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Abstract——This paper develops a physics-guided graph net‐
work to enhance the robustness of distribution system state esti‐
mation (DSSE) against anomalous real-time measurements, as 
well as a deep auto-encoder (DAE)-based detector and a Gauss‐
ian process-aided residual learning (GARL) to deal with chal‐
lenges arising from topology changes. A global-scanning jump‐
ing knowledge network (GSJKN) is first designed to establish 
the regression rule between the measurement data and state 
variables. The structural information of distribution system 
(DS) and a global-scanning module are incorporated to guide 
the propagation of scarce measurements in the graph topology, 
contributing to valid estimation precision in sparsely measured 
DSs. To monitor the topology changes of the network, a DAE 
network is employed to learn an efficient representation of the 
measurements of the system under a certain topology, which 
can achieve online monitoring of the network structure by ob‐
serving the variation tendency of the reconstruction error. 
When the topology change occurs, a Gaussian process with a 
composite kernel is applied to the modeling of the pre-trained 
GSJKN residual to adapt to the new topology. The embedding 
of the physical structural knowledge enables the proposed 
GSJKN method to restore the missing/noisy values utilizing the 
adjacent measurements, which enhances the robustness to typi‐
cal data acquisition errors. The adopted DAE network and spe‐
cial GARL-based transfer method further allow the DSSE meth‐
od to rapidly detect and adapt to the topology change, as well 
as achieve effective quantification of the estimation uncertain‐
ties. Comparative tests on balanced and unbalanced systems 
demonstrate the accuracy, robustness, and adaptability of the 
proposed DSSE method.

Index Terms——Distribution system state estimation, anomalous 
real-time measurement, physics-guided graph network, machine 
learning, topology change, deep auto-encoder, residual learning, 
Gaussian process.

I. INTRODUCTION

THE widespread integration of distributed generation 
(DG) [1] and demand response programs [2] has trans‐

formed the distribution system operators into active market 
entities. Distribution system state estimation (DSSE) tasks 
face challenges of poor observability, complex and variable 
topology, and inaccurate physical parameters [3]. Additional‐
ly, distributed energy resources introduce significant uncer‐
tainties, further complicating DSSE [4]. Therefore, robust 
and adaptable DSSE methods are essential to deliver accu‐
rate, reliable system state data for effective DS control and 
management [5].

DSSE methods are typically classified into two categories: 
optimization-based [6] - [14] and learning-based methods. 
Weighted least squares (WLS)-based methods [7]-[8], initial‐
ly developed for transmission systems, have been adapted 
for DS applications and provide accurate estimations when 
physical models and measurement data are reliable. Howev‐
er, measurement data often contain unknown noise and er‐
rors [14], and the WLS-based method lacks robustness under 
such conditions. Robust DSSE methods have been proposed 
to address these data issues [12]- [14], yet they still rely on 
accurate physical models. In practice, determining precise 
DS model parameters is challenging, and actual topology 
conditions frequently differ from recorded data due to ongo‐
ing changes. This discrepancy poses challenges to traditional 
optimization-based DSSE methods, which struggle with inac‐
curate system parameters and complex conditions [15].

Advancements in distribution automation (DA) systems 
and machine learning (ML) have introduced learning-based 
state estimation methods [16]- [19], which shift computation 
to offline training and reduce reliance on precise physical 
model parameters. However, standard ML methods often 
overlook DS-specific physical information, resulting in sig‐
nificant estimation errors [20] when real-time data are miss‐
ing or noisy due to packet loss or communication issues. To 
address this, researchers are incorporating physical informa‐
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tion into neural network (NN)-based state estimation models 
[20] - [27]. For instance, [20] develops a topology-specific 
NN for state estimation, while [21] applies a multi-layer 
graph convolution network (GCN) for voltage prediction.

While these methods incorporate DS topology to improve 
model performance and generalization, they have mostly 
been tested under conditions of abundant real-time measure‐
ments. In practice, DSs often lack sufficient measurements, 
leaving many nodes without critical data and resulting in in‐
effective graph aggregation due to insufficient neighbor node 
features. Although increasing graph aggregation layers [20], 
[21] can extend information gathering from more distant 
nodes, this method is limited by over-smoothing and fails to 
address sparse measurements in large-scale DSs. Further‐
more, frequent topology changes in DS operations require 
learning-based DSSE models to be retrained to update map‐
ping relationships, yet only limited data are typically avail‐
able under new topologies, hindering the effective training 
process. With rising DG penetration, there is also an increas‐
ing demand for probabilistic state estimation methods to 
quantify estimation uncertainties. To this end, this paper de‐
velops a robust topology change-aware DSSE method by sys‐
tematically integrating a structure-guided state estimator, a 
deep auto-encoder (DAE)-based detector, and a Gaussian pro‐
cess (GP)-aided residual learning (GARL). The main contri‐
butions are as follows.

1) The proposed global-scanning jumping knowledge net‐
work (GSJKN) method expands the application of physics-
guided methods under scarce real-time measurements. It is 
realized by adaptively selecting the range of graph aggrega‐
tion and designing a global-scanning module based on recur‐
rent neural network (RNN) structures to obtain the feasible 
node representation, which allows it to achieve satisfying es‐
timation precision under scarce measurements, as well as re‐
store the missing/noisy measurement data utilizing the adja‐
cent information during the propagation of nodal features.

2) The proposed DSSE method can achieve online detec‐
tion of the topology change events according to real-time 
and pseudo-measurement data. The DAE takes the real and 
pseudo-measurements as inputs and reconstructs them via 
multiple layers of transformation. The encoding and decod‐
ing process enables the DAE network to learn the intrinsic 
structure of the measurements under a certain topology in an 
unsupervised manner. This allows us to identify the topology 
change by observing the trend of reconstruction error in an 
online manner.

3) The GARL-based transfer method allows the proposed 
model to realize fast adaption to a new topology utilizing 
sparse online measurement data. Instead of modeling the 
DSSE under a new topology as a new task, the proposed 
method employs the GP with a composite kernel to model 
the residual of the pre-trained GSJKN under the original to‐
pology. The adopted composite kernel allows the proposed 
method to realize inductive reasoning about the differences 
between the DSSE tasks under different topologies and rapid‐
ly adapt to the new topology using a limited amount of data. 
This differentiates from the traditional parametric transfer 
methods that still require a certain amount of historical data 

to adapt to new topology conditions.
4) The Bayesian characteristic of the GARL enables the 

proposed method to effectively quantify the uncertainties of 
the DSSE results. This is beneficial for the operators when 
making uncertainty-aware decisions.

The rest of this paper is organized as follows. Section II 
presents the problem statement. Section III describes the pro‐
posed DSSE and fast transfer framework. Section IV pres‐
ents the case study. Finally, Section V concludes this paper.

Ⅱ. PROBLEM RESTATEMENT 

A. Classical Optimization-based DSSE Method

Consider the system state variables as x =[x1x2...xn ]T 
and the system measurement variables as z =[z1z2...zm ]T, 
where n and m are the numbers of nodes and system mea‐
surements, respectively. The DSSE model h(×) is a measure‐
ment equation based on the DS structure, line parameters, 
state variables x, and measurement variables z.

z = h(x)+ v (1)

where v is the measurement error. State estimation solves the 
estimated state variable x* so that the measured z is most 
likely to be observed, which can be illustrated as:

P(zx* )=max(P(zx)) (2)

where P(×) is the probability distribution density function. 
The essence of the WLS-based method is to solve the fol‐
lowing mathematical problem:

x = arg min(z - h(x))TWs (z - h(x)) (3)

where Ws = diag(σ 2
y )ÎRm ´m is the measurements weight ma‐

trix, and y = 12...m, and σy is the weight factor of the yth 
measurement. The nonlinear optimization problem of (3) can 
be solved by iteration method. In this case, the accurate mod‐
el parameters in h(×) and pre-set noise conditions Ws about 
measurement data are important for estimation precision. 
Therefore, the WLS-based method relies on the accurate 
physical model parameters of DS and is less robust to abnor‐
mal missing/noisy measurement values.

B. Learning-based DSSE Method

When learning-based methods are utilized to deal with 
DSSE tasks, the task is generally transformed into a super‐
vised regression learning process from the historical data. 
Consider a large amount of historical data collected by DA 
as {z ix i }

T
i = 1. The DSSE task can be illustrated as x *

i = f (z i ), 
where f (×) is the mapping function constructed by NN or ML 
models. However, due to the neglect of structure information 
in the typical learning-based methods, the abnormal data 
will significantly impact their estimation results. Researchers 
have proposed physics-guided NN to incorporate structure in‐
formation, which is represented as:

x* =GnConv (Tz) (4)

where T is the prior topology information; and GnConv is the 
graph aggregation with n layers to obtain the information 
from nth class neighbor nodes. Therefore, the common phys‐
ics-guided methods face the following challenges. ① To 
gather information from distant nodes, additional graph lay‐
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ers are required, leading to limited performance in large-
scale systems with scarce real-time measurements, ② They 
depend on substantial historical data for DSSE model re-
training, which are difficult to obtain in scenarios such as 
new topology change.

Ⅲ. PROPOSED DSSE AND FAST TRANSFER FRAMEWORK

A. Robust DSSE Based on Proposed GSJKN Method

The proposed GSJKN-based estimator consists of two 
main components: ① graph jump connections through multi-
layer graph aggregation to obtain the neighbor information 
in a certain range; and ② a subsequent adaptive global-scan‐
ning module based on RNN cells. Firstly, the graph jump 
connections are constructed by aggregating the node embed‐
dings from multiple graph layers. Consider the collected his‐
torical data as {z ix i }

T
i = 1 and the prior topology information 

as TÎRN ´N, where N is the node number in DS. The graph 
jump connections can be represented as:

H (l)=Φ l (TH
(l- 1) )    l = 12L (5)

HJK = concat(H (1)H (2)H (L) ) (6)

where H (l) is the node representation after the l th graph layer; 
HJK is the node representation after graph jump connections; 
concat(×) is the splicing operation; and Φ l is the parameter‐
ized l th graph aggregation layer. Specifically, H (l) is calculat‐
ed by splicing M graph embedding heads:

H (l)= concat(U (l)
1 U (l)

2 ...U (l)
M ) (7)

where U (l)
m ={u(l)

mi }
N
i = 1 is the node embedding from the mth 

heads, and u(l)
mi is the feature from the ith node in U (l)

m , which 
is calculated by:

s(l)
mi =W (l)

m h(l- 1)
i + b(l)

m (8)

ì
í
î

ïï

ïï

e(l)
mij = Leakyrelu(θ (l)

m (s(l)
mi||s

(l)
mj ))    T ij = 1

e(l)
mij = 0                                             T ij = 0

(9)

a(l)
mij =

exp(e(l)
mij )∑

kÎN

exp(e(l)
mik ) (10)

u(l)
mi = σ ( )∑

jÎN

a(l)
mijs

(l)
mj (11)

where h(l- 1)
i ÎH (l- 1) is the feature of the ith node in H (l- 1); W (l)

m  
and b(l)

m are the learnable parameters at the mth graph embed‐
ding head in the l th graph layer to obtain the node embed‐
dings s(l)

mi; a
(l)
mij is the normalized attention value between nodes 

i and j; T ij = 1 is the structure connection between nodes i 
and j; || is the splicing operation; e(l)

mij is the feature at the edge 
between nodes i and j; Leakyrelu(×) is the leaky rectified linear 
unit function; and σ(×) is the selected activation function. The 
embeddings from nodes i and j are spliced and transformed to 
the edge feature e(l)

mij between them under T ij = 1. Then, these 
edge features around node i are normalized to obtain the 
edge attention value {a(l)

mij }
N
j = 1 to indicate the importance of 

neighbor nodes. Subsequently, the node embeddings {s(l)
mj }

N
j = 1 

and attention value {a(l)
mij }

N
j = 1 are weighted to obtain the new 

representation u(l)
miÎU (l)

mi for node i through σ(×).

Secondly, a global-scanning module based on the bidirec‐
tional RNN is designed to adaptively select the range of 
graph aggregation from the jump connections and propagate 
critical features in the whole topology. The new node repre‐
sentation HG is calculated by:

HG = concat(RNNF (HJK )RNNR (HJK )) (12)

where RNNF (×) and RNNR (×) are the forward and reversed 
RNN calculations, respectively; and HJK =[hJK1hJK2hJKN ] 
is the aggregated node embeddings from the jump connec‐
tions. The forward RNN calculation in the global-scanning 
module is represented as:

vFn = σs (WFz (cF n - 1hJKn )) (13)

rFn = σs (WFR (cFn - 1hJKn )) (14)

ĉFn = tanh(WF (rFncFn - 1hJKn )) (15)

cFn = (1 - vFn )cFn - 1 +vFn ĉFn (16)

where hJKnÎHJK is the feature of the nth node in HJK; WFz, 
WFR, and WF are the learnable parameters at forward RNN 
cells; vFn and rFn are the attention values to determine the in‐
fluence of cFn - 1 to cFn; σs (·) is the sigmoid function; and ĉFn 
denotes the embedding considering cFn - 1, and {cFn }N

n = 1 is the 
calculated node representation from RNNF (HJK ). Due to the 
memory mechanism of forward RNN cells, the node embed‐
dings from node 1 to node n - 1 will be adaptively aggregat‐
ed and extended to node n according to (16). Similarly, the 
reversed RNN cells scan the node embeddings of the system 
and generate the feasible node representations. Therefore, 
the proposed GSJKN method effectively aggregates the node 
embeddings of the whole DS and generate feasible node rep‐
resentations for estimation tasks as x* =MLP (HG ), where MLP 
denotes the multilayer perceptron module. This enables the 
proposed GSJKN method to incorporate information from 
more distant nodes, easing model training and enhancing es‐
timation performance under limited real-time measurements.

B. Topology Change Detection Based on DAE

When new topologies emerge, the original DSSE models 
may encounter significant estimation errors. Topology 
change is critical information in the operation of DS. Re‐
searchers have investigated various methods to tackle bus-
branch and node-breaker topology issues [28], [29]. Differ‐
ent from these methods, this paper proposes a DAE-based 
detector to identify topology change events, as shown in 
Fig. 1.
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Fig. 1.　Structure of DAE-based detector.
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During the training process, given the measurement data 
zK for the known topology, we construct the encoder map‐
ping φ(×) to transmit zK into a code cK, which is formulated 
by:

cK = φ(zK ) (17)

The code cK retains key information from measurements 
zK due to the unique bottleneck structure of DAE. We use a 
decoder ρ(×) to reconstruct ẑK from cK, which is formulated 
by:

ẑK = ρ(cK ) (18)

We want ẑK to get close to the original measurement data 
zK. The training process aims to derive the parameters that 
minimize the reconstruction error, which is formulated by:

{WDAElDAE }= arg min∑
i = 1

T

|ẑKi - zKi|1 (19)

where WDAE and lDAE are the learnable parameters in DAE; 
and |ẑKi - zKi|1 is the reconstruction error eKi for the ith sam‐
ple. By minimizing the reconstruction error, the encoder and 
decoder extract and preserve crucial feature information, par‐
ticularly related to topology structure, from the input mea‐
surements zK. However, when a topology change occurs, the 
power flow equation of DS undergoes modifications, result‐
ing in measurements of new topology zN that deviates from 
the previous measurement zK. Consequently, the decoder 
struggles to accurately reconstruct the new measurements ẑN 
close to zN, leading to a significant increase in the recon‐
struction error eK. To detect the topology change, we can 
monitor the fluctuation of the reconstruction error over time. 
A noticeable increase in eK after a certain moment indicates 
the occurrence of topology change events for new measure‐
ments zN. This DAE-based detector enables us to detect the 
topology changes in the DS, followed by the proposed 
GARL-based transfer method constructing the DSSE model 
for the new topologies.

C. Fast DSSE Model Based on GARL-based Transfer Meth‐
od

Typically, obtaining historical data for a new topology is 
challenging, resulting in a scarcity of available data. To ad‐
dress this limitation and build a DSSE model for a new to‐
pology, a specially designed compound Gaussian kernel, de‐
noted as hN (×), is proposed. This kernel fully incorporates in‐
formation from the known topology to overcome the lack of 
historical data under the new topology conditions. For the 
limited data of the new topology {zNixNi }

S
i = 1, the DSSE mod‐

el is expressed as:
x *

N = hN (zNf (TzN ))+ f (TzN ) (20)

where f (×) is the completed DSSE model for T. The limited 
data {zNixNi }

S
i = 1 are used to train hN (×), which may consist of 

a few dozen samples. The GARL achieves transfer learning 
by finding a mapping hN (×), to model the residuals between 
f (TzN ) and xN. This is accomplished by employing a GP 
with a composite kernel. f (TzN ) here is the pseudo-estima‐
tion result from the original model f (×), and xN is the actual 
state of the new topology. The GARL-based transfer method 
consists of the training phase and the deployment phase 
[30]. In the training phase, the residuals r i are calculated as:

r i = xNi - f (TzNi )    i = 12...S (21)

Let r denote the vector of all residuals and y* denote the 
vector of all pseudo estimation results f (TzN ). A GP with a 
composite kernel is trained assuming 
r N(0Kc ((zNy

* )(zNy
* ))+ σ 2

n I), where I is the identity ma‐
trix, and Kc ((zNy

* )(zNy
* )) denotes an S ´ S covariance ma‐

trix at all pairs of training points based on a composite ker‐
nel as:

Kc ((zNy
* )(zNy

* ))=Kin (zNizNj )+Kout (y*
i y

*
j ) (22)

where ij = 12...S; Kin is the kernel to process zN; and Kout 
is the kernel to process y*. Suppose a linear kernel is used 
for both Kin and Kout. Then, the composite kernel can be ex‐
pressed as:

Kc ((zNy
* )(zNy

* ))= σ 2
in (z T

Ni zNj )+ σ
2
out ((y*

i )T y*
j ) (23)

The training process of GP learns the hyperparameters σ 2
in, 

σ 2
out, σ

2
n by maximizing the marginal likelihood logp (r|zNy

* ). 
In the deployment phase, a test point zNT is input to the 
DSSE model to get an output ŷ*. The well-trained GP can es‐
tablish the distribution of the residual as r̂|zNy

*rzNTŷ
*  

N(r̂var(r̂)), where r̂ = k T
* (Kc ((zNy

* )(zNy
* ))+ σ 2

n I)-1r, and 
var(×) indicates the variance. Here, k T

*  is the vector of kernel-
based covariances. The predicted residuals r̂ will modify the 
output of f (TzN ) so that it can be applied to the new topolo‐
gy. In addition, the final estimation results x *

N with uncertain‐
ty information is given as:

x *
N N( ŷ* + r̂var(r̂)) (24)

x *
N = hN (zNŷ

* )+ ŷ* (25)

GARL enables output reconstruction of the original DSSE 
model to adapt to new topologies while providing uncertain‐
ty estimates for state variables under these conditions. With‐
out altering the architecture or retraining the DSSE model, 
GARL leverages only the model output, enabling efficient 
and low-cost deployment. Unlike conventional methods, 
GARL does not rely on explicit new topology information. 
Instead, it constructs the DSSE model for the new topology 
through residual learning, streamlining the transfer process 
without requiring detailed topology knowledge.

D. Implementation of Proposed GSJKN Method and GARL-
based Transfer Method

The Algorithm SA1 of Supplementary Material A illus‐
trates the training and deployment process of the proposed 
GSJKN method, DAE-based detector, and GARL-based 
transfer method. The inputs for training are the historical da‐
taset {z ix i }

T
i = 1, the known topology T, and the limited datas‐

et {zNixNi }
S
i = 1 at the new topology. The outputs are f (×) for 

T, φ(×) and ρ(×), and a transferred DSSE model hN (×)+ f (×) for 
the new topology. After the training process, the parameters 
in f (×) and hN (×) are fixed and ready for the real-time DSSE 
on known and new topologies. The proposed DSSE frame‐
work is shown in Algorithm SA1.

Ⅳ. CASE STUDY 

A. Experiment Setting

1) Data preparation. The IEEE 33-bus test system with 
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photovoltaic (PV) location, modeled for DSSE tasks, is illus‐
trated in Fig. 2. PV units, i. e., PV1, PV2, and PV3, each 
with a 600 kW capacity, are installed at buses 6, 13, and 31. 
Real-time measurements are collected from branch-injected 
power at branches 1-2, 2-3, 3-4, 4-5, 6-7, 7-8, 8-9, 9-10, and 
10-11, while pseudo-measurements involve node load at bus‐
es 2-33. To simulate real conditions, 50% uniform noise is 
added to node load and 1% uniform noise is added to node 
injection power during state estimation. Load and PV data 
are sourced from a real DS over one year [31]. New topolo‐
gy scenarios are generated by modifying switch configura‐
tions of the original topology. The datasets include 1000 
samples for training and 200 for testing on known topolo‐
gies, with an additional 48 samples for training on new to‐
pologies.

2) The mean absolute error (MAE) is used for the perfor‐
mance evaluation of deterministic DSSE results.

MAE =
1
V∑i = 1

V

|ŷi - yi| (26)

where yi and ŷi are the actual state and estimated state of the 
ith sample, respectively; and V is the total number of state 
variables in the test dataset. For interval estimation, key fac‐
tors are reliability, sharpness, and calibration [32]. Pinball 
loss, Winkler loss, prediction interval coverage probability 
(PICP), and mean prediction interval width (MPIW) [33] are 
employed to evaluate interval DSSE performance. For the 
detailed definitions of these metrics, please refer to Supple‐
mentary Material A.

3) The GSJKN-based estimator for the known topology is 
constructed using the graph attention with 2 attention heads. 
The hyper-parameters of the DSSE model are presented in 
Table I. For the process of hyper-parameter selection, please 
refer to Table SBI of Supplementary Material B.

B. Robustness Test in IEEE 33-bus Test System

To evaluate the performance of the proposed DSSE model 
under missing or noisy data conditions, six cases simulating 
typical data acquisition errors are conducted. 

1) Case 1: available real-time measurements are collected 
correctly (normal condition).

2) Case 2: randomly selecting 2 real-time measurements 
and adding 30% uniform noise.

3) Case 3: randomly selecting 5 real-time measurements 
and adding 30% uniform noise.

4) Case 4: missing the real-time measurements at branch 
1-2 while randomly selecting 2 real-time measurements and 
adding 30% uniform noise. 

5) Case 5: missing the real-time measurements at branch‐
es 2-3 and 7-8 while randomly selecting 2 real-time measure‐
ments and adding 30% uniform noise.

6) Case 6: missing the real-time measurements at branch‐
es 1-2, 7-8, and 10-11 while randomly selecting 2 real-time 
measurements and adding 30% uniform noise.

For comparison, we assess three standard learning-based 
methods: ① back-propagation network (BPN) methods [16] 
with four FCLs; ② CNN [34] with three 1D-CNN layers 
and two FCLs; and ③ GP [17] with an exponential kernel 
function. For the latest physics-guided method, we consider 
physics-aware neural network (PAWNN) [20] with six graph 
layers; PAWNN with two FCLs (PAMLP) for global infor‐
mation extraction; and GCN using initial residual and identi‐
ty (GCNII) mapping [21] with 20 graph layers. For WLS-
based methods, we investigate WLS-R, which incorporates 
bad data detection to eliminate erroneous data from itera‐
tions; and WLS-L, which excludes bad data detection. Miss‐
ing data in WLS-L, BPN, CNN, and the proposed methods 
are replaced with 1 ´ 10-5. The learning-based methods are 
trained with 1000 samples and 5000 fixed epochs with a 
learning rate of 3 ´ 10-4.

Tables II and III summarize the voltage magnitude and an‐
gle errors in the original topology, respectively, where MAX 
denotes the value of the maximum error. The BPN, CNN, 
and GP perform well with accurate real-time measurements, 
whereas the WLS shows relatively high MAE for voltage an‐
gles due to noisy pseudo-measurements. Physics-guided 
methods, such as PAWNN and GCNII, yield even larger esti‐
mation errors, reflecting the impact of limited measurements. 
Adding global FCLs to PAWNN improves accuracy, show‐
ing the value of global information in addressing measure‐
ment scarcity. The proposed GSJKN method further enhanc‐
es precision through jumping knowledge connections and a 
tailored global scanning module, showing its effectiveness in 
handling limited measurements.

In Cases 2-6, where measurements are anomalous, BPN 
and CNN show notable performance degradation, underscor‐
ing the limitations of traditional learning-based DSSE meth‐
ods in addressing missing real-time data due to a lack of 
physical insights. Although PAMLP achieves feasible accura‐
cy with normal noise, it exhibits sharper performance de‐
clines compared with other physics-guided methods, reveal‐
ing challenges in directly integrating global information. In 
contrast, the proposed GSJKN method leverages structural 
insights and a global scanning module to effectively fill 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

19 20 21

23 24 25

17 18

22

26 27 28 29 30

31

32 33

PV1 PV2

PV3

Fig. 2.　IEEE 33-bus test system with PV location.

TABLE Ⅰ
HYPER-PARAMETER OF DSSE MODEL

Layer type

Input layer

Fully connected layer 
(FCL)

FCL

Graph

RNN (forward)

RNN (reversed)

MLP

Output layer

Layer task

Accepting measurement

Node feature embedding

Attention calculation

Node information aggregation

Global scanning

Node feature embedding

Node feature embedding

Estimation result

Layer 
parameter

(4 16)´ 2

(32 1)´ 2

(16 16)´ 2

(256 256)

(256 256)

(512 2)
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missing values using adjacent data, sustaining accuracy even 
with three missing nodes in Case 6. These results demon‐
strate the robustness of the proposed GSJKN method in man‐
aging anomalous data.

For the WLS-based method, undetected missing measure‐
ments cause significant accuracy degradation in WLS-L. Al‐
though WLS-R, with missing data detection, achieves simi‐
lar accuracy to the proposed WLS-based method for voltage 
magnitudes, its voltage angle results are notably worse in 
Case 6. Additionally, WLS-based method relies on precise 
line parameters, which are often difficult to obtain. The pro‐
posed GSJKN method alleviates this dependency by directly 
learning the regression relationship between measurements 
and state variables.

For more tests of the proposed GSJKN method under vari‐
ous noise conditions and fewer real-time measurements, 
please refer to Supplementary Material C Tables SCI-SCIII, re‐
spectively. For ablation studies of the proposed GSJKN meth‐
od, please refer to Table SCIV of Supplementary Material C.

C. Test of Topology Change Detection Based on DAE

Additional tests are conducted to assess the topology 
change detection capability of the proposed DAE-based de‐
tector. Four scenarios are considered, where the network to‐
pology transitions from the original condition T1 to new con‐
figurations NT1, NT2, NT3, and NT4 as follows. 

1) NT1: opening switches of branches 7-8, 28-29, and 14-
15 while closing switches of branches 21-8, 25-29, and 9-15.

2) NT2: opening switches of branches 7-8 and 11-12 
while closing switches of branches 21-8 and 22-12.

3) NT3: opening switches of branches 7-8, 28-29, and 11-
12 while closing switches of branches 21-8, 25-29, and 
12-22.

4) NT4: opening switches of branches 11-12 and 28-29 
while closing switches of branches 22-12 and 25-29.

Unplanned switch actions causing these topology changes 
occur at the 100th hour. Figure 3 shows the reconstruction er‐
ror of the DAE before and after topology changes for NT1-
NT4. The reconstruction error remains low before the 100th 

TABLE II
VOLTAGE MAGNITUDE ERRORS IN ORIGINAL TOPOLOGY

Method

WLS-R
(MAE)

WLS-R
(MAX)

WLS-L
(MAE)

WLS-L
(MAX)

BPN [16]
(MAE)

BPN [16]
(MAX)

CNN [34]
(MAE)

CNN [34]
(MAX)

GP [17]
(MAE)

GP [17]
(MAX)

PAWNN [20] 
(MAE)

PAWNN [20] 
(MAX)

PAMLP [20] 
(MAE)

PAMLP [20] 
(MAX)

GCNII [21] 
(MAE)

GCNII [21] 
(MAX)

GSJKN 
(MAE)

GSJKN 
(MAX)

Voltage magnitude error (10-4 p.u.)

Case 1

3.73

63.00

3.73

63.00

4.29

52.00

9.29

95.40

2.88

67.40

20.00

413.00

4.00

57.40

18.50

167.00

3.35

70.20

Case 2

8.48

113.00

8.48

113.00

11.70

93.20

15.60

129.00

8.93

178.00

22.00

407.00

6.61

139.00

19.90

197.00

6.25

82.90

Case 3

12.00

146.00

12.00

146.00

25.30

248.00

20.90

142.00

14.60

187.00

24.20

365.00

10.60

221.00

22.30

269.00

9.50

98.50

Case 4

8.75

97.40

39.00

407.00

42.30

331.00

30.30

178.00

31.30

183.00

24.90

407.00

14.60

172.00

25.20

455.00

7.72

96.20

Case 5

8.72

119.00

75.50

316.00

190.60

1021.00

33.60

222.00

60.20

258.00

51.00

407.00

67.90

222.00

33.50

252.00

7.84

93.40

Case 6

9.65

101.60

49.20

362.00

77.90

463.00

38.20

289.00

37.20

232.00

34.50

453.00

27.20

184.00

34.50

453.00

8.84

88.60

TABLE III
VOLTAGE ANGLE ERRORS IN ORIGINAL TOPOLOGY

Method

WLS-R
(MAE)

WLS-R
(MAX)

WLS-L
(MAE)

WLS-L
(MAX)

BPN [16]
(MAE)

BPN [16]
(MAX)

CNN [34]
(MAE)

CNN [34]
(MAX)

GP [17]
(MAE)

GP [17]
(MAX)

PAWNN 
[20] (MAE)

PAWNN 
[20] (MAX)

PAMLP [20] 
(MAE)

PAMLP [20] 
(MAX)

GCNII [21]
(MAE)

GCNII [21]
(MAX)

GSJKN
(MAE)

GSJKN
(MAX)

Voltage angle error (10-3 deg ree) 

Case 1

18.40

343.00

18.40

343.00

9.49

190.00

11.20

149.00

11.80

235.00

39.30

863.00

9.10

183.00

18.00

322.00

9.43

209.00

Case 2

37.70

463.00

37.70

463.00

58.50

469.00

35.00

274.00

20.90

529.00

45.30

1017.00

21.70

538.00

26.40

649.00

19.10

407.00

Case 3

55.60

690.00

55.60

690.00

66.00

391.00

54.40

454.00

43.40

1026.00

58.30

1102.00

43.90

1042.00

40.30

698.00

37.70

676.00

Case 4

37.20

648.00

70.80

951.00

62.50

950.00

42.10

365.00

67.00

467.00

47.20

1017.00

36.00

633.00

32.60

659.00

22.10

419.00

Case 5

39.90

603.00

96.30

773.00

121.00

1437.00

49.50

495.00

105.00

561.00

74.30

1017.00

66.20

503.00

39.80

889.00

22.30

475.00

Case 6

41.30

469.00

88.60

930.00

87.60

1135.00

58.10

490.00

82.20

483.00

67.50

1017.00

45.20

612.00

50.70

806.00

24.40

429.00
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hour. When a topology change occurs at the 100th hour, the 
regression relationship between measurement data and state 
variables shifts, making it challenging for DAE to accurately 
reconstruct measurements from input features. This results in 
a noticeable increase in reconstruction error and enables the 
detection of network topology changes.

To further evaluate the detection capability of the pro‐
posed DAE-based detector, four substation configurations, 
are tested as follows.

1) SC1: moving PV3 and PV2 to bus 31.
2) SC2: adding static var compensators at bus 29 with the 

capacity of 5 kvar.
3) SC3: cutting off the load at buses 28 and 29.
4) SC4: removing PV3 and cutting off the load at bus 29.
Figure 4 shows the variations in reconstruction error with 

the original condition T1 for SC1-SC4. When configuration 
changes occur, reconstruction errors deviate notably from the 
original curve, reflecting the configuration change of each 
specific substation. This allows operators to identify altera‐
tions in substation configurations, showing the effectiveness 
of the proposed DAE-based detector. For tests of the DAE-
based detector under continuous topology changes, please re‐
fer to Fig. SC1 of Supplementary Material C.

D. Fast Transfer of DSSE Model on New Topology

To evaluate the effectiveness of the proposed GARL-
based transfer method in handling topology changes, four 
new topologies are considered. The base model is the DSSE 
model of the original topology, and the GARL-based transfer 
method is trained on 48 sample sets. Additionally, for the 
typical NN-based method, we explore BPN [16] and CNN 
[34] methods trained on 48 new-topology samples, and BPN-
centralized training (CT) and CNN-CT methods trained on 
combined datasets of original and new topologies. For the 
ML-based methods suitable for small sample learning, we 

explore GP [17] and ensembled extreme learning machine 
(EELM) [35] methods using only 48 sample sets and GP-CT 
method combining original and new topology data. For the 
transfer learning-based methods, we explore the BPN-Fine‐
tuned method using the original topology model as initial pa‐
rameters; the Bayesian mean regression (BAR) [27] method 
with estimation outcomes from five topologies; the DNN+ 
[36] method aggregating historical data from five topologies; 
and the CDAR method [37], which measures conditional dis‐
tribution discrepancies between original and target topologies.

For the WLS-based methods, we investigate the WLS 
(right) method with topology identification, using correct 
new topology structures; and the WLS (error) method with‐
out topology identification, using incorrect structures with 
one switch error. The BPN-Finetuned is trained for 200 ep‐
ochs with a learning rate of 1 ´ 10-4.

Table IV shows that when trained only on limited data 
from new topologies, the estimation errors for BPN, CNN, 
EELM, and GP methods are high. Traditional ML methods, 
including small-sample learning techniques like GP and 
EELM, fail to accurately estimate states for new topologies 
from sparse training samples. Voltage magnitude estimation 
is improved by aggregating data from both the original and 
new topologies, demonstrating that the original topology da‐
ta support the training of DSSE model. However, directly 
combining data from different topologies can hinder model 
accuracy, as indicated by the MAE of CNN-CT voltage an‐
gle for NT3 and NT4. BAR and DNN+ methods outperform 
standard ML methods by leveraging Bayesian methods and 
additional information, and their accuracy remains limited 
due to significant differences between the new and historical 
topologies. Instead of augmenting training data or simultane‐
ously learning tasks for multiple topologies, the proposed 
GARL-based transfer method models the estimation residual 
of the pre-trained GSJKN with a GP and uses a composite 
kernel to transfer knowledge between topologies. This en‐
ables the proposed GARL-based transfer method to outper‐
form BAR and DNN+ with less information (using only orig‐
inal topology data) for training. When the correct structure 
of new topologies is unknown and the WLS-based method 
applies the original topology, estimation errors are high. Al‐
though the performance of WLS (right) improves when the 
correct structure is known, acquiring precise topology infor‐
mation frequently poses a challenge in practical scenarios, 
highlighting the limitations of optimization-based DSSE 
methods. For more tests about the time costs of various 
methods, please refer to Table SCV of Supplementary Mate‐
rial C.

E. Probabilistic DSSE Results on New Topology

The proposed GARL-based transfer method converts deter‐
ministic DSSE results into probabilistic estimates via the GP-
based transfer process. Using NT3 as a test case, we assess 
estimation intervals with the proposed GARL-based transfer 
method trained on 48 samples. Additionally, for the typical 
non-parametric method, we explore GP [17] methods trained 
on 48 new-topology samples; and GP-CT method combining 
original and new-topology data. 
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Fig. 4.　Variations in reconstruction error with original condition T1 for 
SC1-SC4.
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For the NN-based method, we investigate the quantile re‐
gression neural network (QRNN) -CT method, using the 
same data as GP-CT. For the transfer learning-based meth‐
ods, we explore BAR [27] method and the QRNN-Finetuned 
[34] method which is finetuned from the model of original 
topology.

Tables V presents the probabilistic results on voltage mag‐
nitude in NT1 under voltage magnitude error of 1 ´ 10-4 p.u.. 
Table VI presents the probabilistic results on voltage angle 
in NT1 under voltage angle error of 1 ´ 10-3 degree. When 
trained solely on NT3 data, the GP method exhibits high Pin‐
ball and Winkler losses. The magnitude estimation perfor‐
mance of GP is improved by adding historical topology data. 
While the BAR method, which leverages historical topology 
information, performs better than NN-based methods like 
QRNN-CT and QRNN-Finetuned, which cannot meet the 
standard of the GARL-based transfer method. The proposed 
GARL-based transfer method, using a GP method with a 
composite kernel for knowledge transfer, adapts effectively 
to significant topology changes and captures uncertainties 
from sparse online measurements. For example, the pro‐
posed GARL-based transfer method reduces Pinball loss by 
61.7% and 71.8% for voltage magnitude compared with 
BAR and QRNN-Finetuned, respectively, showing a substan‐
tial advantage in Winkler loss. When α = 0.1, the interval 
score of the proposed GARL-based transfer method outper‐
forms more than threefold compared with BAR in voltage 
magnitude estimation, demonstrating its superior ability to 
generate effective estimation intervals and quantify uncertain‐
ties.

Tables VII and VIII present the interval results of voltage 
magnitude and voltage angle in NT1, respectively, where bet‐
ter performance is indicated by a smaller MPIW and a larger 
PICP. The QRNN-Finetuned method is unreliable, with PICP 
values below 0.8 for both magnitude and angle tasks when 
α = 0.2. 

Although the GP achieves better coverage with limited 
samples, its intervals for magnitude and angle estimates re‐
main wide due to insufficient training data. For example, 
MPIW of GP is 276.9% larger than that of the proposed 
GARL-based transfer method for the voltage magnitude task 
when α = 0.1. Adding training data and training tasks simulta‐
neously reduces MPIW for GP-CT, but naive aggregation 
across topologies hinders the performance, as can be ob‐
served in PICP values of GP-CT. While the BAR achieves 
narrower intervals, its PICP does not satisfy DSSE require‐
ments. In contrast, the proposed GARL-based transfer meth‐

TABLE V
PROBABILISTIC RESULTS ON VOLTAGE MAGNITUDE IN NT1

Method

Proposed

BAR [27]

GP [17]

GP-CT

QRNN-CT

QRNN-Finetuned

Pinball 
loss

1.89

4.94

8.22

6.65

7.83

6.70

Winkler loss

α = 0.1

32.7

116.0

154.0

162.0

157.0

196.0

α = 0.2

25.6

76.7

117.0

105.0

125.0

121.0

α = 0.3

21.6

59.9

98.0

81.5

101.0

100.0

α = 0.4

18.8

49.8

84.4

67.4

85.5

81.0

TABLE VI
PROBABILISTIC RESULTS ON VOLTAGE ANGLE IN NT1

Method

Proposed

BAR [27]

GP [17]

GP-CT

QRNN-CT

QRNN-Finetuned

Pinball 
loss

5.16

13.30

26.20

20.30

21.40

16.40

Winkler loss

α = 0.1

96.7

379.0

499.0

498.0

413.0

446.0

α = 0.2

74.0

225.0

380.0

323.0

314.0

2463.0

α = 0.3

61.7

166.0

316.0

250.0

258.0

194.0

α = 0.4

53.0

134.0

271.0

206.0

220.0

164.0

TABLE IV
TRANSFER RESULTS IN NTI-NT4

Method

BPN [16]

CNN [34]

GP [17]

BPN-CT

CNN-CT

GP-CT

WLS (right)

WLS (error)

EELM [35]

BPN-Finetuned [34]

CDAR [37]

DNN+ [36]

BAR [27]

Proposed

Voltage magnitude error
(10-4 p.u.)

NT1

37.10

41.10

20.20

24.30

27.80

14.80

4.96

34.00

27.80

20.90

24.90

13.70

11.30

4.22

NT2

35.90

31.00

21.10

22.60

23.80

13.70

6.66

11.00

33.50

17.70

20.40

17.60

9.95

4.31

NT3

37.40

30.30

20.30

27.90

25.20

15.70

6.92

40.00

27.10

20.70

25.50

14.90

11.90

4.84

NT4

32.00

31.50

19.10

24.30

23.50

14.00

6.05

34.00

26.40

18.90

19.90

13.10

8.99

4.23

Voltage angle error
(10-3 degree)

NT1

33.60

27.10

61.00

30.00

25.20

43.00

24.70

110.00

32.70

28.10

21.80

18.00

16.80

9.94

NT2

48.30

33.70

66.00

37.00

29.40

41.50

34.60

55.30

37.40

30.90

26.80

34.90

33.70

13.80

NT3

55.80

26.80

62.80

36.30

31.20

48.10

35.40

93.60

36.80

34.30

31.20

29.40

30.50

12.70

NT4

54.00

32.20

57.70

37.10

39.30

43.70

31.00

81.40

41.90

32.10

31.50

29.50

22.00

12.10
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od adapts to new topologies with limited data, while its 
Bayesian characteristics enable uncertainty quantification, 
achieving superior coverage with narrower intervals. For 
more displays about the probabilistic results of various meth‐
ods, please refer to Fig. SC2 of Supplementary Material C.

F. Scalability Test in IEEE 119-bus Test System

To evaluate the adaptability of the proposed GARL-based 
transfer metthod, more tests are carried out on the IEEE 119-
bus test system [38]. The PV units are placed at buses 22, 
50, 74, 80, 96, and 110, each with a capacity of 400 kW. 
The real-time measurements include the injection power of 
branches 10-11, 18-19, 19-20, 20-21, 21-22, 22-23, 23-24, 
28-29, 29-30, 30-31, 31-32, 32-33, 33-34, 34-35, 63-64, 64-
65, 65-66, 66-67, 67-68, 68-69, 69-70, 101-102, 102-103, 
103-104, 104-105, 105-106, 106-107, and 107-108, and add‐
ed with 1% uniform noise. The load data are taken as pseu‐
do measurement data and added with 50% uniform noise. 

Moreover, different topologies are performed as follows, 
where HT1 is selected as the original topology for GSJKN 
method. HNT1 and HNT2 are selected as the new topologies.

1) HT1: original topology.
2) HNT1: opening switches of branches 34-35, 72-73, and 

107-108 while closing switches of branches 25-35, 91-73, 
and 83-108.

3) HNT2: opening switches of branches 23-24, 34-35, 72-
73, and 107-108 while closing switches of branches 8-24, 25-
35, 91-73, and 83-108. 

Six cases are considered to simulate data acquisition er‐
rors as follows.

1) Case 1: normal condition.
2) Case 2: randomly selecting 20% real-time measure‐

ments and adding 30% uniform noise.
3) Case 3: randomly selecting 50% real-time measure‐

ments and adding 30% uniform noise.
4) Case 4: missing the real-time measurements at branch‐

es 18-19, 29-30, 64-65, and 102-103 while randomly select‐
ing 20% real-time measurements and adding 30% uniform 
noise.

5) Case 5: missing the real-time measurements at branch‐
es 18-19, 22-23, 29-30, 33-34, 64-65, 68-69, 102-103, and 
106-107 while randomly selecting 20% real-time measure‐
ments and adding 30% uniform noise.

6) Case 6: missing the real-time measurements at branch‐
es 18-19, 21-22, 23-24, 29-30, 32-33, 34-35, 64-65, 67-68, 
69-70, 102-103, 105-106, and 107-108 while randomly se‐
lecting 20% real-time measurements and adding 30% uni‐
form noise.

Table IX shows the estimation errors for voltage magni‐
tude and angle in HT1. The classical BPN method struggles 
with anomalous measurements, leading to significant estima‐
tion deviations, underscoring the limitations of standard 
learning-based methods. While GCNII and PAWNN provide 
some resilience to abnormal measurements, their precision 
remains limited due to sparse real-time data. In contrast, the 
proposed GSJKN method consistently performs well under 
both normal and anomalous conditions, aligning with results 
from the IEEE 33-bus test system. These findings highlight 
the high precision and reliability of the proposed GSJKN 
method, even with noisy or incomplete measurements.

Transfer tests in HNT1 and HNT2 are conducted to evalu‐
ate the effectiveness of the proposed GARL-based transfer 
method. Table X shows performance results across methods 

in HNT1 and HNT2. The WLS experiences substantial esti‐
mation errors following topology changes, highlighting the 
need for prior topology information in optimization-based 

TABLE VIII
INTERVAL RESULTS ON VOLTAGE ANGLE IN NT1

Method

Proposed

BAR [27]

GP [17]

GP-CT

QRNN-CT

QRNN-Finetuned

PICP (%)

α = 0.1

0.8757

0.5974

0.8703

0.7395

0.7248

0.6028

α = 0.2

0.8168

0.5324

0.8106

0.9375

0.6134

0.4890

MPIW (10-3 degree)

α = 0.1

58.67

46.83

280.20

120.30

140.00

77.47

α = 0.2

45.71

36.49

218.30

93.75

103.20

59.15

TABLE VII
INTERVAL RESULTS ON VOLTAGE MAGNITUDE IN NT1

Method

Proposed

BAR [27]

GP [17]

GP-CT

QRNN-CT

QRNN-Finetuned

PICP (%)

α = 0.1

0.9045

0.7034

0.8712

0.7066

0.7827

0.6324

α = 0.2

0.8448

0.6386

0.8171

0.6384

0.6428

0.5221

MPIW (10-4 p.u.)

α = 0.1

22.73

29.03

85.66

36.87

79.71

52.55

α = 0.2

17.72

22.61

66.74

28.73

60.24

34.27

TABLE IX
ESTIMATION ERRORS FOR VOLTAGE MAGNITUDE AND ANGLE IN HT1

Method

WLS-L

BPN [16]

GCNII [21]

PAWNN [20]

GSJKN

Voltage magnitude error (10-4 p.u.)

Case 1

3.10

5.60

22.20

15.80

3.80

Case 2

4.79

7.13

24.70

16.70

4.52

Case 3

6.10

9.22

25.20

17.80

5.97

Case 4

26.90

29.60

25.70

25.60

8.13

Case 5

30.50

34.90

26.60

27.20

9.02

Case 6

34.0

38.3

27.5

30.0

10.1

Voltage angle error (10-3 degrees)

Case 1

8.10

5.23

19.50

12.10

7.51

Case 2

15.6

12.6

21.1

15.9

11.3

Case 3

21.2

23.2

22.4

21.2

16.9

Case 4

40.4

53.3

30.3

39.9

15.5

Case 5

43.8

60.2

33.4

42.7

16.4

Case 6

51.3

61.3

35.2

51.0

17.9
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methods. Learning-based methods, such as BPN, struggle to 
build a reliable DSSE mapping with limited new-topology 
samples, resulting in large estimation deviations. Although 
adding information from other topologies improves the accu‐
racy of BPN-CT, BPN-Finetuned, and BAR, their perfor‐
mance remains below practical standards, with BAR show‐
ing large estimation errors due to significant deviations in 
transferred knowledge. In contrast, the proposed GARL-
based transfer method significantly outperforms other meth‐
ods, showing the superiority of residual learning.

For tests of the proposed GARL-based transfer method at 
the post-transfer stage, please refer to Table SCVI of Supple‐
mentary Material C.

G. Scalability Test on IEEE 342-node Test System

To evaluate the adaptability of the proposed GSJKN meth‐
od and GARL-based transfer method, tests are conducted on 
the IEEE 342-node test system, which represenets low-volt‐
age, three-phase unbalanced networks widely used in North 
America [39]. The system includes 48 PV units (300 kW 
each), with real-time current measurements from 56 branch‐
es collected with 1% uniform noise. One year of recorded 
load and PV generation data [31] is used, and 50% uniform 
noise is added to the load data to simulate measurements. 
Moreover, different topologies are performed as follows. 

GT1 is selected as the original topology for the proposed 
GSJKN method, and GNT1 and GNT2 are selected as the 
new topologies.

1) GT1: original topology.
2) GNT1: opening switches of branches P134-135 and 

S148-S27.
3) GNT2: opening switches of branches S148-S27.
Six cases are simulated to replicate typical data acquisi‐

tion errors as follows. 
1) Case 1: normal condition. 
2) Case 2: randomly selecting 20% real-time measurements 

and adding 30% uniform noise.
3) Case 3: randomly selecting 50% real-time measurements 

and adding 30% uniform noise.
4) Case 4: missing the real-time measurements at branch‐

es P82 and P83.
5) Case 5: missing the real-time measurements at branch‐

es P122, P123, S52, and S53.
6) Case 6: missing the real-time measurements at branch‐

es P122, P123, S82, S83, S202, and S203.
Table XI presents estimation errors for voltage magnitude 

and angle across methods in GT1. The classical BPN meth‐
od struggles to capture the complex mapping between mea‐
surement data and state variables in unbalanced systems, 
leading to high MAE values for both tasks. While CNN 
shows improved precision over BPN, its voltage magnitude 
error remains relatively high. Due to limited real-time mea‐
surements and the large scale of the system, the GCNII and 
PAWNN methods also fail to achieve accurate angle esti‐
mates. In contrast, the proposed GSJKN method demon‐
strates superior performance on both tasks under normal con‐
ditions. Under noisy/missing measurements, the accuracy of 
CNN declines significantly, as can be observed in voltage an‐
gle errors in Case 3 and voltage magnitude errors in Case 6, 
showing the limitations of classical learning-based methods. 
By embedding physical structure, the proposed GSJKN meth‐
od maintains accuracy even with outliers. Consistent with re‐
sults from the IEEE 33-bus test system, these results demon‐
strate the robustness of the proposed GSJKN method.

In Table XII, the transfer results of new topologies GNT1 
and GNT2 are presented. With limited samples, the BPN 
and CNN methods struggle to map measurement data to sys‐
tem state variables, resulting in high MAEs for both voltage 
magnitude and angle. Aggregating data and training simulta‐
neously improve the model precision; however, the BAR 

method still shows significant voltage angle errors due to 
task complexity. By contrast, the proposed GARL-based 
transfer method first applies a GSJKN model to learn the ini‐
tial regression rule, followed by residual learning for fast ad‐
aptation to topology changes. This contributes to superior 
performance in estimation of voltage magnitude and angle, 

TABLE X
PERFORMANCE RESULTS ACROSS METHODS IN HNT1 AND HNT2

Method

BPN [16]

BPN-CT

BPN-Finetuned [34]

BAR [27]

WLS (right)

WLS (error)

Proposed

Voltage magnitude error 
(10-4 p.u.)

HNT1

73.40

40.90

39.60

22.30

3.76

28.60

9.13

HNT2

92.10

56.00

34.70

19.90

3.08

17.00

8.52

Voltage angle error 
(10-3 degree)

HNT1

34.00

26.10

27.40

29.40

14.60

83.70

23.50

HNT2

29.70

24.70

24.20

28.20

12.20

51.00

21.40

TABLE XI
ESTIMATION ERRORS FOR VOLTAGE MAGNITUDE AND ANGLE ACROSS METHODS IN GT1

Method

BPN [16]

CNN [34]

GCNII [21]

PAWNN [20]

GSJKN

Voltage magnitude error (10-4 p.u.)

Case 1

37.70

20.80

34.10

30.60

8.61

Case 2

37.90

23.70

34.60

31.20

9.63

Case 3

41.00

27.20

35.10

32.00

10.80

Case 4

39.00

223.00

36.30

38.40

12.40

Case 5

36.80

180.00

39.20

39.30

12.70

Case 6

40.50

193.00

44.80

41.60

16.60

Voltage angle error (10-3 degrees)

Case 1

96.10

48.50

139.00

151.00

48.10

Case 2

100.00

76.50

141.00

154.00

51.40

Case 3

104.00

99.90

142.00

162.00

57.50

Case 4

110.00

84.70

144.00

182.00

66.80

Case 5

99.90

67.20

151.00

231.00

58.50

Case 6

172.00

154.00

159.00

236.00

78.70
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underscoring the effectiveness of the proposed GARL-based 
transfer method.

For probabilistic results of various methods at the IEEE 
342-node test system, please refer to Table SCVII and Table 
SCVIII of Supplementary Material C.

Ⅴ. CONCLUSION

We introduce a robust DSSE method based on a physics-
guided GSJKN method, a DAE-based detector and a GARL-
based transfer method, aiming at tackling anomalous real-
time measurements and potential topology changes, respec‐
tively. Specifically, the proposed GSJKN method establishes 
a complex mapping between measurement data and system 
state variables, followed by a DAE-based detector to detect 
topology changes and a GARL-based transfer method to cap‐
ture residuals after topology changes occur. Comparative 
tests with benchmark methods show that: embedding physi‐
cal structural information within the GSJKN improves ro‐
bustness against missing/noisy measurements; the DAE-
based detector monitors topology changes online by tracking 
reconstruction errors; the GARL-based transfer method en‐
ables rapid adaptation to new topologies with minimal on‐
line data and effectively quantifies estimation uncertainty, 
producing probabilistic DSSE results with higher reliability, 
sharpness, and resolution than other methods.

As system scale and measurement diversity increase, fus‐
ing multi-rate multi-sensor data becomes critical for enhanc‐
ing state estimation precision and efficiency. Future research 
will focus on developing a multi-source information fusion 
module to effectively integrate diverse measurement data in‐
to the estimation process. Additionally, more complex node-
breaker substation models will be incorporated into the topol‐
ogy change detector to enhance the monitoring of substation 
configurations. Advanced semi-supervised and meta-learning 
frameworks will also be explored to reduce model dependen‐
cy on extensive training data, broadening the applicability of 
learning-based DSSE methods.
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