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Abstract——Rural electrification is a crucial component of the 
power system that requires urgent innovation and transforma‐
tion to enhance electrification levels. However, various challeng‐
es hinder the progress in rural electrification, primarily due to 
remote locations and unique consumption patterns. To effective‐
ly coordinate the local energy distribution, an energy manage‐
ment framework utilizing peer-to-peer (P2P) based interactive 
operations is proposed, which minimizes the reliance on long-
distance transmission while enhancing the rural electrification 
level. The proposed P2P-based energy management framework 
incorporates various distributed generation resources across ru‐
ral areas, facilitating direct energy transactions between neigh‐
boring community-based villages. Additionally, the P2P energy 
trading is modeled as a Nash bargaining (NB) problem, which 
accounts for the allocation of network loss costs and operation‐
al state of the rural distribution network. To protect the priva‐
cy of individual villages, an improved adaptive alternating direc‐
tion method of multipliers (AADMM) is proposed to solve the 
NB problem. The AADMM utilizes a local curvature approxi‐
mation scheme during parameter updates, allowing for automat‐
ic adjustments of the fixed penalty parameter within the stan‐
dard alternating direction method of multipliers (ADMM). This 
enhancement improves the convergence rates without requiring 
central oversight. Simulation results demonstrate significant re‐
ductions in operational costs for both the overall network and 
individual village participants. The proposed P2P-based energy 
management framework also enhances the bus voltage stability 
and reduces the line transmission power, thereby further en‐
hancing rural electrification levels. The adaptability and extensi‐
bility of this framework are further validated using the IEEE 
33-bus and 118-bus distribution systems. Additionally, the AAD‐
MM shows higher convergence rates compared with the stan‐
dard ADMM.

Index Terms——Rural distribution network, peer-to-peer (P2P), 
energy trading, energy management, Nash bargaining, adaptive 
alternating direction method of multipliers (AADMM).

I. INTRODUCTION 

IN recent decades, the rapid urbanization and rural-to-ur‐
ban migration have emerged as global trends [1]. Accord‐

ing to a World Bank survey, 56% of the world’s population, 
or approximately 4.4 billion people, now reside in cities [2]. 
Despite the decreasing proportion of the rural population, a 
substantial number of individuals still reside in rural areas, 
many of whom lack access to electricity. This issue is partic‐
ularly severe in many developing countries [3]. Rural electri‐
fication is essential for improving the life quality and stimu‐
lating the agricultural economy growth in these regions [4]. 
Thus, it is crucial to identify effective strategies for rural 
electrification.

A major factor leading to the slow development and per‐
sistent poverty in rural areas is the lack of electrification, as 
electricity is a prerequisite for various productive activities 
[5]. However, the electrification levels in these regions, par‐
ticularly in many developing countries, remain insufficient to 
support the demands of the local economy and society, af‐
fecting transportation, education, income, infrastructure, liv‐
ing conditions [6], etc. Limited financial resources make it 
difficult for rural areas to afford the high costs of developing 
power infrastructure, thereby hindering the implementation 
of electrification projects [7]. Building transmission lines to 
supply electricity to remote and sparsely populated areas is 
often unattractive to investors, as the returns on such proj‐
ects are insufficient to recover the investment costs [8]. Fur‐
thermore, the outdated and unreliable rural distribution sys‐
tems pose significant challenges. These systems were origi‐
nally designed with limited capacity, sufficient only for light‐
ing and a few household appliances, and can not support 
large power demands. The construction of long-distance 
transmission lines in rural areas, combined with their limited 
capacity, also leads to voltage drop issues, adversely impact‐
ing power quality [9]. Additionally, the rural energy produc‐
tion often relies on traditional fossil fuels for power genera‐
tion, and the high costs associated with coal, oil, and gas fur‐
ther impede the electrification. While rural areas possess 
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abundant resources and space for clean energy production, 
such as solar and wind power at lower costs, these opportu‐
nities remain largely underutilized. Another obstacle is the 
high electricity cost in rural areas, where there is usually on‐
ly one provider, resulting in elevated prices due to a lack of 
competition.

As agricultural demands increase in remote rural areas, 
the distribution network from centralized power sources 
must be expanded to meet these needs. However, extending 
the centralized power system is economically unviable due 
to the significant mismatch between the low benefits derived 
from small load demands and the high costs of infrastructure 
[10]. Local distributed generation resources (DGRs) present 
an effective alternative by utilizing nearby power rather than 
extending the existing network [11]. Nevertheless, the cur‐
rent energy allocation mechanism leads to surplus energy 
and underutilization of resources. A community-based para‐
digm to sharing and trading energy among partners offers a 
viable solution for optimizing the power utilization and man‐
agement in rural areas [12]. This peer-to-peer (P2P) energy 
trading enables community-based villages to sell excess elec‐
tricity to other villages with higher demands. Additionally, 
villages can develop their own energy management infra‐
structure, reducing the need for extensive network expan‐
sion. This energy trading helps mitigate voltage drop issues 
and reduces transmission power. However, the research on 
the energy management framework and mechanisms in rural 
areas remains limited.

Recent research works on energy management in rural dis‐
tribution networks (RDNs) have primarily focused on system 
operational strategies and output decisions of various energy 
units [13]-[16]. For instance, a new energy management al‐
gorithm is presented in [13], which adopts a mixed-integer 
linear programming model to ensure the optimal operating 
performance of an RDN. A distributionally robust day-ahead 
dispatch model for various energy devices is introduced in 
[14] to improve their utilization efficiencies. Additionally, an 
operational formulation developed in [15] considers multiple 
objectives based on economic and environmental factors for 
an RDN. Another study in [16] estimates the optimal design 
and operational strategies for a rural renewable system. 
These studies indeed demonstrate a centralized energy man‐
agement framework for RDNs. Village participants are as‐
sumed to function as physical aggregators connected within 
the RDN, interacting with the upstream network. A virtual 
system operator dispatches energy from the upstream net‐
work to meet the energy demands of village participants and 
to maintain the operation of RDN. However, the centralized 
framework presents several crucial issues: ① it may incur 
higher costs due to long-distance energy transmission from a 
centralized source; and ② it emphasizes balancing power 
supply and demand in villages, which could result in wasted 
generation resources, such as excess wind and photovoltaic 
(PV) power. These challenges remain fundamental problems 
in recent energy management research on RDN and must be 
addressed. Therefore, this paper proposes an energy manage‐
ment framework for P2P-based interactive operations to tack‐
le these challenges.

Several studies have investigated P2P energy trading using 
various models. In [17], the interaction between the distribu‐
tion network service provider and multiple prosumers is 
modeled as a Stackelberg game, aiming to achieve the opti‐
mal network pricing and P2P energy trading simultaneously. 
Another study presents a three-stage multi-energy sharing 
strategy for a gas-electricity integrated energy system to ad‐
dress the multi-energy imbalance problem based on a P2P 
energy trading model [18]. A new dynamic operating enve‐
lope integrated with a P2P energy trading scheme is intro‐
duced in [19] to enhance the electricity exchange from pro‐
sumers to the distribution network. Additionally, a methodol‐
ogy based on the sensitivity analysis is proposed in [20] to 
evaluate the impact of P2P energy trading on the network. 
Various optimization models and methods based on P2P en‐
ergy trading within distribution systems have also been de‐
veloped in [21]-[23].

The optimization methods for P2P energy trading can be 
categorized into two main types: ① centralized optimization 
[24], [25]; and ② distributed optimization [26] - [28]. The 
centralized optimization methods face challenges related to 
computational costs and privacy concerns, primarily due to 
the necessity of sharing information among all peers. In con‐
trast, the alternating direction method of multipliers (AD‐
MM) is a well-known technique for the distributed optimiza‐
tion in P2P energy trading, providing enhanced privacy pro‐
tection. Reference [29] proposes a distributed optimization 
method based on standard ADMM to develop the joint ener‐
gy trading and scheduling strategies for multi-microgrids. 
Reference [30] employs the standard ADMM within mi‐
crogrids, utilizing a two-phase approach to establish electrici‐
ty operation strategies and determine the amount of energy 
traded. However, the performance of standard ADMM in op‐
timizing P2P energy trading is poor, particularly in ill-condi‐
tioned or high-accuracy-required optimization problems. Ad‐
ditionally, the standard ADMM can require substantial com‐
putational time due to the extensive communication needed 
during each iteration. Therefore, it is crucial to enhance the 
convergence performance of standard ADMM for alleviating 
the computational burden and reduce the processing time.

The variants of the standard ADMM are very improtant to 
improve the performance. For example, a distributed consen‐
sus-based ADMM approach is proposed in [31] to address 
the optimal economic dispatch problems for multi-mi‐
crogrids. Another study introduces a novel online consensus 
ADMM to maximize the social welfare and enable real-time 
P2P markets [32]. Additionally, an l(p) -box ADMM method 
is developed in [33] for the relaxation of binary variables in 
P2P energy trading. Another variant of ADMM is also imple‐
mented to improve the convergence rates, as detailed in 
[34]. These variants have demonstrated enhanced conver‐
gence performance across various studies. However, both the 
standard ADMM and its variants require a fixed penalty pa‐
rameter across all iterations. The performance of ADMM is 
highly sensitive to the selection of the penalty parameter, of‐
ten necessitating manual adjustments to suit different optimi‐
zation problems and computational goals. An inappropriate 
penalty parameter can lead to slower convergence rate, in‐
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creased computational time, and even failure to converge. 
Consequently, implementing an adaptive penalty parameter 
within ADMM offers a promising solution to improving the 
convergence performance and eliminating the need for manu‐
al tuning.

Several studies have explored suitable techniques for tun‐
ing the penalty parameter values at each iteration [35]-[39]. 
While various adaptive methods have been proposed [35] -
[37], these adaptive ADMMs (AADMMs) are tailored to 
solve specific problems. For instance, [35] addresses the con‐
sensus-based optimization, [36] focuses on primal-dual hy‐
brid gradient problems, and [37] deals with regularized esti‐
mation issues. Residual balancing (RB), discussed in [38], is 
a method that adjusts the penalty parameter in ADMM by 
balancing the primal and dual residuals. It seeks to keep 
both residuals at comparable magnitudes to adaptively adjust 
the penalty parameter. However, the performance of RB can 
vary significantly across different problem scales, potentially 
leading to convergence issues in ADMM for large-scale 
problems. Moreover, if the initial value of penalty parameter 
is inappropriate, its adaptation may occur slowly.

Based on the analysis, a comprehensive comparison of the 
existing literature is summarized as follows.

1) Lack of effective solutions to enhancing the rural elec‐
trification level. The development of rural power systems re‐
mains constrained by financial limitations. High capital costs 
related to the construction of long-distance transmission 
lines, outdated and unreliable rural distribution systems, lim‐
ited transmission capacity, voltage drops, elevated electricity 
costs, and inadequate utilization of renewable energy sources 
all hinder improvements in electrification.

2) Lack of P2P-based energy management and market 
trading mechanisms. Some existing literature primarily em‐
phasizes the centralized energy management, where rural 
community participants interact solely with the upstream 
grid. This leads to higher network loss costs and wasted re‐
newable energy. The centralized energy management fails to 
address the challenges faced by the current rural power grid 
and may impede advancements in electrification levels.

3) Lack of efficient solution methods for P2P-based ener‐
gy management and trading. The traditional ADMM requires 
manual tuning of initial penalty parameters to accommodate 
different problem scales, leading to high computational 
costs. While certain methods can adaptively adjust the penal‐
ty parameters, their performances remain inconsistent across 
various problem types.

These motivations and research gaps drive us to introduce 
a P2P-based energy management framework based on an im‐
proved ADMM-based distribution method, i. e., AADMM. 
This framework is designed to improve the local energy dis‐
tribution and electrification levels in rural power systems. 
The contributions of this paper are as follows.

1) Proposing a P2P-based energy management framework 
for multiple rural community-based villages to enhance rural 
electrification levels. This framework employs the P2P ener‐
gy trading to manage various local generation sources, with 
direct energy exchanges calculated by minimizing operation‐
al costs for both the RDN and villages.

2) Formulating the P2P energy trading among village par‐
ticipants as a Nash bargaining (NB) problem, considering 
the allocation of network loss costs. The NB problem is de‐
composed into two subproblems to effectively address its 
nonconvexity.

3) Introducing an improved ADMM-based distributed opti‐
mization method, i.e., AADMM, to tackle the P2P-based en‐
ergy management framework. This method incorporates a lo‐
cal curvature approximation scheme during parameter update 
steps, enabling automatic tuning of the penalty parameter of 
the standard ADMM and improving the convergence perfor‐
mance.

The overall system model of the proposed P2P-based ener‐
gy management framework, encompassing various compo‐
nents in villages and the operation model of RDN, is de‐
tailed in Section II. Section III presents the NB problem re‐
lated to P2P energy trading, along with its two decomposed 
subproblems. The improved ADMM-based distributed optimi‐
zation method, i. e., AADMM, is introduced in Section IV. 
Simulation results are provided in Section V. The conclusion 
is given in Section VI.

II. PROPOSED P2P-BASED ENERGY MANAGEMENT 
FRAMEWORK 

The proposed P2P-based energy management framework 
encompasses the RDN and various village participants. Mod‐
els for the RDN and village participants are developed con‐
sidering individual objectives, capability constraints, and 
technical limitations to facilitate the local optimization. Sub‐
sequently, the P2P energy trading model coordinates the opti‐
mization operations among the villages.

Figure 1 illustrates the energy and information connec‐
tions in the proposed P2P-based energy management frame‐
work. 

The community-based village participants integrate their 
DGRs to function as aggregators, located at various buses in 
the RDN. The DGRs include PV, diesel distributed genera‐
tors (DDGs), energy storage systems (ESSs), small hydro‐
power (SHP), and biomass power generators (BPGs) [40]. 

Village 1 Village 2 Village 3 Village N

Load PV

DDG

ESS

SHP BPG

RDNO
RDN

Information exchange; Energy exchange

…

Fig. 1.　Energy and information connections in proposed P2P-based energy 
management framework.
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Village participants can purchase energy from or sell it to 
the upstream network at prices set by the RDN, and they 
can trade energy bilaterally at negotiated prices. A virtual ru‐
ral distribution network operator (RDNO) provides a trans‐
parent platform for P2P energy trading without a physical en‐
tity, primarily focusing on tasks such as calculating trading 
power, prices, and scheduling releases. This paper assumes 
that village participants bear the network loss costs incurred 
from P2P energy trading. The role of RDNO is to minimize 
the total network loss costs and allocate these costs propor‐
tionally among the village participants.

A. Operation Model of Village Participants

1)　Objective Function
In the proposed P2P-based energy management frame‐

work, village participants minimize the operational costs by 
scheduling various DGRs, including PV, DDG, ESS, SHP, 
and BPG. The total operational cost Cv for village partici‐
pant v over the operational horizon T can be calculated us‐
ing (1a). Note that not all villages may possess all these 
components. This paper assumes that PV incurs negligible 
marginal costs in the short run [29].

Cv =∑
tÎT

(CvDDG (t)+CvSHP (t)+CvBPG (t)+CvESS (t)+CvGrid (t))

(1a)
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CvDDG (t)= a2 P 2
vDDG (t)+ a1 PvDDG (t)+ a0

CvSHP (t)= bSHP PvSHP (t)

CvBPG (t)= cBPG PvBPG (t)

CvESS (t)= dESS (P char
vESS (t)+P disc

vESS (t))

CvGrid (t)= ep
Grid P p

vGrid (t)- es
Grid P s

vGrid (t)

(1b)

where T = {12tT}; vÎV are the index and set of vil‐
lages participating in the P2P energy trading, respectively; 
CvDDG (t), CvSHP (t), CvBPG (t), and CvESS (t) are the operational 
costs of DDG, SHP, BPG, and ESS in village v, respective‐
ly; CvGrid (t) is the energy exchange between village v and 
the upstream network; PvDDG (t), PvSHP (t), and PvBPG (t) are 
the output power of DDG, SHP, and BPG in village v, re‐
spectively; P char

vESS (t) and P disc
vESS (t) are the charging and dis‐

charging power of ESS in village v, respectively; P p
vGrid (t) 

and P s
vGrid (t) are the importing and exporting power with the 

upstream network, respectively; a0, a1, and a2 are the genera‐
tion cost coefficients for DDG; and bSHP, cBPG, dESS, e

p
Grid, and 

es
Grid are the unit costs for SHP generation, BPG generation, 

ESS charging/discharging, purchasing energy from the up‐
stream network, and selling energy to the upstream network, 
respectively.
2)　Constraints

The output power of PV system in village v PvPV (t) 
should be constrained by:

P min
vPV £PvPV (t)£P max

vPV (2)

where P min
vPV and P max

vPV are the minimum and maximum output 
power of PV system in village v, respectively.

The output power of DDG should be subject to the follow‐
ing constraint:

P min
vDDG £PvDDG (t)£P max

vDDG (3)

where P min
vDDG and P max

vDDG are the minimum and maximum out‐
put power of DDG in village v, respectively.

The operational limitations of ESS are described as:
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0 £P char
vESS (t)£P charmax

vESS xchar
ESS (t)

0 £P disc
vESS (t)£P discmax

vESS xdisc
ESS (t)

0 £ xchar
ESS (t)+ xdisc

ESS (t)£ 1

Ev (t + 1)=Ev (t)+ ( )μvchar P
char
vESS (t)-

1
μvdisc

P disc
vESS (t)

SoC min
v £Ev (t)/E max

v £ SoC max
v

(4)

where P charmax
vESS  and P discmax

vESS  are the maximum charging and 
discharging power of ESS in village v, respectively; μvchar 
and μvdisc are the charging and discharging efficiencies of 
ESS, respectively; SoC min

v  and SoC max
v  are the minimum and 

maximum states of charge (SoCs) of battery in village v, re‐
spectively; E max

v  is the maximum energy capacity of battery 
in village v; and xchar

ESS (t) and xdisc
ESS (t) are two binary variables 

for ESS charging and discharging, respectively. xchar
ESS (t)= 1 

when the ESS is charging, and xdisc
ESS (t)= 1 when it is discharg‐

ing; otherwise, xchar
ESS (t)= 0 and xdisc

ESS (t)= 0. The expression in 
the third line of constraint (4) prevents the simultaneous 
charging and discharging of ESS.

The output limitation of SHP can be described as:
P min

vSHP £PvSHP (t)£P max
vSHP (5)

where P min
vSHP and P max

vSHP are the minimum and maximum out‐
put power of SHP in village v, respectively.

The output power of BPG should be bounded by:
P min

vBPG £PvBPG (t)£P max
vBPG (6)

where P min
vBPG and P max

vBPG are the minimum and maximum out‐
put power of BPG in village v, respectively.

The exchange power between village participants and the 
upstream network must be constrained within specific limits 
as:

ì
í
î

ïï
ïï

0 £P p
vGrid (t)£P pmax

vGrid

0 £P s
vGrid (t)£P s max

vGrid

(7)

where P pmax
vGrid and P smax

vGrid are the maximum purchasing and 
selling power of village v, respectively.

Additionally, village v must maintain an active power bal‐
ance during time slot t, as described in (8).

PvPV (t)+PvDDG (t)+PvSHP (t)+PvBPG (t)+P disc
vESS (t)+

P p
vGrid (t)=PvL (t)+P char

vESS (t)+P s
vGrid (t) (8)

where PvL (t) is the energy demand of village v.

B. Operation Model of RDN

1)　Objective Function
Considering the radial network in rural areas, the Dist‐

Flow model is used to calculate the power flow and network 
losses in this work [41]. Let G = (BE) denote the radial to‐
pology of the RDN, where B and E are the sets of buses 
and branches, respectively. Let 0ÎB denote the slack bus in 
set G, through which the upstream network is connected as 
an external power source for RDN. The network loss is non-
negligible due to the high R/X ratio. The objective function 
(9) calculates the total network loss cost Closs as:
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Closs = closs∑
tÎT

 ∑
(ij)ÎE

rijlij (t) (9)

where closs is the per-unit network loss cost; rij is the resis‐

tance of branch (ij)ÎE; and lij (t)= | Iij (t) |
2

, and Iij (t) is the 

current from buses i to j.
2)　Constraints

The operational constraints of RDN are presented as:

ì

í

î

ïïïï

ï
ïï
ï

pj (t)=Pij (t)- rijlij (t)- ∑
k ¹ i:( jk)

Pjk (t)

qj (t)=Qij (t)- xijlij (t)- ∑
k ¹ i:( jk)

Qjk (t)
(10a)

vj (t)= vi (t)- 2(rij Pij (t)+ xijQij (t))+ (r 2
ij + x2

ij )lij (t) (10b)

lij (t)= (P 2
ij (t)+Q2

ij (t))/vi (t) (10c)

Pij (t)£P max
ij (t) (10d)

Qij (t)£Qmax
ij (t) (10e)

V min
i (t)£Vi (t)£V max

i (t) (10f)

lij (t)³(P 2
ij (t)+Q2

ij (t))/vi (t) (10g)

where pj (t) and qj (t) are the active and reactive power injec‐
tions at bus jÎB, respectively; Pij (t) and Qij (t) are the ac‐
tive and reactive power flows of branch (ij)ÎE, respective‐
ly; ∑

k ¹ i:( jk)

Pjk (t) and ∑
k ¹ i:( jk)

Qjk (t) are the sums of the active 

and reactive power flows of all branches connected to bus j 
excluding branch (ij), respectively; xij is the reactance of 

branch (ij)ÎE; vi (t)= |Vi (t) |
2
, with Vi (t) being the voltage 

magnitude of bus i; V min
i (t) and V max

i (t) are the minimum 
and maximum voltage magnitudes of bus i, respectively; and 
P max

ij (t) and Qmax
ij (t) are the maximum active and reactive 

power flows of branch (ij)ÎE, respectively. Given the issue 
of nonconvexity, constraint (10c) is reformulated using sec‐
ond-order cone programming relaxation as (10g).

C. P2P Energy Trading Model

Village participants engage in the P2P energy trading with 
neighboring villages, negotiating the amount and price of ex‐
changeable energy bilaterally. The energy exchanged be‐
tween villages m and n, along with their net importing and 
exporting power, represented by e+

m (t) and e-
n (t), respectively, 

can be defined as:

e+
m (t)= ∑

nÎV  -

e+
mn (t) (11a)

e-
n (t)= ∑

mÎV  +

e-
nm (t) (11b)

e+
mn (t)= e-

nm (t) (11c)

where mÎV  + and nÎV  - are the indices of villages partici‐
pating in P2P energy trading as energy purchasers and sell‐
ers, respectively, and V  +V  - =V; and e+

mn (t) and e-
nm (t) are 

the importing and exporting power of villages mÎV  + and 
nÎV  +, respectively.

The power balance constraint (8) can be rewritten as (12)  
for villages mÎV  + and nÎV  -.
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ï
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ï

PvPV (t)+PvDDG (t)+PvSHP (t)+PvBPG (t)+P disc
vESS (t)+

           P p
vGrid (t)+ e+

m (t)=Pv.L (t)+P char
vESS (t)+P s

vGrid (t)

PvPV (t)+PvDDG (t)+PvSHP (t)+PvBPG (t)+P disc
vESS (t)+

           P p
vGrid (t)=PvL (t)+P char

vESS (t)+P s
vGrid (t)+ e-

n (t)

  (12)

III. NB PROBLEM FOR PROPOSED P2P-BASED ENERGY 
MANAGEMENT FRAMEWORK 

Direct energy trading among villages can effectively in‐
crease profits and reduce operational costs. However, the un‐
fair profit allocation may diminish the willingness of villag‐
es to participate in P2P energy trading. As a crucial compo‐
nent of cooperative game theory, the NB solution can man‐
age the complex interests among agents in a multi-agent en‐
ergy system. It provides a Pareto optimal solution that bal‐
ances individual interests and achieves a fair benefit alloca‐
tion scheme. Consequently, the proposed P2P-based energy 
management framework formulates the energy trading pro‐
cess as an NB problem to incentivize direct energy trading 
among villages.

A typical NB problem is modeled as:

ì

í

î

ïïïï

ïïïï

max ∏
s = 1

S

(Us -U 0
s )

s.t. Us ³U 0
s

(13)

where S is the number of bargaining players; Us is the bene‐
fit of player s; and U 0

s  is the disagreement point.
This disagreement point signifies the situation where bar‐

gaining players fail to cooperate, potentially due to issues 
such as unfair benefit allocation. Accordingly, U 0

s  indicates 
the benefit of player s when the cooperation breaks down 
due to negotiation failure.

Model (13) is a non-convex nonlinear optimization model, 
the complexity of which increases due to the constraints in‐
volved. To ensure the computational tractability, the NB 
problem is decomposed into two manageable subproblems: 
the operational cost minimization problem and the energy 
trading payment problem. The two subproblems are solved 
sequentially to determine the optimal energy trading 
schemes for the villages.

Villages mÎV  + and nÎV  - are willing to participate in 
P2P energy trading only if the following constraints are satis‐
fied.

C +
m +C +

mloss + π
+
m £C non

m (14a)

C -
n +C -

nloss + π
-
n £C non

n (14b)

C non
m =∑

tÎT
(C non

mDDG (t)+C non
mSHP (t)+C non

mBPG (t)+C non
mESS (t)+C non

mGrid (t))

(14c)

C non
n =∑

tÎT
(C non

nDDG (t)+C non
nSHP (t)+C non

nBPG (t)+C non
nESS (t)+C non

nGrid (t))

(14d)

where C +
m and C -

n  are the internal operational costs for villag‐
es mÎV  + and nÎV  - participating in P2P energy trading, re‐
spectively, as defined in (1); C non

m  and C non
n  are the operation‐

al costs for villages mÎV  + and nÎV  - without participating 
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in P2P energy trading, which are also calculated based on 
objective (1), as described in (14c) and (14d), respectively; 
π +

m and π -
n  are the P2P energy trading payments for villages 

mÎV  + and nÎV  -, respectively, which are the costs associ‐
ated with power exchange; and C +

mloss and C -
nloss are the net‐

work loss costs imposed on villages mÎV  + and nÎV  -, re‐
spectively.

In this paper, the total network loss cost is proportionally 
allocated to villages participating in the P2P energy trading 
based on their exchanged power. Therefore, C +

mloss and C -
nloss 

are defined based on objective (9) as:

C +
mloss =

e+
m (t)∑

mÎV  +

e+
m (t) + ∑

nÎV  -

e-
n (t)

Closs (15a)

C -
nloss =

e-
n (t)∑

mÎV  +

e+
m (t) + ∑

nÎV  -

e-
n (t)

Closs (15b)

The P2P energy trading payments π +
m and π -

n  are subject to:∑
mÎV  +

π +
m + ∑

nÎV  -

π -
n = 0 (16)

Notably, it can be observed that C non
m  and C non

n  in (14) cor‐
respond to U 0

s  in (13). Similarly, C +
m +C +

mloss + π
+
m and C -

n +
C -

nloss + π
-
n  in (14) correspond to Us in (13). The symbol ³ in 

(13) changes to £ in (14) because the former represents bene‐
fits while the latter represents costs. Hence, the NB problem 
of P2P energy trading within the proposed P2P-based energy 
management framework is described by incorporating (14) 
and (15) into (13) as:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïïï
ï

ï

ï

max
{M +

m P  +
m M  -

n P  -
n MRDN }

 
ì
í
î
∏

mÎV  +

(C non
m -C +

m -C +
mloss - π

+
m )×

ü
ý
þ

          ∏
nÎV  -

(C non
n -C -

n -C -
nloss - π

-
n )

s.t.  (2)-(7) (10)-(12) (16)

(17a)

M  +
m =M  -

n : ={PvPV (t)PvDDG (t)PvSHP (t)PvBPG (t)
P char

vESS (t)P disc
vESS (t)} (17b)

P  +
m: ={P p +

mGrid (t)P s +
mGrid (t)e+

m (t)} (17c)

P  -
n : ={P p -

mGrid (t)P s -
nGrid (t)e-

n (t)} (17d)

MRDN: ={pj (t)qj (t)Pij (t)Qij (t)vi (t)lij (t)} (17e)

where M  +
m and M  -

n  are the sets of decision variables for 
DGRs within villages mÎV  + and nÎV  -, respectively; P  +

m 
and P  -

n  are the sets of decision variables for power imports 
and exports with the upstream network and through P2P en‐
ergy trading, respectively; and MRDN is the set of decision 
variables for RDN.

Objective (1) for P2P energy trading is represented by C +
m 

and C -
n  in the NB problem (17), while objective (9) is repre‐

sented by C +
mloss and C -

nloss.
The NB problem (17) can be decomposed into two sub‐

problems: the operational cost minimization problem of the 
RDN (P1) and the payment bargaining problem (P2), de‐
scribed as:

P1:

ì

í

î

ïïïï

ïïïï

min
{M +

m P  +
m M  -

n P  -
n MRDN }

 
ì
í
î

ü
ý
þ

∑
mÎV  +

(C +
m +C +

mloss )+ ∑
nÎV  -

(C -
n +C -

nloss )

s.t.  (2)-(7) (10)-(12)

 (18a)

P2:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïïï
ï

ï

ï

max
{π +

mπ
-
n }

ì
í
î
∏

mÎV  +

(C non
m -C +

m* -C +
mloss* - π

+
m ) ×

ü
ý
þ

         ∏
nÎV  -

(C non
n -C -

n* -C -
nloss* - π

-
n )

s.t.  (14)-(16)

(18b)

where C +
m*, C -

n*, C +
mloss*, and C -

nloss* are the optimal solutions 
in P1.

The process for jointly solving P1 and P2 is divided into 
several steps, as shown in Supplementary Material A Fig. 
SA1.

IV. IMPROVED ADMM-BASED DISTRIBUTED METHOD 

This section presents an improved ADMM-based distribut‐
ed method, i.e., AADMM, to address the NB problem in the 
P2P energy trading. This method only leverages partial infor‐
mation from each participant to optimize trading schemes, 
thereby ensuring substantial protection of peer privacy. The 
AADMM decomposes the optimization problems into se‐
quences of simpler subproblems, which enhances the compu‐
tational efficiency. This is crucial for ensuring the algorithm 
convergence and reducing the computational time when tack‐
ling complex optimization problems. However, the standard 
ADMM typically employs a fixed penalty parameter, and its 
convergence performance is significantly influenced by the 
initial setting of this penalty parameter. This necessitates 
manual adjustment tailored to each optimization problem to 
determine the convergence speed. To address this challenge, 
the AADMM utilizes a local curvature approximation 
scheme to automatically adapt the penalty parameter, thus 
eliminating the need for manual oversight [42].

The form of standard ADMM can be formulated as:

ì
í
î

ïïmin
uv

{H(u)+G(v)}

s.t. Au +Bv = b
(19)

where H(u) and G(v) are the closed convex functions, and u 
and v are the variables of these two functions, respectively; 
A and B are the coefficients of variables u and v in the con‐
straints, respectively; and b is the vector of constants in the 
constraints.

The augmented Lagrangian function is shown as:

L(uvλ)=H(u)+G(v)+ λT (b -Au -Bv)+
ρ
2
 b -Au -Bv

2

2

(20)

where ρ is the penalty parameter; and λ is the Lagrangian 
multiplier, i.e., dual variable.

The values of u, v, and λ in iteration k + 1 can be de‐
scribed as:
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uk + 1 = arg min
u

{ }H(u)+ λT
k (b -Au -Bvk )+

ρ
2
 b -Au -Bvk

2

2

(21a)

vk+1= arg min
v

{ }G(v)+λT
k (b-Auk+1-Bv)+

ρ
2
 b-Auk+1-Bv

2

2

(21b)

λk + 1 = λk + ρ(b -Auk + 1 -Bvk + 1 ) (21c)

The primal residual rk and dual residual dk in iteration k 
are introduced as:

ì
í
î

rk = b -Auk -Bvk

dk = ρA
T B(vk - vk - 1 )

(22)

The stopping criteria of standard ADMM is described as:

ε =max

ì

í

î

ïïïï

ïïïï

 rk 2

max{ } Auk 2
 Bvk 2

 b
2


 dk 2

 AT λk 2

ü

ý

þ

ïïïï

ïïïï
£ εtol   (23)

where ε and εtol are the relative residual and stopping toler‐
ances, respectively.

This paper leverages spectral gradient methods from [43] 
to improve the fixed penalty parameter in standard ADMM 
for accelerating convergence. The spectral gradient method, 
pioneered by Barzilai and Borwein as a variant of gradient 
descent, is referred to as the BB method. The mathematical 
formulation of traditional gradient descent method for opti‐
mizing an objective function F without constraints can be de‐
scribed as [44]:

xk + 1 = xk - τkÑF(xk ) (24)

where x and xk + 1 are the decision variables for function F in 
iterations k and k + 1, respectively; and τk is the step size in 
iteration k.

The BB method sets τk = αk and adaptively chooses the 
step size τk for rapid convergence, where αk is a curvature es‐
timate of the optimization objective F. The curvature esti‐
mate αk can be calculated using a least squares criterion as:

αk = arg min
α

 ÑF(xk )-ÑF(xk - 1 )- α(xk - xk - 1 )
2

2 (25)

Inspired by the BB method, the fixed penalty parameter ρ 
in standard ADMM is formulated by the curvature estimates 
of H(·) and G(·) in (19) to enable the adaptive adjustment. 
However, the BB method is primarily designed for solving 
unconstrained minimization problems. Hence, Douglas-Rach‐
dord splitting (DRS) [45] is used to transform the con‐
strained ADMM in (19) into its Fenchel dual, thereby con‐
verting it into an unconstrained minimization problem as de‐
scribed in (26). Further, the penalty parameter ρ is converted 
to the curvature estimates in (26). The dual form of (19) is 
given as:

min
λÎRNλ

{       H * (AT λ)- λTb

Ĥ(λ)

+ }   G* (BT λ)

Ĝ(λ)

(26)

where Η * (·) and G* (·) are defined as the conjugate functions 
of H(·) and G(·), respectively; and Ĥ(·) and Ĝ(·) are the new‐
ly-defined functions.

A dual variable λ̂k + 1, distinct from standard ADMM, is de‐

fined as λ̂k + 1 = λk + τk (b -Auk + 1 -Bvk ). The optimality condi‐
tions for (21a) and (21b) are formulated as:

ì
í
î

ïï¶H(uk + 1 )-AT [λk + τk (b -Auk + 1 -Bvk )]= 0

¶G(vk + 1 )-BT [λk + τk (b -Auk + 1 -Bvk + 1 )]= 0
(27)

The two equations in (27) are equivalent to ¶H(uk + 1 )=
AT λ̂k + 1 and ¶G(vk + 1 )=BT λk + 1.

Let uk + 1 = ¶H * (AT λ̂k + 1 ) and vk + 1 = ¶G* (BT λk + 1 ) according 
to [46]. ¶Ĥ(λ̂k + 1 )=Αuk + 1 - b and ¶Ĝ(λk + 1 )=Bvk + 1 can be 
calculated using (26). The curvatures of Ĥ(·) and Ĝ(·) from 
the previous iterations (the number of the previous iterations 
is defined as Tf) are estimated using the least squares criteri‐
on based on the typical BB method as:

ì

í

î

ïïïï

ï
ïï
ï

min
α

 DĤk - αDλ̂k

2

2

min
β

 DĜk - βDλk

2

2

(28)

Dλ̂k = λ̂k - λ̂k0
(29a)

Dλk = λk - λk0 (29b)

DĤk = ¶Ĥ(λ̂k )- ¶Ĥ(λ̂k0
)=A(uk - uk0

) (29c)

DĜk = ¶Ĝ(λk )- ¶Ĝ(λk0
)=B(vk - vk0

) (29d)

where k0 = k - Tf represents a prior iteration; and α and β are 
the curvatures formulated as:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

αSD
k =

Dλ̂kDλ̂k

DĤk Dλ̂k

αMG
k =

DĤk Dλ̂k

DĤk DĤk

(30a)

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

β SD
k =

DλkDλk

DĜk Dλk

βMG
k =

DĜk Dλk

DĜk DĜk

(30b)

where the superscripts SD and MG are the steepest descent 
and minimum gradient, respectively [47].

The hybrid step size rule, as stated in [47], is given as:

αk =
ì

í

î

ïïïï

ïïïï

αMG
k                  2αMG

k > αSD
k

αSD
k -

αMG
k

2
    otherwise

(31a)

βk =
ì

í

î

ïïïï

ïïïï

βMG
k                   2βMG

k > β SD
k

β SD
k -

βMG
k

2
    otherwise

(31b)

Further, the step size τk is calculated by αk βk .
Even with the improvements and refinements that enhance 

the computational efficiency of standard ADMM, the varia‐
tions in step size can lead to unreliable curvature estimates. 
Consequently, the AADMM proposes a safeguarded method 
for reassessing curvature estimates, which is described as:
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τk + 1 =

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

αk βk     αcor
k > εcor β cor

k > εcor

αk              α
cor
k > εcor β cor

k £ εcor

βk              α
cor
k £ εcor β cor

k > εcor

τk               otherwise

(32)

where εcor is the correlation threshold; and αcor
k  and β cor

k  are 
the correlations between DĤk and Dλ̂k and between DĜk and 
Dλk, respectively, which are used to assess the reliability of 
curvature estimates and expressed as:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

αcor
k =

DĤk Dλ̂k

 DĤk  Dλ̂k

β cor
k =

DĜk Dλk

 DĜk  Dλk

(33)

The generalized model of AADMM in (19) - (33) is de‐
rived through mathematical transformations from the stan‐
dard ADMM. The key parameters in the AADMM, includ‐
ing curvatures αk and βk, step size τk, and newly-defined in‐
crement functions DĤk and DĜk, all depend on six parame‐
ters: A, B, u, v, b, and λ in the standard ADMM. Specifical‐
ly, when addressing the NB problem of P2P energy trading 
using the AADMM, these six parameters must be calculated. 
The standard ADMM formulation for the NB problem of 
P2P energy trading is modeled in (SA1) - (SA8) in Supple‐
mentary Material A. The details of these six parameters, 
based on the formulation provided in Supplementary Materi‐
al B, are given as:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

A = é
ë
êêêê ù

û
úúúú1 0

0 1

B = é
ë
êêêê ù

û
úúúú1 0

0 1

b =[0    0]T

(34a)

ì

í

î

ïïïï

ï
ïï
ï

u =[P  +
mk    P  -

nk ]T

v =[P̂  +
mk    P̂  -

nk ]T

λk =[λmk    λnk ]T

(34b)

The AADMM used to solve subproblem P1 is presented 
in Algorithm SB1 in Supplementary Material B.

In the P2P energy trading, peers offer their electricity 
quantities and prices to match other trading offers. A success‐
ful transaction occurs when one peer’s electricity price 
aligns with another peer’s requirements. If this alignment 
does not occur, the transaction fails, prompting both peers to 
adjust their electricity quantities and prices. This iterative 
process resembles negotiation dynamics, with continuous up‐
dates and revisions to electricity offers and trading prices. 
The updating process is consistent with the solving method‐
ology of ADMM. Thus, in this paper, the trading quantities 
and prices of electricity are determined using AADMM, en‐
suring the feasibility and effectiveness of the control order.

In the AADMM, the operational strategies of various 
DGRs in each village, power exchange with the upstream 
network, and energy exchange through P2P energy trading 

are determined and updated using model (SB4) in Supple‐
mentary Material B. Subsequently, each village sends this in‐
formation to the RDNO. The RDNO then minimizes the to‐
tal network loss cost and allocates it proportionally among 
village participants using model (SB5) in Supplementary Ma‐
terial B. Following this, the RDNO updates P2P energy trad‐
ing prices via model (SB6) in Supplementary Material B, 
and the trading prices are sent to each village. If the AAD‐
MM converges, the process concludes; otherwise, it iterates. 
The energy trading prices, represented by the dual variable 
λ, are determined by AADMM. Each iteration involves a 
matching process among peers, where each peer adjusts its 
strategies until the convergence is achieved. The successful 
direct energy trading between peers occur upon convergence. 
Once the AADMM converges, the energy trading price λ is 
finalized. The AADMM manages the trading orders based 
on strategy updates in each iteration to ensure the effective 
control. The solution post-convergence represents the opti‐
mal trading strategies for participants.

The operational strategies for various DGRs, power ex‐
change with the upstream network, and energy exchange 
through P2P energy trading for each village are communicat‐
ed to RDNO. In turn, the RDNO provides information on al‐
located network loss costs and updates on trading prices 
back to each village. The information of each village ex‐
changed with the RDNO remains confidential to the respec‐
tive village participants, because the RDNO acts as a virtual 
entity facilitating energy management via P2P energy trad‐
ing. The information sent to this virtual platform is not dis‐
closed to other peers, ensuring that each peer considers their 
information private. Similarly, details such as allocated net‐
work loss costs and updated trading prices sent by the RD‐
NO to each village are treated as confidential by those villag‐
es. The RDNO only shares information relevant to each spe‐
cific peer and does not distribute it to others.

For subproblem P2, the coupling variables π̂ +
m and π̂ -

n  are 
introduced, which modifies this subproblem as:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïïï
ï

ï

ï

max
{π +

mπ
-
n }

ì
í
î
∏

mÎV +
(C +

m -C +
mP2P* -C +

mloss* - π
+
m ) ×

ü
ý
þ

             ∏
nÎV  -

(C -
n -C -

nP2P* -C -
nloss* - π

-
n )

s.t.  (13) (14)

(35a)

π +
m = π̂

+
m (35b)

π -
n = π̂

-
n (35c)

The update of variables in P2 is not presented for the sake 
of conciseness, as it is like that of P1.

V. CASE STUDY 

In this section, the proposed P2P-based energy manage‐
ment framework is applied to an RDN consisting of 15 bus‐
es and 14 branches, as described in [48] and illustrated in 
Fig. 2. The AADMM is implemented in MATLAB 2018a on 
a desktop with an AMD AthlonTM X4 870K Quad Core Pro‐
cessor and 8 GB of RAM. The subproblems P1 and P2 are 
solved using CPLEX 12.6.2.
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The voltage amplitude bounds are set to be 0.95 and 1.05 
p. u.. Each transmission line has a maximum capacity of 1 
MW for active power. Each bus corresponds to a village 
load, and four interactive villages are connected to buses 4, 
7, 10, and 12. The DGRs for these four interactive villages 
are detailed in Supplementary Material C Table SCI. The PV 
outputs and load profiles for these villages based on [49] are 
shown in Supplementary Material C Fig. SC2.

The operational cost parameters a2 and a1 for DDG are 5 
and 41.1, respectively. The unit operational costs for SHP 
and BPG are 17.6 $/MWh and 38.3 $/MWh, respectively. 
The degradation cost coefficient for ESS, assumed to be bat‐
tery storage in this paper, is set to be 20 $/MWh. The maxi‐
mum energy capacity of ESS is 2 MW, with a charging/dis‐

charging efficiency of 0.95 and its SoC range of [0.1, 0.9]. 
Villages purchase power from the upstream network at a 
price from CAISO [50] and sell power to the network at 
half the purchasing price. The operational horizon spans 24 
hours per day. The parameters for AADMM are detailed and 
summarized based on [51] in Supplementary Material A Ta‐
ble SAII.

A. Energy Exchange Results

This paper conducts two cases to validate the effective‐
ness of the proposed P2P-based energy management frame‐
work.

1) Case 1: a centralized energy management framework, 
where village participants can only exchange energy with 
the upstream network without engaging in P2P energy trad‐
ing.

2) Case 2: the proposed P2P-based energy management 
framework, with village participants engaging in P2P energy 
trading.

Figure 3 illustrates the daily power exchange among four 
villages in Cases 1 and 2. Villages 1 and 4 function as buy‐
ers, while villages 2 and 3 serve as sellers in Case 2. Villag‐
es 2-4 optimize their PV power scheduling in both Cases 1 
and 2. This optimization is attributed to the zero operational 
cost of PV, making PV be their preferred energy source. In 
Case 2, each village does not need to purchase power from 
the upstream network and can sell more surplus power back 
to it compared with Case 1. Consequently, the village partici‐
pants have an adequate power supply to meet their demands 
and sell excess electricity, thereby reducing operational costs.

In both cases, the higher unit cost of DDG makes villages 
1 and 4 consume more power from DDG than from BPG. 
Conversely, villages 2 and 3 utilize SHP due to its lower 
cost in comparison to DDG. The total external power sup‐
plied by the slack bus over the simulation horizon in Cases 

1 and 2 is 10.66 MW and 5.56 MW, respectively. Notably, 
the external power supplied in Case 2 is lower than that in 
Case 1. Assuming that the external power reflects the energy 
utilization efficiency, the result indicates that the energy utili‐
zation efficiency in Case 2 is improved by 48% compared 
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Village 4
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Village 1
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Fig. 2.　Topology of studied RDN.
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Fig. 3.　Daily power exchange among four villages in Cases 1 and 2. (a) Village 1 in Case 1. (b) Village 1 in Case 2. (c) Village 2 in Case 1. (d) Village 2 
in Case 2. (e) Village 3 in Case 1. (f) Village 3 in Case 2. (g) Village 4 in Case 1. (h) Village 4 in Case 2.
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with that in Case 1.
The ESS primarily coordinates various DGRs through 

charging and discharging operations to minimize the opera‐
tional costs and optimize the performance. The ESS signifi‐
cantly influences the operation of DGRs and the overall sys‐
tem operational costs. As shown in Fig. 3, the ESS affects 
the decision-making in each village in Case 1, as well as 
P2P energy trading in Case 2. Notably, compared with Case 
2, the ESS charges and discharges during more time slots in 
Case 1 due to the limitation of exchanging energy solely 
with the upstream network. Villages utilize their ESSs to 
charge during periods with surplus power generation and to 
discharge during periods of insufficient power generation. 
The energy discharged from ESS reduces the need to pur‐
chase expensive energy from the upstream grid. In contrast, 
in Case 2, ESS discharges only during a few time slots, as 
the villages can directly exchange energy through P2P ener‐
gy trading. Peers engage in P2P energy trading to share ex‐
cess power generation for mutual benefit, eliminating the ne‐
cessity to store surplus energy in ESS, thereby reducing the 
operational costs. Consequently, the ESS discharges only dur‐
ing specific time slots, serving as emergency backups to pre‐
vent power shortages.

Table I presents the operational cost, network loss cost, 
and payments for the four villages. The operational costs for 
all four villages in Case 2 are lower than those in Case 1. 
The total cost for all four villages is significantly reduced 
from $2999.88 to $882.64, representing a 71% reduction. 
Moreover, the total network loss cost decreases from 
$185.52 to $10.87. It is important to note that the total net‐
work loss cost in Case 1 is calculated using objectives (1) 
and (9), without considering the loss costs of individual vil‐
lage and P2P energy trading. This demonstrates that the pro‐
posed P2P-based energy management framework effectively 
reduces the total network loss cost.

B. Bus Voltage and Branch Power Flow

An essential indicator for measuring electrification levels 
is voltage quality. This subsection explores the impact of 
P2P energy trading on voltage improvement by comparing 
the two cases. Figure 4 illustrates the per-unit voltage values 
for all buses (excluding the slack bus) with different colors 
in both cases. In Case 1, the voltage at each bus drops signif‐
icantly over the 24-hour period, with sharp decreases ob‐
served at 04:00 and increases at 18:00. In contrast, Case 2 
exhibits much smoother voltage fluctuations, remaining with‐

in the range of [0.95, 0.99]p. u.. Furthermore, Fig. 5 illus‐
trates the average voltage of UDN, calculated as the sum of 
voltages across all buses in each time slot divided by the to‐
tal number of buses. The average voltage of UDN in Case 2 
ranges from 0.975 to 0.985 p.u., indicating a smaller voltage 
drop compared with Case 1. This demonstrates that the di‐
rect energy exchange among village participants through P2P 
energy trading effectively reduces the voltage drop of both 
the UDN and buses, thereby enhancing the voltage quality 
and improving rural electrification levels.

Figure 6 compares the active power flows of all branches 
with different colors in the two cases, while Supplementary 
Material C Fig. SC3 presents the comparison of reactive 
power flows. In both cases, the active power flow of each 
branch remains within the range of [01]MW. However, in 
Case 1, some branches exhibit higher active power flows 

TABLE I
OPERATIONAL COST, NETWORK LOSS COST, AND PAYMENTS FOR FOUR 

VILLAGES

Village

1

2

3

4

Case 1

Operational 
cost ($)

1185.21

395.18

464.15

955.34

Network 
loss cost ($)

-

-

-

-

Case 2

Operation‐
al cost ($)

336.07

101.77

168.24

276.56

Network 
loss cost ($)

3.19

2.80

2.55

2.33

Payment 
($)

104.01

-105.39

-102.64

106.13
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Fig. 4.　Per-unit voltage values for all buses in Cases 1 and 2. (a) Case 1. 
(b) Case 2.
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than those in Case 2. This indicates that the community-
based villages engaging in P2P energy trading effectively re‐
duce the power flow of branches, thereby mitigating grid 
congestion. If distribution lines have limited transmission ca‐
pacity, such as a maximum of 0.5 MW, the congestion is‐
sues may emerge in Case 1. If the distribution lines have a 
limited transmission capacity, such as a maximum of 0.5 
MW, the congestion issues may arise in Case 1, where the 
power system could rely on P2P energy trading to alleviate 
the line congestion.

C. IEEE 33-bus and 118-bus Distribution Systems

The proposed P2P-based energy management framework 
is also applied to IEEE 33-bus and 118-bus distribution sys‐
tems to validate its scalability, which are based on [52] and 
[53], respectively. The four villages are connected to buses 
5, 16, 20, and 29 in the IEEE 33-bus distribution system and 
to buses 34, 65, 89, and 104 in the IEEE 118-bus distribu‐
tion system. Various results such as energy trading volumes, 
operational costs, and allocated network loss costs are com‐
pared in these two systems, as presented in Supplementary 
Material C Tables SCIII and SCIV.

In Case 2, the operational costs for four villages connect‐
ed to IEEE 33-bus distribution system are $146.31, $78.74, 
$74.60, and $330.70, all of which are lower than those in 
Case 1. Villages 1 and 4 engage in P2P energy trading, pur‐
chasing 9.49 MW and 8.90 MW of power, respectively, at 
costs of $90.34 and $85.34. Meanwhile, villages 2 and 3 sell 
5.52 MW and 13.11 MW of power, earning $74.91 and 
$105.77, respectively. Additionally, the total network loss 
cost is $318.02 in Case 1 and $18.74 in Case 2, indicating 
that the network loss costs in Case 1 are higher than those 
in Case 2. Similarly, the operational costs for four villages 
in Case 2 of IEEE 118-bus distribution system are also low‐
er than those in Case 1. The total network loss costs are 

$65.59 and $847.69 in Cases 2 and 1, respectively.
Additionally, the average voltages in Cases 1 and 2 are 

presented in Supplementary Material C Figs. SC4 and SC5, 
respectively. It is evident that the voltage drops in both sys‐
tems in Case 2 are lower than those in Case 1. This observa‐
tion implies that the proposed P2P-based energy manage‐
ment framework has the potential to enhance voltage quality 
in larger-scale distribution systems, thereby enhancing the 
overall electrification level of systems. Furthermore, the pro‐
posed P2P-based energy management framework is scalable 
to larger distribution systems.

D. Convergence and Computational Performance

Figures 7-9 illustrate the convergence performance of stan‐
dard ADMM and AADMM in solving problem P1. The stop‐
ping tolerance εtol in the AADMM is set to be 10-3. Overall, 
the rates of decrease in both primal and dual residuals are 
faster with AADMM compared with standard ADMM. Fig‐
ure 9 presents the relative residual, i.e., (21), demonstrating 
that AADMM and standard ADMM converge in 134 and 
1086 iterations, respectively. This indicates an 86% improve‐
ment in convergence speed with AADMM. Upon conver‐
gence, the primal residual rk and dual residual dk are 6 ´ 10-4 
and 8×10-2, respectively. Although the dual residual is below 
the stopping tolerance, the relative residual is 7 ´ 10-4, which 
satisfies the convergence condition. Therefore, the AADMM 
demonstrates a superior convergence performance compared 
with the standard ADMM.

Due to the adaptive nature of AADMM, it can be initial‐
ized with random values for τ0. We investigate the sensitivity 
of different initial penalty parameters and the sensitivity anal‐
ysis results are given in Table II. Notably, the standard AD‐
MM fails to converge within the maximum number of itera‐
tions (denoted as kmax = 2000, as illustrated in Supplementary 
Material C Table SCII) when τ0 = 0.1. Furthermore, the AAD‐
MM exhibits the fastest convergence during sensitivity test‐
ing when τ0 = 1. Hence, initializing the penalty parameter 
closer to 1 is recommended.

The convergence iterations for standard ADMM with dif‐
ferent initial penalty parameters exhibit notable differences. 
In contrast, no such distinctions are observed in the sensitivi‐
ty results for AADMM. This indicates that the standard AD‐

0 2 4 6 8 10 12 14 16 18 20 22 24
-0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

)
W

M( 
wolf r e

wo
P

Time

The maximum power flow

The maximum power flow

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24
-0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

)
W

M( 
w

olf re
w

o
P

Time
(b)

Fig. 6.　Active power flows of all branches in Cases 1 and 2. (a) Case 1. 
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MM is highly sensitive to the choice of the initial penalty pa‐
rameter, making its convergence performance largely depen‐
dent on this setting. Conversely, the AADMM demonstrates 
stability irrespective of the initial value.

This study adopts a hybrid step size rule based on [42], as 
formulated in (31), to estimate curvatures α and β. While 
some studies have proposed other step size rules for the 
adaptive penalty parameter in ADMM such as the BB1 and 
BB2 rules in [39], and the RB rule in [38] inspired by the 
BB method, they may exhibit potential instability in their al‐
gorithmic characteristics. Such instability can hinder the con‐
vergence speed when solving certain optimization problems 
or increase computational time. To demonstrate the advantag‐
es of the hybrid step size rule, we conduct a comparative 

analysis of performance using these different step size rules. 
The initial penalty parameter is uniformly set to be τ0 = 1 for 
all methods that employ different step size rules. Table III 
and Fig. 10 present the number of iterations until conver‐
gence and the relative residuals of different methods with 
various step size rules, respectively.

The four step size rules for the adaptive penalty parameter 
effectively reduce the number of iterations. In this paper, the 
hybrid step size rule in AADMM achieves the fastest conver‐
gence compared with other step size rules, requiring only 
134 iterations and demonstrating a rapid decrease in relative 
residuals.

VI. CONCLUSION 

This paper proposes a P2P-based energy management 
framework for a remote RDN. This framework enables vil‐
lages to integrate multiple DGRs and directly exchange ener‐
gy with each other, thereby reducing operational costs. The 
P2P energy trading is formulated as an NB problem, which 
is further decomposed into two subproblems. To solve these 
subproblems, an improved ADMM-based distributed optimi‐
zation method, i.e., AADMM, is proposed. The AADMM, in‐
spired by the BB method and gradient descent, employs cur‐
vature estimation to automatically adjust the penalty parame‐
ter. Simulation results demonstrate the advantages of the pro‐
posed P2P-based energy management framework and the im‐
proved convergence performance of AADMM. Compared 
with the centralized energy management framework, the pro‐
posed P2P-based energy management framework reduces the 
operational costs of villages and enhances the energy utiliza‐
tion efficiency through direct energy exchange. Additionally, 

TABLE III
NUMBER OF ITERATIONS OF DIFFERENT METHODS ADOPTING VARIOUS STEP 

SIZE RULES

Method

Standard ADMM

AADMM

ADMM-BB1 in [39]

ADMM-BB2 in [39]

ADMM-RB in [38]

Number of iterations

1086

134

261

418

699
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TABLE II
CONVERGENCE RESULTS WITH DIFFERENT INITIAL PENALTY PARAMETERS

Method

AADMM

Standard ADMM

k

τ0 = 0.1

182

2000*

τ0 = 1

134

1086

τ0 = 5

162

244

Note: * represents that the standard ADMM fails to converge after 2000 iter‐
ations.
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the convergence speed of AADMM is improved by 88% 
compared with the standard ADMM.

The proposed P2P-based energy management framework 
enhances the rural electrification through three key aspects: 
market mechanisms, voltage quality improvement, and 
branch power flow optimization. First, it leverages market 
mechanisms to optimize the utilization of DGRs, challenging 
the traditional centralized energy trading framework. This di‐
versification of energy trading patterns in rural areas pro‐
vides alternative solutions for rural community energy trad‐
ing. Second, this framework effectively mitigates voltage 
drops and fluctuations, leading to improved voltage quality, 
thereby contributing to enhanced rural electrification through 
superior voltage regulation. Lastly, the P2P energy trading re‐
duces power flow on transmission lines, ensuring the safe 
system operation within established capacity limits.

Future research will primarily explore the interactions be‐
tween multiple energy sources within RDN, with a focus on 
integrated electricity-gas and electricity-heat systems.
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