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Abstract——Building integrated energy systems (BIESs) are piv‐
otal for enhancing energy efficiency by accounting for a signifi‐
cant proportion of global energy consumption. Two key barri‐
ers that reduce the BIES operational efficiency mainly lie in the 
renewable generation uncertainty and operational non-convexi‐
ty of combined heat and power (CHP) units. To this end, this 
paper proposes a soft actor-critic (SAC) algorithm to solve the 
scheduling problem of BIES, which overcomes the model non-
convexity and shows advantages in robustness and generaliza‐
tion. This paper also adopts a temporal fusion transformer 
(TFT) to enhance the optimal solution for the SAC algorithm 
by forecasting the renewable generation and energy demand. 
The TFT can effectively capture the complex temporal patterns 
and dependencies that span multiple steps. Furthermore, its 
forecasting results are interpretable due to the employment of a 
self-attention layer so as to assist in more trustworthy decision-
making in the SAC algorithm. The proposed hybrid data-driv‐
en approach integrating TFT and SAC algorithm, i. e., TFT-
SAC approach, is trained and tested on a real-world dataset to 
validate its superior performance in reducing the energy cost 
and computational time compared with the benchmark ap‐
proaches. The generalization performance for the scheduling 
policy, as well as the sensitivity analysis, are examined in the 
case studies.

Index Terms——Building integrated energy system (BIES), hy‐
brid data-driven approach, time-series forecast, optimal schedul‐
ing, soft actor-critic (SAC), temporal fusion transformer (TFT).

I. INTRODUCTION 

THE rapid development in industry and urban areas has 
led to significant changes in energy systems, resulting 

in high renewable penetration and challenges for sustainable 
development. With buildings accounting for about 40% of 
global energy consumption, it is crucial to enhance the effi‐
ciency of building energy systems for meeting rising energy 
demands and supporting sustainability [1]. Energy integra‐
tion provides a way to improve the operation efficiency in 
the distribution-level energy system [2]. By coordinating 
multiple energies including power, gas, and heat, the build‐
ing integrated energy systems (BIESs) can achieve sufficient 
renewable usage and obtain more abundant flexibility. There‐
fore, an effective energy management in BIES becomes vital 
for improving the operational flexibility and maximizing the 
renewable energy use in the whole energy system.

However, the optimal operation of BIES is hindered by 
two key challenges: ① the high operational risk due to the 
intermittent and uncertain nature of photovoltaic (PV) gener‐
ation and energy demand [3], and ② intractable optimization 
caused by non-convexity of combined heat and power 
(CHP) unit [4]. For the former, the PV generation and ener‐
gy demand uncertainties have been shown to bring signifi‐
cant profit losses and endanger the system stability by lead‐
ing to energy shortage or renewable curtailment [5]. This 
problem even gets more severe in large buildings with high 
peak demands or high solar capacities. The accurate forecast 
of PV generation and energy demand is thus crucial for 
smart scheduling of energy devices (e.g., energy storage) to 
avoid profit losses and system blackouts. As for the latter, 
the CHP unit is well known for providing flexibility in pow‐
er and heat in a feasible operation region (FOR), which is 
non-convex in practice and makes the optimization non-trac‐
table. The FOR convexification is a widely adopted solution 
but sacrifices considerable operational flexibility [6]. The op‐
timal scheduling of CHP unit remains an open question in 
the optimal operation of BIESs. Moreover, the variable re‐
newable/demand forecast and non-convex operation optimiza‐
tion are not independent of each other, e. g., the flexible 
scheduling of CHP unit can provide compensation for the re‐
newable uncertainty. This indicates a deep correlation be‐
tween the forecast and non-convex scheduling in BIESs.

BIESs have been extensively studied, particularly in the 
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areas of scheduling [7], [8] and expansion planning [9], [10]. 
Much of the existing research has focused on developing 
model-based frameworks for the optimal operation in multi-
carrier energy systems. These optimization problems general‐
ly rely on precise models and estimated exogenous factors 
such as weather-dependent renewable generation and energy 
loads. To address uncertainties, approaches like robust opti‐
mization (RO) and stochastic optimization (SO) have been 
used, where RO models the uncertainties as bounded sets, 
and SO uses a set of scenarios to represent the uncertainties.

While these conventional approaches are effective in man‐
aging the scheduling of multi-carrier energy systems, they 
face challenges in handling highly nonlinear units, particular‐
ly in competitive markets. Stochastic programming (SP) be‐
comes inefficient as the number of scenarios increases, and 
RO often yields overly conservative results by focusing on 
the worst-case scenarios. Besides, both SP and RO suffer 
from the curse of dimensionality, where the increased ac‐
tions, decision variables, and constraints lead to exponential‐
ly growing computational requirements, limiting their scal‐
ability for real-world applications involving multiple devices 
and uncertainties [11].

Reinforcement learning (RL) presents an innovative alter‐
native that effectively addresses the above limitations by pro‐
viding a means to tackling dynamic and sequential decision-
making challenges [12]. Unlike classical optimization ap‐
proaches, which are typically static and require the modeling 
of joint uncertainty distributions across time periods, RL 
models the optimization problems as Markov decision pro‐
cesses (MDPs). This makes RL well-suited for navigating 
complex, nonlinear, and uncertain environments, allowing 
for real-time adaptation and learning. Moreover, the training 
process of RL agents is grounded in dynamic programming 
(DP) to make real-time sequential decisions and consider 
long-term returns [11]. It can efficiently utilize increasing da‐
ta from the environment, adapting to various state conditions 
and capturing system uncertainties [13].

Furthermore, by incorporating deep neural network 
(DNN), deep reinforcement learning (DRL) algorithms like 
deep deterministic policy gradient (DDPG) and twin delayed 
DDPG (TD3) can generate continuous actions and estimate 
the non-convex value functions. DRL algorithms outperform 
traditional RL algorithms and mathematical programming in 
solving optimization problems, offering lower computational 
burden and better applicability in real-world scenarios [14]. 
Therefore, DRL algorithms have been adopted and consid‐
ered effective tools for most optimization and decision-mak‐
ing problems including scheduling of integrated energy sys‐
tems [15], [16], optimal power flow calculation [17], [18], 
and voltage control [19], [20], etc.

In the context of scheduling problems of BIESs, DRL al‐
gorithms receive available information to make operational 
decisions. The scheduling is based on day-ahead/hour-ahead 
prediction for required variables including renewable genera‐
tion, energy demand, etc. Although some DRL algorithms 
can learn from the current state to make decisions, there is 
no explicit forecasting procedure in the design of DRL algo‐
rithms, resulting in a poor ability to deal with future uncer‐

tainties. Integrating decision-making with forecast for a holis‐
tic operational tool is a neutral idea to improve the operation‐
al efficiency. Recently, some literature has tended to inte‐
grate decision-making with forecast as a holistic data-driven 
tool for scheduling of integrated energy systems. For in‐
stance, [15] adopts a long short-term memory (LSTM) meth‐
od to extract temporal features and assist the decision-mak‐
ing of DRL algorithms in integrated energy management. 
Reference [12] combines a convolutional neural network 
(CNN) and bidirectional LSTM (BLSTM) to forecast PV 
generation in an energy hub by analyzing sky images. The 
predicted value is then imported into the DDPG for further 
scheduling decision-making. Although these approaches have 
shown good performance, the LSTM struggles with captur‐
ing complex temporal patterns and dependencies that span 
multiple time steps effectively [21], and related research is 
still limited.

The efficient scheduling of a BIES with handling non-con‐
vexity and uncertainties presents three major challenges. ① 
Traditional optimization approaches face significant difficul‐
ties in solving the operational optimization problem of BIES 
due to the inherent non-convexity of the devices. Moreover, 
as the system size increases, these approaches often become 
computationally prohibitive. ② Existing research on schedul‐
ing problems of BIES seldom integrates renewable energy 
forecasts with decision-making processes using data-driven 
approaches. Consequently, such comprehensive approaches 
remain underdeveloped and lack adaptability for specific 
BIES applications. ③ Many studies employ DRL algorithms 
in conjunction with black-box forecasting tools, raising con‐
cerns about the model transparency and reliability. The opaci‐
ty of these algorithms can lead to significant profit losses 
[22], thereby limiting the real-world applicability of data-
driven approaches.

To this end, our research addresses these gaps by integrat‐
ing the TFT for accurate forecast with the SAC algorithm 
for robust operation. The main contributions of this paper 
are as follows.

1) This paper presents a detailed decision-making model 
for BIES, including micro-CHP unit, battery energy storage 
systems (BESSs), PV panels, and gas boilers (GBs). The 
non-convex scheduling problem is formulated into an optimi‐
zation problem and then reformulated into an MDP for the 
application of RL algorithms.

2) This paper proposes a hybrid data-driven approach inte‐
grating TFT and SAC algorithm, i.e., TFT-SAC approach, to 
tackle the non-convex operational optimization problem in 
BIES. The TFT is used to forecast the renewable generation 
and energy demand based on historical data, and the ob‐
tained forecasts are then utilized by the SAC algorithm to 
solve the scheduling problems. Unlike conventional black-
box forecasting methods, the TFT provides interpretability 
through the attention mechanism, enhancing the trustworthi‐
ness of forecasting results for decision-making. Furthermore, 
the SAC algorithm, trained to maximize the policy entropy, 
can learn an operational strategy with superior robustness 
and generalization capabilities.

3) The proposed TFT-SAC approach is trained and tested 
on a real-world dataset to validate its superior performance 

879



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 13, NO. 3, May 2025

in reducing the energy cost and computational time com‐
pared with the benchmark approaches. The generalization 
performance for the learned scheduling policy and the sensi‐

tivity analysis are examined in various scenarios.
A comprehensive comparison between the proposed TFT-

SAC approach and other approaches is presented in Table I.

The remainder of this paper is organized as follows. Sec‐
tion II covers the system description, device modeling, opti‐
mization problem, and MDP. Section III introduces the pro‐
posed hybrid data-driven approach integrating TFT and SAC 
algorithm. Section IV validates the proposed TFT-SAC ap‐
proach with simulations, and Section V concludes this paper.

II. PROBLEM FORMULATION 

A. System Description

This study focuses on a modern BIES that encompasses 
grid-connected electric systems and independent heating sys‐
tems, as illustrated in Fig. 1. In practice, such systems can 
be found in university campuses, residential complexes, and 
industrial parks.

As shown in Fig. 1, the BIES operates to meet multiple 
energy demands using both internal energy devices and ex‐
ternal energy resources. Specifically, the electric system, 
which comprises PV panels, micro-CHP unit, and BESSs, is 
grid-connected to satisfy the power demands of building. 
Typically, BIESs purchase electricity from the external elec‐
tricity market when the demand exceeds renewable genera‐
tion and may sell electricity when renewable generation is 
surplus. The BESS enhances the operational flexibility and 
adds complexity to the decision-making process. PV and 

BESS, as components of DC systems, are connected to the 
building and power grid through electronic interfaces. The 
maximum power point tracking (MPPT) is used to control 
the inverter between the DC and AC systems, maximizing 
energy extraction from PV panels despite fluctuating solar 
conditions. For the purposes of this paper, the dynamics in‐
side the power converters are neglected, as the focus is on 
optimizing the hourly operational strategy.

Additionally, independent heating systems, consisting of 
micro-CHP units and GBs, are commonly deployed in build‐
ing complexes, campuses, and industrial parks, particularly 
in regions with high heat demands. These localized heating 
systems reduce the significant transmission losses associated 
with centralized heating. The BIES model also assumes a 
connection to an external natural gas market as the fuel 
source for the micro-CHP units. Detailed models of these de‐
vices are provided as follows.

B. Device Modeling

1)　Micro-CHP Unit Modeling
The micro-CHP unit is a crucial component of BIESs, 

functioning as a single-input multi-output energy converter. 
It is highly efficient in converting natural gas to power and 
heat, as a key element in enhancing the energy efficiency of 
BIES. Typically, the micro-CHP unit is modeled with con‐
stant energy conversion efficiencies for both power and heat. 
However, the generation of  power and heat by micro-CHP 
unit is interdependent, resulting in an FOR. In this paper, we 
employ a non-convex operational model for micro-CHP unit. 
The non-convex FOR of this model is depicted in Fig. 2, 
bounded by the curve ABCDEF. This FOR is considered to 
comprise two convex subregions, labeled as I and II.

The mathematical representation of the FOR for the micro-
CHP unit is given by (1), as detailed in [12].

P t
CHPe -P B

CHPe -
P B

CHPe -P C
CHPe

P B
CHPh -P C

CHPh
(P t

CHPh -P B
CHPh ) £ 0    "tÎ T

(1a)

TABLE I
COMPARISON BETWEEN PROPOSED TFT-SAC APPROACH AND OTHER APPROACHES

Reference

[23]

[24]

[25]

[26]

[12]

[15]

This paper

Non-convex 
model

√

√

Forecast

Model

GRU-BLSTM

LSTM

ANN

CNN-BLSTM

LSTM

TFT

Explainability

√

Optimization

Robustness

√

√
√

Generalization

√
√
√
√

Computational 
efficiency

√
√
√
√

Solution algorithm

RSO

RO

Deterministic

TD3

DDPG

SAC

SAC

Note: ANN, GRU, and RSO are short for artificial neural network, gated recurrent unit, and robust stochastic optimization, respectively.

PV panel BESS

BIES

GB

External
electricity market

Micro-CHP
unit

External gas
market Building (with power

and heat demands)

Power flow; Gas flow; Heat flow

Fig. 1.　Illustration of BIES.

880



HU et al.: A HYBRID DATA-DRIVEN APPROACH INTEGRATING TEMPORAL FUSION TRANSFORMER AND SOFT ACTOR-CRITIC ALGORITHM...

P t
CHPe -P C

CHPe -
P C

CHPe -P D
CHPe

P C
CHPh -P D

CHPh
(P t

CHPh -P C
CHPh ) £ 0    "tÎ T

(1b)

- (1 - -
X

t
CHP ) Γ £P t

CHPe -P E
CHPe -

P E
CHPe -P F

CHPe

P E
CHPh -P F

CHPh

×

( )P t
CHPh -P E

CHPh     "tÎ T (1c)

- (1 - -X
t
CHP ) Γ £P t

CHPe -P D
CHPe -

P D
CHPe -P E

CHPe

P D
CHPh -P E

CHPh

×

( )P t
CHPh -P D

CHPh     "tÎ T (1d)

-
X

t
CHP + -X

t
CHP = I t

CHP    "tÎ T (1e)

- (1 - -X
t
CHP ) Γ £P t

CHPh -P E
CHPh £ (1 - -

X
t
CHP ) Γ    "tÎ T (1f)

0 £P t
CHPe £P A

CHPe I t
CHP    "tÎ T (1g)

0 £P t
CHPh £P A

CHPh I t
CHP    "tÎ T (1h)

where P t
CHPe and P t

CHPh are the output power and heat of mi‐
cro-CHP unit at time t, respectively; P A

CHPe and P A
CHPh are the 

generated power and heat of micro-CHP unit at point A, and 
those at other points B, C, D, E, and F are similarly defined; 
Γ is a sufficiently large number used to assist in the model 
description; I t

CHP is the commitment status of the micro-CHP 
unit; T = { }1224  is the set of operational hours; and 
-
X

t
CHP and -X

t
CHP are the operating statuses in the convex subre‐

gions I and II, respectively. If the micro-CHP unit operates 

in the convex subregion I, 
-
X

t
CHP = 1 and -X

t
CHP = 0; otherwise, 

-X
t
CHP = 1 and 

-
X

t
CHP = 0.

The total operation cost of micro-CHP unit C t
CHP at time t 

is expressed as:

C t
CHP(P t

CHPeP
t
CHPh ) = ᾱCHP( )P t

CHPe

2
+ -
β

CHP
P t

CHPe + γ̄CHP +

-α CHP( )P t
CHPh

2
+

-
β

CHP
P t

CHPh + -
γ

CHP
P t

CHPe P t
CHPh (2)

where ᾱCHP -α CHP, 
-
β

CHP
 
-
β

CHP
, γ̄CHP and 

-
γ

CHP
 are the cost co‐

efficients.
2)　BESS Modeling

The BESS is conceptualized as a battery capable of charg‐
ing and discharging with distinct efficiencies. The operation‐
al strategy of BESS is designed with a granularity of one 
hour, corresponding to one time slot. This means that all 

charging and discharging activities of BESS within a time 
period are aggregated into a single operation. Consequently, 
the BESS can either charge or discharge in any given time 
slot, but not both simultaneously [27].

E t
BESS = ( )1 - β E t - 1

BESS +P t
BESScηBESSc -P t

BESSd (3a)

0 £P t
BESSc £ S t

BESSc PBESScmax (3b)

0 £P t
BESSd £ S t

BESSd PBESSdmax (3c)

S t
BESSc + S t

BESSd £ 1 (3d)

EBESSmin £E t
BESS £EBESSmax (3e)

where E t
BESS is the state of charge (SoC) of BESS at time t; 

β and ηBESSc are the predetermined loss factor and charging 
efficiency, respectively; P t

BESSc and P t
BESSd are the charging 

power and discharging power of BESS at time t, respective‐
ly; S t

BESSc and S t
BESSd are the charging state and discharging 

state of BESS at time t, respectively; and the subscripts max 
and min represent the maximum and minimum values of cor‐
responding variables, respectively.

The SoC of BESS is calculated in (3a). The charging pow‐
er and discharging power of BESS are constrained by (3b) 
and (3c), respectively. Constraint (3d) is employed to deter‐
mine the charging or discharging state of BESS. The total ca‐
pacity of BESS is constrained by (3e).
3)　GB Modeling

The GB is modelled as an energy device transforming nat‐
ural gas to heat with a fixed rate. The model of GB can be 
described as:

P t
GBh = ηGB P t

GBg (4a)

PGBgmin £P t
GBg £PGBgmax (4b)

PGBhmin £P t
GBh £PGBhmax (4c)

where ηGB is the natural gas conversion efficiency; P t
GBg is 

the consumed natural gas of GB at time t; and P t
GBh is the 

generated heat of GB at time t.

C. Optimization Problem

Considering all the models of devices in BIES presented 
above, the primary objective of BIES is to minimize the to‐
tal cost of system operation. Specifically, the operational 
cost encompasses several components, including the cost of 
purchasing electricity and gas from the external markets 
(EMs), the degradation cost of BESSs, and the penalty in‐
curred for unfulfilled energy demand. Consequently, the opti‐
mization problem for BIES operator can be formulated as:

min
δt

Cb =∑
tÎ T

[ xt
we( )P t

CHPe +P t
BESSc -P t

BESSd -P t
PVe +

]xt
wg P t

GBg+C t
CHP (5a)

s.t.

P t
e =P t

we +P t
PVe +P t

CHPe +P t
BESSd -P t

BESSc (5b)

P t
h =P t

CHPh +P t
GBh (5c)

P t
wg =P t

CHPg (5d)

where P t
we and P t

wg are the power purchased from wholesale 
electricity and natural gas markets, respectively; xt

we and xt
wg 

Power

Heat

The maximum

heat extraction

The maximum fuel

The minimum fuel

A

F E

B

C

D

I II

Fig. 2.　FOR of micro-CHP unit.
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are the wholesale electricity and natural gas market prices, 
respectively; P t

PVe is the power output of PV penal; and P t
e 

and P t
h are the power and heat demands of the BIES, respec‐

tively. The set of decision variables is denoted as 

{ }P t
CHPeP

t
BESSdP

t
BESScP

t
weP

t
CHPhP

t
GBh . The objective func‐

tion aims to minimize the costs for purchasing electricity 
and operation of devices. Also, the objective is constrained 
by (1) - (4), and (5b) - (5d), where (1) - (4) are operating con‐
straints for micro-CHP unit, BESS, and GB, and (5b)-(5d) in‐
dicate the multi-energy balance.

D. MDP

To optimize the decision-making process of BIES opera‐
tor, we leverage an MDP to describe the optimization prob‐
lem. We treat the BIES operator as an intelligent agent 
whose objective is to improve the operation decisions by 
minimizing the total cost in (5a). The MDP can be denoted 
by a tuple StAtRt(sa) Pt(sa) μγt , where St =

{xt
wex

t
wgE

t
BESSP

t
eforeP

t
hforeP

t
PVfore} is the state, which en‐

compasses electricity price xt
we, natural gas price xt

wg, SoC 
of BESS E t

BESS, forecast of power demand P t
efore, forecast of 

heat demand P t
hfore, and forecast of PV generation P t

PVfore; 
At = {P t

CHPeP
t
BESSdP

t
BESScP

t
weP

t
CHPhP

t
GBh} is the action, in‐

cluding the decision variables in (5); Rt(sa) is the reward 
quantifying the agent performance, which is presented by the 
opposite of objective function in (5a); μ is the policy of 
MDP, which contains a series of actions for each state; and 
γt is the discount factor that discounts all rewards in the fu‐
ture state.

As the main objective of the agent is to identify the opti‐
mal policy that maximizes the accumulated return, we evalu‐
ate the value of each state using the state value function 
V μ(s) as given in (6). Moreover, the state-action value func‐
tion Qμ(sa) that captures the joint value of a particular ac‐
tion a at a state s is demonstrated in (7).

V μ(s) =E ( )∑
tÎ T

γt Rt |s0 = s (6)

Qμ(sa) =E ( )∑
tÎ T

γt Rt |s0 = sa0 = a (7)

where E ( )×  is the expectation function; and s0 and a0 are the 
initial state and action, respectively.

III. PROPOSED TFT-SAC APPROACH 

In this section, we introduce a novel TFT-SAC approach 
to solve the optimal scheduling problem of BIES. The struc‐
ture of the proposed TFT-SAC approach is depicted in Fig. 
3. Specifically, the TFT uses historical PV power generation 
and energy consumption data alongside meteorological and 
static covariates (e. g., geographical coordinates and energy 
types) to forecast future trends. Variable selection networks 
(VSNs) identifies relevant features, while an LSTM network 
captures long-term dependencies. A multi-head self-attention 
layer focuses on crucial time steps, enhancing the forecast‐
ing accuracy. These forecasts inform subsequent optimiza‐

tion tasks. The SAC algorithm uses forecasting data to gener‐
ate the optimal operation strategies for BIES. These strate‐
gies are implemented, and the resulting state transitions 
(state, action, reward, next state) are stored in the experience 
replay buffer (ERB). The experiences are sampled to train 
the critic and actor networks until the SAC algorithm con‐
verges, producing an optimal operation strategy for BIES. 
The details of the TFT and SAC algorithm are presented in 
the following subsections.

A. TFT Model

This subsection introduces the TFT model, i. e., an inter‐
pretable deep learning model designed for time-series fore‐
cast. The TFT model effectively captures complex temporal 
relationships and delivers reliable forecasts, which are essen‐
tial for managing BIES. Specifically, the interpretability of 
the multi-head self-attention mechanism and VSN stems 
from its ability to assign VSN weight and attention weight  
to input data points, thereby visualizing the most influential 
time steps and features in the prediction process. Detailed al‐
gorithm design is covered in the following.
1)　Quantile Outputs

The TFT model generates quantile forecasts, which are 
particularly useful for estimating the uncertainty of future 
forecasts. Suppose there are I unique forecasting objects in a 
given time-series dataset, such as PV power generation, pow‐
er demand, and heat demand. The quantile forecasts are ob‐
tained through a linear transformation of the outputs from 
the temporal fusion decoder. The mathematical representa‐
tion of this process is given as:

ŷi(qtτ ) = fq(τyit - k:tz it - k:tx it - k:t + τsi ) (8)

where ŷi(qtτ ) is the qth quantile value for predicting the fu‐
ture τ steps at time point t; fq( )×  is the forecasting model; 

yit - k:t is the vector of historical target variables from time 
points t - k to t; z it - k:t is the vector of past-observed inputs 
from time points t - k to t; x it - k:t + τ is the vector of priori-
known future inputs; and si is the static metadata, which is 
the covariate in energy forecast.

The training of TFT model involves minimizing the quan‐
tile loss [28], which is designed to penalize the overestima‐
tions and underestimations differently based on the quantile 
level. The quantile loss function is formulated as:

Data processing
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Critic loss

min(·)
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Critic
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Fig. 3.　Structure of proposed TFT-SAC approach.
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L (ΩW ) = ∑
ytÎΩ
∑
qÎΩ
∑
τ = 1

τmax QL ( )ytŷ ( )qt - τmaxτmax q
Mτmax

(9)

where L ( )ΩW  is the quantile loss of single time series at 
the average prediction point, Ω is the domain of training da‐
ta containing Mτmax

 samples, and W is the weight of TFT 

model; yt is the actual data; ŷ is the prediction data; τmax is 
the maximum step; and the function QL ( )×  can be expressed 
as:

QL ( ytŷq) = q ( yt - ŷ) + + (1 - q) ( ŷ - yt ) + (10)

where QL includes predicted values corresponding to differ‐
ent quantiles (e.g., 0.1, 0.5, and 0.9); and ( )× + =max ( )0× . To 

ensure consistency in prediction dimensions across different 
prediction points, the regularization is applied as:

qrisk =

2∑
ytÎ Ω͂
∑
τ = 1

τmax

QL ( )ytŷ ( )qt - ττ q

∑
ytÎ Ω͂
∑
τ = 1

τmax

|| yt

(11)

where Ω͂ is the domain of test samples; and qrisk is the nor‐
malized quantile losses across the entire forecasting horizon.
2)　Gating Mechanism

In the time-series forecast, especially with multiple regres‐
sion, identifying relevant variables and the extent of non-lin‐
ear processing is challenging. The TFT model uses gated re‐
sidual networks (GRNs) for adaptive non-linear processing:

GRNω = LayerNorm (a +GLUω(η1 ) ) (12)

η1 =W1ωη2 + b1ω (13)

η2 =ELU (W2ωa +W3ωc + b2ω ) (14)

GLUω(η1 ) = σ (W4ωη1 + b4ω ) (W5ωη1 + b5ω ) (15)

where LayerNorm ( )×  is the layer normalization function; a +
GLUω (η1 ) represents the linear and nonlinear contributions, 
with GLUω controlling the degree of nonlinearity, and a is 
the vector of primary inputs to GRN; c is an optional con‐
text vector; ELU ( )×  is the activation function of exponential 
linear unit; σ ( )×  is the sigmoid activation function; W1ω, 
W2ω, W3ω, W4ω, and W5ω are the weight sharing indices; 
and b1ω, b2ω, b4ω, and b5ω are the bias sharing indices. The 
GRN layer is controlled by the GLU layer, which may skip 
the layer entirely if GLU outputs are close to 0.
3)　VSN

The VSN is a key component of the TFT that improves 
the performance by selecting important features and filtering 
out noises. It assigns weights to features, which are used to 
combine the processed inputs:

υχt
= Softmax (GRNυχ(Ξ tcs ) ) (16)

where υχt
 is the weight corresponding to features; Ξ t is the 

flattened vector; and cs is obtained from the static covariate 
encoder. The processed features are weighted by their corre‐
sponding variable selection weights and then combined.

4)　Temporal Self-attention Layer
The TFT model employs a temporal self-attention layer 

that plays a key role in capturing long-term dependencies in 
time-series data. This layer not only improves the model abil‐
ity to understand complex temporal relationships but also en‐
hances the interpretability of forecasts. The self-attention lay‐
er used here is a masked and interpretable multi-head atten‐
tion layer combined with a gating mechanism to selectively 
control information flow.

1)　Self-attention mechanism
The core concept behind the temporal self-attention layer 

is to calculate the relevance, or “attention”, of different time 
steps to each other, enabling the TFT model to focus on im‐
portant events or sequences within the data. This is done us‐
ing the following equation for attention:

Attention (QKV ) =A(QK )V (17)

where V is the value of input based on the similarity be‐
tween the query vector Q and key vector K; and A( )×  is a 
normalization function that determines the attention weights 
of value V. The scaled dot-product mechanism for calculat‐
ing attention is defined as:

A(QK ) = Softmax ( QK T

dattn ) (18)

where dattn is the dimension of attention layer.
2)　Multi-head self-attention mechanism
Multi-head self-attention mechanism enhances the power 

of the self-attention mechanism by allowing the model to 
jointly focus on information from different representation 
subspaces at different positions. Instead of using a single set 
of queries, keys, and values, the multi-head self-attention 
mechanism splits them into multiple sets, each of which is 
processed independently. Each head computes attention sepa‐
rately, and the results are then concatenated and linearly 
transformed to produce the final output. By having multiple 
heads, the TFT model can capture a richer set of relation‐
ships and nuances in the data compared with a self-attention 
mechanism, which are presented as:

MultiHead (QKV ) = [ H1    H2    ...    HmH
]WH (19)

Hh =Attention (QW ( )h
Q KW ( )h

K VW ( )h
V ) (20)

where W (h)
Q ÎRdmodel ´ dattn, W (h)

K ÎRdmodel ´ dattn, and W (h)
V ÎRdmodel ´ dV 

are the head-specific weights for queries, keys, and values, 
respectively, and dmodel and dV are the dimensions of model 
and weight, respectively; and WHÎR(mHdV )´ dmodel linearly com‐
bines outputs concatenated from all heads Hh (h = 12mH), 
and mH is the number of heads.

3)　Interpretability enhancement
One of the main issues with traditional multi-head atten‐

tion mechanism is that each head uses different value vec‐
tors, making it difficult to directly determine the feature im‐
portance from the attention weights. By modifying the mech‐
anism to share the same value vector across all heads, the 
TFT model can produce a unified set of attention weights, 
thereby improving interpretability:

IMH (QKV ) = H͂W͂H (21)
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H͂ = A͂(QK )VWV = ( )1
mH
∑
h = 1

mH

A( )QW (h)
Q KW (h)

K VWV =

1
mH
∑
h = 1

mH

Attention ( )QW (h)
Q KW (h)

K VWV (22)

where IMH ( )×  is the interpretable multi-head; W͂HÎRdmodel ´ dattn 
denotes the final linear mapping used across WH; and 
WVÎRdmodel ´ dV is the value weight shared across all heads. 
Compared with A( )QK  in (18), this modification allows 

each attention head to share the same set of values A͂( )QK , 
resulting in a single and interpretable set of attention scores 
that can be analyzed to determine feature importance [29].

B. SAC Algorithm

In this subsection, we describe the SAC algorithm, which 
is a state-of-the-art maximum-entropy-based off-policy DRL 
algorithm, to solve the optimization problem of BIES. Typi‐
cal DRL algorithms generally suffer from limited robustness 
in real-world applications due to ineffective exploration [30]. 
In contrast, the SAC algorithm uses entropy as a regulariza‐
tion term in the objective function to enhance the adaptabili‐
ty and generalization performance.
1)　Algorithm Description

As a DRL algorithm with an actor-critic structure, the 
SAC algorithm outperforms most algorithms, e.g., DDPG, in 
convergence performance. SAC algorithm maximizes both 
accumulative rewards and policy entropy. The entropy func‐
tion H ( )×  is defined in (23), where π ( × |st ) is the strategy 

condition to the state st. The state value function V μ
r (s) and 

state-action value function Qμ
r (sa) are presented in (24) and 

(25), respectively, where the temperature parameter α deter‐
mines the relative importance of the entropy term against the 
reward, and thus controls the stochasticity of the optimal pol‐
icy [30].

H (π ( × |st ) ) =-∑
a

π (a|st ) ln π ( )a|st (23)

V μ
r (s) =E ( )∑

tÎ T

γt( )Rt + αH ( )π ( )×|st |s0 = s (24)

Qμ
r (sa) =E ( )∑

tÎ T

γt( )Rt + α∑
tÎ T

H ( )π ( )×|st | s0 = sa0 = a    (25)

At the same time, the state value function can be present‐
ed as (26) according to (23) and (24). Equation (24) allows 
us to derive the solution of the policy as (27).

V μ
r (st ) =E ( )Qμ

r ( )sa + αH (π ( × |st ) ) (26)

π*( × |st ) = arg max
πÎ∆ V μ

r ( )s =
eQπ

h( )s× /α

∑
a

eQπ
h( )sa /α (27)

where ∆ = {π|π ³ 01 ×[π]= 1}, guaranteeing that π is a valid 
probabilistic distribution on the action space; and Qπ

h( )s×  is 
the Q function for taking all each action in the state s. When 
the Q value converges to the optima, the optimal policy 
achieves the optimal state value function. Therefore, the up‐
dating of Q-value function can be realized by using the 

closed-form solution in an off-policy scheme.
2)　Algorithm Implementation

The SAC algorithm adopts an actor-critic structure with 
DNNs to estimate the policy (actor) and Q-value functions 
(critic). The actor network is represented by the policy func‐
tion μ (s|θμ ) parameterized by θμ. The critic employs clipped 

double Q networks Q1 and Q2 and their target networks Q'1 
and Q'2. Therefore, the target yt for the Q value is expressed 
as (28). Then, the L2 loss is used to update the Q-network 
in (29) for j = { }12 .

yt = rt + γ ( min
jÎ { }12

 Qj(st + 1a͂t + 1|θ
Qj ) - α lg πθ( a͂t + 1|st + 1 ) ) (28)

ÑθQ L =
1
N∑nÎN( )yt -Qj(sa|θQj ) 2

(29)

where a͂t + 1 is the action under the current policy in the next 
state st + 1; N = { }12...N  is the set of mini batches indexed 
by n; and πθ is the executed policy.

To train these networks, the agent randomly samples tu‐

ples (sjajrjsj + 1 ) from the ERB to form a mini batch n= for 

experience replay learning. The online critic networks are up‐
dated by one step of gradient descent to the mean square er‐
ror (MSE) θQ in (29), while the actor network is updated by 
one step of gradient ascent using (30). To stabilize the train‐
ing, the target network parameters are soft updated with (31).

Ñθμ L =Ñθμ
1
N ( )min

jÎ { }12
Qj( )sta͂t( )s - α lg πθ( )at|st (30)

θQ'¬ ρθQ + (1 - ρ)θQ' (31)

where a͂t(s) is a sample from πθ( × |st ); and ρ is the soft up‐

date parameter.

C. Discussions

The use of the proposed TFT-SAC approach is unique and 
effective for the dynamic operation and control of BIES. 
This combination offers several advantages but also has po‐
tential shortcomings compared with other traditional ap‐
proaches.

1) Integrated forecasting and operation: the TFT provides 
accurate and data-driven forecasts of PV generation and ener‐
gy demand, which allows the SAC algorithm to make in‐
formed decisions. This integration reduces uncertainty in the 
decision-making process, leading to more reliable system op‐
erations.

2) Offline training and efficient online operation: the pro‐
posed TFT-SAC approach allows for offline training using 
historical data, enabling the development of a robust policy 
before deployment. Once trained, the algorithm operates in 
real time with minimal computational overhead, which is a 
significant advantage over approaches like SO or RO that re‐
quire repeated recalculation.

3) Handling non-convexity: the operation of BIES in‐
volves non-convex constraints such as the FOR. The SAC al‐
gorithm, leveraging DNNs, can effectively learn non-convex 
optimal operating policies due to the powerful representation 
capabilities of DNNs. In comparison, traditional mathemati‐
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cal programming approaches such as mixed-integer linear 
programming (MILP) address non-convexity by linearizing 
nonlinear relationships and explicitly formulating integer con‐
straints, facing scalability and computational challenges par‐
ticularly in large and dynamic systems like BIES. Heuristic 
algorithms can explore complex optimization landscapes and 
are often more flexible than mathematical programming. 
However, they may suffer from high computational de‐
mands, especially in large-scale systems, and may converge 
to local optima rather than finding the global solution.

4) Training complexity: the proposed TFT-SAC approach 
requires extensive offline training, which can be computa‐
tionally expensive and time-consuming, particularly for large 
datasets. The performance highly relies to a high-quality 
training dataset, which is typically hard to acquire in the real 
world.

5) Dependence on forecasting accuracy: the effectiveness 
of SAC algorithm in making optimal decisions depends heav‐
ily on the forecasting accuracy provided by TFT. If the fore‐
casts are inaccurate due to unexpected external factors, the 
quality of the operational decisions may be compromised.

Overall, the proposed TFT-SAC approach provides an ef‐
fective solution for BIES operation. The integrated forecast 
and optimized structure, capability to handle non-convexity, 
and efficient implementation make this approach a compel‐
ling alternative to traditional approaches, despite some chal‐
lenges related to training complexity and dependence on 
forecasting accuracy.

IV. CASE STUDY 

A. Simulation Setup

To validate the effectiveness of the proposed TFT-SAC ap‐
proach, we conduct case studies using data from a real build‐
ing located in Zhenjiang, China. The BIES under study com‐
prises devices like a micro-CHP unit, PV panels, BESSs, 
and GBs to meet both heat and power demands.

The micro-CHP unit, with a rated output of 25.3 kW, is 
designed to satisfy the heat demand of the building while 
partially covering its power demand. The PV system in‐
cludes 610 PV panels, each with a capacity of 280 W, result‐
ing in a theoretical maximum output of 170.8 kW. However, 
due to practical limitations, the actual capacity is 153 kW. 
The BESS consists of 24 LiFePO4 batteries, each with a stor‐
age capacity of 5.12 kWh, providing a maximum output of 
72 kW. This setup enables the BESS to support peak power 
demand for up to 4 hours. Detailed information of micro-
CHP unit and BESS is shown in Supplementary Material A.

The proposed TFT-SAC approach is implemented in Py‐
thon, and the neural networks are developed using PyTorch 
[31]. To achieve the optimal performance, the neural net‐
work parameters and hyperparameters are carefully chosen 
based on empirical values and adjusted throughout the train‐
ing process. The complete configuration details for SAC al‐
gorithm are presented in Tables II and III. While hyperpa‐
rameter setting of TFT for forecasts of energy demand and 
PV generation is shown in Table IV.

B. Computational Performance of Different Algorithms

This subsection compares the SAC algorithm with base‐
line algorithms TD3 and DDPG. Each algorithm is trained 
for 10000 episodes on sampled days from the training set. 
Figure 4 shows the episodic reward evolution of different al‐
gorithms during offline training process. Considering the 
fluctuations in state features, the data have been smoothed 
using a 100-episode moving average method. This is be‐
cause the oscillations caused by the exogenous state features 
cannot be addressed by the operational strategies even if the 
policy is optimal.

TABLE III
HYPERPARAMETER SETTING OF SAC ALGORITHM

Training parameter

Replay buffer size

Replay start size

Batch size

Discount factor

Number

1×106

128

128

0.99

TABLE IV
HYPERPARAMETER SETTING OF TFT FOR FORECASTS OF ENERGY DEMAND 

AND PV GENERATION

Parameter

Learning rate

Grad clip value

Patience

Batch size

Drop out

Time step

Hidden size

Number of LSTM layers

Number of attention heads

Loss function

Forecast of energy 
demand

1×10-4

0.1

10

16

0.2

168

128

6

6

Quantile loss

Forecast of PV 
generation

3.5×10-3

0.9

2

16

0.1

24

32

4

3

Quantile loss
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Fig. 4.　 Episodic reward evolution of different algorithms during offline 
training process.

TABLE II
NEURAL NETWORK ARCHITECTURE SETTING OF SAC ALGORITHM

Neutral 
network

Actor

Critic

Number of 
hidden layers

3

2

Number 
of neurons

[512, 32]

[512, 32]

Learning 
rate

1×10-4

1×10-3

Soft update 
parameter

11×10-2

11×10-2

Optimizer

Adam 

Adam 
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Figure 4 shows that initially, the learning curves of differ‐
ent algorithms are similar due to randomly selected energy 
schedules and Gaussian noises. Early on, rewards are low 
for all algorithms. As training progresses, rewards increase 
as agents learn and refine their policies. The reward of SAC 
algorithm grows the fastest initially, followed by TD3 and 
then DDPG. Around 2000 iterations, the reward of DDPG in‐
creases sharply, surpassing TD3 but is still lower than SAC 
algorithm, which is close to converging. DDPG and TD3 
converge around 5000 iterations. The SAC algorithm 
achieves a significantly higher final reward compared with 
DDPG and TD3, with the reward of DDPG slightly higher 
than that of TD3. This indicates the superior offline training 
performance of SAC algorithm.

To evaluate the performance of the proposed TFT-SAC ap‐
proach, we use the trained actor network parameters to gen‐
erate operational strategies for the BIES over 50 test days. 
We compare this forecasting-combined RL approach with 
benchmark approaches: typical RL approaches (TD3, DDPG, 
and SAC) and another forecasting-combined RL approach 
(LSTM-SAC). Figure 5 compares the cumulative costs for 
energy consumption with different approaches over 50 test 
days. The results indicate that the cumulative costs with typi‐
cal RL approaches are significantly higher than those with 
forecasting-combined RL approaches. The cost gap increases 
with more training episodes, highlighting the differences be‐
tween different approaches. For forecasting-combined ap‐
proaches, the cumulative costs are similar, showing that com‐
bining forecasting with RL is effective. Notably, the pro‐
posed TFT-SAC approach achieves lower costs than LSTM-
SAC, demonstrating its superior performance. However, the 
difference between the proposed TFT-SAC approach and 
LSTM-SAC is small compared with their differences be‐
tween typical RL approaches, suggesting limited room for 
improvement in current forecasting-combined RL approaches.

C. Forecasting Performance Analysis

As can be known from Table V, the TFT model outper‐
forms the LSTM model across three performance metrics, 
i. e., mean absolute error (MAE), root mean squared error 
(RMSE), and coefficient of determination R² in forecasts of 
both PV generation and energy demand.

Figures 6 and 7 show that the forecasting curves of TFT 
model closely fit the target curves, demonstrating its effec‐
tiveness in capturing time-series patterns. The TFT model 
particularly excels in PV generation forecasting, accurately 
capturing peaks and valleys, which is crucial for energy fore‐
cast. In summary, the TFT model shows superior forecasting 
accuracy and pattern recognition compared with the LSTM 
model, which is crucial for energy management in BIES, 
guiding energy allocation, optimizing resource utilization, 
and improving overall energy efficiency.

The meteorological data include net solar irradiation 
(NSI), solar irradiation (SI), ultraviolet (UV), outdoor air 
temperature (OAT), rainfall (RF), relative humidity (RH), 
temperature-humidity-wind (THW), and surface air tempera‐
ture (SAT). Figure 8 illustrates the relative importance of dif‐
ferent features in the TFT model for PV generation forecast‐
ing. In the encoder, SI appears as the most significant factor, 
indicating that direct sunlight intensity plays a crucial role in 
PV generation forecasting. Meanwhile, in the decoder, longi‐
tude emerges as the most important feature, highlighting the 
importance of geographical positioning in the forecasting 
process. This is intuitive because the position affects the an‐
gle of sunlight and daylight duration, which ultimately im‐
pacts PV generation.
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Fig. 5.　Cumulative cost for energy consumption with different approaches 
over 50 test days.

TABLE V
PERFORMANCE METRICS OF TFT AND LSTM MODELS

Forecast object

PV generation

Energy demand

Model

LSTM

TFT

LSTM

TFT

MAE

3.66

5.22

3.37

2.20

RMSE

12.23

11.24

4.60

3.26

R²

0.8402

0.8721

0.9407

0.9670
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Fig. 6.　Performance of LSTM and TFT models in PV generation forecast‐
ing.
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Figure 9 depicts relative importance of different features 
in TFT model for forecasting energy demand. Unlike PV 
generation, which predominantly relies on weather-related 
factors, the energy demand is highly influenced by calendar-
based information. Features such as hour of the day, work‐
day status, and specific time-based attributes are ranked high‐
ly, reflecting the relationship between user behavior and ener‐
gy usage. These calendar-related features indicate the impact 
of typical human activities and routines such as work sched‐
ules and holidays on energy demand.

The importance ranking reveals that the TFT model con‐
siders both weather conditions and temporal attributes to ac‐
curately forecast energy demands. This is crucial because us‐
er activities are often influenced by the time of day or specif‐
ic events on the calendar, and these behavioral patterns sig‐
nificantly affect energy usage in buildings. The model atten‐
tion to these aspects shows its ability to learn from diverse 
data sources and focuses on the most impactful features dur‐
ing the training process, resulting in a more reliable forecast.

Figures 10 and 11 illustrate the attention distribution of 
TFT model over the past 7 days (indexed by -7 to -1) dur‐
ing the forecasting process. Figure 10 shows that the atten‐
tion of TFT model is concentrated on the recent past, espe‐
cially the previous day, reflecting the strong daily cyclic pat‐
terns of PV generation. Minor peaks indicate the consider‐
ation of earlier time steps, which have lower weights due to 
the influence of short-term environmental factors like SI.

Figure 11 shows a smooth distribution across various his‐
torical time steps with a gradual increase. This suggests that 
the TFT model considers a range of past data, reflecting that 
the high complexity and irregularity of energy demands are 
influenced by factors like user behavior, daily activities, and 
weather conditions.

In comparison, the TFT model for PV generation forecast‐
ing focuses on recent time steps due to daily cyclic patterns, 
while that for forecasting energy demands has a broad atten‐
tion span over the entire historical cycle, balancing long-
term trends and short-term impacts. The gradual increase in 
attention weights indicates the emphasis on recent informa‐
tion for imminent forecasts.

The uniform attention distribution for energy demand sug‐
gests its cyclical patterns are less pronounced or more com‐
plex than that of PV generation. This highlights the impor‐
tance of extracting information from multiple time scales for 
accurate forecasts and underscores the need for effective en‐
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eration.
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ergy management strategies to optimize BIES operational ef‐
ficiency.

In summary, the TFT model provides accurate and inter‐
pretable forecasts for both PV generation and energy de‐
mand, supporting the RL algorithm in formulating efficient 
scheduling strategies.

D. Generalization Performance

To validate the generalization performance, different ap‐
proaches are tested over a test set that shows different statis‐
tical characteristics compared with the training set. The test 
set is represented by several typical weeks labeled W-1 to W-
4 for comparative analysis. These typical weeks include sce‐
narios with extreme PV generation or energy demand. Table 
VI presents the daily operational costs of BIES across differ‐
ent weeks. The results clearly demonstrate that forecasting-
combined RL approaches achieve significantly lower opera‐
tional costs compared with typical RL approaches, underscor‐
ing the effectiveness of combining the forecast and decision-
making. Furthermore, the average operational cost of pro‐
posed TFT-SAC approach is lower than that of LSTM-SAC, 
indicating that the proposed TFT-SAC approach outperforms 
all the comparable approaches across different scenarios, 
thereby demonstrating its strong generalization capabilities. 
Although the daily cost improvements may appear marginal, 
the cumulative benefits of the proposed TFT-SAC approach 
over extended operation could result in substantial additional 
profits.

E. Robust Operation

To compare the robustness of the proposed TFT-SAC ap‐
proach with other RL approaches, we introduce independent 
Gaussian noises to real PV generation and energy demand to 
represent uncertain scenarios. The average daily operational 
costs of BIES at different noise levels are presented in Table 
VII. 

Across all noise levels, the typical RL approaches incur 
significantly higher operational costs than forecasting-com‐
bined RL approaches, with cost differences ranging from 
¥60 to ¥100. Among all the tested approaches, the proposed 
TFT-SAC approach demonstrates the lowest average opera‐
tional costs, indicating superior robustness. However, the 
cost variations between the proposed TFT-SAC approach 
and LSTM-SAC remain small in the range of ¥10 and ¥20. 
In contrast, the cost difference of the proposed TFT-SAC ap‐
proach with N = 0.01 and N = 0.05 is approximately ¥5, and 
that of TD3, SAC, and LSTM-SAC is ¥3. This larger cost 
variation suggests that proposed TFT-SAC approach is more 
sensitive to forecasting accuracy than other approaches, even 
though it consistently achieves the lowest average operation‐
al costs among all approaches.

F. Operational Analysis

To evaluate the generalization of the optimal energy man‐
agement policy learned by the proposed TFT-SAC approach, 
we apply two typical scenarios: a summer day (August 27) 
and a winter day (December 25). Figures 12 and 13 show 
the power and heat profiles on the two typical days, respec‐
tively.

Both scenarios share common trends. Initially, from 00:00 
to 08:00, the BIES purchases electricity due to zero PV gen‐
eration and low SoC of BESS. BESS charges at low prices 
for future demands. From 09:00 to 15:00, PV generation and 
BESS discharging could meet most power demands, with ex‐
cess power sold with high electricity prices. From 18:00 to 
24: 00, the BIES does not sell electricity, and micro-CHP 
unit becomes the primary power source due to high demand.

TABLE VII
COMPARISON OF DAILY AVERAGE OPERATIONAL COST OF BIES AT 

DIFFERENT NOISE LEVELS

Noise level
N

0.01

0.02

0.03

0.04

0.05

Daily average operational cost (¥)

DDPG

596.07

596.38

597.37

599.80

603.91

TD3

557.56

558.24

559.02

559.85

560.73

SAC

557.49

558.18

558.96

559.78

560.66

LSTM-SAC

505.12

505.82

506.62

507.47

508.38

TFT-SAC

490.04

491.88

494.91

495.13

495.17

TABLE VI
COMPARISON OF DAILY AVERAGE OPERATIONAL COST OF BIES ACROSS 

DIFFERENT WEEKS

Week

W-1

W-2

W-3

W-4

Daily average operational cost (¥)

DDPG

500.14

361.75

450.34

733.25

TD3

499.30

361.20

449.66

732.44

SAC

490.19

347.92

431.40

715.75

LSTM-SAC

328.02

232.76

318.91

521.30

TFT-SAC

325.79

231.60

311.03

520.99
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Fig. 12.　Power generation and consumption of BIES. (a) A summer day. 
(b) A winter day.
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Nevertheless, there are some evident differences between 
the two typical days. On the winter day, the micro-CHP unit 
operates from 09:00 to 15:00 to meet high heat demands and 
support the power demands due to low PV generation. On 
the summer day, the micro-CHP unit is inactive as PV and 
BESS can meet the demands and the excess power is sold. 
The policy effectively uses micro-CHP unit in winter and 
BESS in summer, charging at low prices and discharging at 
high prices to maximize the economic benefits.

Finally, it can be concluded that the proposed TFT-SAC 
approach can learn an effective policy and can generalize to 
variable state information on different test days. Also, the 
flexibility of BIES is investigated on two typical winter and 
summer days. Specifically, the summer day has a higher PV 
generation and lower heat demand, so it has a higher energy 
export and makes use of more flexibility of BIES. Due to 
the lower PV generation and higher heat demand, the winter 
day has a higher power import and a higher utilization of 
the micro-CHP unit, which also provides lots of flexibility to 
BIES.

G. Sensitivity Analysis

In this subsection, a detailed sensitivity analysis is con‐
ducted to evaluate the impact of changes in key factors on 
the operation and performance of BIES. Specifically, we ana‐
lyze the sensitivities of the episodic reward to variations in 
electricity price, PV generation, power demand, and heat de‐
mand, as shown in Fig. 14.

The sensitivity analysis is performed by varying each pa‐
rameter independently from 90% to 110% of the initial con‐
figured value, with a granularity of 5%. This range is select‐
ed to represent potential fluctuations in market and operation‐
al conditions, and the granularity is chosen to provide a bal‐
anced level of detail without excessive computational over‐
head.

The results in Fig. 14 indicate that the episodic rewards of 
BIES are negatively correlated with electricity price, which 
is expected given that higher electricity prices increase the 
cost of electricity purchase. There is a positive correlation 
between PV generation and episodic reward, as the increased 
PV generation reduces the need for power from EM and al‐
lows for more excess power to be sold back to EM. Both 
power and heat demands negatively impact the rewards, with 
power demand having a particularly significant effect. This 
can be attributed to the fact that meeting higher demands re‐
quires more energy procurement, which incurs additional costs.

Interestingly, the power demand has a greater effect on 
the episodic reward compared with PV generation. This is 
because the total daily PV generation is lower than the total 
power demand. As a result, any decrease in power demand 
has a larger marginal impact on profitability, either through 
reduced procurement or allowing more energy to be sold dur‐
ing peak periods.

In terms of scheduling policies, the changes in power de‐
mand and PV generation lead to noticeable shifts in action 
prioritization. For instance, the increased PV generation re‐
sults in more frequent utilization of BESS for energy arbi‐
trage, while fluctuations in electricity price affect decisions 
regarding energy procurement timing. These findings empha‐
size the importance of accurate forecasts for PV generation 
and energy demand in effectively optimizing the operational 
strategies of BIES.

V. CONCLUSION 

In conclusion, this paper develops a novel hybrid data-
driven approach, i. e., TFT-SAC approach, for the optimal 
scheduling in BIES. Specifically, the TFT model enhances 
the forecasting accuracy and transparency through attention 
mechanisms and the VSN, enhancing interpretability and 
trustworthy of forecasting results. The integration of SAC al‐
gorithm for optimization further strengthens this framework 
by ensuring more effective exploration during training, lead‐
ing to stronger robustness and generalization capabilities. 
Simulation results demonstrate the superior performance of 
the proposed TFT-SAC approach compared with the existing 
approaches. The interpretability of the TFT model and the 
generalization performance of SAC algorithm are analyzed. 
The sensitivity analysis of reward on several key factors in 
BIES is also made.
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Fig. 13.　Heat generation and consumption of BIES. (a) A summer day. (b) 
A typical day.

R
at

io
 o

f 
ep

is
o

d
ic

 r
ew

ar
d

 v
ar

ia
ti

o
n 0.15

-0.15

0.10

-0.10

-0.10 0.10-0.05 0.05

0.05

-0.05

0

0

Ratio of variable fluctuation

Electricity price

Power demand
Heat demand

PV generation

Fig. 14.　Sensitivity analysis on several factor.

889



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 13, NO. 3, May 2025

REFERENCES

[1] X. Cao, X. Dai, and J. Liu, “Building energy-consumption status 
worldwide and the state-of-the-art technologies for zero-energy build‐
ings during the past decade,” Energy and Buildings, vol. 128, pp. 198-
213, Sept. 2016.

[2] W. Wu, P. Li, B. Wang et al., “Integrated distribution management sys‐
tem: architecture, functions, and application in China,” Journal of 
Modern Power Systems and Clean Energy, vol. 10, no. 2, pp. 245-258, 
Mar. 2022.

[3] H. Qiu, V. Veerasamy, C. Ning et al., “Two-stage robust optimization 
for assessment of PV hosting capacity based on decision-dependent un‐
certainty,” Journal of Modern Power Systems and Clean Energy, vol. 
12, no. 6, pp. 2091-2096, Nov. 2024.

[4] X. Huang, Z. Xu, Y. Sun et al., “Heat and power load dispatching con‐
sidering energy storage of district heating system and electric boilers,” 
Journal of Modern Power Systems and Clean Energy, vol. 6, no. 5, 
pp. 992-1003, Nov. 2018.

[5] C. Huang, H. Zhang, L. Wang et al., “Mixed deep reinforcement learn‐
ing considering discrete-continuous hybrid action space for smart 
home energy management,” Journal of Modern Power Systems and 
Clean Energy, vol. 10, no. 3, pp. 743-754, May 2022.

[6] H. Zhao, B. Wang, X. Wang et al., “Active dynamic aggregation mod‐
el for distributed integrated energy system as virtual power plant,” 
Journal of Modern Power Systems and Clean Energy, vol. 8, no. 5, 
pp. 831-840, Sept. 2020.

[7] M. Sechilariu, B. Wang, and F. Locment, “Building integrated photo‐
voltaic system with energy storage and smart grid communication,” 
IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1607-
1618, Apr. 2013.

[8] Y. Li, C. Wang, G. Li et al., “Improving operational flexibility of inte‐
grated energy system with uncertain renewable generations consider‐
ing thermal inertia of buildings,” Energy Conversion and Manage‐
ment, vol. 207, p. 112526, Mar. 2020.

[9] R. Jing, M. Wang, Z. Zhang et al., “Comparative study of posteriori 
decision-making methods when designing building integrated energy 
systems with multi-objectives,” Energy and Buildings, vol. 194, pp. 
123-139, Jul. 2019.

[10] Y. Zhang, P. E. Campana, A. Lundblad et al., “Planning and operation 
of an integrated energy system in a Swedish building,” Energy Conver‐
sion and Management, vol. 199, p. 111920, Nov. 2019.

[11] Z. Zhu, Z. Hu, K. W. Chan et al., “Reinforcement learning in deregu‐
lated energy market: a comprehensive review,” Applied Energy, vol. 
329, p. 120212, Jan. 2023.

[12] A. Dolatabadi, H. Abdeltawab, and Y. A. I. Mohamed, “A novel mod‐
el-free deep reinforcement learning framework for energy management 
of a PV integrated energy hub,” IEEE Transactions on Power Sys‐
tems, vol. 38, no. 5, pp. 4840-4852, Sept. 2023.

[13] D. Qiu, Z. Dong, X. Zhang et al., “Safe reinforcement learning for re‐
al-time automatic control in a smart energy-hub,” Applied Energy, vol. 
309, p. 118403, Mar. 2022.

[14] Z. Zhu, K. W. Chan, S. Xia et al., “Optimal bi-level bidding and dis‐
patching strategy between active distribution network and virtual alli‐
ances using distributed robust multi-agent deep reinforcement learn‐
ing,” IEEE Transactions on Smart Grid, vol. 13, no. 4, pp. 2833-2843, 
Jul. 2022.

[15] Y. Zhou, Z. Ma, J. Zhang et al., “Data-driven stochastic energy man‐
agement of multi energy system using deep reinforcement learning,” 
Energy, vol. 261, p. 125187, Dec. 2022.

[16] Z. Hu, K. W. Chan, Z. Zhu et al., “Techno-economic modeling and 
safe operational optimization of multi-network constrained integrated 
community energy systems,” Advances in Applied Energy, vol. 15, p. 
100183, Sept. 2024.

[17] Y. Zhou, B. Zhang, C. Xu et al., “A data-driven method for fast AC 
optimal power flow solutions via deep reinforcement learning,” Jour‐
nal of Modern Power Systems and Clean Energy, vol. 8, no. 6, pp. 
1128-1139, Nov. 2020.

[18] D. Cao, W. Hu, X. Xu et al., “Deep reinforcement learning based ap‐
proach for optimal power flow of distribution networks embedded 
with renewable energy and storage devices,” Journal of Modern Pow‐
er Systems and Clean Energy, vol. 9, no. 5, pp. 1101-1110, Sept. 2021.

[19] Q. Ma and C. Deng, “Simplified deep reinforcement learning based 
volt-var control of topologically variable power system,” Journal of 
Modern Power Systems and Clean Energy, vol. 11, no. 5, pp. 1396-
1404, Sept. 2023.

[20] Y. Wang, M. Mao, L. Chang et al., “Intelligent voltage control method 
in active distribution networks based on averaged weighted double 

deep Q-network algorithm,” Journal of Modern Power Systems and 
Clean Energy, vol. 11, no. 1, pp. 132-143, Jan. 2023.

[21] B. Lim, S. Ö. Arık, N. Loeff et al., “Temporal fusion transformers for 
interpretable multi-horizon time series forecasting,” International Jour‐
nal of Forecasting, vol. 37, no. 4, pp. 1748-1764, Oct. 2021.

[22] W. J. von Eschenbach, “Transparency and the black box problem: why 
we do not trust AI,” Philosophy & Technology, vol. 34, no. 4, pp. 
1607-1622, Sept. 2021.

[23] T. M. Alabi, L. Lu, and Z. Yang, “Data-driven optimal scheduling of 
multi-energy system virtual power plant (MEVPP) incorporating car‐
bon capture system (CCS), electric vehicle flexibility, and clean ener‐
gy marketer (CEM) strategy,” Applied Energy, vol. 314, p. 118997, 
May 2022.

[24] S. Zhou, D. He, Z. Zhang et al., “A data-driven scheduling approach 
for hydrogen penetrated energy system using LSTM network,” Sustain‐
ability, vol. 11, no. 23, p. 6784, Dec. 2019.

[25] A. Kämper, R. Delorme, L. Leenders et al., “Boosting operational opti‐
mization of multi-energy systems by artificial neural nets,” Computers 
& Chemical Engineering, vol. 173, p. 108208, May 2023.

[26] Y. Xu, W. Gao, Y. Li et al., “Operational optimization for the grid-con‐
nected residential photovoltaic-battery system using model-based rein‐
forcement learning,” Journal of Building Engineering, vol. 73, p. 
106774, Aug. 2023.

[27] G. Pan, W. Gu, Y. Lu et al., “Optimal planning for electricity-hydro‐
gen integrated energy system considering power to hydrogen and heat 
and seasonal storage,” IEEE Transactions on Sustainable Energy, vol. 
11, no. 4, pp. 2662-2676, Oct. 2020.

[28] R. Wen, K. Torkkola, B. Narayanaswamy et al. (2017, Nov.). A multi-
horizon quantile recurrent forecast. [Online]. Available: https://arxiv.
org/abs/1711.11053

[29] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you need,” 
Advances in Neural Information Processing Systems, vol. 30, pp. 1-10, 
Aug. 2017.

[30] T. Haarnoja, A. Zhou, K. Hartikainen et al. (2018, Jan.). Soft actor-
critic algorithms and applications. [Online]. Available: https://arxiv.org/
abs/1812.05905.

[31] A. Paszke, S. Gross, F. Massa et al., “Pytorch: an imperative style, 
high-performance deep learning library,” Advances in Neural Informa‐
tion Processing Systems, vol. 32, pp. 1-12, Dec. 2019.

Ze Hu received the B.Eng degree in electrical engineering from Huazhong 
University of Science and Technology, Wuhan, China, in 2021. He is now 
pursuing the Ph. D. degree at The Hong Kong Polytechnique University, 
Hong Kong, China. His research interests include applications of machine 
learning and game theory in energy system operation and electricity market.

Peijun Zheng received the M.S. degree from North China Electric Power 
University, Beijing, China, in 2021, and the Ph.D. degree from Waseda Uni‐
versity, Tokyo, Japan, in 2024. He is currently working as a Postdoctoral in 
Tsinghua University, Beijing, China. His research interests include smart 
building, building energy saving, optimization, interpretable machine learn‐
ing, and proton exchange membrane fuel cell.

Ka Wing Chan received the B.Sc. (Hons.) and Ph.D. degrees in electronic 
and electrical engineering from the University of Bath, Bath, U.K., in 1988 
and 1992, respectively. He is currently an Associate Professor with the De‐
partment of Electrical Engineering, The Hong Kong Polytechnic University, 
Hong Kong, China. His research interests include power system stability, 
analysis and control, power grid integration, security, resilience and optimi‐
zation, and demand response management.

Siqi Bu received the Ph.D. degree from the Electric Power and Energy Re‐
search Cluster, The Queen’s University of Belfast, Belfast, U.K., where he 
continued his postdoctoral research work before entering industry. Then, he 
was with National Grid U.K., Warwick, U.K., serving as an experienced U.
K. National Transmission System Planner and Operator. He is an Associate 
Professor and Associate Head with Department of Electrical and Electronic 
Engineering, The Hong Kong Polytechnic University, Hong Kong, China, 
and also a Chartered Engineer with U.K. Royal Engineering Council, Lon‐
don, U.K.. He is a Fellow of IET. His research interests include power sys‐
tem stability, operation and economics considering renewable energy integra‐
tion, smart grid application, and transport electrification.

Ziqing Zhu received the M.S. degree in electrical power system engineer‐
ing from the University of Manchester, U.K., in 2019, and the Ph.D. degree 

890



HU et al.: A HYBRID DATA-DRIVEN APPROACH INTEGRATING TEMPORAL FUSION TRANSFORMER AND SOFT ACTOR-CRITIC ALGORITHM...

from The Hong Kong Polytechnic University, Hong Kong, China, in 2023, 
where he is currently serving as an Assistant Professor (Research). He is 
serving as the Early Career Researcher Associate Editor of IET Smart Grid. 
His research interests include application of artificial intelligence and ma‐
chine learning in power system operation and electricity market.

Xiang Wei received the B. Eng. degree in automation from Hubei Normal 
University, Huangshi, China, in 2019, and the M.Sc. degree in control engi‐
neering with Shenzhen University, Shenzhen, China, in 2022. He is now 
pursuing the Ph. D. degree in The Hong Kong Polytechnique University, 
Hong Kong, China. His research interests include smart grid, integrated en‐
ergy system planning, and renewable energy.

Yosuke Nakanishi received the B.S. and M.S. degrees in electrical engineer‐
ing from Waseda University, Tokyo, Japan, in 1978 and 1980, respectively, 
and the Ph.D. degree from Tokyo Metropolitan University, Tokyo, Japan, in 
1996. He is currently a Professor with the Graduate School of Environment 
and Energy Engineering, Waseda University. He received the Prize Paper 
Award from IEEE Power Engineering Education Committee in 1991. He is 
a Senior Member of the IEE of Japan and a member of CIGRE. He is also 
a Convenor of Investigation Committee on Grid Technologies for large 
amount of Wind Power, IEEJ, and a Member of Investigation Committee on 
history of power system analysis, IEEJ. His research interests include simu‐
lation and analysis of power system and distribution power system.

891


