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Abstract——Mobilized energy storage (MES) can provide a vari‐
ety of services for power systems, including peak shaving, fre‐
quency regulation, and congestion alleviation. In this paper, we 
develop an MES sharing approach based on temporal-spatial 
network (TSN) toward systemwide temporal-spatial flexibility 
enhancement, specifically in which the heavy-duty vehicles can 
exchange batteries at the energy storage stations connected with 
power grids. To achieve the temporal-spatial coordination of 
transportation and power systems, we propose a coordinated 
scheduling model. A decentralized algorithm based on the im‐
proved optimality condition decomposition (OCD) algorithm is 
proposed to address the information asymmetry between trans‐
portation and power systems while enhancing computational ef‐
ficiency. Case studies based on IEEE 30-/118-bus and transpor‐
tation systems demonstrate that MESs using the proposed ap‐
proach can significantly improve the utilization of batteries 
while reducing operating costs by over 40% compared with sta‐
tionary energy storages (SESs).

Index Terms——Mobilized energy storage, optimality condition 
decomposition, storage sharing, coordination of transportation 
and power systems, temporal-spatial network.

I. INTRODUCTION 

THE increasing contribution of renewable energy in the 
power systems has resulted in a reduction in energy 

costs and air pollution [1]. However, the variabilities and un‐
certainties of renewable energy present a significant chal‐
lenge to the economic and reliable operation of power sys‐
tems [2]-[5]. Energy storage system (ESS) is a key technolo‐
gy to promote a high penetration of renewable energy, which 
can mitigate fluctuations, improve power quality, and reduce 
wind and photovoltaic curtailment [6]. For example, three 
largest utilities in California, USA, were required to procure 
1325 MW of ESSs for power supply across their power sys‐
tem that has high penetration of renewable energy [7]. In 
2023, the global battery energy storage capacity increased by 
42 GW [8]. In China, 5%-20% of the capacity of ESSs in a 
connected renewable station is required to be provided for 
the power grid [9].

Stationary energy storages (SESs) can achieve energy shift 
over a time horizon. For SESs, operators need to plan for en‐
ergy storage capacity and locations. However, the uncertain‐
ty of renewable energy impedes the achievement of optimal 
results in SES planning [10]. Moreover, SESs rely on large-
capacity, long-distance transmission lines. The aforemen‐
tioned issues may lead to a deficiency in energy storage and 
the wastage of resources.

Therefore, mobilized energy storages (MESs) have re‐
ceived extensive attention [11]. Compared with SESs, MESs 
can cope with the uncertainty of renewable energy and im‐
prove resource utilization. Furthermore, the mobility of 
MESs makes them highly useful in auxiliary services such 
as peak shaving and congestion management [12]. In recent 
years, the commercial deployment of MESs has increased as 
the cost of utility-scale batteries continues to fall [13] - [15]. 
China Southern Power Grid (CSG) has developed the first 
high-voltage MES station with 6 MW power and 7.2 MWh 
capacity in China. Nomad provides MESs based on renew‐
able energy to various industries in USA [16]. Research on 
large utility-scale MESs has broad prospects.

Maximizing the potential of MESs requires coordination 
between the transportation and power systems. In existing re‐
search, transportation and power system coordination mainly 
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focuses on two key areas: the coordination optimization of 
transportation and power system flows [17] and the vehicle 
routing problem (VRP). The VRP is stated as “Given a de‐
pot and several vehicles and customers, how can the vehi‐
cles be efficiently scheduled to service all customers while 
minimizing the total traveling cost [18]?” According to exist‐
ing research, there are primarily two types of VRP models: 
the sliding-window-based model (SWBM) [19] and the tem‐
poral-spatial network (TSN) [20]. Coordinating the limited 
MESs and power systems is a typical VRP.

Some studies focus on the integrated operation of MESs 
with the power systems. In [21], a distribution system sched‐
uling model integrating MESs is proposed, which ignores 
traffic medium and only considers the transportation time be‐
tween buses. In [22], a battery-based energy transportation 
system integrated unit commitment problem is proposed. 
The Lagrangian decomposition algorithm is then proposed in 
[23] as a solution to the problem, and the uncertainty of 
wind power and the system is considered in [24]. In [25], a 
bi-level optimization model is proposed for the economic op‐
eration of MESs in integrated transportation and power sys‐
tems. The upper level focuses on the daily operation plan of 
MESs to maximize system revenue, while the lower level op‐
timizes transportation routes. In [26], a two-stage stochastic 
management scheme is introduced to minimize expected op‐
erating costs. The first stage models and optimizes vehicle 
routing of MESs, while the second stage adjusts charging 
and discharging behavior in response to uncertainty. Some 
studies also discuss the potential of large-scale aggregated 
electric vehicles (EVs) as MESs [27], [28]. However, EVs 
are affected by random behavior of drivers compared with 
MESs.

Moreover, some studies focus on the planning of MESs. 
In [29], a two-stage optimization model is proposed: the first 
stage optimizes MES investments, and the second stage re‐
routes MESs under extreme conditions. In [30], a two-step 
allocation model is proposed: the first step selects ESS loca‐
tions under normal conditions, and the second step uses a ro‐
bust optimization model to optimize ESS allocation under ex‐
treme conditions. However, the planning problem consider‐
ing MESs is generally a two-stage mixed-integer linear pro‐
gramming (MILP) problem with binary recourse decision-
making, which requires high computational performance.

For the commercial value of MESs, an optimization mod‐
el is proposed in [31] to demonstrate the feasibility of tempo‐
ral-spatial arbitrage of MESs in California, USA. In [32] and 
[33], the concept of battery transport and logistics is pro‐
posed. These batteries are charged in the renewable energy 
plants and profit from railway transportation between power 
plants and cities. However, these studies do not consider co‐
ordinated scheduling with the power systems.

Most studies consider the energy storage and MES vehi‐
cles to be a dependent entity. This approach weakens the 
flexibility of MESs over the time horizon, making MESs 
less economical than SESs in most cases. Moreover, many 
studies currently focus on the impact of small-scale energy 
storage on distribution networks. While with the develop‐
ment of MESs, it is necessary to ensure the economic opera‐

tion of large utility-scale MESs. As a major characteristic of 
battery energy storage, modularity makes the size of ESSs 
highly scalable. In other words, operators can easily assem‐
ble multiple standard storage units to tailor the desired stor‐
age capacity [34], [35].

Inspired by [32] and [33], we propose an MES sharing ap‐
proach that decouples energy storage from transportation ve‐
hicles. This approach optimally exploits the spatial flexibility 
of MESs while minimizing the loss of temporal flexibility. 
Subsequently, a coordinated scheduling model that integrates 
large utility-scale MESs based on the MES sharing approach 
is established in this paper. A comparison between the pro‐
posed model and those in the previous references is given in 
Table I.

The contributions of this paper are summarized as follows.
1) A MES sharing approach based on TSN is proposed for 

power system optimization. This approach realizes the cou‐
pling of power and transportation systems through energy 
storage capacity exchange.

2) A coordinated scheduling model is proposed to achieve 
the temporal-spatial coordination of transportation and power 
systems. The transportation system is used to transfer large 
utility-scale energy storage, aiming to minimize generation 
and transportation costs.

3) To address the information asymmetry in transportation 
and power systems, a decentralized algorithm based on the 
improved optimality condition decomposition (OCD) algo‐
rithm is proposed to decompose the coordinated problem in‐
to two subproblems for decoupled transportation and power 
systems.

The rest of this paper is organized as follows. Section II 
presents the framework of transportation and power systems. 
Section III describes the model of the proposed MES shar‐
ing approach. Section IV proposes a coordinated scheduling 
model for transportation and power systems. Section V de‐
scribes the decentralized algorithm based on improved OCD 
algorithm for the coordinated scheduling model. Case stud‐
ies are tested in Section VI. Section VII concludes this paper.

II. FRAMEWORK OF TRANSPORTATION AND POWER SYSTEMS 

The framework of transportation and power systems in 
Fig. 1 aims to minimize the operating cost of the coupled 

TABLE I
COMPARISON OF PROPOSED MODEL AND THOSE IN RELATED REFERENCES

Model

Ref. [21]

Refs. [22]-[24]

Ref. [25]

Ref. [29]

Ref. [30]

Refs. [32], [33]

Proposed

Objective

Economic

Economic

Economic

Resilience

Resilience

Economic

Economic

MES 
approach

Integrated

Integrated

Integrated

Integrated

Integrated

Decoupled

Decoupled

Stage

Scheduling

Scheduling

Scheduling

Planning

Planning

Scheduling

Scheduling

Grid

DN

TN

DN

DN

DN

TN

TM

SWBM

TSN

SWBM

SWBM

SWBM

SWBM

TSN

Note: DN stands for the distributed network; TN stands for the transmission 
network; and TM stands for the transportation model.
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system. In this system, we propose an MES sharing ap‐
proach. The energy storage and MES vehicles can be decou‐
pled, with MES vehicles dynamically changing the spatial 
distribution of energy storage through battery transportation. 
These vehicles do not stop at energy storage stations during 
charging and discharging. Therefore, energy storage can be 
flexibly allocated during the scheduling period to improve 
fault tolerance during the planning period. In addition to 
high-voltage transmission grids, MESs offer an alternative 
means of transporting power resources in remote areas. MES 
vehicles can place empty batteries in resource-rich areas to 
utilize curtailment energy during off-peak hours. The fully 
charged batteries can be placed in load centers and heavily 
congested areas during peak hours. MESs can also provide 
temporary electricity for areas where power facilities are be‐
ing built. Moreover, MESs can temporarily support the oper‐
ation of power systems under fault conditions.

The MES sharing approach can significantly improve the 
asset utilization of energy storage. The expansion of energy 
storage capacity presents a challenge in the planning of 
large-scale energy storage in the future. The proposed ap‐
proach can redistribute the location of energy storage devic‐
es during operation, reducing the risk associated with the 
planning stage.

To highlight the research focus, the following assumptions 
are made for the transportation system.

1) The transportation system operator is assumed to be a 
railway operator. The trains only transfer energy storage, and 
no other goods are transferred.

2) The specific profit model of transportation system oper‐
ators is ignored.

3) The congestion of the transportation system is ignored, 
and the transportation time between different energy storage 
stations is the same.

4) Only the transportation cost of the train is considered 
as a linear function of time.

III. MODEL OF PROPOSED MES SHARING APPROACH 

In this paper, the model of proposed MES sharing ap‐

proach is proposed, which considers the battery energy stor‐
age capacity exchange between energy storage stations and 
trains. Batteries that can increase or decrease energy storage 
capacity of energy storage stations are transported by trans‐
portation systems based on railways. The transportation sys‐
tem and power grid overlap geographically, interacting 
through energy storage stations. According to the load and 
transmission demand, the battery energy storage capacity of 
energy storage stations can be redistributed by the transporta‐
tion system. The key to this model is how to capture the dy‐
namic and energy states of MESs.

A. TSN Model

TSN is a commonly used tool for describing VRP. We use 
a TSN to capture the dynamic states of MESs, which effec‐
tively balances modeling difficulty, solution accuracy, and 
computation time [22]. The 0-1 variable Lijvt is used to rep‐
resent the states of train v within time span t in the transpor‐
tation system. ij represents the arc from node i to node j. 
When i ¹ j, the train is moving on arc ij. When i = j, the train 
is connected to node i. The constraints are shown as follows:∑

ijÎΦN

Lijvt = 1    "i"v"t (1)

∑
ijÎΦN +

i

Lijvt + 1 - ∑
jiÎΦN -

i

Ljivt = 0    "i"vt = 12...T - 1 (2)

∑
ijÎΦN +

i

Lijv1 - Ljiv0 = 0    "i"v (3)

LjivT - ∑
ijÎΦN -

i

LijvT - 1 = 0    "i"v (4)

where Lijv0 and LijvT are the initial and final states of train v 
in arc ij, respectively; ΦN is the set of arcs; T is the last time 
span; and ΦN +

i  and ΦN -
i  are the sets of arcs that start and end 

from energy storage station i, respectively. 
Equation (1) indicates that each train v can only be on 

one arc during time span t. Equation (2) indicates the conti‐
nuity of MES routines. Equations (3) and (4) represent the 
start and end states of each train v, respectively.

B. Model of Battery Energy Storage Capacity Exchange

The key to the energy states of MESs in this model is 
how to capture the battery energy storage capacity exchange 
between energy storage stations and trains. Due to the modu‐
larity of battery, it is believed that energy storage stations 
and trains can exchange optimal capacity without being limit‐
ed by integration. Therefore, the battery energy storage ca‐
pacity is defined as a continuous variable to reduce the com‐
putational complexity. The battery energy storage capacity 
limits the maximum energy and power. This approach is suit‐
able for day-ahead optimization or emergency scenarios. In 
this subsection, energy storage stations and trains are mod‐
eled as follows.
1)　Model of Energy Storage Stations

0 £C +
it £Cmax    "i"t (5)

0 £C -
it £Cmax    "i"t (6)

0 £Cit £Cmax    "i"t (7)

Information flow; Transportation flow; Power flow

Information station; Energy storage station

Resource

Scheduling center

High-voltage

transmission
EV load

User

MES

Fig. 1.　Framework of transportation and power systems.
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Cit =Cit - 1 +C +
it -C -

it    "i"t (8)

where Cit is the battery energy storage capacity of energy 
storage station i at time t; C +

it and C -
it are the increase and 

decrease of battery energy storage capacity of energy storage 
station i at time t, respectively; and Cmax is the maximum 
battery energy storage capacity of energy storage stations.

Formulas (5) - (8) show the constraints of battery energy 
storage capacity in energy storage stations. Constraints (5) 
and (6) represent that the increase and decrease of battery en‐
ergy storage capacity of energy storage station are limited by 
the maximum battery energy storage capacity of energy stor‐
age station. Constraint (7) represents the battery energy stor‐
age capacity limitation of energy storage stations. Constraint 
(8) shows that the battery energy storage capacity of energy 
storage station is related to the increase and decrease of bat‐
tery energy storage capacity during a time span. And (8) al‐
so ensures that the increase and decrease of battery energy 
storage capacity are limited by the energy storage station ca‐
pacity.

0 £E +
it £min{EmaxσC +

it }    "i"t (9)

0 £E -
it £min{EmaxσC -

it }    "i"t (10)

0 £Eit £ σCit    "i"t (11)

Eit =        Eit - 1 +E +
it -E -

it

The first part

+          ηP cha
it - 1 -P dis

it - 1 /η
The second part

    "i"t
(12)

where Eit is the energy of energy storage station i at time t; 
E +

it and E -
it are the energy increase and decrease of energy 

storage station i at time t, respectively; Emax is the maximum 
energy of energy storage stations; σ is a constant for the min‐
imum charging and discharging time of a 1 MWh battery; η 
is the charging and discharging efficiency; and P cha

it  and P dis
it  

are the charging and discharging power of energy storage sta‐
tion i at time t, respectively.

Formulas (9) - (12) show the energy constraints of energy 
storage stations. Constraints (9) and (10) represent the ener‐
gy increase and decrease of the energy storage station, 
which are limited by the increase and decrease of battery en‐
ergy storage capacity and the maximum energy of energy 
storage stations. Constraint (11) shows that the energy of en‐
ergy storage stations is limited by the battery energy storage 
capacity of energy storage stations. Constraint (12) shows 
that the battery energy storage capacity of the energy storage 
station is related to the energy increase and decrease and the 
charging and discharging power during a time span. The 
first part of (12) represents the energy change caused by 
loading and unloading batteries at the energy storage station. 
The second part of (12) represents the energy change caused 
by the charging and discharging of the energy storage station.

0 £P cha
it £min{CitαitCmax }    "i"t (13)

0 £P dis
it £min{CitβitCmax }    "i"t (14)

αit + βit £ 1    "i"t (15)

where αit and βit are the charging and discharging indices of 
the energy storage station, respectively.

Formulas (13) - (15) show the constraints of charging and 

discharging power limitations of energy storage stations. The 
maximum charging and discharging power depends on the 
battery energy storage capacity of the energy storage station.

In this model, the energy storage station cannot charge 
and discharge simultaneously.
2)　Model of Trains

0 £ c-
ivt £ Liivtcmax    "i"v"t (16)

0 £ c+
ivt £ Liivtcmax    "i"v"t (17)

0 £ cvt £ cmax    "v"t (18)

cvt = cvt - 1 + ∑
iÎΦS

c+
ivt - ∑

iÎΦS

c-
ivt    "i"v"t (19)

0 £ e-
ivt £min{Liivtemaxσc-

ivt }    "i"v"t (20)

0 £ e+
ivt £min{Liivtemaxσc+

ivt }    "i"v"t (21)

0 £ evt £ σcmax    "v"t (22)

evt = evt - 1 + ∑
iÎΦS

e+
ivt - ∑

iÎΦS

e-
ivt    "i"v"t (23)

where cvt is the battery energy storage capacity of train v at 
time t; c+

ivt and c-
ivt are the increase and decrease of battery 

energy storage capacity of train v at energy storage station i 
at time t, respectively; cmax is the maximum battery energy 
storage capacity of trains; evt is the energy of train v at time 
t; e+

ivt and e-
ivt are the energy increase and decrease of train 

v at energy storage station i at time t, respectively; emax is 
the maximum energy of trains; ΦS is the set of energy stor‐
age station arcs in a TSN; and Liivt indicates that the train is 
connected to energy storage station i that allows the train to 
interact with the energy storage station.

Formulas (16)-(23) show the battery energy storage capaci‐
ty and energy constraints of the train, which are the same as 
those of the energy storage station.

ì

í

î

ïïïï

ï
ïï
ï

E +
it = ∑

vÎΦV

e-
ivt

E -
it = ∑

vÎΦV

e+
ivt

    "i"v"t (24)

ì

í

î

ïïïï

ï
ïï
ï

C +
it = ∑

vÎΦV

c-
ivt

C -
it = ∑

vÎΦV

c+
ivt

    "ivt (25)

where ΦV is the set of trains.
Formulas (24) and (25) are the train and energy storage 

station interaction constraints.
In this model, e+

ivt, e-
ivt, c+

ivt, and c-
ivt are the key vari‐

ables that connect the train and the power grid.

IV. COORDINATED SCHEDULING MODEL FOR 
TRANSPORTATION AND POWER SYSTEMS 

According to the model for proposed MES sharing ap‐
proach in Section III, we propose a coordinated scheduling 
model for transportation and power systems, which focuses 
on the large utility-scale energy storage. A transmission sys‐
tem is adopted as the power system model in the paper. 
Therefore, a unit commitment model is adopted to describe 
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the power system.

A. Objective Function

The coordinated scheduling model aims to minimize the 
operating cost of the transportation and power systems. It op‐
timizes the unit output, charging and discharging power of 
energy storage stations, and route of trains as follows:

min
ì
í
î

ïï
ïï
∑
tÎΦT

∑
gÎΦG

(Cg P G
gt +C SU

g ygt +C SD
g zgt )+

ü
ý
þ

ïï
ïï

∑
tÎΦT

∑
vÎΦV

∑
ijÎΦP

Cij Lijvt

(26)

where P G
gt is the power of thermal unit g at time t; ygt and 

zgt are the start-up and shut-down indicators of thermal unit 
g at time t, respectively; Cg is the operating cost of thermal 
unit g; C SU

g  and C SD
g  are the start-up and shut-down costs of 

thermal unit g, respectively; Cij is the transportation cost of 
a train in arc ij; ΦT is the set of time spans; ΦG is the set of 
thermal units; ΦV is the set of MES trains; and ΦP is the set 
of transportation arcs in a TSN.

In (26), the first part is the cost of thermal units, includ‐
ing the operating cost, start-up cost, and shut-down cost. The 
second part is the transportation cost.

B. Constraints

1)　Constraints of Power System

xgt P
G
gmin £P G

gt £ xgt P
G
gmax    "g"t (27)

ygt + zgt £ 1    "g"t (28)

ygt - zgt = xgt - xgt - 1    "g"t (29)

P G
gt -P G

gt - 1 £ Lt ×URgt    "g"t (30)

P G
gt -P G

gt - 1 ³-Lt ×DRgt    "g"t (31)

∑
τ = t

t + T on
gmin - 1

xgτ ³ T on
gmin ygt    "g"t (32)

∑
τ = t

t + T off
gmin - 1

(1 - xgτ ) ³ T off
gmin zgt    "g"t (33)

0 £P R
rt £P R

rmax    "r"t (34)

∑
gÎΦG

P G
gt + ∑

rÎΦR

P R
rt = ∑

bÎΦB

P D
bt + ∑

iÎΦS

(P cha
it -P dis

it ) (35)

-P L
lmax £Fl - g P G

gt +Fl - r P R
rt -Fl - b P D

bt -Fl - i (P
cha
it -P dis

it )£P L
lmax

(36)

where xgt is the operating state of thermal unit g at time t; 
P G

gmax and P G
gmin are the maximum and minimum power of 

thermal unit g, respectively; Lt is the length of interval t; 
URgt and DRgt are the ramp-up and ramp-down rate limits 
of thermal unit g at time t, respectively; T on

gmin and T off
gmin are 

the minimum on and off times of thermal unit g, respective‐
ly; P R

rt is the power of renewable energy unit r at time t; 
P R

rmax is the predicted maximum power of renewable energy 
unit r; P D

bt is the load of bus b at time t; P L
lmax is the maxi‐

mum transmission capacity; Fl - b is the distribution factor of 
branch l to load bus b; ΦR is the set of renewable energy 

units; and ΦB is the set of load buses.
Formula (27) gives the upper and lower bounds of the out‐

put of thermal power units. Formulas (28) and (29) are the 
start-up and shut-down constraints of thermal power units. 
Formulas (30) and (31) are the ramp-up and ramp-down ca‐
pability constraints of thermal power units. Formulas (32) 
and (33) are the minimum start-up and shut-down time con‐
straints of thermal power units. Formula (34) is the output 
constraint of renewable energy units. Formulas (35) and (36) 
are the system balance and power flow constraints.
2)　Constraints of MESs

The constraints of MESs consist of (1)-(25). Formulas (1)-
(4) depict the movement of trains in the transportation sys‐
tem. Formulas (5)-(25) depict the battery energy storage ca‐
pacity exchange between energy storage stations and trains.

This coordinated scheduling model is adopted to demon‐
strate the feasibility of the proposed MES sharing approach. 
The proposed approach can adapt to other topologies, but 
the computational performance may change. If it is imple‐
mented in a distribution system, the relevant constraints 
must be considered. This could be further explored in future 
research.

V. DECENTRALIZED ALGORITHM BASED ON IMPROVED 
OCD ALGORITHM 

In practice, realizing the coordinated scheduling of the 
transportation and power systems requires the operators of 
both systems to submit detailed information to a central coor‐
dinator. However, transportation and power systems belong 
to different agencies in most areas. Therefore, a decentral‐
ized algorithm based on the improved OCD algorithm is pro‐
posed to decompose the coordinated scheduling problem into 
two subproblems [36]. The proposed coordinated scheduling 
model in Section IV is an MILP model with a large number 
of 0-1 variables, which results in a slow solution. The pro‐
posed algorithm can also improve the computational efficien‐
cy. The key to the proposed algorithm is to find the coupling 
variables and constraints of the two subproblems.

A. Decision-making Framework

The decision-marking framework of the decomposed prob‐
lem is shown in Fig. 2. The route of the train is determined 
in the transportation layer. The power demand and unit out‐
put for each time span are determined in the power layer. 
Additionally, the interaction between the transportation and 
power systems is achieved through the increase or decrease 
of batteries at the energy storage stations by trains. The oper‐
ators of the two systems coordinate with each other through 
boundary information.

In existing studies, such coordination is achievable by a 
technique called optimal condition decomposition, which is 
essentially a modified version of Lagrangian relaxation. 
Based on the decomposition of coupling constraints, the pro‐
posed algorithm decomposes the coordinated scheduling 
problem into two subproblems and iteratively updates the 
boundary information until convergence is achieved. In the 
following subsections, the coupling constraint between the 
two subproblems will be fully discussed.
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B. Decomposition of Coordinated Scheduling Model of 
Transportation and Power Systems

In the coordinated scheduling model, the only coupling 
variable between the transportation and power layers is Liivt. 
This variable plays an important role in MESs. To decom‐
pose the coordinated scheduling problem into two subprob‐
lems, we introduce an auxiliary variable L͂iivt, which indi‐
cates that a train is connected to the energy storage station. 
We add three new constraints to the coordinated scheduling 
model, which are expressed as:

L͂iivt = Liivt:λiivt    "i"v"t (37)

∑
iÎΦS

L͂iivt £ 1    "i"v"t (38)

-1 £ ∑
iiÎΦS

(L͂iivt + 1 - L͂iivt )
2 £ 1    "i"v"t (39)

where λiivt is the Lagrangian parameter.
Formula (37) shows the coupling constraint between the 

transportation and power layers. Formula (38) indicates that 
train v at time t can only be connected to one energy storage 
station. Formula (39) restricts MESs from connecting to dif‐
ferent energy storage stations during a time span from t to t +
1, which is infeasible for TSN models. The coupling con‐
straint (37) is relaxed and added to the objective function 
(26) as follows:

min
ì
í
î

ïï
ïï
∑
tÎΦT

∑
gÎΦG

(Cg P G
gt +C SU

g ygt +C SD
g zgt ) +

ü
ý
þ

ïï
ïï

∑
tÎΦT

∑
vÎΦV

∑
ijÎΦP

Cij Lijvt + ∑
tÎΦT

∑
vÎΦV

∑
iiÎΦS

λiivt (L͂iivt - Liivt ) (40)

Therefore, the main problem (40) can be decomposed into 
two independent subproblems with related constraints as fol‐
lows.
1)　Power-layer Subproblem

ì

í

î

ï

ï
ïïï
ï

ï

ï

ï

ï
ï
ïï
ï

ï

ï

min
ì
í
î

ïï
ïï
∑
tÎΦT

∑
gÎΦG

(Cg P G
gt +C SU

g ygt +C SD
g zgt ) +

         
ü
ý
þ

∑
tÎΦT

∑
vÎΦV

∑
iiÎΦS

λiivt L͂iivt

s.t.  (5)-(25) (27)-(39)

(41)

2)　Transportation-layer Subproblem

ì

í

î

ïïïï

ï
ïï
ï

min
ì
í
î

ïï
ïï

ü
ý
þ

ïï
ïï

∑
tÎΦT

∑
vÎΦV

∑
ijÎΦP

Cij Lijvt - ∑
tÎΦT

∑
vÎΦV

∑
iiÎΦS

λiivt Liivt

s.t.  (1)-(4)

(42)

We define x and φ1 (xλ) as the decision variables and objec‐
tive function of the transportation layer, and y and φ2 (y-λ) as 
the decision variables and objective function of the power 
layer. Therefore, the dual problem (DP) is proposed as fol‐
lows:

max inf
xy

(φ1 (xλ)+ φ2 (y-λ)) (43)

The objective function (43) is a nondifferentiable function. 
Therefore, a subgradient method is used to update the La‐
grangian multiplier in this paper.

C. Improved Lagrangian Multiplier Selection

The subgradient method updates variables through the di‐
rection of its negative subgradient. The power-layer solution 
determines the increase or decrease of battery energy storage 
capacity and the charge or discharge of each energy storage 
station. The transportation-layer solution guarantees the mini‐
mum transportation cost, while also ensuring the power-layer 
solution and its constraint. The Lagrangian multiplier (trans‐
portation price indicator) coordinates the two subproblems to 
achieve the final results for the coordinated scheduling prob‐
lem. Therefore, the subgradient of DP should not be the sub‐
gradient of individual optimal variables; rather, it should rep‐
resent the subgradient of the transportation route of MESs, 
which is a vector of variables. In this paper, we use the fol‐
lowing method to calculate the subgradient of DP [23].

If L͂iivt ¹ Liivt, update Lagrangian multiplier with (44).

λk + 1
iivt = λ

k
iivt + δ

k (L͂iivt - Liivt ) (44)

δk =min

ì

í

î

ïïïï

ï
ïï
ï
Cijμ

UB - LB∑
tÎΦT

∑
vÎΦV

∑
iiÎΦS

|| L͂iivt - Liivt

ü

ý

þ

ï
ïï
ï

ï
ïï
ï

(45)

where the superscript k is the number of iterations; UB and 
LB are the upper bound and lower bound in each iteration, 
respectively; δk is the step size in each iteration; and μ is the 
step parameter. When the number of iterations is greater 
than 10, μ is halved to prevent oscillations.

If L͂iivt = Liivt, the Lagrangian multiplier will not be updat‐
ed. Essentially, the Lagrangian multiplier that does not satis‐
fy constraint (38) is updated. During the iteration process, 
the program will maintain a route set (RS).

D. Calculation Process

According to the description in the previous subsections, 
the calculation process of the proposed algorithm is as fol‐
lows.

Step 1: initialization. Set k = 0, λk
iivt = 0, RS =Æ, UB =+¥, 

LB =-¥, μ = 2.
Step 2: k = k + 1.
Step 3: subproblem solution. Use the given Lagrangian 

multiplier to solve the power-layer subproblem φk
1 (xλ) and 

Power line; Transportation line

Power system bus; Transportation system node

Power layer

Transportation layerConnected

Transmission; Energy storage station; Train

Fig. 2.　Decision-making framework of decomposed problem.
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the transportation-layer subproblem φk
2 (y-λ) simultaneously 

or sequentially. Make f k
L (xyλ)= φk

1 (xλ)+ φk
2 (y-λ) and set 

LB = f k
L (xyλ) if f k

L (xyλ)>LB.
Step 4: objective function update. There are two situations 

where the transportation-layer result can represent a feasible 
route. If the transportation-layer result belongs to RS, UB 
will not change. Otherwise, it means a new feasible transpor‐
tation route will be generated. Fix the binary variable value 
Liivt in the original problem as the result of the transporta‐
tion-layer subproblem, and then mark it as f k (xyLij ). UB 
will change to UB = f k (xyLij ) if f

k (xyLij )<UB.
Step 5: convergence check. Three stopping standards are 

proposed in the solution procedure: ① k > kmax; ② (UB -
LB)/UB < ε; and ③ RS is unchanged for two consecutive iter‐
ations. kmax is the maximum number of iterations. ε is the it‐
eration accuracy.

Step 6: if one of the three convergence criteria is met, the 
algorithm is terminated. Otherwise, update Lagrangian multi‐
pliers and go to Step 2, and when k > 10, μ is halved.

VI. CASE STUDIES 

In this section, the modified IEEE 30- and 118-bus power 
systems are used to demonstrate the feasibility of the pro‐
posed coordinated scheduling model and compare the eco‐
nomics of MESs and SESs. The proposed model is imple‐
mented in the YALMIP optimization toolbox using MAT‐
LAB R2020b and solved by Gurobi v9.5.2. The numerical 
experiments are performed on a computer with an Intel Core 
i7-11800H processor running at 2.30 GHz and 32 GB of 
RAM.

A. Case 1: Modified IEEE 30-bus Power System

1)　Basic Data
In case 1, we have two trains for scheduling. We assume 

that the maximum energy of the train and the battery energy 
storage capacity are 90 MWh and 45 MW, respectively. The 
charging and discharging efficiency η is assumed to be 0.85. 
The battery coefficient σ is assumed to be 2. The modified 
IEEE 30-bus power system shown in Fig. 3 has 41 branches, 
6 thermal power units with a total installed capacity of 335 
MW on buses 1, 2, 13, 22, 23, and 27, and a wind farm 
with a total installed capacity of 160 MW on bus 13. Three 
energy storage stations are placed on buses 4, 13, and 25. 
The transportation system is also shown in Fig. 3, including 
one transition station. Therefore, the transportation time be‐
tween station 1 and station 2 is 2 hours, while the transporta‐
tion time between stations 1 or 2 and station 3 is 4 hours. 
The transportation cost Cij is 10 $/h.

Three models M1-M3 (the parameters are presented in Ta‐
ble II) in the same system are designed to compare the eco‐
nomics of MESs and SESs.

1) M1 refers to the proposed model with a total capacity 
of 90 MW.

2) M2 refers to a model in which SESs with the same ca‐
pacity are distributed on buses 4, 13, and 15.

3) M3 refers to a model in which SESs with the same ca‐
pacity are centralized on bus 10.

The economic value of MESs can be demonstrated by 
comparing M1 with M2 and M3. In addition, the economic 
difference between centralized and decentralized SESs can 
be demonstrated by a comparison of M2 and M3.

To make flexible schedules, we set the initial states of en‐
ergy storage stations and trains in M1 to be 50% maximum 
battery energy storage capacity and 25% maximum energy. 
The initial states of energy storage stations in M2 and M3 
are 25% maximum energy. The battery energy storage capac‐
ity is equal to the sum of the battery energy storage capacity 
of trains and energy storage stations in M1. In other words, 
the total battery energy storage capacity in M1 is 90 MW, 
which can be exchanged between energy storage stations 
and trains. In M2 and M3, the battery energy storage capaci‐
ties both are 90 MW, which are placed on the energy storage 
station and cannot be moved.

Meanwhile, to prove the peak shaving effect of energy 
storage in scheduling, the end states of scheduling are set 
the same as the initial states. In M1, the end states of trains 
and energy storage stations are equal to the initial states. 
The energy storage stations where the trains are located are 
also the same as the initial energy storage stations.
2)　Optimal Scheduling Strategy

The battery energy storage capacity of three energy stor‐

Power line; Transportation line

Transition station; Energy storage stationWind power;

G2G1
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Fig. 3.　Modified IEEE 30-bus power system and transportation system in 
case 1.

TABLE II
PARAMETERS OF MODELS M1-M3

Model

M1

M2

M3

The maximum 
SES energy 

(MWh)

60

120

360

The maximum 
SES power 

(MW)

30

30

90

The maximum 
MES energy 

(MWh)

90

The maximum 
MES power 

(MW)

45
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age stations and the routes of two trains during the schedul‐
ing are shown in Fig. 4. Half of the battery energy storage 
capacity is put on the trains at the start of the scheduling. 
During scheduling, the energy storage of each energy stor‐
age station is dynamically allocated through transportation. 
At the beginning of scheduling, due to the long distance be‐
tween station 3 and other stations, the train transports the 
battery of station 3 to stations 1 and 2. Station 2 has a wind 
farm. From 05: 00 to 19: 00, trains transport batteries back 
and forth between station 1 and station 2. At 20: 00, the 
trains return to the initial energy storage stations for charg‐
ing and discharging scheduling. MESs can provide a second 
method of transporting wind power in addition to transmis‐
sion lines. Resource utilization in remote areas with back‐
ward facilities has been greatly enhanced. At the end of 
scheduling, all the trains return to the initial energy storage 
stations, and the battery energy storage capacity of the ener‐
gy storage stations is also restored to the initial states.

3)　Performance of M1-M3
To evaluate the benefits of MESs participating in power 

system scheduling, the results of three models are shown in 
Table III.

The wind power utilization rate RW, energy storage eco‐
nomic indicator ηe, and energy storage utilization indicator 
ηu are expressed as:

RW =
∑
tÎΦT

∑
iÎΦS

P R
rt

∑
tÎΦT

P R
maxt

´ 100% (46)

ηe =
|| f (Cmax )- f (0)

Cmax

(47)

ηu =
∑
tÎΦT

∑
iÎΦS

(P cha
it +P dis

it )

TCmax

´ 100% (48)

where f (0) and f (Cmax ) are the objective function values 
when the energy storage capacity is 0 and Cmax, respectively. 
The wind power utilization rate RW represents the expected 
degree of wind power consumption during scheduling. The 
energy storage economic indicator ηe can be observed as the 
contribution of 1 MW increase of energy storage capacity 
and MESs or SESs to the reduction of operating costs under 
the same conditions. The energy storage utilization indicator 
ηu indicates the utilization rate of all energy storage batteries 
during scheduling. Obviously, the values of all three indica‐
tors in M1 are higher than those of M2 and M3.

The energy and power utilization of battery energy storage 
in three models are shown in Fig. 5. A positive number indi‐
cates discharging, and a negative number indicates charging. 
The energy of M2 is larger than that of M1 from 06:00 to 
15:00. The reason is the line congestion, which leads to ener‐
gy redundancy. Compared with M2, the power curve of M1 
is smoother. The power of M3 is significantly lower than 
that of M1 and M2. Therefore, the utilization of centralized 
SESs is much lower than that of MESs and decentralized 
SESs.

4)　Impact of Transportation Cost and Transmission Capacity
The operating costs and transportation time of M1 with in‐

creasing transportation cost are shown in Fig. 6.
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Fig. 5.　 Energy and power utilization of battery energy storage in three 
models.TABLE III

RESULTS OF MODELS M1-M3

Model

M1

M2

M3

Operating cost 
($)

14074.57

14337.89

14806.69

Transportation 
cost ($)

120

RW (%)

66.12

59.31

49.18

ηe ($/MW)

8.84

5.91

0.70

ηu (%)

28.80

24.59

6.47
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As the transportation cost per hour increases, the transpor‐
tation time decreases. According to Table III and Fig. 6, 
when the transportation cost exceeds 50 $/h, the operating 
cost of M1 is higher than that of M2, and the transportation 
duration is 2 hours. However, the generation cost does not 
change, indicating that there are no better routes to choose. 
When the transportation cost reaches 125 $/h, the trains stop 
running. This indicates that the transportation cost is too 
high, and the MESs will remain at the energy storage station 
as SESs. Therefore, reducing transportation cost is the key 
to the future application of transportation and power systems.

The impact of transmission capacity of line 12-13 (from 
bus 12 to bus 13) on M1 and M2 is shown in Fig. 7. The 
reason for selecting line 12-13 is that it is a key transmis‐
sion line for wind power. The transmission capacity percent 
represents the percentage of the maximum transmission ca‐
pacity P L

lmax. The operating cost of M2 increases more than 
that of M1 with the decrease of transmission capacity. This 
is because the power can only be transmitted by transmis‐
sion lines in M2, while the transmission method of M1 in‐
cludes both MESs and transmission line. For M2, the de‐
crease of transmission capacity leads to a large increase in 
wind power utilization rate. However, the decrease of the 
wind power utilization rate is not obvious in M1 based on 
MESs.

It is obvious that MESs are a supplement to transmission 
lines to strengthen the transmission of renewable energy. In 
contrast to transmission lines, the proposed MES sharing ap‐
proach can simultaneously affect multiple congestion areas 
and has a higher potential utilization. Moreover, the construc‐
tion of a new transmission system may take several years. 
MESs can be deployed much more quickly when new con‐
gestion occurs due to the transmission of renewable energy 
in remote areas. Besides, during the construction of transmis‐
sion systems, MESs can connect multiple systems to adapt 
to short-term changes in renewable energy resources and 
load demands. The case of California, USA proposed in [31] 
demonstrates that utility-scale MESs can alleviate conges‐
tions. In summary, the advantages of the proposed approach 
are as follows.

For the power systems, the proposed approach can reduce 
the renewable energy curtailment in areas with outdated fa‐
cilities, and delay the expensive reinforcement costs brought 

by newly-built transmission systems. In addition, investment 
in system flexibility can be reduced and the economy of the 
power systems can be improved.

For the renewable energy owners, the proposed approach 
provides new commercial opportunities. Renewable energy 
plants can sell more energy to customers to earn additional 
profits.

For energy storage operators, the proposed approach pro‐
vides a new commercial model. Due to its temporal-spatial 
flexibility, the model provides many potential applications 
that SESs cannot match.

B. Case 2: Modified IEEE 118-bus Power System

1)　Basic Data
We assume that the maximum energy of the train and the 

battery energy storage capacity are 400 MWh and 200 MW, 
respectively. The modified IEEE 118-bus power system has 
186 branches, 54 thermal power units with a total installed 
capacity of 9966 MW, and a wind farm with a total installed 
capacity of 634 MW on bus 117. Four energy storage sta‐
tions are placed on buses 25, 38, 77, and 117, which are de‐
noted as stations 1-4. The transportation cost Cij is 200 $/h, 
and the transportation time for any two energy storage sta‐
tions is 3 hours, which is different from those of case 1. The 
rest parameters and the initial and final states are the same 
as in case 1.

Like case 1, three models M4-M6 are compared in case 2, 
and the parameters are presented in Table IV.

1) M4 refers to the proposed model with a total capacity 
of 400 MW.

2) M5 refers to a model in which SESs with the same ca‐
pacity are distributed on buses 25, 38, 77, and 117.

3) M6 refers to a model in which SESs with the same ca‐
pacity are centralized on bus 117.

2)　Performance of M4-M6
The results of models M4-M6 are shown in Table V. In 

this case, the economic indicator of M4 is more than 400% 
that of M5. In Fig. 8, battery energy storage capacity in ener‐
gy storage stations and the routes of two trains are present‐
ed. In contrast to case 1, case 2 cannot traverse all energy 
storage stations during scheduling. Two trains go back and 
forth between station 4 and station 2 to alleviate congestion 
and increase the wind power utilization rate.
3)　Impact of Transportation Cost in IEEE 118-bus Power 
System

The operating cost and transportation time of M4 with in‐
creasing transportation costs are shown in Fig. 9.
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Fig. 7.　Impact of transmission capacity of line 12-13 on M1 and M2.

TABLE IV
PARAMETERS OF MODELS M4-M6

Model

M4

M5

M6

The maximum 
SES energy 

(MWh)

200

400

1600

The maximum 
SES power 

(MW)

100

100

400

The maximum 
MES energy 

(MWh)

400

The maximum 
MES power 

(MW)

200

900



DING et al.: SHARING MOBILIZED ENERGY STORAGE FOR TEMPORAL-SPATIAL COORDINATION OF TRANSPORTATION...

The transportation time decreases as the transportation 
cost increases. When the transportation cost is more than 
4000 $/h, the operating cost of M4 is more than that of M5. 
In general, the trend of M4 is the same as that of M1. It is 
demonstrated that in a large-scale power system, transporta‐
tion costs also have an impact on the operating cost.

C. Performance of Proposed Algorithm

The changes of the upper and lower bounds of the pro‐
posed algorithm in case 1 are shown in Fig. 10. In the first 
two iterations, the upper and lower bounds have not 
changed, so they are not shown. The proposed algorithm is 
terminated by 33 iterations under the specified end condi‐
tions. LB represents the relaxation solution of the original 
problem in iteration, which cannot be realized in practice. 
UB is the optimal solution of the original problem after the 
transportation route is fixed. The comparison between the 
proposed algorithm and the centralized algorithm is shown 
in Table VI. The error between the results of the proposed al‐

gorithm and the centralized algorithm is about 0.1% in differ‐
ent scale problems.

In practice, the significance of the proposed algorithm is 
to facilitate the coordination of optimization between two or‐
ganizations with the minimum information interaction. Ac‐
cording to (44) and (45), the iterative process of the pro‐
posed algorithm is essentially a game between power system 
suppliers and energy storage service providers on the train 
moving route. The power system suppliers hope that the 
trains can better allocate the location of energy storage ac‐
cording to the demand and reduce the operating cost of the 
power systems. The energy storage service providers hope to 
move more efficiently to decrease transportation costs.

VII. CONCLUSION 

In this paper, an MES sharing approach is proposed to‐
ward system-wide temporal-spatial flexibility enhancement. 
A coordinated scheduling model for transportation and pow‐
er systems is formulated to minimize the overall operating 
costs. To address the information asymmetry between trans‐
portation and power systems, a decentralized algorithm 
based on an improved OCD algorithm is proposed to decom‐
pose the original optimization problem. Additionally, the al‐
gorithm also enhances computational efficiency. Two cases 
are designed to illustrate the feasibility of the proposed coor‐
dinated scheduling model. The computational performance 
of the proposed algorithm is discussed in the case study as 
well.

Case studies demonstrate that: ① compared with decen‐
tralized SESs and centralized SESs, MESs have significantly 
enhanced the economic indicators and utilization indicators 
of energy storage; ② the proposed model has sufficient fea‐
sibility in large-scale power grids; and ③ with the decrease 
of transportation cost, the effect of MESs on the cost de‐
crease of the transportation and power systems becomes 

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Number of iterations

UB

LB

13600

13800

14000

14200

14400

14600

14800

V
a
lu

e

Fig. 10.　 Changes of upper and lower bounds of proposed algorithm in 
case 1.

TABLE VI
COMPARISON BETWEEN PROPOSED ALGORITHM AND CENTRALIZED 

ALGORITHM

Algorithm

Proposed

Centralized

Proposed

Centralized

Model

M1

M1

M4

M4

Operating cost ($)

14090.17

14074.57

4000000.00

3990000.00

TABLE V
RESULTS OF MODELS M4-M6

Model

M4

M5

M6

Operating cost 
($)

3.99×106

4.02×106

4.03×106

Transportation 
cost ($)

4800

RW (%)

34.75

20.70

19.91

ηe ($/MW)

102.13

25.33

0

ηu (%)

27.72

10.89

7.18
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Fig. 8.　 Battery energy storage capacity of energy storage stations and 
routes of two trains in case 2.
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more obvious.
As for the future work, three issues deserve an in-depth 

study. ① Only operating costs of the transportation and pow‐
er systems based on MES sharing are discussed in this pa‐
per. Future work should involve the long-term or capital 
costs of the proposed approach. Additionally, the specific 
profit model of the transportation system is also not dis‐
cussed in this paper. ② In this paper, uncertainties such as 
congestion and breakdowns are not considered in the trans‐
portation system. The complexity of the transportation sys‐
tem needs to be strengthened. ③ In addition to reducing the 
operating cost of the transportation and power systems, an‐
other role of MESs is to enhance the resilience of power sys‐
tems amidst extreme cases. In the future, operating strategies 
amidst extreme cases should be proposed.
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