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Abstract——In DC power systems dominated by power electron‐
ic devices, constant power loads (CPLs) and saturation compo‐
nents significantly impact large-signal stability. During the 
large-signal stability analysis process, the presence of multiple 
state variables and high-order system poses substantial challeng‐
es. To address this, considering the complete control dynamics, 
this paper proposes an equivalent single-machine (ESM) model 
of the droop-based DC power systems to reduce the complexity 
of the large-signal analysis. Building on the proposed ESM mod‐
el, considering the dynamics of CPL and saturation constraints, 
a region of attraction (ROA) estimation algorithm based on 
sum of squares (SOS) programming is proposed, which signifi‐
cantly reduces the conservativeness compared with other exist‐
ing methods. Furthermore, a control parameter optimization al‐
gorithm based on SOS programming is proposed with the aim 
of expanding the ROA. Furthermgre, with the aim of expand‐
ing the ROA, controller sythesis is conducted with proposed 
control parameter optimization algorithm based on SOS pro‐
gramming. Ultimately, simulation experiments validate the accu‐
racy of the proposed ESM model and the proposed ROA esti‐
mation algorithm, as well as the effectiveness of the control pa‐
rameter optimization algorithm.

Index Terms——DC power system, equivalent single-machine 
(ESM) model, large-signal stability, controller synthesis, region 
of attraction (ROA), sum of squares (SOS) programming.
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B. Control Parameters
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Proportional coefficient of voltage loop control 
for the ith converter

Current sharing coefficient of the ith converter

Droop coefficient of ESM system

Droop coefficient of the ith converter

Lower bound and upper bound of saturation part

Voltage reference of ESM system

Voltage reference of the ith converter

Rated output voltage reference

I. INTRODUCTION

THE DC power system attracts widespread attention ben‐
efiting from its friendly integration of renewable energy 

sources (RESs) [1]. In addition, it also possesses advantages 
such as high efficiency, high reliability, and simple control 
[2]. In engineering practice, due to the limitations imposed 
by the power rating of a single converter and economic con‐
siderations, the DC power system is mostly implemented by 
employing multiple power electronic converters in parallel 
through droop control [3]. This renders the DC power sys‐
tem essentially a power electronics-dominated system, exhib‐
iting multiple state variables, high system order, strong non‐
linear, low inertia, and weak damping characteristics. As a 
result, the system faces the risk of transient instability, and 
large-signal stability issues become prominent.

Firstly, because of the large number of state variables and 
high-order dynamics, the full-order model of droop-based 
DC power system is difficult to directly investigate, necessi‐
tating the application of order reduction techniques. In the 
droop-based DC power system, most studies only focus on 
the droop control loop, and represent the voltage droop con‐
trol loop as a line impedance. Then, the whole system is fur‐
ther simplified as an equivalent single-machine (ESM) RLC 
circuit system [4]. This simplification process neglects the 
voltage and current control loops, which is proven to be of 
significant importance during large disturbance transients 
[5]. Alternatively, from a frequency-domain perspective, we 
can identify the dominant dynamics components of the origi‐
nal system dynamics while neglecting other dynamics, there‐
by obtaining a corresponding reduced-order model [6]. How‐
ever, the selection of dominant dynamics lacks specific guid‐

ance, and the neglect of other dynamics also introduces a 
certain degree of conservatism.

Furthermore, the current large-signal stability analysis in 
DC power systems predominantly relies on nonlinear system 
theories such as Lyapunov’s direct method, Takagi-Sugano 
(T-S) fuzzy method, and mixed potential theory (MPT) meth‐
od, and tackles with nonlinear elements such as constant 
power loads (CPLs), saturation, and bilinear terms. However, 
when applying the Lyapunov’s direct method, the compre‐
hensive guidelines for constructing Lyapunov functions are 
lacked. In traditional power system studies, it is common to 
directly select the energy function of the system as the Ly‐
apunov function [7], which overlooks the influence of con‐
troller and saturation on stability and is challenging to adapt 
to power electronics dominated power systems. Besides, in‐
appropriately chosen Lyapunov functions can yield excessive‐
ly conservative analysis results.

Based on fuzzy rules, the nonlinear state-space matrix of 
complex DC power systems can be approximated by a 
weighted sum of a finite number of linearized steady-state 
subsystems, namely T-S fuzzy modeling. This approximation 
facilitates the application of the Lyapunov’s indirect method 
for analysis and the construction of linear matrix inequality 
(LMI) problems to solve for a quadratic Lyapunov function 
[8]. It is able to handle the system that includes saturation, 
rational, and bilinear components. Nevertheless, T-S fuzzy 
method and LMI method tend to produce conservative out‐
comes from both modeling and stability analysis steps. For 
high-order systems accompanied with intricate nonlinearities, 
the exponential growth of fuzzy rules poses challenges in T-
S fuzzy modeling, problem solving, and stability analysis.

MPT method constructs a scalar function resembling an 
energy function based on the circuit structure. When applied 
to DC power systems, the MPT method requires the equiva‐
lence of power electronic devices to controlled sources [9]. 
The key challenge lies in preserving control strategies and 
system nonlinear characteristics to the greatest extent possi‐
ble during the equivalence process, meanwhile without vio‐
lating the completeness of topology [10]. Obviously, it fails 
to account for the complete control loop and cannot handle 
the saturation parts well.

Table I shows the feature comparison of region of attrac‐
tion (ROA) estimation methods. 

TABLE I
FEATURE COMPARISON OF ROA ESTIMATION METHODS

Method

T-S fuzzy [8]

MPT [9], [10]

Lyapunov’s direct [7]

Monte Carlo

This paper

Applicable system

AC and DC power systems

Circuit system with complete 
topology

Traditional AC power system

All

AC and DC power systems

Can nonlinearity be handled?

Fractional, saturated, 
trigonometric, polynomial

-

-

-

Fractional, saturated, 
trigonometric, polynomial

Can control loop be 
fully considered?

√

×

×

√
√

Preprocess‐
ing cost

High

Medium

Medium

Low

Low

Computational 
burden

Medium

Low

Low

Very high

High

Conservatism

High

High

High

Very low

Low
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The methods mentioned above for constructing Lyapunov 
functions can only be applied to the systems with specific 
structures. The nonlinearities they can handle are limited. 
The applications of these methods do require a certain level 
of researcher knowledgement, resulting in a certain degree 
of preprocessing cost. The obtained Lyapunov functions are 
fixed and cannot fully incorporate the system control ele‐
ments into the construction process. Apart from these meth‐
ods, although the Monte Carlo method is accurate, it impos‐
es a significant computational burden. Without relying on 
the researcher knowledgement, directly searching for the can‐
didate of the Lyapunov function that satisfies the non-nega‐
tivity conditions in the Lyapunov stability theorem is an NP-
hard problem [11]. Notice that sum of squares (SOS) polyno‐
mial is semi-positive definite everywhere. Inspired by this 
property, [12] replaces the non-negativity conditions in the 
Lyapunov stability theorem with SOS polynomials, which 
makes the solving process computationally tractable through 
SOS programming. Consequently, this approach is applied to 
AC power systems for large-signal stability analysis such as 
ROA estimation [13] and low-voltage ride-through analysis 
[14]. In the case of DC power systems, the ROA of an is‐
landed DC microgrid is estimated based on SOS polynomial 
[15]. The method presented in [15] can be applied to com‐
mon power systems. It can handle various types of nonlinear‐
ities to achieve the results with lower conservativeness at an 
acceptable computational burden. However, the neglect of in‐
ner control components and the approximation of non-poly‐
nomial parts in these previous studies may introduce conser‐
vatism into the ROA estimation.

One of the common causes of large-signal instability is 
the improper design of control parameters [16]. Reasonable 
and accurate stability analysis can guide the controller de‐
sign to enlarge the stability margin. In the case of droop-
based DC power system, droop control generates the voltage 
reference, which is fed into voltage-current dual-loop control 
to generate the duty cycle signal. In practice, voltage-current 
dual-loop control parameter tuning is conducted in frequency 
domain, aiming to achieve bandwidth separation between the 
outer loop and inner loop, thus ensuring overall system dy‐
namic response [8]. Existing control parameter optimization 
studies are based on eigenvalues analysis, e. g., [17], which 
aim to optimize control parameters by ensuring that the dom‐
inant eigenvalues of the system are in the left half of the s-
plane and are far away from the imaginary axis as possible. 
Essentially, this is a small-signal stability analysis and is not 
applicable to the large-signal stability analysis when facing 
scenarios with large disturbances. To further enhance the sys‐
tem stability, the concept of virtual impedance is introduced. 
Studies in [18] propose a parallel/series virtual impedance 
control strategy to reshape the input/output impedance of the 
converter to dampen the instability of the system. Subse‐
quent studies explore the use of nonlinear control methods 
as alternatives to proportional-integral (PI) control to en‐
hance the large-signal stability of the system. A high-gain ob‐
server is designed in [19] to estimate the electrical coupling 
among subsystems, which is offset by composite controller 
based on feedback linearization. Then, the global large-sig‐

nal stability of the system is realized through stabilizing the 
internal states of subsystems. Similar ideas as “estimation-
compensation” can also be found in [20]. Compared with 
the PI controller, the above-mentioned improved controllers 
require complex design procedure, heavy computational bur‐
den, and high implementation costs. Thus, the generalization 
of the above-mentioned methods proves to be challenging. 
In contrast, the design of a PI controller with a focus on 
large-signal stability is of great practical significance, which 
is one of the focuses of this study.

The main contributions of this paper are as follows.
1) For large-signal stability analysis, considering the com‐

plete circuit-control topology, an ESM model of the droop-
based DC power systems is proposed. The proposed ESM 
model maintains consistent dynamic characteristics with the 
original system, but significantly reduces the system dimen‐
sion and the complexity of the large-signal stability analysis.

2) Considering the whole control components, the entire 
dynamics of CPL, and saturation constraints, a ROA estima‐
tion algorithm based on SOS programming is proposed. 
Compared with other existing methods, the proposed ROA 
estimation algorithm yields estimation results with lower con‐
servatism.

3) With the objective of expanding the ROA, a control pa‐
rameter optimization algorithm based on SOS programming 
is proposed. The droop-based DC system with parameter op‐
timization can withstand greater perturbations, leading to fur‐
ther improvement in large-signal stability.

The structure of this paper is organized as follows. Sec‐
tion II introduces the multi-converter equivalent modeling. 
In Section III, the ROA estimation algorithm based on SOS 
programming is presented. Section IV shows the control pa‐
rameter optimization algorithm based on SOS programming. 
Section V discusses case studies and numerical validation. 
Finally, Section VI provides the conclusions of this study.

II. MULTI-CONVERTER EQUIVALENT MODELING

In this section, considering both the droop control and 
voltage-current dual-loop control, an ESM model of the 
droop-based DC power system is developed to maintain con‐
sistent dynamic characteristics with the system. Thus, the 
large-signal stability analysis can be conducted based on the 
proposed ESM model with lower computational complexity.

For a typical droop-based DC power system, it consists of 
n DC-DC converters, which are placed in an input-parallel 
output-parallel (IPOP) form. All the loads can be regarded as 
a ZIP load, where Z denotes the constant impedance; I de‐
notes the constant current; and P denotes the constant power. 
The control structure of the droop-based DC power system 
and the proposed ESM model is shown in Fig. 1.

This study makes reasonable assumptions for the droop-
based DC power system. Furthermore, we reasonably simpli‐
fies the findings in [21] to derive a more concise ESM mod‐
el. The equivalent conversion process, including control ele‐
ments, is briefly introduced as follows. Before deriving the 
more concise ESM model, the necessary assumptions are 
presented as:
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Assumption 1: the line resistance is far less than the virtu‐
al resistance introduced by the droop control. Thus, the total 
output current of the droop-based DC power system is 
shared by each converter in proportion to their reciprocals of 
the droop coefficients [22].

Assumption 2: the value of Ci is designed under the guide‐
lines in [23] according to the rated output current Ioi, output 
voltage ripple Dv, and switch frequency fi.

Ci =
Ioi

fiDv (1)

Assumption 3: the control parameters of voltage-current 
dual-loop control are designed as the widely-used guideline 
in [24].

Kcpi

Li

=
Kcpi + 1

Li + 1
(2)

For the IPOP form, the equivalent filter inductance and ca‐
pacitance can be conducted as (3) and (4), respectively.

L =
1

∑
i = 1

n 1
Li

(3)

C =∑
i = 1

n

Ci (4)

It is worth mentioning that the variables of the proposed 
ESM model correspond to those of the EMS system. Consid‐
ering the control structure of current control loop of the 
droop-based DC power system and the proposed ESM mod‐
el, combined with Assumptions 1 and 2, and taking into ac‐
count the current distribution effect achieved by the droop 
control, the following equation holds:

Kcp (iref
L - iL )

L
=∑

i = 1

n Kcpi pi (i
ref
L - iL )

Li

(5)

Notice that iLi = piiL can be got approximately and 

∑
i = 1

n

pi = 1 is satisfied apparently.

The proportional coefficient of the current control loop in 
the proposed ESM model can be calculated as:

Kcp = L∑
i = 1

n Kcpi pi

Li
(6)

Considering the voltage control loop of the ith converter, 
the inductance current reference can be generated as:

iref
Li =Kpi (v

ref
oi - voi )+Kii∫(vref

oi - voi )dt (7)

The current reference of the proposed ESM model can be 
generated as:

iref
L =Kp (vref

o - vo )+Ki∫(vref
o - vo )dt (8)

By replacing the inductance current reference in (5) with 
(7) and (8), and then eliminating the inductance current 
terms by substituting (6), it can be found that there is a one-
to-one correspondence between the proportional part and in‐
tegral part of the droop-based DC power system and the pro‐
posed ESM model.

Kcp Kp (vref
o - vo )

L
=∑

i = 1

n Kcpi Kpi (v
ref
oi - voi )

Li

(9)

Kcp Ki∫(vref
o - vo )dt

L
=∑

i = 1

n Kcpi Kii∫(vref
oi - voi )dt

Li

(10)

For the IPOP form, the input voltage, the output voltage 
of the proposed ESM model, and the output voltage of the 
ith converter are identical, respectively. Thus, the equivalent 
control parameters of the voltage control loop for the pro‐
posed ESM model can be derived as:

Kp =
∑
i = 1

n Kcpi Kpi

Li

∑
i = 1

n Kcpi pi

Li

(11)

Ki =
∑
i = 1

n Kcpi Kii

Li

∑
i = 1

n Kcpi pi

Li

(12)

Since the design of control parameters follows the instruc‐
tion mentioned in Assumption 2, the relationship between 
proportional coefficients of different converters, which is 
shown in Assumption 3 as (2), is used to simplify (11) 
and (12).

Kp =∑
i = 1

n

Kpi (13)

Ki =∑
i = 1

n

Kii (14)

Finally, when considering the droop control of the ith con‐
verter, under Assumptions 1, the output power of each con‐
verter is inversely proportional to the droop coefficient ri.

ri =
r
pi

(15)

There are n DC-DC converters working together to supply 
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Fig. 1.　Control structure. (a) Droop-based DC power system. (b) Proposed 
ESM model.
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the various loads, which can be regarded as one common 
ZIP load [25].

io =∑
i = 0

n

ioi =
vo

R
+ IC +

P
vo

(16)

Hereinbefore, the proposed ESM model of the droop-
based DC power system with n DC-DC converters is given 
as follows.

For the circuit part, voltage source is thought to be ideal 
and disturbance can be neglected, which means that vs =Vs.

ì

í

î

ï
ïï
ï

ï
ïï
ï

L
diL

dt
= dVs - vo

C
dvo

dt
= iL -

vo

R
- Ic -

P
vo

(17)

For the control part, combining (6) with (13)-(15), we can 
obtain that:

d =Kcp

ì
í
î

ïï
ïï

Kp

é

ë

ê
êê
ê ù

û

ú
úú
úV ref - r ( )vo

R
+ IC +

P
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- vo +

ü
ý
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ïï
ïï

Ki∫ é

ë

ê
êê
ê ù

û

ú
úú
úV ref - r ( )vo

R
+ IC +

P
vo

- vo dt - iL (18)

Specially, the integral term in (18) is listed individually as 
a new state variable ξ with dynamics as:

dξ
dt

=V ref - r ( vo

R
+ IC +

P
vo ) - vo (19)

Furthermore, the state variables in (16)-(19) are described 
in a form of x =X + x̂, where x is the real value; X is the con‐
stant term in the stable state; and x̂ is the disturbance term. 
Rewrite (18) by using the new state variable ξ and substitute 
it into (17). Then, eliminate the identity terms on both sides 
of the equation. Finally, the large-signal model of the ESM 
system is shown in (20).

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

dîL

dt
=-v̂o +Vs sat(d̂)

dv̂o

dt
=

P
CVo

-
P

C(Vo + v̂o )
+

îL

C
-

v̂o

CR

dζ̂
dt

=
rP
Vo

-
rP

Vo + v̂o

- ( )1 +
r
R

v̂o

(20)

In the practical modulation of the duty cycle d, there ex‐
ists a saturation, which limits d to be in the range of [0,1], 
thereby bringing in saturated nonlinearity. After the coordi‐
nate transformation, the control input can be given as:

d̂ =-Kcp Kp

é

ë

ê
êê
ê ù

û

ú
úú
ú( )1 +

r
R

v̂o - ( )rP
Vo

-
rP

Vo + v̂o

+Kcp Ki ξ̂ -KcpîL

(21)

The saturation in the large-signal model is:

sat(d̂)=

ì

í

î

ï

ï
ïïï

ï

ï

ï

ï

ï
ïïï
ï

ï

ï

-
Vo

Vs

            d̂ <-
Vo

Vs

d̂                    -
Vo

Vs

£ d̂ £ 1 -
Vo

Vs

1 -
Vo

Vs

        d̂ > 1 -
Vo

Vs

(22)

It should be pointed out that the value of Vo is derived by 
solving the expression of (17) in the stable state.

Vo =
(V ref - rIC )+ (rIC -V ref )2 - 4rP ( )1 +

r
R

2 ( )1 +
r
R

(23)

Based on (20), we can observe that the CPL and duty cy‐
cle saturation mainly introduce the nonlinear term into the 
droop-based DC power system. This term is discussed in 
Section III.

III. PROPOSED ROA ESTIMATION ALGORITHM BASED ON 
SOS PROGRAMMING

The level set of the Lyapunov function serves as an inner 
estimation of the ROA for the corresponding ESM system 
[26]. To obtain the largest estimated ROA of the ESM sys‐
tem, a proper Lyapunov function must be found, and its up‐
per level set must be optimized to satisfy the constraints of 
the Lyapunov theorem. This section focuses on ESM sys‐
tems in the form of (20) and presents the proposed ROA esti‐
mation algorithm based on SOS programming [27].

Referring to (20), we can consider an ESM system in a 
general form, which can be given as:

ẋ = f0 (x)+ g(x)·sat (u0 (x)) (24)

where x is a vector composed of the all elements x, xÎRn; 
u0 (x)ÎRn; g(x) is a multivariable polynomial function; and 
f0 (x) and u0 (x) are the polynomial rational functions in n 
variables x with coefficients in Rn.

Specially, the system in (20) has the same polynomial 
dominator, which is indicated by h(x). The numerator part of 
f0 (x) and u0 (x) are polynomial and expressed as f (x) and 
u(x), respectively, where u(x)=[u1 (x)00]. Then, (24) can 
be transformed as:

ẋ =
f (x)
h(x)

+ g(x)·sat ( u(x)
h(x) ) (25)

sat ( )u(x)
h(x)

=

ì

í

î

ï

ï
ïïï
ï

ï

ï

ï

ï
ïïï
ï

ï

ï

ulow          
u1 (x)
h(x)

> |ulow|

u(x)
h(x)

        |ulow| £
u1 (x)
h(x)

£ |uup|

uup           
u1 (x)
h(x)

> |uup|

(26)

In this paper, we choose the expanding interior algorithm 
to conduct the proposed ROA estimation algorithm based on 
SOS programming. The detailed introduction can be found 
in [28]. In this section, it is improved to be applicable to  
ESM systems in the form of (25).

The expanding interior algorithm contains a series of set 
inclusion relationships. Instead of optimizing both the level 
set and Lyapunov function, the level set is fixed at 1 in this 
algorithm. We define Ω as the estimated ROA by using an  
unknown Lyapunov function V (x)ÎRn with the fixed level 
set to be 1, where Rn denotes the set of polynomial func‐
tions consisting of n variables.
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Ω ={xÎRn|V (x)£ 1} (27)

The unknown V (x) is updated during each iteration until 
the optimization variable converges.

The interior of ROA to be estimated is described by a 
polynomial shape function p(x) and level set β, which is de‐
fined as:

P ={xÎRn|p(x)£ β} (28)

The proposed ROA estimation algorithm can be summa‐
rized as the solution of the following optimization problem.

ì

í

î

ïïïï

ïïïï

max β

s.t.  PÍΩ

       ΩÍ{xÎRn|V̇ < 0}
(29)

where V̇ =
¶V
¶x ( f (x)

h(x)
+ g(x)

u(x)
h(x) ).

However, the expanding interior algorithm is designed for 
pure polynomial system, which is not suitable for the system 
we studied with saturation and rational parts. Besides, the 
shape function is fixed, resulting in a single optimization di‐
rection [29]. Thus, an extended form of conditions in (29) is 
given to cope with the special system form in this paper. 
Then, a procedure for updating shape function is added to re‐
duce the conservatism problem introduced by the fixed 
shape function.

Firstly, we carry out the form transformation. Lyapunov 
stability theorem requires that Lyapunov function is positive 
definite in its domain. For simplicity, we choose the V (x), 
which is positive definite for all xÎRn except x = 0. For sat‐
uration part, the upper and lower bounds of u0 (x) are sepa‐
rately presented as the inclusion of sets. Then, a feasible 
V (x) for the proposed ROA estimation algorithm of the sys‐
tem in (25) requires that the following constraints hold:

ì
í
î

V (x)= 0       xÎRn \{ }0

V (0)= 0
(30a)

PÍΩ (30b)

Ω\{0} Í{xÎRn|V̇ < 0} (30c)

Ω\{0} Í
ì
í
î

xÎRn
|

|
|
||
| u1 (x)

h(x)
£ |uup|

ü
ý
þ

(30d)

Ω\{0} Í
ì
í
î

ü
ý
þ

xÎRn
|

|
|
||
| u1 (x)

h(x)
³ |ulow| (30e)

However, the system in (25) is not a polynomial system 
and cannot be directly addressed by SOS programming. 
Thus, for the rational part, we multiply h2 (x) on both sides 
of (30c) - (30e) to perform an equivalent transformation on 
the original constraints, as shown in (31).

ì

í

î

ïïïï

ï
ïï
ï

D\{ }0 Í{xÎRn|V̇h2 (x)< 0}

D\{ }0 Í{xÎRn|u1 (x)h(x)- |uup|h
2 (x)£ 0}

D\{ }0 Í{xÎRn| - u1 (x)h(x)+ |ulow|h2 (x)£ 0}

(31)

According to the Positivstellensatz theorem [30], with a 
feasible set of auxiliary SOS polynomials si, the set con‐
straints (30a) - (30b) and (31) are converted to con‐

straints (32).

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïïï
ï

ï

ï

V - l1ÎΣn

-s1 (β - p)- (V - 1)ÎΣn

-s2 (1 -V )- s3V̇h2 - l2ÎΣn

-s4 (1 -V )- (-|uup|h
2 + u1h)ÎΣn

-s5 (1 -V )- (|ulow|h2 - u1h)ÎΣn

(32)

During this conversion, we drop the term x in the expres‐
sion for simplicity. The constraints of the set D\{0} are not 
semi-algebraic and are replaced with l1 ¹ 0 and l2 ¹ 0, where 
l1l2ÎΣn.

The SOS optimization problem for the largest estimated 
ROA is expressed as:

ì
í
î

ïï
ïï

max
VÎRns1s2s3s4s5ÎΣn

 β

s.t.  (32)
(33)

Then, we give the process on design of the improved ex‐
panding interior algorithm. Notice that in (32), the con‐
straints are bilinear in si and V, which cannot be solved di‐
rectly. Drawn on the general idea of coordinate-wise method 
[31], the SOS optimization problem is separated into two 
main subproblems. The SOS programming in the first sub‐
problem is modified for ease of solving, as shown in (34). A 
detailed explanation of this modification will be given later.

ì

í

î

ïïïï

ï
ïï
ï

-s2 (α -V )- s3V̇h2 - l2ÎΣn

-s4 (α -V )- (-|uup|h
2 + u1h)ÎΣn

-s5 (α -V )- (|ulow|h2 - u1h)ÎΣn

(34)

Denote z as the number of iterations. With the number of 
iterations indicated in the superscript, the flowchart of the 
improved expanding interior algorithm is shown in Fig. 2. 

The main steps of the improved expanding interior algo‐
rithm are given as follows.

Step 1: initialize Lyapunov function V (0) from the linear‐
ized system through using Lyapunov’s indirect method and 

Initialize V(0), p(0), z=0

Fix V(z) and p(z) and do line search on α(z) for s
2
(z), s

3
(z), s

4
(z), s

5
(z) in (35)

Fix s
2
(z), s

3
(z), s

4
(z), s

5
(z),  p(z) and do line search on β(z+1) for V(z+1) in (36)

Estimated ROA is {x�Rn|V(z+1)(x)≤1}

End

Start

Y

N

Rescale s
4
(z)=s

4
(z)/α(z), s

5
(z)=s

5
(z)/α(z), l2=l2/α

(z)

Update p(z) with V(z)/α(z)

|β(z+1)�β(z)|<εs?

z=z+1

Fig. 2.　Flow chart of improved expanding interior algorithm.
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initialize shape function p(0)=V (0). Given the auxiliary polyno‐
mials l1 and l (z)

2 , set the degrees of V and si to be solved, and 
set the tolerance εs. Start the improved expanding interior al‐
gorithm with β(0)= 0 at z = 0.

Step 2: fix V =V (z) and p = p(z). Do line search on α(z) for 
feasible s(z)

2 -s(z)
5 . 

Step 3: record α(z)= α and update auxiliary SOS polynomi‐
als s(z)

2 = s2, s
(z)
2 = s2, s

(z)
4 = s4, s

(z)
5 = s5 in (35).

ì
í
î

ïï

ïï

max
s2s3s4s5ÎΣn

 α

s.t.  ( )34
(35)

Step 4: update l (z + 1)
2 = l (z)

2 /α(z), and rescale s(z)
4 , s(z)

5  with α(z)s(z)
4  

and α(z)s(z)
5 .

Step 5: update p( )z  with V (z) /α(z).
Step 6: fix p = p( )z , s(z)

2 = s2, s(z)
2 = s2, s(z)

4 = s4, s(z)
5 = s5, and l2 =

l (z)
2  and do line search on β for feasible s1 and V. In addition, 

record β(z + 1)= β and update Lyapunov function V (z + 1)=V.

ì
í
î

ïï

ïï

max
VÎRns1ÎΣn

 β

s.t.  ( )32
(36)

Step 7: if |β(z + 1)- β(z)| £ εs, then end the iteration; otherwise, 
z = z + 1 and go to Step 2.

Each step has a specific task as follows. Step 1 is the ini‐
tialization for the whole improved expanding interior algo‐
rithm. Step 2 generates partial auxiliary SOS polynomials 
for next steps. Since the fixed level set 1 may results in the 
same solution, an intermediate optimization parameter α is 
introduced. Step 3 rescales the polynomials from Step 2 to 
accommodate with the constraints in next steps with level 
set 1. Step 4 updates shape function with the current Lyapu‐
nov function to avoid conservatism problems caused by im‐
proper selection of the shape function [29]. Besides, it also 
ensures the estimated ROA continues to expand. Step 5 
searches for the Lyapunov function candidate based on the 
results from Steps 2-4. The optimization subproblems in Step 
2 and Step 5 are both quasi-convex problems. In this paper, 
bisection method is used for the line search. It makes sure 
the optimum can be computed [32], thereby guaranteeing the 
effectiveness and convergence of the proposed ROA estima‐
tion algorithm.

IV. CONTROL PARAMETER OPTIMIZATION ALGORITHM 
BASED ON SOS PROGRAMMING

For the studied system in (20), with the introduction of 
new state variable ξ, control input u0 has a form as polyno‐
mial rational function. The detailed expression for u1 corre‐
sponding to the system in (20) in the form of (25) is given as:

u1 =-KcpVoîL + ( )rKcp Kp P

Vo

-Kcp KpVo -
rKcp KpVo

R
v̂o +

Kcp KiVo ξ̂ -KcpîL v̂o + ( )-Kcp Kp -
rKcp Kp

R
v̂2

o +Kcp Kiv̂o ξ̂

 (37)

In (37), îL, v̂o, ξ̂, îL v̂o, v̂
2
o, and v̂o ξ̂ are the specific monomi‐

als. This form of polynomial can be searched during the opti‐
mization and enlarge the set of points that are attracted to 

the equilibrium. By one-to-one correspondence between the 
polynomial coefficients obtained after optimization and the 
original expression, the optimized control parameters can be 
obtained.

For control parameter optimization, note that the form of 
the original optimization problem remains unchanged, except 
that u1 is added as a decision variable.

ì
í
î

ïï
ïï

max
Vu1ÎRns1s2s3s4s5ÎΣn

 β

s.t.  (32)
(38)

A tri-linear term exists in s3V̇h2 (x) in (32), which expands 

as s3
é
ë
êêêê ù

û
úúúú¶V

¶x
( fh + guh) . To deal with the tri-linear term, a con‐

trol parameter optimization algorithm is designed. The main 
structure of the control parameter optimization algorithm is 
an internal controller synthesis iteration nested in the exter‐
nal Lyapunov function synthesis iteration. This makes the un‐
known polynomials all appear affine linear in the con‐
straints, so the SOS programming can be done to find the 
feasible solution. Denote j and k as the number of external it‐
erations and the internal iterations, respectively. With the 
number of iterations indicated in the superscript, the main 
steps of the control parameter optimization algorithm are giv‐
en as follows.

Step 1: firstly, initialize Lyapunov function V (0) from lin‐
earized system by using Lyapunov indirect method. Then, 
initialize shape function p(0)=V (0). Then, initialize u(0)

1  with 
control parameters from traditional method such as Bode 
plot or control bandwidth design, making sure the close-loop 
stability of the linearized system. Then, specify the auxiliary 
polynomials l1 and l j

2. For V and si to be solved, set the de‐
grees. For u to be solved, set its degree to be 2. In addition, 
set the tolerance εC and εL for the controller synthesis itera‐
tion and Lyapunov function synthesis iteration, respectively. 
Finally, start the control parameter optimization algorithm 
with α(0)= 0 and β(0)= 0 at j = 0 and k = 0.

The controller synthesis iteration is given as:
Step 2-1: fix V =V ( j), p = p( j), u1 = u(k)

1 , and l2 = l ( j)
2  and do 

line on α(k + 1) for feasible s(k)
2 -s(k)

5  in (39). In addition, update 
the auxiliary SOS polynomial s(k)

3 = s3.

ì
í
î

ïï
ïï

max
s2s3s4s5ÎΣn

 α

s.t.  (34)
(39)

Step 2-2: fix V =V ( j), p = p( j), s3 = s(k)
3 , and l2 = l ( j)

2  and do 
line search on α(k + 1) for u(k + 1) in (40). In addition, record 
α(k + 1)= α and update u(k + 1)

1 = u1.

ì
í
î

ïï
ïï

max 
u1ÎRns2s4s5ÎΣn

 α

s.t.  (34)
(40)

Step 2-3: if |α(k + 1)- α(k)| £ εC, go to the Lyapunov function 
synthesis procedure; otherwise, set k = k + 1 and go to Step 2-
1 to continue the controller synthesis iteration. After the con‐
troller synthesis iteration converges within the tolerance, the 
Lyapunov function synthesis iteration is carried out.

Step 3-1: fix V =V ( j), p = p( j), u1 = u(k + 1)
1 , and l2 = l ( j)

2  and do 
line search on α for s2-s5 in (41). Update s( j + 1)

2 = s2, s( j + 1)
3 = s3, 

s( j)
4 = s4, and s( j)

5 = s5. Then, set r ( j)
s = α.
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ì
í
î

ïï
ïï

max
s2s3s4s5ÎΣn

 α

s.t.  (34)
(41)

Step 3-2: rescale the auxiliary SOS polynomials: s( j + 1)
4 =

r ( j)
s s( j)

4 , s( j + 1)
5 = r ( j)

s s( j)
5 , and l ( j + 1)

2 = l ( j)
2 /r ( j)

s .
Step 3-3: fix p = p( j), u1 = u(k + 1)

1 , s2 = s( j + 1)
2  and l2 = l ( j + 1)

2  and 
do line search on β for V ( j + 1) in (42). Then, record β( j + 1)= β 
and update V ( j + 1)=V.

ì
í
î

ïï
ïï

max
VÎRns1ÎΣn

 β

s.t.  (32)
(42)

Step 3-4: update p( j + 1)=V ( j + 1);
Step 3-5: if the variation of β converges and satisfies the 

tolerance setting, then end the iteration; otherwise, set 
j = j + 1 and go to controller synthesis iteration again.

For the controller synthesis iteration, α is introduced. Step 
1 generates the auxiliary SOS polynomials for the next step. 
Step 2-2 searches for a feasible u to enlarge the level set of 
fixed Lyapunov function. When the iteration converges and 
the level set is expanded to εC, a new Lyapunov function is 
needed. Then, go to the Lyapunov function synthesis itera‐
tion. In this iteration, u1 is fixed. The auxiliary polynomials 
is re-evaluated in Step 3-1. Then, it is rescaled in Step 3-2 to 
for next steps with fixed level set 1. In Step 3-3, a new Ly‐
apunov function is constructed for estimating ROA with opti‐
mized u1. The flowchart of control parameter optimization al‐
gorithm is shown in Fig. 3.

Similarly, the whole optimization problem consists of sev‐
eral quasi-convex optimization subproblems. Its optimum 
can be solved by the control parameter optimization algo‐
rithm proposed in this paper effectively. The validity and 
convergence proof of this algorithm are the same as the im‐
proved expanding interior algorithm.

With the composition of u1 specified in advance, the re‐
sult of optimized u1opt after running the control parameter 
optimization algorithm is guaranteed in a form as:

u1opt = k1 îL + k2 v̂o + k3 îL v̂o + k4 v̂2
o + k5 ξ̂ + k6 v̂o ξ̂ (43)

By checking (43) against (37), the optimized control pa‐
rameters (adding opt in the subscript to distinguish new ones 
from the original variables) are calculated reversely as:

ì

í

î

ï
ïï
ï
ï
ï

ï

ï
ïï
ï

ï

Kcpopt =-k3

Kpopt =-
(k2 - k4Vo )Vo

rk3 P

Kiopt =-
k6

k3

(44)

Up to this point, the entire control parameter optimization 
process is completed.

V. CASE STUDIES AND NUMERICAL VALIDATION

In this section, a droop-based DC power system with 2 
paralleled DC-DC converters is considered as a case to vali‐
date the effectiveness of the proposed ESM model, the pro‐
posed ROA estimation algorithm, and controller parameter 
optimization algorithm.

The parameters of the original system are listed in Table 
II. All the parameters are designed referring to the guidelines 
for DC-DC converters mentioned in [8] and [23]. Thus, the 
assumptions of the proposed ESM model are satisfied auto‐
matically. Parameters of the ESM system are derived and 
listed in Table III.

Y

|β( j+1)�β( j)|<εL?

Fix V=V( j), p=p( j), u1=u(k), and l2=l
2
( j) and do line 

search on α(k+1) for s
2
(k)-s

5
(k) in (39)

Fix V=V( j),  p=p( j), l2=l
2
( j), and s3=s

3
(k) and do line search 

on α(k+1) for u(k+1), s
2
(k+1), s

4
(k+1), s

5
(k+1) in (40)

Rescale auxiliary SOS polynomials: s
4
( j+1)=rs

( j)s
4
( j), 

s
5
( j+1)=rs

( j)s
5
( j), and l

2
( j+1)=l

2
( j)/rs

( j)

 

Fix p=p( j), u1=u( j+1), s2=s
2
( j+1), s3=s

3
( j+1), s4=s

4
( j+1), s5=s

5
( j+1), 

and l2=l
2
( j+1) and do line search on β( j+1) for V( j+1) in (42)

Update p( j+1)=V( j+1)

 

Optimized controller is u(k+1)

N

Fix V=V( j), p=p( j), u1=u(k+1), and l2=l
2
( j) and do line search 

on α for s
2
( j+1), s

3
( j+1), s

4
( j), and s

5
( j) in (41). Set rs

( j)=α

Y

Initialize k=0

Start

Initialize V(0), p(0), u(0), l
2
(0), α(0)=0, β(0)=0, εC, εL, j=0

|α(i+1)�α(k)|<εC?

k=k+1

End

j=j+1

N

1

1

1

1

1

1

Fig. 3.　Flowchart of control parameter optimization algorithm.

TABLE II
PARAMETERS OF ORIGIANAL SYSTEM

Parts of studied system

Parts of studied system

Load

DC-DC converter 1

DC-DC converter 2

Parameter

Vs

V ref

R

P

IC

L1

C1

r1

Kvp1

Kvi1

Kcp1

L2

C2

r2

Kvp2

Kvi2

Kcp2

Value

800 V

400 V

40 Ω

5 kW

10 A

6 mH

0.45 mF

0.0533 V/A

0.1414 A/V

4.4414 A/(V·s)

0.0079 V/A

2 mH

0.15 mF

0.1600 V/A

0.0471 A/V

1.4805 A/(V·s)

0.0236 V/A
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The computation is carried out on an IntelR CoreTM i5-
1135G7, 2.40 GHz, 4-cores, 16 GB RAM, MATLAB/Simu‐
link 2019a environment.

Figure 4 shows the comparison of transient process wave‐
forms. Regardless of the transient process, steady-state wave‐
form or instability waveform, the waveforms of the original 
system and the ESM system exhibit highly consistent dynam‐
ic characteristics. This indicates that the original system and 
its ESM system have the same transient stability. This result 
verifies the effectiveness of the proposed ESM model and in‐
dicates that subsequent large-signal stability analysis can be 
carried out based on the ESM system.

Secondly, to demonstrate the advancement of the proposed 
ESM model, this paper uses the ROA obtained by the T-S 
fuzzy method for comparison. This is because the T-S fuzzy 
method can effectively handle the rational components and 
saturation parts in the original system, while other methods 
or models are not good at these nonlinear parts. At the same 
time, to verify the accuracy of the proposed ESM model, the 
real ROA is obtained through Monte Carlo method. Compari‐

son of ROAs obtained by various methods are shown in 
Fig. 5.

As shown in Fig. 5(a), under the premise of satisfying the 
upper and lower bounds, the results obtained by the pro‐
posed ESM model completely encompass the results ob‐
tained by the T-S fuzzy method. Since the true ROA is ob‐
tained through the Monte Carlo method, it is difficult to pres‐
ent it intuitively in a 3D view. Therefore, the estimated re‐
sults and the true attraction domain are projected onto differ‐
ent îL-v̂o planes for direct comparison. Obviously, the pro‐
posed ESM model obtains a less conservative ROA estima‐
tion result. It is close to the real ROA within a certain range 
and, simultaneously, satisfies the saturation constraints.

Finally, the control parameters are tuned by the control pa‐
rameter optimization algorithm, as shown in Table IV.

The T-S fuzzy method only provides a qualitative assess‐
ment of the impact of a single parameter on the large-signal 
stability of the system, which is not suitable for comprehen‐

TABLE IV
OPTIMIZED CONTROL PARAMETERS

Module

ESM system

DC-DC converters 1 and 2

Parameter

Kvp

Kvi

Kcp

Kvp1

Kvp2

Kvi1

Kvi2

Kcp1

Kcp2

Value

0.5262 A/V

12.0782 A/(V·s)

0.0054 V/A

0.3947 A/V

0.1316 A/V

9.0587 A/(V·s)

3.0196 A/(V·s)

0.0014 V/A

0.0041 V/A

TABLE III
PARAMETERS OF ESM SYSTEM

Parameter

Vs

V ref

L

C

r

Kvp

Kvi

Kcp

Value

800 V

400 V

1.5 mH

0.6 mF

0.0400 V/A

0.1885 A/V

5.9218 A/(V·s)

0.0118 V/A
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Fig. 5.　Comparison of ROAs obtained by various methods. (a) 3D view. 
(b) îL-v̂o plane at ξ̂ = 0. (c) îL-v̂o plane at ξ̂ = 2. (d) îL-v̂o plane at ξ̂ =-2.
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Fig. 4.　 Comparison of transient process waveforms. (a) 2 kW resistive 
load increase. (b) 2.5 kW CPL increase. (c) 20 V voltage sag. (d) 100 V 
voltage sag.
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sive controller synthesis. Thus, we compare the conventional 
design algorithm with the control parameter optimization al‐
gorithm in this paper.

The comparison of the ROA with and without optimiza‐
tion is shown in Fig. 6. It is worth noting that with and with‐
out optimization in Fig. 6 mean with and without the control 
parameter optimization algorithm proposed in this paper, re‐
spectively. The ROA of the ESM system has certain expan‐
sions in both the îL-axis and v̂o-axis directions and complete‐
ly encompasses the ROA without optimization. Furthermore, 
as shown in Fig. 6(b) - (d), the true ROA calculated by the 
Monte Carlo method also verifies this conclusion, indicating 
that the control parameter optimization algorithm effectively 
improves the system ROA, thereby enhancing the large-sig‐
nal stability of the system.

During the implementation of the control parameter opti‐
mization algorithm, SOS programming can only solve prob‐
lems of moderate scale [33]. To enhance the efficiency of so‐
lution-seeking process, users should simplify or decompose 
the research object reasonably. Alternatively, users can em‐
ploy more efficient SOS algorithms such as the dominant 
sum of squares (DSOSs) and the scaled diagonally dominant 
sum of squares (SDSOSs) [34].

To further demonstrate the practical effect of control pa‐
rameter optimization algorithm, a comparison experiment is 
designed using MATLAB/Simulink. One set of the system 
control parameters is designed using PI control, as shown in 

Table II, while the other set uses the optimized control pa‐
rameters obtained by the control parameter optimization algo‐
rithm, as shown in Table IV. The results are depicted in 
Fig. 7.

At t = 0.05 s, a 25 V voltage sag lasting for 10 ms occurs. 
During the transient process, both voltage waveforms with 
and without optimization begin to oscillate. After the voltage 
sag occurs, the waveform with optimization returns to a 
steady state. In contrast, the amplitude of the waveform with‐
out optimization increases gradually, becomes unstable, and 
then enters a constant amplitude oscillation state. This com‐
parison result indicates that the control parameter optimiza‐
tion algorithm does effectively expand the system ROA and 
enhance the large-signal stability of the system when facing 
external disturbances.

VI. CONCLUSION

A novel SOS programming for analyzing and enhancing 
the large-signal stability of the droop-based DC power sys‐
tem with saturation constraints is proposed in this paper. The 
proposed ESM model including the inner-control loops is de‐
veloped. Considering the nonlinear dynamics of CPL and sat‐
uration constraints, an ROA estimation algorithm is de‐
signed. The proposed ROA estimation algorithm aims to find 
an appropriate Lyapunov function and maximize its level set 
to estimate the ROA based on SOS programming. The re‐
sults demonstrate that the proposed ROA estimation algo‐
rithm provides a more accurate estimation of the ROA com‐
pared with other existing methods. Furthermore, a control pa‐
rameter optimization algorithm is proposed based on SOS 
programming, which expands the ROA, thereby enhancing 
the large-signal stability of the droop-based DC power sys‐
tem. The experiment results show the effectiveness of the 
control parameter optimization algorithm. 

Given that the large-signal stability analysis and control 
parameter optimization algorithm proposed in this paper re‐
tain the commonly used voltage-current dual-loop control 
structure of droop-based DC power systems, they are practi‐
cal and thus have certain real-world significance and engi‐
neering application value. Furthermore, the proposed ESM 
model can be widely applied to various types of converters 
such as boost converters and single-phase AC-DC convert‐
ers. It can also be applied to different converter topologies 
such as cascaded and parallel configurations. The SOS pro‐
gramming can also be further combined with nonlinear theo‐
ry to develop the prescribed performance or robust nonlinear 
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controllers, further enhancing the disturbance rejection capa‐
bility of the system.
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