2

s ) are superimposed when sampling the power of the 
RESs and loads in real time, where σs is set to be 1% of the 

actual value. In the PH-PPO algorithm, the aforementioned 
three techniques that have been proven to be effective are 
considered. In the MPC approach, forecasting data for the 
power of RESs and loads are generated by adding a devia‐
tion to the actual values. This deviation is sampled from a 
Gaussian distribution N(0σ 2

p ) in which the standard devia‐
tion σp is set to be 10% of the actual value. The look-ahead 
time window for the MPC approach is set to be four hours. 
The PH-PPO algorithm is also compared with the perfect in‐
formation optimum (PIO) approach [26], [38], which is con‐
sidered an ideal day-ahead benchmark experiment. In the 
PIO approach, we assume that the power of the RESs and 
loads can be perfectly predicted one day in advance. This al‐
lows us to formulate the REM problem of MG as a deter‐
ministic optimization problem that can be solved using the 
LINDO solver. To facilitate a more convenient comparison 
of the approaches, we introduce the concept of relative cost, 
which is defined as:

Crel = ( )∑
t = 0

T

C oth
t -∑

t = 0

T

C PIO
t ∑

t = 0

T

C PIO
t ´ 100% (39)

where C PIO
t  and C oth

t  are the operating costs obtained by the 
PIO and other approaches for a specific day, respectively.

After the training process is completed, a well-trained 
agent is applied to the test dataset. Using the 30-day test da‐
taset, we calculate the daily operation costs of the REM 
problem of MG under various approaches, where the statisti‐
cal results are presented in Table VIII. Based on the daily 
operating costs, the daily relative cost distribution of the var‐
ious REM approaches is calculated, as illustrated in Fig. 6. 
The white dots indicate the median obtained by each ap‐
proach. Based on the statistical indicators, the results demon‐
strate that the average daily operating cost achieved by the 
proposed approach is 13.4%, 6.3%, and 4.7% better than 
those of the myopic policy, MPC, and PPO algorithm, re‐
spectively, and only 3.8% worse than that of the PIO ap‐
proach. The data distribution shows that the daily relative 
cost of the proposed approach is significantly less than that 
of the other REM approaches. Notably, although the PIO ap‐
proach demonstrates the best performance, it is not realisti‐
cally achievable due to the inherent uncertainties involved. 
Therefore, this approach serves only as a benchmark experi‐
ment for evaluating the performance of the different ap‐
proaches. By contrast, the myopic policy performs the worst. 
This could be anticipated because the myopic policy focuses 
on immediate cost reduction without considering the poten‐
tial long-term effects of current decisions. Although MPC 
considers long-term returns, its overall relative cost is higher 
than those of DRL approaches. This is explained by the devi‐
ations between the predicted and actual values of the RESs 
and loads and by the short time window considered by the 
MPC, which may affect the accuracy of the control deci‐
sions made by the MPC. In addition to considering long-
term cumulative rewards, DRL approaches have the advan‐
tage of learning policies from real-world historical data that 
explicitly capture uncertainty characteristics, thereby increas‐
ing the likelihood of achieving lower relative costs as com‐
pared with other approaches. In DRL approaches, the PH-

TABLE VII
SAFETY ACTION RATIOS UNDER TEST DATASET

Algorithm

With safety projection technique

Without safety projection technique

Safety action ratio (%)

99.17

92.64

Episode
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Fig. 5.　Training curves of PH-PPO algorithm using different numbers of 
workers.
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PPO algorithm performs better than the PPO algorithm, 
achieving a lower relative cost and smaller relative cost vari‐
ation in the test scenarios. The reason for this performance 
advantage is that the PPO algorithm requires the discretiza‐
tion of actions, which means that the accuracy of the approx‐
imate optimal solution depends on the granularity of the dis‐
cretization. By contrast, the proposed approach can directly 
handle the REM problem with a hybrid action space, en‐
abling it to achieve a lower relative cost. In addition, we 
find that DRL approaches can generalize well to the unseen 
scenarios in the test dataset, which means that they require 
only a simple neural network mapping time (e. g., 0.003 s) 
for single-time-step decision-making under real-time applica‐
tion. This advantage makes DRL approaches superior choic‐
es for real-time applications.

Figures 7 and 8 further present the REM details of the 
proposed approach for a specific scenario randomly selected 
from the test dataset. Specifically, Fig. 8 illustrates the on/
off decisions of DGs, the output power of various injected el‐
ements, the load power, and the energy currently stored in 
the ESS Et. The figure clearly shows that when the electrici‐
ty price is low, the DGs (i. e., MT and DE) are in a shut‐
down state. During this period, the MG relies on purchasing 
electricity from the utility grid to fulfill the load demand. 
When the electricity prices are high, the DGs increase their 
output power to meet the load demand at a comparatively 
lower operating cost. This allows the MG to sell the excess 
power back to the utility grid and generate profits. The agent 
has also learned to charge the ESS when the price is low 
and discharge it when the price is high. This strategy helps 
to reduce the cost of power purchase. This analysis shows 
that the overall logic of the obtained scheduling results is 

reasonable, further validating the effectiveness of the pro‐
posed approach.

5)　Scalability Validation of PH-PPO Algorithm
Similar to [39]-[42], simulations are conducted on a modi‐

fied IEEE 33-bus MG system composed of four DGs, three 
PVs, three WTs, and two ESSs to validate the scalability of 
the proposed approach on larger-scale MG systems. The to‐
pology and line parameters of the MG system can be found 
in the “case33. m” file of MATPOWER. The parameters of 
the DGs, PVs, and WTs refer to the settings of the aforemen‐
tioned modified 15-bus MG. The ESS parameters can be 
found in [40].

The PH-PPO algorithm is compared with the approaches 
described earlier (i.e., PPO, myopic policy, MPC, and PIO), 
and the test results are presented in Table IX. The action 
space of the modified IEEE 33-bus MG system becomes ex‐
cessively large after discretization, making it impossible for 
the PPO algorithm to explore and converge efficiently dur‐
ing training. In addition, the table shows that the average dai‐
ly operation cost achieved by the PH-PPO algorithm is 
12.1% and 6.1% better than those of the myopic policy and 
MPC, respectively, and close to that of the PIO approach, 
which serves as the ideal benchmark, with only a difference 
of 4.5%. This means that the proposed approach achieves 
the best test results among all the REM approaches, demon‐
strating its scalability for larger-scale MG.

TABLE VIII
DAILY OPERATING COSTS OF VARIOUS APPROACHES UNDER TEST DATASET

Approach classification

Day-ahead benchmark

REM approach

Approach 
name

PIO

Myopic

MPC

PPO

PH-PPO

Mean 
cost ($)

856.90

1008.94

945.69

931.64

889.85

The maxi‐
mum cost 

($)

1035.50

1188.43

1122.00

1111.50

1069.98

The mini‐
mum cost 

($)

680.49

832.73

781.31

754.71

712.93
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Fig. 6.　Violin plot of relative costs of various approaches.
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VI. CONCLUSION

In this paper, a novel parallel hybrid DRL approach is pro‐
posed for the REM problem of MG. The unit commitment, 
AC power flow, and uncertainties are considered. The con‐
clusions are as follows.

1) The PH-PPO algorithm adopts an H-AC architecture to 
handle the hybrid action space directly, which leads to faster 
convergence toward a superior solution as compared with 
regular DRL approaches.

2) The PH-PPO algorithm adopts a novel experience-shar‐
ing-based parallel technique that can fully utilize the compu‐
tational resources of multicore CPUs and GPU, thus contrib‐
uting to an improved convergence speed and training robust‐
ness.

3) The PH-PPO algorithm adopts a safety projection tech‐
nique that can utilize prior-domain knowledge to enhance 
the feasibility of agent decision-making outcomes, thereby 
increasing the safety action ratio by 6.53%.

4) The test results confirm that the PH-PPO algorithm of‐
fers obvious advantages in terms of accuracy as compared 
with traditional REM approaches such as the myopic policy 
and MPC, while ensuring superior generalization and real-
time decision-making capabilities.

In a future work, more realistic and refined environmental 
simulators including finer energy-storage systems, higher 
temporal resolutions, and more realistic electricity price set‐
tings will be considered. In addition, the PH-PPO algorithm 
could be further extended to a multi-agent DRL framework, 
providing a solution to the energy management problem of 
multi-MG systems. Finally, investigating other SOTA DRL 
approaches (e.g., soft AC) as policy optimization methods to 
further improve the performance of the PH-PPO algorithm 
will also be considered.
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