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Abstract——The oscillatory stability analysis of multi-converter-
fed systems (MCFSs) with modest computational resources 
needs a precise parametric reduced-order impedance model 
(PROIM). However, the traditional Krylov subspace based para‐
metric model order reduction (KS-PMOR) method has difficul‐
ty in building precise PROIM for MCFSs. This is because the 
factors related to the errors of PROIM are complicated and 
coupled. To fill this gap, the factors associated with the accura‐
cy of the KS-PMOR method are estimated by defining three in‐
dicators: the convergence error, cumulative error, and rank of 
projection matrix. Using the three indicators, a frequency-do‐
main adaptive parametric model order reduction (FDA-PMOR) 
method is developed to form the precise PROIM of MCFSs for 
the accurate and fast oscillatory stability analysis. The accuracy 
of the obtained PROIM using the proposed FDA-PMOR meth‐
od and its efficiency in actual oscillatory stability analysis are 
validated by three MCFSs with different scales, i. e., a small-
scale MCFS with four paralleled converter-based renewable en‐
ergy generators (CREGs), a real-time simulation-based MCFS 
with eighteen paralleled CREGs, and a larger MCFS with nine‐
ty paralleled CREGs.

Index Terms——Multi-converter-fed system (MCFS), oscillatory 
stability analysis, frequency-domain adaptive parametric model 
order reduction (FDA-PMOR), parametric reduced-order im‐
pedance.

NOMENCLATURE

A. Indices and Sets

C Set of complex numbers

d, q Indices for d and q axes

h Index of positions of frequency window

i Index of frequency interpolation points

j Index of parameter interpolation points

k Index of parameter subspaces

sah Set of extra-added frequency interpolation 
points in frequency window at the hth position

ss, so Sets of frequency interpolation points in rank-
sensitive and rank-insensitive sub-frequency 
bands

Sk The kth parameter subspace of multi-converter-
fed system (MCFS)

B. Parameters

Ω Frequency band of model order reduction

Ωsch Frequency window at the hth position

ω1, ω2 The minimum and maximum frequencies of Ω

ωp Bandwidth of low-pass filer in phase-locked 
loop (PLL)

fs Switching frequency of converter for convert‐
er-based renewable energy generators 
(CREGs)

Dg Number of extra-added frequency interpola‐
tion points within Ωsc,h

Id0 d-axis output current of each CREG at steady-
state setpoints

kps Number of parameter subspaces

Kc Active damping factor of current controller

Kip, Kii Proportion and integration factors of current 
controller

Kpllp, Kplli Proportion and integration factors of PLL

Lg, Lm, Rd, C Grid-side inductance, converter-side induc‐
tance, damping resistance, and filter capaci‐
tance of output filter for CREG

Nc Total number of paralleled CREGs in MCFS
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Nf, Np Numbers of frequency and parameter interpo‐
lation points

Rrec, Crec Buffer resistance and compensation capaci‐
tance of reactive power compensator

Sf State space of full-order model for MCFS
Thc, Thce Threshold values of convergence and cumula‐

tive errors
Zgrid Grid line impedance

C. Miscellaneous Information

λ Varying parameter of CREG
ω Synchronization phase of PLL
Ωs, Ωis Rank-sensitive and rank-insensitive sub-fre‐

quency bands
ACdq, BCdq, State, input, and output matrices of CREG in 
CCdq dq-axis
AMq, BMq, State, input, and output matrices of MCFS in

CMq q-axis
Ar, Br, Cr Reduced-order state, input, and matrices of 

MCFS
Be (si ), Xe (si ) Cumulative errors of BMq (λj ) and X(si ) at si

Ec (si ) Convergence error of X(si) at si

Efrob Frobenius norm of errors
iq Output current of MCFS in q-axis
igdqi Output current of CREG in dq-axis
irefdq Current reference of CREG in dq-axis
Iq, Ir Identity matrices with sizes of n ´ n and r ´ r 
Kr Krylov subspace
L Impedance return ratio
Lrh Rank sensitive of Ωsc,h 
Lf Impedance return ratio based on full-order im‐

pedance model
LKS-PMOR Impedance return ratio based on traditional 

Krylov subspace based parametric model or‐
der reduction (KS-PMOR) method

LFDA-PMOR Impedance return ratio based on the proposed 
frequency-domain adaptive parametric model 
order reduction (FDA-PMOR) method

Mcond Condition number of Mi(λj)
n Size of full-order model
nki Order of moments at si

Nfs, Nfo Numbers of frequency interpolation points in 
Ωs and Ωis

r Size of reduced-order model
DRTh Variation of rank of projection matrix Tp at the 

hth position
Tp Projection matrix
ugqi Voltage at point of common coupling (PCC) 

of CREG in q-axis
uMgq Voltage at PCC of MCFS in q-axis
Vdc DC input voltage of CREG
xdq, udq, ydq State, input, and output vectors of CREG in 

dq-axis
xMq Full-order state vector of MCFS

xr Reduced-order state vector of MCFS
X(si ) State vector at si

Xefrob Frobenius norm of Xe

XN (si ) X(si ) obtained with N iterations

Zf Full-order impedance model of MCFS
ZMCFS(s), Zeg(s) Equivalent impedances of large-scale MCFS 

and external grid
Zr Parametric reduced-order impedance model of 

MCFS

I. INTRODUCTION 

IN future power systems, the increased renewable energy 
sources will be integrated into the grids. These renewable 

energy sources are generally interfaced with power electron‐
ic converters, which form various multi-converter-fed sys‐
tems (MCFSs). The extensive application of MCFSs brings 
new challenges to the stable operation of power systems. 
Particularly, MCFSs with numerous parallel converter-based 
renewable energy generators (CREGs) may lead to unstable 
oscillations over a wide frequency range [1]. These small-sig‐
nal oscillatory stability problems are caused by the compli‐
cated interaction between different MCFSs and the power 
system, and may be triggered at various operation points of 
the grid-tied MCFS. Thus, for variable MCFS in the con‐
stantly evolving power system, it is difficult to guarantee the 
stable operation of the system at all operation points by a 
one-time and offline stability assessment at the planning 
stage [2]. The real-time (or near real-time) analysis of the os‐
cillatory stability at the operation stage of MCFSs [3]-[5] be‐
comes essential, in order to monitor the potential oscillatory 
risk and prevent upcoming oscillations. However, the full-or‐
der models of MCFSs with a cluster of CREGs have ex‐
tremely high dimension, making the oscillatory stability anal‐
ysis a huge computational burden [6]. Precise reduced-order 
models of MCFSs are urgently required to enable the real-
time (or near real-time) oscillatory stability analysis of 
MCFSs with low computational cost [5], [7].

The dominant mode preserved (DMP) methods are pro‐
posed for the model order reduction of synchronous ma‐
chines decades ago [8]. They have also been extended to re‐
duce the model order of MCFSs in recent years. Using the 
DMP methods, the dominant modes of MCFSs are retained 
[9], [10] or reconstructed [11], [12] by the singular perturba‐
tion method, Jordan continued fraction expansion method, 
etc. However, the dominant modes of MCFSs usually 
change with variable system parameter sets, such as the oper‐
ation points and pre-set controller parameters. Thus, the 
DMP methods cannot provide suitable reduced-order models 
because they cannot preserve system parameters during the 
model order reduction.

The weighted coherency (WCO) method, inspired by the 
coherency equivalence method in traditional power systems, 
can preserve the system parameters during the model order 
reduction. Using this method, the model size of MCFS is re‐
duced by aggregating different CREGs into a single [13], 
[14] or multiple [15], [16] equivalent CREGs. The system 
parameters are preserved by establishing the relationship be‐
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tween the parameters of individual and equivalent CREGs. 
However, the WCO method simplifies some specific units in 
the MCFS, such as output filters and control units of 
CREGs. This may lead to significant errors during the model 
order reduction and make it unsuitable for the accurate small-
signal oscillatory stability studies [6], [17].

In addition, the above methods only have high accuracy 
for model order reduction on some specific time scales 
(mostly slow time scales), and thus are inadequate to accu‐
rately estimate the oscillatory stability of MCFS over a wide 
frequency range. In the last few years, the impedance mod‐
els have been proposed to describe the wide-band frequency-
domain characteristics of MCFSs at the point of common 
coupling (PCC). The impedance models have been widely 
applied to analyze the practical oscillatory stability issues of 
various MCFSs owing to their universal applicability, intui‐
tive stability criteria, and ability to access the oscillatory sta‐
bility margins [18]. However, the full-order impedance mod‐
el of a practical MCFS with numerous CREGs needs to be 
described by thousands or even tens of thousands of equa‐
tions. The oscillatory stability analysis of MCFSs using full-
order impedance models is also challenging [6].

In recent literature, the data-driven impedance (DDI) meth‐
ods have been proposed to build the parametric reduced-or‐
der impedance model (PROIM) of MCFS. The obtained 
PROIM can preserve some specific parameter accesses of 
the original full-order model and retain its corresponding pa‐
rameter-dependent characteristics. For example, by incorpo‐
rating artificial intelligence methods into the traditional fre‐
quency scanning method, the PROIM can be built without 
knowing the detailed structure and parameters of MCFS 
[19]. However, the PROIM needs to be trained using an ex‐
tremely large amount of high-quality frequency response da‐
ta with different system parameters. For the actual grid-tied 
MCFS, the high-quality frequency response data are usually 
difficult to collect, and it is challenging to guarantee the 
wide-band accuracy of the obtained PROIM at all possible 
operation points [6], [20]. These hinder the development of 
DDI methods for MCFSs.

Recently, the non-parametric projection-based model order 
reduction (NPJMOR) methods have been proposed to reduce 
the size of full-order impedance models for MCFSs [21], 
[22]. In the NPJMOR methods, the model order reduction is 
realized by projecting the full-order impedance model into a 
reduced state space using a projection matrix. The NPJMOR 
method can guarantee a high-accuracy model order reduction 
at fixed system parameters without specific unit simplifica‐
tion or additional data requirements. Thus, it can be used as 
a generalized method for various MCFSs. However, the non-
parameter preserved reduced-order impedance model built 
by the NPJMOR method can only be used for the oscillatory 
stability analysis of MCFS at specific operation points rather 
than for varying operation points.

So far, several parametric model order reduction methods 
have been reported for different fields. For example, the 
sparse low-rank Choleski factor alternate direction implicit 
based balanced truncation (SLRCF-ADI-BT) method has 
been proposed to build the parametric reduced-order model 

for the small-signal electromechanical stability analysis of 
large-scale power systems [23], [24]. In this method, the spe‐
cific parameter-dependent equipment is segmented into a 
subsystem of the large-scale power system. The parametric 
model order reduction is realized by completely retaining the 
segmented subsystem. However, for MCFS, all the CREGs 
are parameter-dependent, and the subsystem segmentation is 
difficult to realize in large-scale power systems [23]. Refer‐
ence [25] presents the Krylov subspace based parametric 
model order reduction (KS-PMOR) method to build the para‐
metric reduced-order model for the large-scale circuit design 
of operational amplifiers. This method can be used to build 
the parametric reduced-order model without complex matrix 
calculations (e.g., solving the Lyapunov equation in the bal‐
anced truncation method), which makes it more suitable for 
the model order reduction of systems with extremely high or‐
der, like the MCFS [26]. However, the KS-PMOR method 
derives the projection matrix suitable for full system parame‐
ter sets by interpolation [27]. The accuracy of the obtained 
reduced-order model strongly depends on the adopted inter‐
polation strategies [26]. To the best of the author’s knowl‐
edge, there are no general interpolation strategies for the ap‐
plication of KS-PMOR method in different fields. The error 
mechanism and general interpolation optimizing method 
need to be carefully investigated before it is applied to build 
the precise PROIM of MCFS.

The individual features of the various model order reduc‐
tion methods discussed above are compared in Table I in 
terms of parameter preserving ability (PPA), necessity of spe‐
cific unit reduction/retention (NSUR), the high demand of 
frequency response data (HDFRD), and capability for oscilla‐
tory stability analysis (COSA). It can be observed that all 
methods present insufficiencies in different properties that re‐
strict their efficiency for oscillatory stability analysis. The 
KS-PMOR method performs better in the three properties, 
but it still needs to be further improved to build the precise 
PROIM and apply it to oscillatory stability analysis. As far 
as the authors know, the parametric model order reduction 
method for building wide-band accurate PROIM across all 
system parameter sets for MCFS has not yet been reported 
in the current literature.

To fill this gap, this paper proposes a frequency-domain 
adaptive parametric model order reduction (FDA-PMOR) 
method to form the PROIM of MCFS suitable for a wide-
band frequency domain over the full parameter range.

The main contributions of this paper are as follows.

TABLE I
COMPARISON OF DIFFERENT MODEL ORDER REDUCTION METHODS

Method

DMP

WCO

DDI

NPJMOR

SLRCF-ADI-BT

KS-PMOR

PPA

No

Yes

Yes

No

Yes

Yes

NSUR

No

Yes

No

No

Yes

No

HDFRD

No

No

Yes

No

No

No

COSA

No

No

No

No

No

Pending
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1) The error mechanism of the traditional KS-PMOR 
method is quantitatively evaluated by defining three indica‐
tors, i. e., the convergence error, cumulative error, and rank 
of projection matrix.

2) The FDA-PMOR method is proposed to build the PRO‐
IMs of MCFSs in the dq-frame. This method can adaptively 
optimize the parameters and frequency interpolation strate‐
gies based on the three indicators. The obtained PROIM can 
characterize system features over the full parameter range 
with wider-band accuracy and a smaller model size.

3) The feasibility of the proposed FDA-PMOR method 
and its effect on actual oscillatory stability analysis are eval‐
uated using three MCFSs with different scales, i.e., a small-
scale MCFS with four paralleled CREGs, a real-time simula‐
tion-based MCFS with eighteen paralleled CREGs, and a 
larger MCFS with ninety paralleled CREGs.

The rest of this paper is organized as follows. Section II  
presents the full-order impedance model of a typical MCFS. 
In Section III, the FDA-PMOR method is proposed based on 
the error mechanism analysis of the traditional KS-PMOR 
method. The proposed FDA-PMOR method is verified by 
three MCFSs with different scales in Section IV followed 
with conclusions in Section V.

II. FULL-ORDER IMPEDANCE MODEL OF A TYPICAL MCFS 

The topology of a typical MCFS is shown in Fig. 1. Multi‐
ple CREGs are connected in parallel and integrated to the ex‐
ternal grid at the same PCC. Different renewable energy gen‐
erator technologies can provide the DC-side power supply of 
each CREG.

The small-signal model of a single CREG with varying pa‐
rameters λ can be expressed as [28]:

ì
í
î

ẋdq =ACdq (λ)xdq +BCdq (λ)udq

ydq =CCdq (λ)xdq

(1)

The full-order small-signal model of MCFS with Nc paral‐
leled CREGs cannot be obtained by simply scaling the full-

order small-signal model of the individual CREGs. In this 
paper, the coupling term among the CREGs is neglected by 
assuming that there is no unstable interaction among individ‐
ual CREGs [29]. Thereby, the full-order small-signal model 
of MCFS with Nc paralleled CREGs can be represented by:
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ydq =[CCdq1 (λ) CCdq2 (λ) ... CCdqNc
(λ)]·

[xdq1 xdq2 ... xdqNc
]T

(2)
This full-order small-signal model of MCFS has an ex‐

tremely high order. Although the state matrix of MCFS is a 
diagonal matrix composed of ACdq, it is challenging to solve 
such a full-order model in real time (or near realtime) with 
acceptable computational costs.

In this paper, the q-axis full-order small-signal model of 
MCFS (from input DuMgq to output Diq) containing the ma‐
jority of the dynamic characteristics is used to evaluate the 
proposed FDA-PMOR method.

ì
í
î

ẋMq =AMq (λ)xMq +BMq (λ)DuMgq

Diq =CMq (λ)xMq
(3)

where AMq (λ)   =   diag(ACq1 (λ)   ACq2 (λ)      ACqNc
(λ)); 

BMq (λ)=[BCq1 (λ)BCq2 (λ)BCqNc
(λ)]T; CMq (λ) =[CCq1 (λ) 

CCq2 (λ)CCqNc
(λ)]; xMq =[xq1xq2xqNc

]T; and Diq =
Digq1 +Digq2 + +DigqNc

.

Converting the q-axis full-order small-signal model in (3) 
to the frequency domain, the q-axis impedance model Zf (sλ) 
of MCFS can be represented as (4). The frequency-domain 
characteristics of Zf (sλ) are highly related to the varying pa‐
rameters λ [30].

ì

í

î

ïïïï

ïïïï

Diq (s)= Z -1
f (sλ)DuMgq (s)

Zf (sλ)=
1

CMq (λ)(sIq -AMq (λ))-1 BMq (λ)
(4)

Due to the high dimensionality of matrices AMq(λ), 
BMq(λ), and CMq(λ), the oscillatory stability analysis using 
Zf (sλ) requires very high computational resources as well as 
the detailed structure and parameters of MCFS. MCFS ven‐
dors can usually easily access the specific control structure 
and parameters. In this case, the generation of full-order im‐
pedance models is straightforward. Thus, this paper focuses 
on how to address the model order reduction of Zf (sλ).

III. PROPOSED FDA-PMOR METHOD 

In this section, the error mechanism of KS-PMOR method 
is analyzed to identify the main factors affecting the accura‐
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Fig. 1.　Topology of a typical MCFS.
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cy of the reduced-order model. Subsequently, the FDA-
PMOR method is proposed to build the high-precision PRO‐
IM of MCFS for oscillatory stability analysis.

A. KS-PMOR Method

Using the KS-PMOR method, the full-order small-signal 
model of MCFS with varying parameters in (3) can be pro‐
jected to a low-dimensional state space via the projection 
matrix TpÎCr ´ n (r n), yielding the parametric reduced-or‐
der small-signal model of MCFS as:

ì
í
î

ẋr =Ar (λ)xr +Br (λ)DuMgq

Diq =Cr (λ)xr

(5)

where Ar (λ)  =  Tp AMq (λ)T T
p ; Br (λ)  =  Tp BMq (λ); Cr (λ)  = 

CMq (λ)T T
p ; and xr =Tp xMq. The PROIM of MCFS can be de‐

rived by performing the Laplace transform on (5):

Zr (sλ)=
1

Cr (λ)(sIr -Ar (λ))-1 Br (λ)
(6)

Here, the projection matrix Tp plays a key role in obtain‐
ing the low-order and high-precision PROIM. It can be 
spanned by mutually orthogonal state vectors X(si ) at multi-
frequency interpolation points via the KS-PMOR meth‐
od [31]:

TpÊ span{X(si )} siÎΩi = 12...Nf (7)

To ensure the accuracy, the obtained reduced-order small-
signal model in (5) should have the same moments in the 
first nki orders at each frequency interpolation point (FIP) si 
as the full-order small-signal model in (3). Thus, X(si ) 
needs to satisfy (8) to fall into the Krylov subspace 
Kr (X i ; Y i ) as in (9).

(si Iq -AMq (λ))X(si )=BMq (λ) (8)

ì
í
î

X(si )ÎKr (X i ; Y i )

Kr (X i ; Y i )= span{X iY i X iY
2

i X iY nki - 1
i X i }

(9)

where Y i = (si Iq -AMq(λ))
-1; and Xi = (si Iq -AMq (λ))-1 BMq (λ).

For the full-order small-signal model of MCFS with vary‐
ing parameters, there exists no explicit solution to X(si ) that 
satisfies (8) over the full parameter range. To deal with this 
problem, the recursive least square method has been intro‐
duced to convert the explicit solving problem of X(si ) into 
the optimization problem [25]:

ì

í

î

ïïïï

ïïïï

min
X(si )
∑
j = 1

Np

 (si Iq -AMq (λj ))X(si )-BMq (λj )
2

F

s.t.  X(si )ÎCn ´ 1

(10)

where  ·
F
 represents the Frobenius norm. The optimization 

objective is to solve X(si ) with the minimum error at all pa‐
rameter interpolation points. In this paper, the variation 
range of λj is fixed. Thus, according to the standard least 
square method, (10) can be easily reformulated to matrix cal‐
culation as:

X(si )= (∑j = 1

Np

M H
i (λj )M i (λj )) -1∑

j = 1

Np

M H
i (λj )BMq (λj ) (11)

where the superscript H represents the conjugate transpose; 

and M i (λj )= si Iq -AMq(λj ).
In the KS-PMOR method, Tp can be obtained with differ‐

ent parameter interpolation sets of λj and different frequency 
interpolation sets of si. Different sets of λj and si will affect 
the accuracy of model order reduction. Thus, the selection of 
λj and si is very important for maintaining a wide-band fre‐
quency-domain accuracy of the obtained PROIM of MCFS. 
However, in the current literature, it has not quantitively 
identified the influence of different λj and si on the errors of 
the reduced-order model using the KS-PMOR method.

B. Analysis of Error Mechanism of KS-PMOR Method

In this subsection, the error mechanism of KS-PMOR 
method is analyzed using a small-scale MCFS with four par‐
alleled CREGs as an example. The topology of the small-
scale MCFS is shown in Fig. 1, and the detailed parameters 
of four parallel CREGs are presented in Supplementary Ma‐
terial A Table SAI. During the error mechanism analysis, the 
output current Id0 of each CREG at steady-state setpoints is 
set as the preserved parameter, and the frequency band of 
model order reduction is set as 0-2000 Hz.
1)　Error Mechanism of Solving State Vectors

In the KS-PMOR method, one of the most important pro‐
cedures is to solve the state vector X(si ) at each FIP.

According to (11), the matrix inversion can be well-posed 
in the ideal cases, where M i (λj ) is nonsingular, and 
M H

i (λj )M i (λj ) is positive definite. The optimization for 
X(si ) can converge rapidly, and the accurate X(si ) for the 
full parameter range can be obtained with a small number of 
iterations.

Nevertheless, due to the large differences in the magni‐
tudes of MCFS parameters, the state matrix AMq(λ) of 
MCFS can be ill-conditioned with a high condition number. 
For instance, the control parameters of CREG are usually 
tens of orders larger than those of passive components in 
output filter of CREG. These factors will make M i (λj ) near‐
ly singular, rendering the inversion of M H

i (λj )M i (λj ) ill-
posed and leading to errors in the optimization process of 
X(si ). In this paper, the parameters of MCFS have already 
been rescaled based on the per-unit rules of power system. 
However, because of the restriction of the remaining charac‐
teristics, the parameters of MCFS cannot be scaled freely to 
completely eliminate the ill-condition of AMq(λ).

During the optimization process of (10), the error of X(si ) 
can be expressed as [32]:

ì

í

î

ïïïï

ïïïï

Be (si )=∑
j = 1

Np

[(si Iq -AMq (λj ))X(si )-BMq (λj )]

Xe (si )=Be (si )Mcond

(12)

The error Xe (si ) accumulates over the iterations, which is 
named the cumulative error of X(si ). To intuitively evaluate 
the variation of Xe (si ) along with the iteration number, the 
Frobenius norm of Xe (si ) in (13) is utilized. Xefrob(si ) at 
each FIP with different numbers of parameter interpolation 
points is shown in Fig. 2, where horizontal axis adopts the 
Logarithmic coordinate.

Xefrob (si )=  Xe (si ) F
(13)
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In Fig. 2, Xefrob increases as Np increases, which is also 
the iteration number to solve X(si ), especially for low-fre‐
quency bands. Moreover, according to (12), the high Mcond 
will enlarge the error of X(si ), which makes the accuracy of 
X(si ) more sensitive to Np.

When solving X(si ), the accuracy is also impacted by the 
convergence of the optimization progress. In this subsection, 
Ec (si ) is defined as the convergence error to quantitatively 
express the impact of the convergence of X(si ) on the error 
of the model order reduction:

Ec (si )= | XN (si )-XN - 1 (si ) | (14)

where ||·  denotes the mod operation of each element in the 
matrix. X(si ) is considered to have reached convergence 
when Ec (si ) is less than the convergence threshold Thc, 
which is set to be 0.01 in this paper.

Figure 3 shows the comparison of the minimum number 
of parameter interpolation points Np for X(si ) convergence 
with different ranges of Id0. It can be observed that Np in‐
creases as the range of Id0 becomes larger. This means that 
when Id0 varies over a larger range, more parameter interpo‐
lation points are needed to ensure the convergence of X(si ). 
However, according to (12), more parameter interpolation 
points will introduce larger cumulative errors to X(si ).

2)　Error Mechanism of Spanning Projection Matrix
Another essential process in the KS-PMOR method is the 

spanning of the projection matrix based on X(si ) at each FIP.
In the KS-PMOR method, the Krylov subspace Kri at 

each FIP si should be able to form the state space of the full-
order model of MCFS [31]. This means that any state of the 
full-order model of MCFS should be represented by the col‐
umn vectors of the projection matrix as:

Sf =Kr1Kr2Kri = span{X(si )}    siÎΩi = 12...Nf

(15)

According to (15), the column vectors of the projection 
matrix should be mutually orthogonal and contain the basis 
vectors of Sf as much as possible, so that the projection ma‐
trix can access more state space of the full-order model. 
Thus, the rank of projection matrix can be used to quantita‐
tively evaluate the state space accessing of the projection ma‐
trix.

In this part, the Frobenius norm of model order reduction 
error Efrob(siλ) in (16) is used to analyze the relationship be‐
tween the model order reduction error and the rank of projec‐
tion matrix.

Efrob (siλ)=  Zf (siλ)- Zr (siλ) F
(16)

The boxplot of the model order reduction error with differ‐
ent ranks of projection matrix Tp at different frequency 
points si is shown in Fig. 4. It can be observed that 
Efrob(siλ) of the obtained reduced-order impedance models 
will drop along with the increasing rank of projection ma‐
trix. This is because the projection matrix with a higher rank 
can access more state space in Sf. Thus, the reduced-order 
impedance model can have the accuracy in higher wide-band 
frequency domain.

Before using projection matrix Tp, the singular value de‐
composition (SVD) is usually utilized to obtain the first r ba‐
sis vectors of Tp [33]. As mentioned above, the ill-posed 
M H

i (λj )M i (λj ) has a side effect on solving X(si ) at each 
FIP. Maximizing the rank of Tp by excessive FIPs will intro‐
duce additional errors to Tp, which may lead the SVD to ex‐
tract the wrong basis vectors. These wrong basis vectors will 
influence the accuracy of model order reduction.

To validate the above discussions, the simulation results 
of two more cases are added to Fig. 4, where the rank of Tp 
is maximized by adding 2000 and 3000 excessive uniformly 
distributed FIPs. It can be observed that the excessive FIPs 
leads to significant errors during the model order reduction.

The following conclusions can be obtained.
1) Both the cumulative and convergence errors of X(si ) 

will influence the accuracy of model order reduction. There‐
fore, it is vital to set a parameter interpolation strategy (opti‐
mizing Np and kps) to converge X(si ) without excessive cu‐
mulative errors.

2) The rank of projection matrix and the error of model 
order reduction are strongly correlated. A high-rank projec‐
tion matrix can improve the accuracy of model order reduc‐
tion. Consequently, the frequency interpolation strategy 
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should be optimized to maximize the rank of projection ma‐
trix with a minimum number of FIPs.

3) According to the quantitative analysis on the error 
mechanism of the KS-PROM method, the factors affecting 
the accuracy of model order reduction can be estimated by 
defining three indicators, i.e., the convergence error, cumula‐
tive error, and rank of projection matrix.

C. Proposed FDA-PMOR Method for MCFS

The FDA-PMOR method was initially proposed to form 
the PROIM of MCFS with high frequency-domain accuracy. 
Different from the traditional KS-PMOR method, the pro‐
posed FDA-PMOR method can optimize the parameters and 
frequency interpolation strategies adaptively based on the 
three indicators. The framework of the proposed FDA-
PMOR method for MCFS is shown in Fig. 5. It consists of 
four stages discussed as follows.

1)　Stage 1: Optimizing Parameter Interpolation Strategy
The first stage of the proposed FDA-PMOR method is op‐

timizing the parameter interpolation strategy. According to 
the error mechanism analysis, the solution process of X(si ) 
needs to ensure the convergence of X(si ) without excessive 
cumulative errors. Therefore, the cumulative and conver‐
gence errors of X(si ) are introduced as constraints to (10), 
and we can obtain:

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

min
X(si )
∑
j = 1

Np

 (si Iq -AMq (λjk ))X(si )-BMq (λjk )
2

F

s.t. X(si )ÎCn ´ 1

1 £ k £ kps

max(Ec (si ))£Thc

Xefrob (si )<Thce

(17)

During the solution progress of (17), the parameter inter‐
polation strategy (optimizing Np and kps) ensures that the so‐
lution process of X(si ) can meet the error constraints. Since 
the number of feasible solutions for Np-kps combination is fi‐
nite, the optimal solution of Np and kps can be derived after 

a finite number of iterations by the simplex algorithm. Thus, 
the parameter interpolation strategy is optimized first.
2)　Stage 2: Optimizing Frequency Interpolation Strategy

As illustrated in Section III-B, the high-rank projection 
matrix can improve the accuracy of model order reduction. 
Consequently, the frequency interpolation strategy is opti‐
mized for constructing the high-rank projection matrix in 
two steps, as shown in Fig. 6. At this stage, the rank-sensi‐
tive sub-frequency bands are first acquired by the frequency 
window scanning. Then, the number of FIPs in the rank-sen‐
sitive sub-frequency band are optimized to maximize the 
rank of projection matrix. The detailed steps are described as 
follows.

Step 1: the frequency band Ω =[ω1 ω2 ] of model order re‐
duction is scanned by the frequency window Ωsch (h =
123) from ω1 to ω2. In each Ωsch, the extra-added FIPs 
sah with the number of Dg are added, as shown in Fig. 6.

The projection matrix Tp,h is constructed based on so and 
sah using (7). In (7), X(si )  (siÎ so sah) is solved with the 
optimized parameter interpolation strategy obtained at Stage 
1. The rank sensitivity of Ωsch denoted as Lrh can be calcu‐
lated by:

Lrh =
DRTh

Dg
Lrh ³ 0 (18)

If Lrh > 0, it means that Ωsch is rank-sensitive and the FIPs 
should be added to raise the rank of projection matrix. If 
Lrh = 0, the original FIPs in Ωsch are sufficient to maximize 
the rank of projection matrix. Thus, by calculating Lrh in 
each Ωsch, the rank-sensitive sub-frequency bands Ωs can be 
obtained.

Step 2: based on the obtained rank-sensitive sub-frequency 
bands Ωs, the number of FIPs Nfs in Ωs needs to be mini‐
mized to maximize the rank of projection matrix. Thus, the 
rank maximization of projection matrix is set as the objec‐
tive function, and the optimization model of Nfs is formed as:

ì

í

î

ïïïï

ïïïï

max rank(Tp )= rank(span{X(ss )X(so )})

s.t. ss ={ss1ss2ssNfs
}ÌΩs

so ={so1so2soNfo
}ÌΩis

(19)

In (19), Nfo is fixed and Nfs is gradually increased to meet 
the objective function. The optimization iteration is stopped 
when the rank of Tp does not grow with the increase of Nfs. 
The optimized Nfs is derived from the last iteration. It is nec‐
essary to mention that the original variation range of the pre‐
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served parameter has been segmented into kps parameter sub‐
spaces at Stage 1. Thus, the optimizing frequency interpola‐
tion process should be executed in each parameter subspace.
3)　Stage 3: Constructing Projection Matrix

Based on the optimized parameter and frequency interpola‐
tion strategies, the proposed FDA-PMOR method constructs 
the projection matrix Tpk for each parameter subspace using 
(7) and (11), as shown in Fig. 5 [33].
4)　Stage 4: Building PROIM of MCFS

At Stage 4, the PROIM Zr (sλ) consisting of Zrk(sλ) can 
be built individually by (5) and (6) at each parameter sub‐
space as:

Zr (sλ)=

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

Zr1 (sλ)    λÎ S1

Zr2 (sλ)    λÎ S2

      
Zrk (sλ)    λÎ Sk

(20)

IV. SIMULATION VERIFICATION AND DISCUSSION 

In this section, the proposed FDA-PMOR method is evalu‐
ated using three different scales of MCFSs.

A. Small-scale MCFS with Four Paralleled CREGs

The PROIM of the small-scale MCFS is built using the 
proposed FDA-PMOR method and three other methods, i.e., 
SLRCF-ADI-BT, traditional KS-PMOR, and partially-im‐
proved KS-PMOR methods. The output current Id0 of MCFS 
at steady-state setpoints is taken as the preserved parameter 
during the model order reduction.

Among these three benchmark methods, the SLRCF-ADI-
BT method is initially proposed to build the parametric re‐
duced-order model of large-scale power systems [23], [24]. 
The traditional KS-PMOR method obtains the PROIM with‐
out interpolation optimization [25], [31]. The partially-im‐
proved KS-PMOR method is designed to validate the neces‐
sity of the interpolation optimization, where only the parame‐
ter interpolation strategy is optimized. The FIPs are 2000 
uniformly distributed frequency points within Ω = 
[0 2000] Hz. The errors of PROIM obtained by different 
methods are shown in Fig. 7.

As shown in Fig. 7(a) and (b), by utilizing the SLRCF-
ADI-BT method, the obtained PROIM of MCFS has relative‐
ly larger magnitude and phase errors. This is because the pre‐
served parameters (Id0 of CREG in this case) are usually lo‐
cated in each CREG of MCFS. It is difficult to properly seg‐
ment the full-order model of MCFS into the parameter-de‐
pendent decoupled internal system and the parameter-inde‐
pendent external system, which is quite different from the 
case of large-scale power systems in [27].

In Fig. 7(c)-(f), the errors of PROIM obtained by tradition‐
al KS-PMOR and partially-improved KS-PMOR methods 
are mostly concentrated in the Id0-dominated low-frequency 
band. These errors are mainly caused by improper parameter 
and frequency interpolation. However, the magnitude and 
phase errors of the proposed FDA-PMOR method shown in 
Fig. 7(g) and (h) can be kept within 0.1 dB and 1.0°, respec‐
tively. Compared with the traditional KS-PMOR and the par‐
tially-improved KS-PMOR methods, the maximum magni‐

tude errors with the proposed FDA-PMOR method are re‐
duced by 97.35% and 80.39%, respectively, and the maxi‐
mum phase errors are reduced by 79.26% and 47.12%, re‐
spectively. It indicates that parameter interpolation optimiza‐
tion and frequency interpolation optimization strategies are 
both important in building the high-precision PROIM of 
MCFS. Moreover, using the proposed FDA-PMOR method, 
the size of the obtained PROIM can be reduced by 15 or‐
ders, i.e., about 46% lower than the original 28-order full-or‐
der impedance model.
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Comprehensively, the proposed FDA-PMOR method has a 
lower error than other three methods. The obtained PROIM 
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has a small size while maintaining a wide-band frequency-
domain consistency over the full parameter range. These re‐
sults do not affect the excellent performance of other meth‐
ods when applied to other fields, such as the SLRCF-ADI-
BT method in large-scale power systems [23].

B. Real-time Simulation-based MCFS with Eighteen Paral‐
leled CREGs

In this subsection, the proposed FDA-PMOR method is 
validated using a 4.2 MW real-time simulation-based MCFS 
with eighteen paralleled CREGs. The specific parameters of 
each CREG in the large-scale MCFS are presented in Sup‐
plementary Material A Table SAII.
1)　Error Evaluation of Obtained PROIM

In this case, the output current Id0 and the active damping 
factor Kc of each CREG at the steady-state setpoints are pre‐
served. Id0 and Kc influence the impedance characteristics of 
MCFS at low- and high-frequency bands, respectively. By si‐
multaneously preserving these two parameters, the efficacy 
of the proposed FDA-PMOR method in both low- and high-
frequency bands can be validated.

According to the proposed FDA-PMOR method, the pa‐
rameter space of Id0 and Kc has been divided into 10 parame‐
ter subspaces, and the obtained PROIM of MCFS consists of 
10 different local PROIMs corresponding to each parameter 
subspaces. To comprehensively evaluate the errors of the ob‐
tained PROIM, 40 randomly generated and uniformly distrib‐
uted Kc-Id0 combinations, as shown in Supplementary Materi‐
al A Fig. SA1, are used as the test parameter sets. By substi‐
tuting these test parameter sets into the obtained PROIM, 
the magnitude and phase errors of PROIM with different Kc-
Id0 combinations are shown in Fig. 8, where the index of dif‐
ferent Kc-Id0 combinations ranges from 1 to 40.

It can be observed that most of the magnitude and phase 
errors can be kept within 0.5 dB and 2°, respectively. These 
results indicate that the proposed FDA-PMOR method has a 
superior wide-band accuracy performance when low- and 
high-frequency characteristics are preserved simultaneously. 
Moreover, with the proposed FDA-PMOR method, the mod‐
el size of each local PROIM can be controlled around 26 or‐
ders, which is 81.9% less than the 144-order full-order im‐
pedance model. Compared with the small-scale MCFS with 
four paralleled CREGs, the model size of this large-scale 
MCFS can be reduced more significantly by the proposed 
FDA-PMOR method. Thus, the proposed FDA-PMOR meth‐
od is better suited for model order reduction of large-scale 

MCFS. This viewpoint will be further validated on a larger 
MCFS with ninety paralleled CREGs in Section IV-C.
2)　Application of Obtained PROIM to Oscillatory Stability 
Analysis

The real-time simulation platform for MCFS with eigh‐
teen paralleled CREGs is established based on the real-time 
digital simulation system (RTDS), as shown in Supplementa‐
ry Material A Fig. SA2.

To verify the validation of the obtained PROIM in the 
wide-band oscillatory stability analysis, two typical scenarios 
of MCFS with sub-synchronous oscillation and high-frequen‐
cy oscillation are used. The oscillatory stability is analyzed 
by performing the Nyquist criterion on the impedance return 
ratio L(s):

L(s)=
Zeg (s)

ZMCFS (s)
(21)

1)　Scenario 1: sub-synchronous oscillation
The sub-synchronous oscillations, caused by the negative 

impedance interaction of MCFS and the grid in the low-fre‐
quency band, are the most frequent oscillations in a real 
MCFS. In this scenario, the MCFS is tied to a weak grid 
(SCR = 0.815), the specific parameters of which are given in 
Supplementary Material A Table SAII, and the sub-synchro‐
nous oscillations may be triggered when the output power of 
MCFS fluctuates.

In this study, the normalized output power data from a 
practical wind turbine based MCFS are fed into the obtained 
PROIM as Id0 to simulate the continued varying operation 
point of the actual MCFS. The output wind power data set 
contains data of two days with a resolution of 5 min (with 
576 data points included), as shown in Fig. 9(a).

The accuracy of oscillatory stability analysis is evaluated 
by the phase margin of L(s). The absolute errors of the phase 
margin obtained by the traditional KS-PMOR method and the 
proposed FDA-PMOR method are compared in Fig. 9(b). 
The absolute error of phase margin obtained by the tradition‐
al KS-PMOR method is higher than that by the proposed 
FDA-PMOR method over the full power range. Using the 
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proposed FDA-PMOR method, the absolute error of phase 
margin can be kept within 1°, which is sufficient to accurate‐
ly predict the oscillatory risk of MCFS.

The computational burden of the oscillatory stability analy‐
sis is evaluated using a personal computer with 2.6 GHz In‐
tel Core-i7 CPU and 16 GB RAM in the MATLAB environ‐
ment. The comparison of execution time and memory usage 
for the oscillatory stability analysis with the full-order imped‐
ance model and the obtained PROIM are shown in Table II.

Using the obtained PROIM, the time consumption of the 
oscillatory stability analysis across all 576 data points can be 
reduced by 77.48% (the speedup factor is about 4.44), while 
the total memory usage can be reduced by 96.65%. This in‐
dicates the advantages of PROIM when used for oscillatory 
stability analysis of the large-scale MCFS.

To further evaluate if the obtained PROIM can correctly 
access the dominated oscillation modes in terms of oscilla‐
tion frequencies and stability margins, one critical instability 
case with the power fluctuation is presented and analyzed.

In this case, the output power of MCFS, i.e., the value of 
Id0, increases from 0.76 p.u. to 0.81 p.u.. During the oscillato‐
ry stability analysis, the full-order impedance model and the 
PROIMs obtained by different model order reduction meth‐
ods are substituted into (21). The Nyquist diagram of impen‐
dance return ratios with different Id0 is shown in Fig. 10.
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Fig. 10.　Nyquist diagram of impedance return ratios with different Id0.

In Fig. 10, the Nyquist curve of Lf encircles the point 
(-10) when Id0 = 0.81 p.u., which means that the system en‐

ters the unstable region. From the interaction point of the 
Nyquist curve and the unit circle, the phase margins and the 
oscillation frequencies can be obtained, as shown in Table 
III.

It can be inferred that using Lf and LFDA-PMOR has similar 
stability analysis results, and the theoretical oscillation fre‐
quencies are 23.5 Hz and 24 Hz in the dq-domain, respec‐
tively. However, the stability evaluation result of MCFS is 
incorrect using LKS-PMOR.

The real-time simulation results with low-frequency oscil‐
lation are presented in Fig. 11. It can be found that the ac‐
tive power output P and the three-phase output currents Ia, 
Ib, and Ic measured at the PCC of MCFS suffer from sub-
synchronous oscillations after the power increase. The fast 
Fourier transform (FFT) analysis of Ia shows that the oscilla‐
tion frequencies are 27 Hz and 73 Hz, corresponding to 23 
Hz in the dq-domain. This result is close to the theoretical 
analysis using LFDA-PMOR and Lf.

2)　Scenario 2: high-frequency oscillation
Another typical type of oscillations of MCFS is high-fre‐

quency oscillation. In this scenario, supposing that the active 
damping factor Kc of the current controller is not well tuned 
in some CREGs, the resonance peaks of the current control‐
ler and the output filter cannot be well damped. The grid im‐

TABLE Ⅱ
COMPARISON OF EXECUTION TIME AND MEMORY USAGE FOR OSCILLATORY 

STABILITY ANALYSIS WITH FULL-ORDER IMPEDANCE MODEL AND 
OBTAINED PROIM

Model

Full-order model

PROIM

Execution time (s)

216.804

48.815

Memory usage (KB)

3220

108

TABLE Ⅲ
PHASE MARGINS AND OSCILLATION FREQUENCIES IN SCENARIO 1

Impedance 
return ratio

Lf

LKS-PMOR

LFDA-PMOR

Phase margin (°)

Id0 = 0.76 p.u.

1.72

4.14

1.66

Id0 = 0.81 p.u.

-1.92

0.54

-1.51

Oscillation frequency (Hz)

Id0 = 0.76 p.u. Id0 = 0.81 p.u.

23.5

27.2

24.0
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Fig. 11.　Real-time simulation results with low-frequency oscillation.
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pedance coincidentally interacts with the MCFS impedance 
in the undamped frequency band, and the high-frequency os‐
cillations are triggered.

Since the PROIM used in this scenario is the same as that 
in scenario 1, the evaluation of computational burden for the 
oscillatory stability analysis is not repeated. A typical high-
frequency oscillation case is presented to verify the efficacy 
of PROIM for the oscillatory stability analysis in high-fre‐
quency band. In this case, the active damping factor Kc 
changes from 0 to 0.3, and the same analysis as in scenario 
1 is conducted. Due to page limitations, the specific analyses 
are omitted here, only some essential analysis and test re‐
sults are presented, as shown in Fig. 12, Table IV, and 
Fig. 13.

These results indicate that compared with the traditional 
KS-PMOR method, the PROIM obtained by the proposed 
FDA-PMOR method also has higher accuracy for oscillatory 
stability analysis in the high-frequency band.

According to the above analysis of two typical scenarios, 
the PROIM obtained by the proposed FDA-PMOR method 
can significantly reduce the computational burden of oscilla‐
tory stability analysis. Meanwhile, the accuracy of oscillato‐
ry stability analysis can be maintained in terms of stability 
margins and oscillation frequencies, regardless of whether 
the dominant oscillation mode is in the low- or high-requen‐
cy band.

C. Larger MCFS with Ninety Paralleled CREGs

To further validate the applicability of the proposed FDA-
PMOR method for larger MCFS in terms of accuracy and 
speedup, a case of 21 MW MCFS with ninety paralleled 
CREGs is analyzed in this subsection. The detailed parame‐
ters of MCFS and the parameter settings for the model order 
reduction are identical to the case in Section IV-B, except 
that the numbers of each type of CREG in MCFS are in‐
creased from 6 to 30.

The detailed simulation results are presented in Supple‐
mentary Material A. From the magnitude and phase error di‐
agrams for PROIM in Supplementary Material A Fig. SA3, 
it can be observed that most of the amplitude and phase er‐
rors can be kept within 0.7 dB and 3° , respectively. Mean‐
while, the model size of the obtained PROIM can be main‐
tained around 26 orders, which is only 3.6% of the 720-or‐
der full-order impedance model. Compared with the MCFS 
with eighteen CREGs, the accuracy and model size of the 
obtained PROIM of this larger MCFS show no substantial in‐
crease.

The PROIMs obtained via the traditional KS-PMOR meth‐
od and the proposed FDA-PMOR method are next employed 
for oscillatory stability analysis. The absolute error of mar‐
gin at different operation points is shown in Supplementary 
Material A Fig. SA4. It is presented that the phase margin er‐
ror of the proposed FDA-PMOR method shows a noticeable 
decline to the traditional KS-PMOR method.

Moreover, in this larger MCFS, the speedup factor of the 
oscillatory stability analysis can be examined. It is improved 
to 29.31 by using the obtained PROIM, as shown in Supple‐
mentary Material A Table SAIII, which is about 6.6 times 
higher than the case in Section IV-B. The average execution 
time for one single stability analysis is about 0.088 s.

V. CONCLUSION 

This paper proposes an FDA-PMOR method to reduce the 
computational burden of oscillatory stability analysis by 
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TABLE Ⅳ
PHASE MARGINS AND OSCILLATION FREQUENCIES IN SCENARIO 2

Impedance 
return ratio

Lf

LKS-PMOR

LFDA-PMOR

Phase margin (°)

Kc = 0

-0.69

1.79

-0.91

Kc = 0.3

5.23

4.50

4.87

Oscillation frequency (Hz)

Kc = 0

1010

1019

1012

Kc = 0.3
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building precise PROIM of MCFS. The efficiency and practi‐
cability of the proposed FDA-PMOR method are validated 
by three MCFSs of different scales. The main conclusions 
are as follows.

1) The factors associated with the errors of model order 
reduction are estimated by defining three indicators, i.e., the 
convergence error, cumulative error, and rank of projection 
matrix. These are obtained by quantitively analyzing the er‐
ror mechanism of the traditional KS-PMOR method.

2) The FDA-PMOR method is proposed to build the PRO‐
IMs of MCFSs. Different from the traditional KS-PMOR 
method, it can adaptively optimize the parameters and fre‐
quency interpolation strategies based on the three indicators. 
As a result, the accuracy of PROIM can be notably im‐
proved. Compared with the three other methods, i. e., SLR‐
CF-ADI-BT, traditional KS-PMOR, and partially-improved 
KS-PMOR methods, the maximum magnitude errors by the 
proposed FDA-PMOR method are reduced by 95.71%, 
97.35%, and 80.39%, respectively, and the maximum phase 
errors are reduced by 87.33%, 79.26%, and 47.12%, respec‐
tively.

3) The obtained PROIM accelerates the oscillatory stabili‐
ty analysis of MCFSs with eighteen paralleled CREGs and 
ninety paralleled CREGs by 4.44 and 29.31 times, respec‐
tively, while the accuracy of oscillatory stability analysis is 
maintained in both stability margin and oscillation frequen‐
cy. It is evident that, for larger MCFS with more CREGs, 
the proposed FDA-PMOR method not only preserves higher 
accuracy but also exhibits better model reduction perfor‐
mance.

According to the above discussions, the proposed FDA-
PMOR method can be used for model order reduction to 
build precise PROIMs of MCFSs with large numbers of 
CREGs. The obtained PROIMs are promising for the real-
time (or near real-time) oscillatory stability analysis of large-
scale MCFS or regional power systems with clusters of 
large-scale MCFSs.

In future work, the advanced stability criterion will be fur‐
ther investigated in combination with the obtained PROIM 
for the real-time oscillatory stability analysis of MCFS clus‐
ter based regional power systems in different grid states, 
such as the unbalanced grid and the fundamental frequency 
fluctuation.
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