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Abstract——The increasing penetration of renewable energy re‐
sources degrades the frequency stability of power systems. The 
present work addresses this issue by proposing a look-ahead dis‐
patch model of power systems based on a linear alternating cur‐
rent optimal power flow framework with nonlinear frequency 
constraints. Meanwhile, the poor efficiency for solving this for‐
mulation is addressed by introducing a physics-informed neural 
network (PINN) to predict key frequency-control parameter val‐
ues accurately. The PINN ensures that the learned results are 
applicable to the original physical frequency dynamics model, 
and applying the predicted parameter values enables the result‐
ing dispatch model to be solved quickly and efficiently using 
readily available commercial solvers. The feasibility and advan‐
tages of the proposed model are demonstrated by the results of 
numerical computations applied to a modified IEEE 118-bus 
test system.

Index Terms——Frequency stability, physics-informed neural 
network, optimal power flow (OPF), loss function, frequency 
constraint, look-ahead dispatch.

NOMENCLATURE

A. Indices and Sets
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i
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ΩPV
i  ΩESS

i  
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Set of thermal generators connected at bus i

Set of wind farms connected at bus i

Sets of photovoltaic (PV) stations and energy 
storage stations (ESSs) connected at bus i

Set of transmission lines associated with 
node i

ESS index (1 to total ESSs NESS)
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nij
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B. Parameters

α1, α2, 
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Dfmax

Dfss 
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Cg

C reserve
g

C reserve
w

C reserve
es

C reserve
pv

D

E max
es E min

es  

Fg 

f0

GijBij 

gijbij

Hgt

Thermal generator indexes (1 to total genera‐
tors NG)

Number of training data points (1 to total 
points M)

Bus node index (1 to total buses Nn)

PV station index (1 to total PV stations NPV)

Time index (1 to full period T)

Wind farm index (1 to total wind farms NW)

Corresponding weights applied to each of 
above-defined penalty terms

The maximum allowable frequency deviation

The maximum allowable steady-state frequen‐
cy deviation

Imaginary power disturbance

Scheduling time interval

The maximum and minimum values of phase 
angle difference between node i and node j

Charge and discharge efficiencies of ESS es

Variable operation cost of thermal generator g

Flexible reserve cost of thermal generator g

Flexible reserve cost of wind farm w

Flexible reserve cost of ESS es

Flexible reserve cost of PV station pv

Damping factor

Upper and lower state of charge (SoC) 
bounds of ESS es

Fraction of power generated by thermal gen‐
erator g

Nominal frequency

Real and imaginary parts of Yij in admittance 
matrix

Conductance and susceptance of branch ij

Virtual inertia of thermal generator g at time t
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C. Variables

θi

θij 

Ctotal

Eest

Ft

Ht

Hest

Hwt

Hpvt

Upper and lower virtual inertia bounds of 
wind farm w

Upper and lower virtual inertia bounds of PV 
station pv

Upper and lower virtual inertia bounds of 
ESS es

Mechanical power gain factor

The maximum and minimum active power 
outputs of thermal generator g at time t

Active and reactive load demands d at node i

Historical power output of wind farm w at 
time t

Historical power output of PV station pv at 
time t

Upper charge/discharge power bound of ESS 
es at time t

The maximum and minimum reactive power 
outputs of thermal generator g

Governor regulation constant

Governor regulation constant of thermal gen‐
erator g

Hourly ramp up and down capacities of ther‐
mal generator g

Upper and lower droop coefficient bounds of 
wind farm w

Upper and lower droop coefficient bounds of 
PV station pv

Upper and lower droop coefficient bounds of 
ESS es

Capacity of transmission line between node i 
and node j

Reheat time constant

Time to reach the lowest frequency

The maximum and minimum voltage ampli‐
tudes at node i

Values of v and θ in basic case

Actual value of the mth data point

Estimated value of the mth data point

Voltage angle at node i

Phase angle difference between node i and 
node j

System total operation cost

SoC of ESS es at time t

System-equivalent turbine parameter at time t

System-equivalent inertia constant at time t

Virtual inertia of ESS es at time t

Virtual inertia of wind farm w at time t

Virtual inertia of PV station pv at time t

LC
estL

D
est 

Lest

Lunn
ij , Ldmm

ij
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ij

P loss
ij Qloss

ij  

PgQg 

PiQi

PijQij 

P reserve
gt  

P reserve
wt

P reserve
pvt
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PwtPpvt 

Pest

Qappro
ij

Rt 

Rest

Rwt

Rpvt

vivj

Charge and discharge power losses of ESS es 
at time t

Power loss of ESS es at time t

Intermediate variables

Linear approximation of active power flow

Active and reactive power losses of branch ij

Active and reactive power outputs of thermal 
generator g

Active and reactive power injections at bus i

Active and reactive power flows from bus i 
to bus j

Backup power of thermal generator g at time 
t

Backup power of wind farm w at time t

Backup power of PV station pv at time t

Backup power of ESS es at time t

Power outputs of wind farm w and PV sta‐
tion pv at time t

Power output of ESS es at time t

Linear approximation of reactive power flow

System-equivalent governor regulation con‐
stant at time t

Droop coefficient of ESS es at time t

Droop coefficient of wind farm w at time t

Droop coefficient of PV station pv at time t

Voltage amplitudes at node i and node j

I. INTRODUCTION

THE increasing demand for alternative energy technolo‐
gies in recent years has been progressively replacing 

the conventional rotational generation facilities in power sys‐
tems with an increasing proportion of renewable energy 
sources (RESs) such as wind and photovoltaic (PV) power 
[1]. However, this development gradually decreases the rota‐
tional inertia of power systems, and thereby increasingly pro‐
motes the problem of frequency stability during power sys‐
tem dispatch [2], [3]. Hence, frequency response constraints 
have been incorporated into a number of power system dis‐
patch models [4]-[6]. In addition, RESs will also need to pro‐
vide frequency regulation support in the future [7], [8]. How‐
ever, conventional economic dispatch is unable to account 
for the dynamic changes in frequency that must be consid‐
ered for meeting the frequency stability requirements of pow‐
er systems with a high proportion of RESs. At the same 
time, since the prediction errors of RESs significantly in‐
crease as the time scale grows, short-term scheduling be‐
comes crucial. This has led to the increased development of 
look-ahead dispatch models in recent years, which typically 
schedule resources at 15-min time intervals.

The intra-day look-ahead dispatch [9] has been introduced 
as a bridge between day-ahead unit commitment (UC) [10], 
[11] and real-time scheduling. Reference [12] introduces an 
efficient robust look-ahead dispatch scheme that includes 
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critical region preparation during gap time to enhance the 
computational efficiency of the robust look-ahead dispatch. 
Reference [13] suggests defining the distributionally robust 
conditional value-at-risk with uncertain constraints. Addition‐
ally, a scalable robust optimization program is utilized to 
generate an approximation of distributionally robust chance-
constrained look-ahead economic dispatch. The main draw‐
back associated with the short scheduling window of look-
ahead dispatch models is that the model must be solved in 
seconds. As a result, many existing look-ahead dispatch mod‐
els developed for power systems with frequency constraints 
have applied quickly solvable linear direct current optimal 
power flow (DC-OPF) formulations [14]-[16]. However, the 
dispatch model is made linear by ignoring the reactive pow‐
er, assuming a flat voltage magnitude for all buses [17]. As 
a result, the system voltage can exceed the safe operation 
range under the applied dispatch, which is a significant 
threat to the safe and stable operation of the power system. 
Therefore, linear DC-OPF obviously cannot meet the de‐
mand for voltage stability in power systems. Nonetheless, di‐
rectly applying an alternating current optimal power flow 
(AC-OPF) formulation is too cumbersome. Recent efforts to 
address this issue include the development of a linearized 
AC-OPF model [18]. However, applying a linearized AC-
OPF formulation in the dispatch model is not sufficient to 
guarantee adequate solution speed.

Among existing efforts to improve the efficiency for solv‐
ing look-ahead dispatch models, the use of deep neural net‐
works (DNNs) is demonstrated to be promising for provid‐
ing data-driven solutions with limited computational resourc‐
es to physics-related problems like dispatch models in which 
the physical mechanism is not fully understood [19], [20]. 
Moreover, neural networks are being increasingly applied in 
power systems with the increasing development of deep 
learning (DL) [21] - [23]. Nevertheless, the extension of DL 
approaches within the domain of power systems has encoun‐
tered a number of challenges such as high requirements for 
the quality and quantity of training data, the production of 
physically infeasible or inconsistent solutions, and the low 
generalization ability and interpretability of DNN models.

The frequency control parameters enabling RES unit them‐
selves to provide frequency regulation support to power sys‐
tems are designed according to the modeled frequency dy‐
namics of the power system. Currently, this modeling is con‐
ducted based on a derivation of the low-order frequency re‐
sponse model of the power system [24]. However, the pro‐
cess is greatly complicated by the fact that power systems 
are composed of many conventional generator units and 
RES units. Reference [25] addresses this issue by develop‐
ing an analytical approach for aggregating the frequency re‐
sponse of multiple units into a single-unit model. Reference 
[26] is one of the first research to include frequency regula‐
tion constraints in the UC model of a power system. Howev‐
er, while this study ensures the adequacy of primary and ter‐
tiary frequency reserves, it considers only the quasi-steady-
state frequency of the power system. Reference [27] propos‐
es a frequency-constrained UC model based on a frequency 
security margin defined as the maximum power imbalance 
that can be sustained by the power system while maintaining 

the frequency within a tolerable range. Reference [28] pro‐
poses an enhanced frequency-constrained UC model consid‐
ering variable-droop frequency control from converter-based 
generators. Reference [29] presents a frequency-constrained 
stochastic dispatch approach for power systems with high 
proportions of RES generation. However, these past studies 
based on the use of frequency constraints in the UC problem 
tend to provide poor frequency and voltage stability under a 
high proportion of RESs. In order to further improve the fre‐
quency stability of the power system, solution efficiency is 
enhanced in [14] by proposing a frequency-constrained OPF-
based stochastic look-ahead dispatch model that applies virtu‐
al inertia parameters and droop control coefficients for RES 
and energy storage system (ESS) units as variables for on‐
line rolling dispatch optimization. In addition, [30] proposes 
an OPF-based model, which formulates the dynamic frequen‐
cy response of the power system as a set of differential equa‐
tions, and frequency stability is obtained by applying dynam‐
ic frequency response constraints when re-dispatching gener‐
ation units. However, these models employ DC-OPF formu‐
lations to ensure rapid convergence and fast computation 
speed. Moreover, frequency-dependent constraints are highly 
nonlinear, and conventional model-based optimization ap‐
proaches are difficult to solve efficiently.

Despite the challenges associated with extending DL ap‐
proaches within the domain of power systems, a number of 
studies have greatly increased the speed with which solu‐
tions can be obtained for dispatch models applied to large-
scale power systems. For example, [23] proposes an embed‐
ded approach for training a DNN to solve multiple AC-OPF 
problems with flexible topology and line admittances, and 
the solution speed is increased by three orders of magnitude 
compared with that using a solver to solve the physical mod‐
el for a large-scale power system composed of 2000 buses. 
Reference [31] applies a gated recurrent unit (GRU) neural 
network to map relationships between system daily loads 
and dispatch decision results, thereby achieving solutions to 
a security-constrained UC problem. However, the DL ap‐
proaches developed in these studies cannot guarantee that 
the trained networks can satisfy all the constraints in the 
original model. In addition to the high training data require‐
ments, physically infeasible/inconsistent outcomes, and the 
low generalization ability and interpretability of DNN mod‐
els, a serious issue is represented to limit the application of 
DL approaches for solving dispatch models.

One state-of-the-art approach addressing these shortcom‐
ings in DL approaches involves the incorporation of known 
physical laws that govern a given dataset in the learning pro‐
cess using physics-informed neural networks (PINNs) [32]. 
For example, [33] applies a PINN to estimate solutions to an 
AC-OPF model accurately. Reference [34] applies a PINN to 
solve an OPF model. Reference [35] regularizes a physics-
guided neural network to calculate the load margin of power 
systems. However, the above approaches have only been ap‐
plied to relatively simple models such as the OPF model, 
and there has been little research that applies a PINN to the 
models with strong comprehensiveness. In this paper, we ad‐
dress the above discussed issues by proposing a look-ahead 
dispatch model of power systems based on a linear AC-OPF 
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framework with nonlinear frequency constraints. The effi‐
ciency of the model solution process is enhanced under the 
nonlinear frequency constraints by applying a PINN-assisted 
approach. The main contributions are summarized as follows.

1) The proposed model ensures practical real-time frequen‐
cy-controlled operation by co-optimizing the virtual inertia 
parameters and droop control coefficients applied for RES 
and ESS units.

2) The profoundly negative impact of the nonlinear fre‐
quency constraints on the solution process is addressed by 
applying a PINN to predict the virtual inertia parameters and 
droop coefficients of RES and ESS units based on the active 
power demands, reactive power demands, RES outputs, and 
commitment states of thermal generators, which are em‐
ployed as penalty terms in the loss function applied for train‐
ing the PINN. In contrast to the use of a conventional DNN, 
the PINN ensures that the learned results are applicable to 
the original physical frequency dynamics model of the pow‐
er system. In addition, the application of these predicted 
terms transforms the proposed model into a Quadratic con‐
strained programming (QCP) model with quadratic terms on‐
ly in the objective function and all other constraints being 
linear constraints, which can be solved quickly and efficient‐
ly using readily available commercial solvers.

3) The results of numerical computations applied to a 
modified IEEE 118-bus test system (denoted as test system) 
demonstrate that the proposed model can reduce operation 
costs while ensuring frequency safety under small power dis‐
turbances. Meanwhile, the frequency safety can be ensured 
under large power disturbances with very modest cost in‐
creases by adjusting the virtual inertia and droop control co‐
efficients of RESs and ESSs. Moreover, the PINN-assisted 
approach is demonstrated to improve the solution efficiency 
greatly compared with model-assisted solution approaches, 
and reduces the number of violations in the frequency security 
constraints compared with a DNN-assisted approach.

The remainder of this paper is organized as follows. Sec‐
tion II introduces the model framework and frequency con‐
straints. Section III presents the solution methodology. The 
results of the case studies are presented in Section IV. Final‐
ly, conclusions are drawn in Section V.

II. MODEL FRAMEWORK AND FREQUENCY CONSTRAINTS

In this section, we first introduce the linear AC-OPF 
framework. Then, the nonlinear frequency constraints are 
provided in detail. Finally, we present a look-ahead dispatch 
model for the power system that integrates linear AC-OPF 
while considering frequency security constraints.

A. Linear AC-OPF Framework

The standard linear AC-OPF framework can be formulat‐
ed as:

min∑
g = 1

NG

Cg Pg (1)

Pi = ∑
gÎΩG

i

Pg -Pdi = ∑
jÎ σ ( )i

Pij + ( )∑
j = 1

Nn

Gij v2
i  iÎNn (2)

Qi = ∑
gÎΩG

i

Qg -Qdi = ∑
jÎ σ ( )i

Qij + ( )∑
j = 1

Nn

-Bij v2
i  iÎNn (3)

Pij = gij(v2
i - vivjcos θij ) - bijvivjsin θij (4)

Qij =-bij(v2
i - vivjcos θij ) - gijvivjsin θij (5)

P min
g £Pg £P max

g  gÎNG (6)

Qmin
g £Qg £Qmax

g  gÎNG (7)

vmin
i £ vi £ vmax

i  iÎNn (8)

P 2
ij +Q2

ij £ (S max
ij ) 2

(9)

θmin
ij £ θij £ θ

max
ij (10)

Objective function (1) aims to minimize the total genera‐
tion cost. Constraints (2) and (3) are the nodal active and re‐
active power balance equations, respectively. Constraints (4) 
and (5) govern the branch flows. The minimum and maxi‐
mum limits on the active and reactive power of each genera‐
tor are enforced by constraints (6) and (7), respectively. Con‐
straint (8) limits the voltage magnitude at each bus. Con‐
straints (9) and (10) restrict the branch flows and voltage 
phase angles, respectively. It is evident that constraints (2) -
(5) and (9) in the above AC-OPF framework are nonlinear. 
Therefore, this framework can be linearized by converting 
these constraints into linear constraints. As provided in [18] 
and [36], the following two assumptions are made: ① the 
value of θij is relatively small; and ② the magnitude of v is 
close to 1.0 p.u..

Thus, the following equations are obtained as:

P appro
ij = gij

v2
i - v2

j

2
- bijθ ij +P loss

ij
(11)

Qappro
ij =-bij

v2
i - v2

j

2
- gijθ ij +Qloss

ij
(12)

Here, the following loss terms have been applied.

P loss
ij = gijθ ij0θ ij -

1
2

gijθ
2
ij0 + gij

vi0 - vj0

vi0 + vj0
( )v2

i - v2
j -

gij

2 ( )vi0 - vj0

2
(13)

Qloss
ij =-bijθ ij0θ ij +

1
2

bijθ
2
ij0 - bij

vi0 - vj0

vi0 + vj0
(v2

i - v2
j ) +

bij

2 (vi0 - vj0 ) 2
(14)

As is observed in constraints (2) and (3), constraints (11) 
and (12) as well as their corresponding loss terms (13) and 
(14) can be considered as linear constraints with respect to 
v2. Constraint (9) is transformed using the piecewise linear‐
ization approach [37], [38]. The derivation of constraints (9)-
(15) is provided in Supplementary Material A.

ì
í
î

ïïïï

ïïïï

Λ ( )P appro
ij Qappro

ij     Lunn
ij ³ 0    nn = 12NN

Λ ( )P appro
ij Qappro

ij     Ldmm
ij ³ 0    mm = 12MM

(15)

Accordingly, objective function (1) and constraints (2), 
(3), (6)-(8), and (10)-(15) constitute linear AC-OPF model.
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B. Frequency Constraints

The following analytical expression of the frequency dy‐
namics after a step disturbance DP, e.g., the maximum ther‐
mal generator output or the tie-line capacity, can be obtained 
according to a previously proposed aggregated system fre‐
quency model [25].

Df ( )t =
RDP

DR + 1 ( )1 + αe-ζωntsin ( )ωrt + φ (16)

The following previously defined terms have been applied.

α =
1 - 2TRζωn + T 2

Rω
2
n

1 - ζ 2
(17)

ζ =
DRTR + 2HR +FTR

2 ( )DR + 1
ωn (18)

ω2
n =

DR + 1
2HRTR

(19)

ωr =ωn 1 - ζ 2 (20)

φ = arctan ( ωrTR

1 - ζωnTR ) - arctan ( 1 - ζ 2

-ζ ) (21)

The detailed physical meanings of H, ωn, α, ζ, and φ can 
be found in [25]. Taking the derivative of (16) with respect 
to time and setting f ′ (t ) = 0 yield the following expressions 
for frequency deviation corresponding to frequency nadir 
due to DP.

tnadir =
1
ωr

arctan ( ωrTR

ζωrTR - 1 ) (22)

Dfnadir =
RDP

DR + 1 (1 + 1 - ζ 2 αe-ζωntnadir ) (23)

In addition, we note that Δf (t ) =RΔP/ (DR + 1) when 
t®¥. Therefore, the frequency nadir and steady-state fre‐
quency constraints of the system can be written as:

RDP
DR + 1 (1 + 1 - ζ 2 αe-ζωntnadir ) £Dfmax (24)

RDP
DR + 1
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The expressions for parameters H, R, and F are defined as:
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Finally, the reserve constraints for RESs and ESSs are:
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C. Look-ahead Dispatch Model

The look-ahead dispatch model based on the linear AC-
OPF framework presented above in conjunction with the pro‐
posed frequency constraints can be given as:

min Ctotal =∑
t = 1

T ∑
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es £Rest £Rmax
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Constraints (11)-(15), (17)-(22), (24)-(31) (55)

Objective function (32) seeks to minimize the operation 
cost of the power system, including the variable operation 
costs of the thermal generators and reserve cost, and the 
power losses of ESSs. Constraints (33) and (34) represent 
nodal power balance equations. Constraint (35) restricts the 
ramping rates of thermal generators. Constraints (36) and 
(37) limit the output power of thermal generators. Con‐
straints (38) and (45) limit the reserve capacity of thermal 
generators. Constraints (29) - (31) and (39) - (41) restrict the 
backup capacities of RESs and ESSs. Constraints (42) - (44) 
limit the power outputs of PV, wind, and ESS units, respec‐
tively. Constraints (46) and (47) restrict the power losses of 
ESSs. Constraints (48) and (49) define acceptable power 
losses for ESS units during charge and discharge, respective‐
ly. Constraints (50) and (51) restrict the state of charge 
(SoC) for ESS units. Constraints (52) - (54) limit the allow‐
able adjustment ranges for the virtual inertia parameters and 
droop coefficients of RES and ESS units.

III. SOLUTION METHODOLOGY

This section elaborates on the construction of the loss 
function in PINN and provides the structural diagram of 
PINN. Then, it provides the application of PINN in solving 
the look-ahead dispatch model for power systems.

A. PINN

The structure of the DNN applied in the present work fol‐
lows that of the standard neural network shown in Fig. 1, 
which is a group of interconnected nodes connecting input 
and output layers via a total of K hidden layers, where the 
k th hidden layer includes Nk neurons. Each neuron in the neu‐
ral network is associated with a nonlinear activation func‐
tion. In addition, each connection between neurons is associ‐
ated with a weight w and a bias b, which are modified by 
the backpropagation algorithm during network training to 
minimize the mean square error (MSE) in the following loss 
function:

MSE =
1
M∑m = 1

M

( )ym - ŷm

2
(56)

The proposed PINN structure is illustrated in Fig. 2. 

The process employed for training the PINN in this paper 
involves a modified loss function, which is based on the 
MSE obtained for the virtual inertia parameters H and droop 
control coefficients R of the RES and ESS units. Therefore, 
the loss function is rendered as:

MSE =MSEH +MSER =
1
M

é

ë
ê
êê
ê ù

û
ú
úú
ú∑

m = 1

M ( )R̂m -Rm

2

+∑
m = 1

M ( )Ĥm -Hm

2

(57)

In addition, we add the following penalties to the loss 
function to ensure that H and R meet the relevant constraints.

Loss_H =max (0Ĥ -Hmax ) +max (0Hmin - Ĥ ) (58)

Loss_R =max (0R̂ -Rmax ) +max (0Rmin - R̂) (59)

Finally, we add the following frequency-related con‐
straints, including a steady-state frequency constraint and a 
nadir frequency constraint, to the loss function to ensure that 
the learned parameters are applicable to the original physical 
frequency dynamics model of the power system and meet 
the frequency constraints.

Loss_steady =max (0 R̂DP

DR̂ + 1
-Dfss ) (60)

Loss_nadir =max ( )0
R̂DP

DR̂ + 1 ( )1 + α̂e-ζ̂ω̂nt̂nadir 1 - ζ̂ 2 -Dfmax

 (61)

This yields the following loss function for training the 
PINN.

Loss =MSER +MSEH +
1
M (α1 Loss_H + α2 Loss_R +

)α3 Loss_steady + α4 Loss_nadir (62)

The prediction performance of the PINN depends signifi‐
cantly on these weights. Therefore, these values must be se‐
lected appropriately to minimize the MSE effectively, as 
well as to reduce the chance of constraint violations.

B. Solution Process

Firstly, sample data pertaining to the H and R values of 
RES and ESS units, the active power demands, the reactive 
power demands, the RES outputs, and the commitment 
states of thermal generators for a representative power sys‐
tem are prepared for training and testing the PINN. Due to 
the challenge of obtaining a large volume of historical data, 
we utilize historical data from a specific region in Jiangsu 

…
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R̂
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R

H

RMSE
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Load demand

PV generation
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Fig. 2.　Porposed PINN structure.

…

Hidden layer

x y

Input data Output data

Fig. 1.　Schematic architecture of a standard neural network.
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Province, China, in 2022 as a reference dataset. To ensure 
data diversity and universality, we use Python to generate 
10950 load data points, where the loads stochastically fluctu‐
ate between 95% and 105% of their reference values. Addi‐
tionally, we generate 10950 renewable energy data points, 
with RES outputs varying stochastically between 90% and 
110% of their reference values. When applied to actual pow‐
er systems, this approach anticipates that over time, training 
samples will accumulate a sufficient amount of historical da‐
ta. The commitment states of thermal generators are generat‐
ed based on solutions of the previously proposed frequency-
constrained UC (FCUC) model [27]. Among these sample 
data, 80% are used for training, and the other 20% are used 
for testing. The appropriate parameters employed in the train‐
ing process are listed, as shown in Table I, where training is 
conducted using Python 3.7 with Tensorflow.

The H and R values of each RES and ESS unit predicted 
by the PINN are then substituted into the proposed model, 
which makes the variable terms in (17)-(22) and constraints 
(24) - (31) constant. Thereby, the proposed model is trans‐
formed into a QCP form with quadratic terms only in the ob‐
jective function and all other constraints being linear. The 
proposed model is then quickly and efficiently solved using 
the GUROBI solver in the general algebraic modeling sys‐
tem (GAMS).

IV. CASE STUDY

The effectiveness of the proposed model is evaluated 
based on numerical computations involving the test system, 
as shown in Fig. 3, which includes 54 conventional thermal 
generators, 5 PV stations at buses 19, 29, 39, 49, and 79, 
and 4 wind farms and 4 ESSs at buses 7, 11, 35, and 48. 
The relevant information of conventional units can be found 
in Supplementary Material B. The rated capacity of each 
RES unit is 500 MW. The detailed operation parameters of 
ESS units are listed in Table II. All case studies are per‐
formed on a laptop computer with an Intel Core i5-12500H 
CPU and 16 GB of RAM.
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Fig. 3.　Structure of test system.

TABLE I
NETWORK AND TRAINING PARAMETERS

Parameter

Optimizer

Training epoch

Numerical value

Adam

2000

Parameter

Learning rate

Layer

Numerical value

1×10-3

5
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The nominal system frequency f0 is set to be 50 Hz, and 
the maximum allowable frequency deviation Dfmax and steady-
state deviation Dfss are 0.5 Hz and 0.25 Hz, respectively. The 
parameters and range values of RES and ESS units are listed 
in Table III, where F represents fixed values applied in nu‐
merical calculations and V represents variable values. Unless 
otherwise specified, the power disturbance DP is set to be 
0.10 of the current load demand.

A. Impacts of Droop and Inertia Control on Frequency Re‐
sponse Curves

The effects of varying values of H and R on the frequen‐
cy response of the test system are presented, as shown in 
Figs. 4 and 5, respectively, where the fixed value is applied 
for the non-variable term. As can be observed, H has a di‐
rect effect on the initial slope of the frequency response. The 
maximum deviation in the frequency of the test system from 
f0 = 50 Hz decreases with increasing H, but the time tnadir re‐
quired for the test system to reach its frequency nadir fnadir 
point gradually increases. Therefore, a larger value of H en‐
hances the frequency stability of the test system. However, 
we note that H dose not affect the final steady-state frequen‐
cy fss. Moreover, the frequency deviations observed under the 
varying values of H never exceed those established for fmax and 
fss, i.e., 49.5 Hz and 49.75 Hz, respectively, under the values of 
H considered. Meanwhile, the results in Fig. 5 indicate that the 
frequency stability of the test system improves with decreas‐
ing R, and the value of fss also increases. Moreover, the fre‐
quency deviations observed for R values of 0.08 and 0.09 ex‐
ceed those established for fmax and fss. Therefore, a smaller val‐
ue of R enhances the frequency stability of the test system.

B. Look-ahead Dispatch Results

The look-ahead dispatch results are evaluated for the test 
system under fixed values of H and R (scenario 1) and vary‐
ing values of H and R (scenario 2) in conjunction with the 
net load demand and RES outputs presented in Fig. 6 over a 
45 min time window during the day. Here, scenarios 1 and 2 
effectively demonstrate the effects of including frequency 
constraints (24) and (25) in the proposed model. 

The computation time required for solving the proposed 
model and the total operation cost obtained at DP = 0.1 for 
45 min period in the two scenarios are listed, as shown in 
Table IV. The optimized H and R values obtained for wind 
farms, PV stations, and ESSs in scenario 2 are presented in 
the top and bottom rows of Fig. 7, respectively.

As can be observed from Table IV, the use of H and R 
values increases the computation time by almost an order of 
magnitude, and slightly increases the total operation cost of 
the test system by about 2%. 
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Fig. 6.　Net load demand and RES output curves for test system.

TABLE II
OPERATION PARAMETERS OF ESS UNITS

Rated capacity
(MWh)

240

The maximum charge/
discharge power

(MW/h)

100

Initial state
(MW)

200

Charge/
discharge 

efficiency (%)

96

TABLE III
PARAMETERS AND RANGE VALUES OF RES AND ESS UNITS

Type

PV

Wind farm

ESS

Approach

F

V

F

V

F

V

H (s)

2

2-5

3

2-5

4

2-5

R

0.067

0.04-0.1

0.067

0.04-0.1

0.067

0.04-0.1

49.6

49.7

49.8

49.9

50.0

F
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q
u
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cy
 (

H
z)
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Time (s)

H=3.0
H=3.5
H=4.0

H=5.0
H=4.5

Fig. 4.　Frequency response of test system for fixed R and varying values 
of H.
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Fig. 5.　Frequency response of test system for fixed H and varying values 
of R.
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The increased computation time is an obvious effect of in‐
cluding constraints (24) and (25) in the proposed model. The 
slightly increased operation cost of the test system will be 
discussed later. In addition, the results in Fig. 7 clearly re‐
flect the discussion in the preceding subsection of the effects 
of varying values of H and R on the frequency stability of 
the test system, where all values of H are high and all val‐
ues of R are low during the period of relatively high 
load demand from 11:30 to 11:45.

The dynamic frequency response curves when DP = 0.1 
are presented, as shown in Fig. 8. As can be observed, the 
use of fixed values of H and R in scenario 1 provides insuffi‐
cient frequency support, while scenario 2 ensures that the 
test system consistently remains within a safe operation 
range. Of course, applying adjustable values of H and R in 
the dispatch process under this relatively high step distur‐

bance inevitably increases the operation cost of the test sys‐
tem, as observed in Table IV, but the increase by 2% is not 
significant considering the benefit obtained.

The impact of the step disturbance on the results of the 
proposed model in scenarios 1 and 2 is evaluated further by 
applying a slightly smaller step disturbance when DP = 0.09 
to the test system with the net load demand and RES out‐
puts maintained at the levels presented in Fig. 6. The compu‐
tation time required for solving the proposed model and total 
operation cost obtained for the 45-min period in the two sce‐
narios are listed in Table V. The optimized values of H and 
R obtained for wind farms, PV stations, and ESSs in scenar‐
io 2 are presented in the top and bottom rows of Fig. 9, re‐
spectively, while the corresponding dynamic frequency re‐
sponse curves of the test system in the two scenarios are pre‐
sented in Fig. 10.

In contrast to what is observed in Table IV when DP = 0.1, 
the results in Table V indicate that the use of varying values 
of H and R slightly decreases the total operation cost of the 
test system by about 1.5% when DP is a slightly smaller val‐
ue. Under this reduced disturbance condition, the convention‐
al frequency support of thermal generators is sufficient to 
maintain a stable system frequency, as is illustrated in Fig. 9 
by the uniformly small H value applied for all RES and ESS 
units over the entire 45-min period and the relatively large R 
value, which are still greater than the fixed value set in sce‐
nario 1 even at the high load level existing from 11:30 to 11:
45. These settings avoid unnecessary RES curtailment re‐
quired for regulating reserves, and can therefore reduce re‐
serve costs and enhance the consumption of RES outputs. 
Additional reasons for the reduced operation cost of the test 
system under the proposed model are illustrated in Fig. 10. 
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Fig. 7.　H and R values in scenario 2 when DP = 0.1. (a) H for PV station. 
(b) H for wind farm. (c) H for ESS. (d) R for PV station. (e) R for wind 
farm. (f) R for ESS.

TABLE IV
COMPUTATION TIME REQUIRED FOR SOLVING PROPOSED MODEL AND 

TOTAL OPERATION COST WHEN DP = 0.1

Scenario

1

2

Computation time (s)

0.651

6.471

Total operation cost ($)

468623

478760
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Fig. 8.　Dynamic frequency response curves of test system when DP = 0.1 
in scenarios 1 and 2 at 11:30.

TABLE V
COMPUTATION TIME REQUIRED FOR SOLVING PROPOSED MODEL AND 

TOTAL OPERATION COST WHEN DP = 0.09

Scenario

1

2

Computation time (s)

0.464

6.043

Total operation cost ($)

468623

461427
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The dispatch results meet the frequency requirements of 
the test system more precisely than the substantial margin 
for frequency regulation obtained in scenario 1, and there‐
fore they reduce the operation cost of the test system.

The voltage amplitude at each bus of the test system in 
scenario 2 when DP = 0.09 over the period from 11:00 to 11:45 
is presented in Fig. 11, along with the medium line and the 

mean voltage. It can be observed that the voltage amplitudes 
of each bus and time section lie within the specified allow‐
able range (0.94 £ θ £ 1.06).

C. Comparison of DL and PINNs

The same training dataset is applied for conducting three 
training sessions of the PINN and a DNN with an equivalent 
number of hidden layers, and the MSE and mean absolute 
percent error (MAPE) values obtained for H and R values 
predicted by the trained networks are compared for all three 
training sessions. In addition, the mean MSE (MMSE) and 
mean MAPE (MMAPE) values obtained over the three train‐
ing sessions are also compared. The results are listed in Ta‐
ble VI. It can be observed that the MMSE of the PINN is 
32% less than that obtained by the DNN, and the MMAPE 
is reduced by 25%.

The performance of the model and approach proposed in 
this paper is evaluated by solving the model with 5 random‐
ly selected samples from the testing dataset, while employ‐
ing the approach facilitated by predictions of H and R values 
obtained from the trained PINN and DNN, as well as a con‐
ventional physics-driven (PD) approach [14]. The total opera‐
tion costs and computation time of the approaches are listed 
in Tables VII and VIII, respectively. In Table VII, the data 
within the brackets indicate the percentage by which the to‐
tal cost of the neural network-assisted approach exceeds that 
of the physically-driven approach. The data within the brack‐
ets in Table VIII indicate the increase in the solution speed 
achieved by the neural network-assisted approach relative to 
the physically-driven approach. As can be observed, the oper‐
ation cost obtained using either the PINN or DNN in the so‐
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TABLE VI
LEARNING PERFORMANCES OF DNN AND PINN ARCHITECTURES

Type

DNN

PINN

Number

1

2

3

1

2

3

MSE

0.021

0.020

0.027

0.015

0.016

0.015

MMSE

0.0227

0.0153

MAPE (%)

6.7

6.5

7.6

5.0

5.3

5.3

MMAPE (%)

6.93

5.20
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lution process is greater than that obtained using the PD ap‐
proach. However, the additional operation cost does not ex‐
ceed 1%. Moreover, the use of machine learning dramatical‐
ly decreases the computation time from seconds or even min‐
utes to tenths of a second. In fact, the solution speed of case 
1 has increased by more than 300 times.

However, the results observed for the machine learning ap‐
proaches in Tables VII and VIII present no clearly discern‐
ible trends regarding the impact of the selected network on 
the operation costs or computation time. Therefore, the ad‐
vantages and disadvantages of using different neural net‐
works are further compared by analyzing the frequency con‐
trol performance obtained by the proposed model when 
solved for the test system over the period from 11:00 to 11:
45 when DP = 0.09 using the DNN- and PINN-assisted ap‐
proaches, as shown in Figs. 12 and 13, respectively. In addi‐
tion, the proposed model is solved over five independent tri‐
als, and the frequency nadir deviation and steady-state fre‐
quency deviation values obtained for each trial over each 15-
min period are evaluated in Figs. 12(a), 12(b), 13(a), and 
13(b), respectively. The circled boxes in Fig. 12 represent 
breaches in the frequency constraint. Accordingly, the model 
solved using the DNN-assisted approach violates the fnadir 
constraint in cases 1, 2, and 5, while the fss constraint is vio‐
lated in case 4. It must be noted that such deviations cannot 
be tolerated in actual power system operation because this 
may lead to unstable system operation and even system col‐
lapse. In contrast, applying the PINN-assisted approach en‐
sures that the power system remains consistent in a safe op‐
eration state. The frequency control performances obtained 
by the proposed model when solved with parameter values 

predicted by the different networks can be attributed to the 
greater prediction performance of the PINN observed in Sec‐
tion IV-C relative to that of the DNN, as shown in Table VI.

V. CONCLUSION

This paper proposes a look-ahead dispatch model of pow‐
er systems based on linear AC-OPF framework with nonlin‐
ear frequency constraints using PINNs. The PINN-assisted 
approach provides an accurate estimation of H and R, thus 
greatly reducing the computation burden of the traditional 
model-based look-ahead scheduling model. The main contri‐
butions are summarized as follows.

1) The results of numerical computations for the test sys‐
tem demonstrate that the proposed model can reduce opera‐
tion costs while ensuring frequency safety under a small 
power disturbance when DP = 0.09.

2) The frequency safety can be ensured under a larger 
power disturbance when DP = 0.1 with very modest cost in‐
crease by adjusting the H and R values of RES and ESS 
units.

TABLE VII
COMPARISON OF TOTAL OPERATION COST OBTAINED FOR TEST SYSTEM 

FROM SOLUTION PROCESS USING VALUES PREDICTED BY VARIOUS 
NEURAL NETWORKS

Case

1

2

3

4

5

Cost ($)

DNN

444022 (↑0.33%)

414599 (↑0.56%)

325297 (↑0.86%)

337756 (↑0.03%)

453735 (↑0.21%)

PINN

444913 (↑0.53%)

414684 (↑0.58%)

322588 (↑0.02%)

337940 (↑0.08%)

455771 (↑0.66%)

PD

442580

412298

322522

337670

452781

TABLE VIII
COMPARISON OF COMPUTATION TIME

Case

1

2

3

4

5

Time (s)

DNN

0.400 (↓343.8×)

0.877 (↓5.6×)

0.759 (↓7.4×)

0.423 (↓24.2×)

0.444 (↓21.9×)

PINN

0.423 (↓325.1×)

0.729 (↓6.7×)

0.785 (↓7.2×)

0.466 (↓21.9×)

0.432 (↓22.5×)

PD

137.537

4.909

5.628

10.222

9.741
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3) The use of machine learning is demonstrated to de‐
crease the computation time required for solving the pro‐
posed model dramatically from seconds or even minutes to 
tenths of a second.

4) The trained PINN is demonstrated to provide greater 
prediction performance for H and R values than an equiva‐
lently trained DNN with a similar architecture. This predic‐
tion performance is found to eliminate violations in the fre‐
quency constraints, where the use of the DNN produces nu‐
merous violations that cannot be tolerated in actual power 
system operation.

A frequency- or inertia-based ancillary service market can 
be established to incentivize generator/energy storage/RES to 
provide inertia support, which will be part of our future 
work.
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