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Data-enabled Koopman-based Load Shedding 
for Power System Frequency Safety

Qianni Cao and Chen Shen

Abstract——Under-frequency load shedding (UFLS) serves as 
the very last resort for preventing total blackouts and cascading 
events. Fluctuating operating conditions and weak resilience of 
the future grid require UFLS adapt to various operating condi‐
tions and non-envisioned faults. This paper develops a novel da‐
ta-enabled Koopman-based load shedding (KLS) to achieve the 
optimal one-shot load shedding for power system frequency 
safety. The KLS yields a network that facilitates a coordinate 
transformation from the delay-embedded space to a new space, 
wherein the dynamics can be expressed in a linear manner. The 
network is specifically tailored to effectively track parameter 
variations in the dynamic model of the power system. Linear 
dynamics support the development of a real-time decided load 
shedding strategy, while parameter tracking enables the adapt‐
ability of the KLS to non-envisioned operating conditions and 
faults. To address approximation inaccuracies and the discrete 
nature of load shedding, a safety margin tuning scheme is inte‐
grated into the KLS framework, ensuring that the system fre‐
quency trajectory remains within the safety range. Simulation 
results show the adaptability, prediction capability, and control 
effect of the proposed KLS.

Index Terms——Koopman-based load shedding, under-frequen‐
cy load shedding, time delay, optimal emergency frequency con‐
trol, parameter uncertainty.

I. INTRODUCTION 

CONTINUOUS penetration of new energy generation 
has posed a threat to frequency safety. In modern pow‐

er systems, the declining system inertia leads to a low fre‐
quency nadir under sudden large active power deficits, 
which causes serious consequences.

Under-frequency load shedding (UFLS) serves as the very 
last resort for preventing total blackouts and cascading 
events. Traditional UFLS typically falls into one of two cate‐
gories: offline decision-making real-time matching method 
[1], [2], or online decision-making real-time matching meth‐
od [2], [3]. Both methods rely on the anticipation of faults, 
and the former considers anticipated operating conditions 

[4]. For the sake of clarity, we will refer to both methods as 
prescheduled UFLS hereafter. However, in modern power 
systems, the fluctuation of renewable energy generation re‐
sults in less predictable operating conditions and strong un‐
certainties during under-frequency events. As a consequence, 
the traditional prescheduled UFLS becomes less effective.

Therefore, it is necessary to develop UFLS that adapts to 
non-envisioned operating conditions and events, and decide 
the one-shot optimal load shedding amount to promise the 
hard limits on the frequency trajectories. Specifically, the 
one-shot strategy is designed to prevent delayed control initi‐
ation, avoiding lower frequency nadirs and potential cascad‐
ing outages from line overloads due to shifted power 
flows [5].

In this paper, the UFLS is designed for emergency fre‐
quency control, which is a real-time decided and data-en‐
abled strategy. This strategy does not depend on anticipated 
operating conditions and faults, thus preventing the possibili‐
ty of under- or over-shedding that may occur with presched‐
uled UFLS. With the frequency prediction capability under 
non-envisioned operating conditions and power imbalances, 
this strategy leverages the online input/output measurements 
to achieve safe and optimal online control with minimal one-
shot load shedding, instead of shedding loads at multi-stag‐
es, thereby speeding up the recovery of system frequency.

To realize real-time decided UFLS, a challenge is to ob‐
tain load shedding amount, which ensures power system fre‐
quency safety for the current operating conditions and faults. 
In recent years, with the application of wide-area measure‐
ment systems in the power grid, data-driven control methods 
have rapidly developed, to some extent, addressing the mod‐
eling challenges and poor timeliness associated with tradi‐
tional prescheduled UFLS. Data-driven control aims to ex‐
tract valuable information from system responses, potentially 
enabling control measures to adapt to various operating con‐
ditions and disturbances.

Currently, there are no data-driven emergency control 
methods implemented in power systems. The emergency con‐
trol methods implemented in power systems are primarily 
contingency-based control measures, which are event-based 
methods. However, some research has been conducted on da‐
ta-driven emergency control for actual power system, such 
as the research work presented in [6]. The significance of 
the proposed data-driven method lies in its applicability to 
future scenarios with large-scale integration of renewable en‐
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ergy sources and power electronic devices. In such scenari‐
os, the fluctuations in renewable energy generation will re‐
sult in less predictable operating conditions and strong uncer‐
tainties during under frequency events, necessitating the 
adoption of data-driven methods.

To ensure that control strategies effectively maintain sys‐
tem frequency within a safety range while optimizing cost-ef‐
ficiency, a general solution is the formulation of an optimal 
control problem. This problem aims to minimize control 
costs and encompasses a variety of constraints such as opera‐
tional constraints, control quantity limitations, and restric‐
tions related to power system stability. Among these, the 
most complex and crucial aspect is the constraint pertaining 
to the dynamic characteristics of the system.

A standard solution is utilizing classical representations of 
system dynamics, such as the swing equation and the first-or‐
der primary frequency response (PFR) dynamics. These 
methods require prior knowledge of system parameters [3], 
[7], [8], or need to know the power deficit in the system 
when faults occur [6]. However, it is difficult to accurately 
obtain parameters such as system inertia due to the high pen‐
etration of power electronic converter-interfaced devices [9]. 
Moreover, the power deficit in the system cannot be mea‐
sured directly in practical power system. Although data-driv‐
en methods are used to estimate these parameters [10], the 
accuracy of the model itself may be limited. For example, 
the traditional PFR model does not explicitly consider the 
impact of load-frequency dependence [11].

As power systems are becoming more complex and data 
are becoming more readily available, it is in favor to devel‐
op data-driven methods that use only input/output data mea‐
sured from the unknown system [12]. Data-driven methods 
are suitable for applications when models are too complex 
for control design and thorough modelling and parameter 
identification are too costly. In recent years, many research 
works have focused on the design of data-driven load shed‐
ding strategies for power systems. Reference [13] proposes a 
data-driven distributional soft actor critic (DSAC) method to 
solve the emergency frequency control (EFC) problem. Ref‐
erence [14] investigates the optimal frequency control prob‐
lem using reinforcement learning with stability guarantees.

Fluctuating operating conditions and weak resilience of 
the future power grid require frequency control strategies to 
adapt to various operating conditions and non-envisioned 
faults. Consequently, data-driven control should possess the 
capability to accommodate various operating conditions and 
non-envisioned faults. However, for state-of-the-art data-driv‐
en UFLS, system responses are collected offline before the 
online control operation begins. These responses are used to 
estimate a model that matches the observed data in an appro‐
priate sense. Nevertheless, offline observations are unable to 
cover all potential operating conditions and faults. Moreover, 
there is no guarantee that a system model trained for specif‐
ic predetermined scenarios will generalize to the data outside 
of the distribution of the training set [13]-[15]. In [13], when 
addressing unforeseen operating conditions, the trained 
DSAC agent requires additional episodes to converge for 

strategy implementation. In [14], the reinforcement learning-
based controller relies on dataset diversity to adapt to vari‐
ous system operating conditions and faults. In [10], a set of 
predefined scenarios including anticipated operating condi‐
tions and faults should be selected first, and the proposed 
control strategy can only be adopted in scenarios close to 
the predefined scenarios. Consequently, the control effect, 
evaluated by the frequency nadir and amount of control, de‐
grades as the number of training trajectories decreases. Nev‐
ertheless, it is important to ensure that data-driven control 
strategies adapt to unanticipated operating conditions and 
faults. When incorporating an offline-trained system repre‐
sentation for online control, parameter variations should be 
tracked in the system model using measurements.

Given that nonlinear system dynamics render the optimal 
control problem intractable, it is desirable that the learned 
system model is linear. The Koopman-based control frame‐
work [16] has emerged as a dominant perspective in data-
driven control due to its ability to provide linear representa‐
tions of system dynamics in the context of black-box sys‐
tems. Currently, Koopman-based methods are being widely 
studied in power systems [17], [18]. Reference [19] proposes 
fitting a global linear dynamic model of wind turbines to 
provide frequency regulation services. Reference [20] propos‐
es an algorithm incorporating Koopman mode analysis for 
power system partitioning. Reference [21] develops a robust 
generalized maximum likelihood Koopman-based Kalman fil‐
ter to realize state estimation of power systems.

Compared with the purely physics-informed learning meth‐
od, which may utilize classical representations of power sys‐
tems like the system frequency response (SFR) model and re‐
ly on the data for parameter identification, the data-driven 
Koopman-based method increases flexibility within a pre‐
defined model structure [16]. For instance, it allows the in‐
clusion of terms such as polynomials or neural networks 
[22], [23]. Nonetheless, most Koopman-based methods rely 
on historical data to obtain fixed Koopman linear representa‐
tions. When the operating conditions of the system change 
or different faults occur, the parameters in the dynamical 
model of the system change [24]. Although some recent re‐
search works include online algorithm of Koopman-based 
methods for extracting inter-area modes [25], adapting Koop‐
man linear representations to parameter variations in the sys‐
tem model remains an open challenge.

Moreover, for the state-of-the-art Koopman-based meth‐
ods, representation errors of Koopman operators are inevita‐
ble [16], [26]. Inaccurate estimations and predictions may de‐
grade the quality of the obtained optimal control. In [27], 
the impact of representation errors of Koopman eigenpairs 
on the control performance of linear quadratic regulator 
(LQR) controllers is evaluated. The adaptive nature of 
closed-loop control theoretically allows one to compensate 
for modeling discrepancies and to account for disturbances 
[16]. Nevertheless, in practice, load shedding measures are 
rarely implemented as closed-loop strategies [28]. Hence, for 
Koopman-based UFLS, it is necessary to address the poten‐
tial impact of representation errors on open-loop control.

767



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 13, NO. 3, May 2025

In most load shedding strategy, it is often assumed that 
the load shedding amount at each bus can be a continuous 
value [13], [29]. This assumption overlooks the fact that 
load shedding is accomplished by shedding candidate feed‐
ers. In practical engineering, the feasible load shedding 
amount is restricted to discrete values, with each discrete in‐
terval representing the load associated with a feeder.

Although the optimal control problem can be formulated 
as an mixed-integer linear programming (MILP) problem to 
decide whether to shed a feeder or not [30], solving MILP is 
an NP-hard problem, making it difficult for online control. 
Therefore, [2], [31], and [32] decide the control value at a 
stage beforehand and then round it to the nearest discrete 
value. However, this leads to a discrepancy between the actu‐
al and optimal load shedding amounts, which affects the dy‐
namic behavior of the system after control. Consequently, 
when designing the control strategy, it is essential to explicit‐
ly consider the potential effects of the discrepancy and en‐
sure that the dynamic system remains within the safety 
range.

According to the literature review, to address the frequen‐
cy stability issue in modern power systems with high pene‐
tration of renewable energy sources, we face three main chal‐
lenges: ① identifying the system for optimal control under 
unanticipated operating conditions and power imbalance; ② 
analyzing the system performance when applying control pol‐
icies computed from an inaccurate Koopman linear represen‐
tations; and ③ designing a control strategy that works with 
feasible discrete load shedding values.

In response to the aforementioned research gaps, the main 
contributions of this paper are outlined as follows.

1) We introduce a novel data-enabled predictive control, 
referred to as Koopman-based load shedding (KLS), that 
achieves optimal one-shot load shedding amount for power 
system frequency safety. The proposed KLS demonstrates 
the adaptability to non-envisioned operating conditions under 
frequency events, allowing for precise load shedding strate‐
gies.

2) We investigate how approximation inaccuracies in the 
Koopman linear representations influence the control strate‐
gies and controlled frequency trajectories.

3) By formulating a safety margin tuning scheme within 
the KLS framework, we ensure that the system frequency 
trajectory remains within the prescribed hard limits when ap‐
proximation inaccuracies exist and the feasible amount of 
load shedding is restricted to discrete values.

The rest of this paper is organized as follows. Section II 
presents the design of EFC. Section III provides error estima‐
tion and safety margin design. In Section IV, a case study is 
presented. Section V provides the conclusion.

II. DESIGN OF EFC 

In this section, we design a deep neural network to learn a 
coordinate transformation from the delay-embedded measure‐
ment space into a new space where it is possible to repre‐
sent the frequency dynamics linearly. An optimal control 
problem is then formulated to obtain the one-shot load shed‐
ding amount.

A. Identifying Koopman Linear Representation for Frequen‐
cy Dynamics

Let an autonomous nonlinear dynamic system be gov‐
erned by:

x t + 1 = f (x tyt ) (1)

where t = 12...T, and T is the prediction horizon; xÎRnx is 
the state; yÎRny is the algebraic variable; and f (×) is a non‐
linear function. Considering the computational inefficiency 
of calculating optimal control for high-dimensional nonlinear 
dynamical functions, Koopman theory [33] provides a per‐
spective that nonlinear dynamics can be represented in terms 
of an infinite-dimensional linear operator acting on the space 
of all possible measurement functions of the system. Even if 
f (×) is unknown, it is still possible to estimate the Koopman 
operator using the system measurements.

However, the estimation of the Koopman operator relies 
exclusively on data, either numerical or experimental. In the 
context of power systems, it is a common practice to rely on 
numerical data acquired from simulations. When the dataset 
is collected, it is necessary to preset the operating conditions 
and emergency events to trigger the system dynamics. Di‐
verse operational conditions lead to variations in the parame‐
ters of the state space model of the grid given in (1), as well 
as the Koopman linear representations [16]. Thus, a signifi‐
cant challenge in linear predictive system modeling is to 
adapt to different operating conditions and faults in the train‐
ing set.

Although it is feasible to incorporate a wide range of oper‐
ating conditions and events within the training set, it is im‐
practical to exhaustively account for every scenario. The lin‐
ear representation should possess the ability to generalize. 
This ensures that the linear dynamic model of the system, 
trained for specific predetermined scenarios, can extend its 
prediction capability. Such generalization allows the model 
to perform effectively for systems operating under non-pre‐
defined conditions and faults that are not included in the 
sample set.

In order to explicitly represent the variations of operating 
conditions and the complexity of emergency events in the 
state space model of (1), we utilize a vector of variables m 
to represent a subset of uncertain model parameters that are 
challenging to obtain online. To incorporate the uncertainty 
of these parameters into the system model, a modified mod‐
el is evaluated as:

ì
í
î

x t + 1 = f (x tytmt )

mt + 1 = h(x tytmt )
(2)

Compared with (1), (2) provides a more general form of a 
deterministic power system model, which accounts for uncer‐
tainties. x T

a =[xT mT ] can be defined as pseudo-state vari‐
ables. The augmented model was first introduced in [34].

Since m is hard to measure, which constitutes hidden or 
latent variables that are not directly measured but are dynam‐
ically important. Thus, the challenge of adapting the linear 
representations to accommodate the parameter variations 
transforms into that of accounting for the hidden variables in 
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the model.
Time-delay embedding provides an method to augment 

these hidden variables. Under certain conditions, given by 
Takens’ embedding theorem [35], the delay-augmented state 
yields an attractor that is diffeomorphic to the underlying, 
though unmeasured, full-state attractor [36]. Here, we design 
a deep neural network to learn a coordinate transformation 
from the delay-embedded space into a new space. In the 
new space, it is possible to represent the dynamics in a lin‐
ear form. Additionally, the network also tracks the parameter 
variations in the system with input/output data. The introduc‐
tion of time-delay embedding enables the identification of 
hidden variables corresponding to unexpected operating con‐
ditions and faults. Owing to the capability of time-delay em‐
bedding to discern these hidden variables, prediction preci‐
sion of system frequency is enhanced when unexpected 
faults occur under unexpected operating conditions. These 
are evidenced in the case study.

The deep neural network is illustrated in Supplementary 
Material A. The dataset collected for training the network is 
described as follows. For a given power system, a specific 
anticipated operating condition αÎA is considered, and a 
representative fault βÎB is introduced, where A denotes a 
predefined set of typical operating conditions; and B de‐
notes a predefined set of typical faults. Additionally, load 
shedding amount u =[u1...ui...uI ]ÎU is defined at each 
load node i, where ui (i = 12...I) (in per unit, and the load 
level at bus i is the base value for ui) is a uniformly distrib‐
uted random number between 0 and 1; and U is a predefined 
set of load shedding trajectories in training sets. Subsequent‐
ly, time-series data of the inertia center frequency of the 
power system (referred to as the system frequency hereafter) 
in (3) are collected at time points t = 12...T, resulting in a 
sequence of data {ωαβ

1 ωαβ
2 ...ωαβ

T } and [yαβ1 yαβ2 ...yαβT ]. 
The obtained Ω and uÎU are utilized as training data for 
the linear prediction model.

Ω ={ωαβyαβ|αÎAβÎBuÎU} (3)

Details for the network architecture and the loss function 
are given in Supplementary Material A. The latent extraction 
layers in the network are specifically designed to monitor 
variations in the parameters of the state-space model.

Based on Koopman theory, we assume that the frequency 
dynamics of the system are governed by the linear dynamic 
system equation represented in (4).

g t + 1 =Ag t +But (4)

g t =
é
ë
êêêê

ù
û
úúúú

ωt

φ(ωt - τ:tyt - τ:t )
(5)

where ωt is the deviation of frequency from its nominal val‐
ue (in per unit) at time t; ωt - τ:t ={ωt - τωt - τ +Dt...ωt } and 
yt - τ:t =[yt - τyt - τ +Dt...yt ] are the time series of system fre‐
quency (state variable) and voltage (algebraic variable), re‐
spectively; φ denotes a neural network with a prescribed acti‐
vation function and connectivity structure; g is a set of finite 
Koopman observables, which forms a subspace of the infi‐
nite dimensional Koopman observables; and A and B are the 

matrices in the Koopman linear representation. With the loss 
function and the algorithm provided in Supplementary Mate‐
rial A, it is feasible to approximate the parameters of φ, 
along with the matrices A and B.

After the parameters of φ, A, and B are approximated 
from data, we can utilize (4) to predict the future trajectory 
of the system frequency variation, providing the control se‐
quence ut, which is a time series of ωαβ

1 - τ:1 and yαβ1 - τ:1. Herein, 
we refer to the dynamic system described by (4) as a Koop‐
man linear system.

Remark 1 The time intervals among the time points t =
12...T may not be consistent with the time intervals 
among t - τt - τ +Dt...t.

The selection of time intervals is based on the observation 
that the system in the case study takes about 60 s to stabi‐
lize its frequency following a power deficit. As a result, the 
dynamics that change within 1 s are relatively slow. To re‐
duce the number of steps in neural network prediction and 
thus lower training complexity, a 1 s time interval is chosen. 
The Dt setting of 1 ms is based on practical engineering con‐
siderations, where the sampling frequency for transient data 
in power grids is generally above 1000 Hz.

B. Koopman-based EFC Strategy

Combined with the Koopman model predictive control 
proposed in [37], the optimal load shedding amount is ob‐
tained by solving the following optimal control problem.

ì

í

î

ï
ïï
ï

ï
ïï
ï

min  uT Ru
s.t.  ω̄t ³ωmin    t = 12...T
       ω̄T ³ω¥min    t = 12...T
       g t + 1 =Ag t +But    t = 12...T

(6)

where R is a diagonal weight matrix representing load criti‐
cality, with larger diagonal entries for more critical loads; ω̄t 
is the system frequency at time t predicted by Koopman lin‐
ear system; ωmin is the minimal allowed system frequency; 
and ω¥min is the minimum allowed steady-state frequency. 
Here, we assume that the prediction horizon T is sufficiently 
long for the system frequency to reach a steady state by T. 
Note that the symbol -

 indicates the variables with discrimi‐
nation or prediction errors. The optimal control problem (6) 
is a quadratic programming problem with R being a positive 
definite matrix. This problem can be solved in polynomial 
time.

Remark 2 The values of ωmin and ω¥min can be adjusted 
based on the interplay between data-driven load shedding 
and the traditional UFLS. The traditional UFLS, as it initi‐
ates load shedding after a certain deviation in system fre‐
quency occurs (e.g., when the system frequency drops to 49 
Hz), may lead to unexpected severe consequences due to the 
delayed timing of load shedding, such as greater power defi‐
cits and consequently higher load losses. If the objective of 
data-driven load shedding is to avoid triggering the tradition‐
al UFLS, ωmin can be set to be 49 Hz. On the other hand, if 
the data-driven load shedding aims to fully replace the tradi‐
tional UFLS and ensure that the minimum frequency of the 
system remains above the minimum operating frequency of 
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synchronous generators (e.g., 47 Hz), ωmin can be set to be 
47 Hz. In this paper, we choose ωmin as 49 Hz as an illustra‐
tive example to show the effectiveness of the proposed KLS.

In practice, continuous adjustment of load shedding 
amount is difficult to achieve, and it is often necessary to 
choose whether or not to shed a load on a particular feeder 
line, resulting in a series of discrete values for the actual 
load shedding. Let the optimal load shedding amount ob‐
tained by solving the optimal control problem (6) be denoted 
as ū* =[ū1*...ūi*...ūI* ], the actual load shedding amount 
would be given as:

Qd (ūi* )=
ì
í
î

nd nd £ ūi* < n(d + 0.5)

n(d + 1) n(d + 0.5)£ ūi* < n(d + 1)
(7)

where d is the quantization interval, which physically refers 
to the load shedding amount on a single feeder line; n is a 
positive integer; Qd is an operator to round the optimal load 
shedding amount to the nearest feasible value; and Qd (ūi* ) is 
the actual load shedding amount at each load node i when 
the discrete interval is d. Solving the optimal control prob‐
lem in (6) and rounding the resulting solution as described 
in (7) are referred to as KLS.

Remark 3 An alternative method is to round the comput‐
ed control quantity to the nearest larger value, as outlined be‐
low.

Qd (ūi* )= n(d + 1)    nd < ūi* £ n(d + 1) (8)

However, the strategy in (8) results in over-shedding. 
With the same system linear representation, the strategy pre‐
sented in (8) with a larger load shedding amount compared 
with (7) is more likely to ensure that the system frequency 
does not violate safety constraints. Nevertheless, when imple‐
menting the strategy described in (7), it is also possible to 
ensure the safety of the system frequency by tuning a safety 
margin in the constraints of (6). The design of the safety 
margin in KLS will be presented in this paper. By employ‐
ing the load shedding amount given in (7) along with the 
safety margin, we achieve a reduced level of load shedding 
amount compared with the strategy in (8).

III. ERROR ESTIMATION AND SAFETY MARGIN DESIGN 

In Section II, we employ constraints in the optimal con‐
trol problem to ensure that the frequency predicted by the 
Koopman prediction model remains above the acceptable 
minimum values. However, in actual power systems, the op‐
timal load shedding amount obtained from (6) may cause the 
system frequency to violate the prescribed hard limits. The 
main reasons are as follows.

First, the training of g, A, and B terminates when the loss 
function is less than a specified tolerance. Therefore, poten‐
tial inadequate training leads to representation errors in g, A, 
and B. Denote the finite Koopman observables and Koop‐
man system matrix identified from data as Ā, B̄ and ḡ, re‐
spectively. The representation errors manifest as minor pre‐
diction errors ḡ t + 1 - Āḡ t - B̄ut. Second, the actual load shed‐
ding amount may deviate from the optimal load shedding 
amount obtained since it should be rounded to a feasible val‐

ue.
Hence, to ensure that the frequency remains above the ac‐

ceptable minimum values, we propose adding a safety mar‐
gin to the frequency limits in the constraints of (6). Firstly, 
we present in Section III-A the theoretical basis for ensuring 
power system frequency safety with a finite safety margin. 
Secondly, an explicit method is introduced for calculating 
the safety margin in Section III-B.

A. Impact of Koopman Linear Representation Errors on 
Control Effects

This subsection aims to determine whether even slight de‐
viations between the learnt and the accurate Koopman linear 
dynamics can compromise the desired system properties, po‐
tentially violating the imposed hard limits.

In Section II-B, the formulation of optimal control prob‐
lem (6) is based on the assumption that the identification of 
A, B, and g is accurate. However, in real applications, due 
to the training error, only Ā B̄, and ḡ can be identified from 
data.

When solving the optimal control problem in (6), we can 
only employ Ā B̄, and ḡ identified from data, assuming that 
the equality in the following equation holds.

ḡ t + 1 = Āḡ t + B̄ut (9)

With Ā B̄, and ḡ, we utilize (9) to predict the future tra‐
jectory of Koopman observables with x1 and u. We denote 
the trajectory of Koopman observables predicted by (9) as 
[ĝ2ĝ3ĝT ].

In order to analyze how Koopman linear representation er‐
rors influence the control strategy, we assume that Ā and B̄ 
can be expressed as (10) and (11), and DDA and DDB are bound‐
ed in terms of the induced norm as shown in (12).

Ā =A +DDA (10)

B̄ =B +DDB (11)

ì
í
î

||DDA|| £ εA

||DDB|| £ εB

(12)

where AÎRp ´ p ; ĀÎRp ´ p; BÎRp ´ q ; B̄ÎRp ´ q; and εA and εB 
are the preset upper bounds of the representation error of A 
and B, respectively.

ḡ can be expressed as:

ḡ t = g t +DDgg t (13)

where gg tÎRp is the discrepancy to the accurate observables 
g tÎRp, and we assume that ||DDgg t

|| £ εgg is very small com‐

pared with ||g t|| for t = 12...T.
Combining (13), dynamics in (9) can be transformed into 

g coordinates as:

g t + 1 = Āg t + B̄ut + ĀDDgg t
-DDgg t + 1 (14)

Define (15) and ||γt + 1|| satisfies (16).

γt + 1 = B̄ut + ĀDDgg t
-DDgg t + 1 (15)

||γt + 1|| £ ||ĀDDgg t
|| + ||DDgg t + 1|| (16)

where γ denotes the disturbance.

Since ||ĀDDgg t
|| and ||DDgg t + 1|| are small, we assume the distur‐
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bance is norm-bounded by:

γt ={γÎRp||γ|| £ εγ} (17)

For dynamics in (2) and a fixed T, we define G(x), u, and 
γ as the stacked states, inputs, and disturbances up to time T 
as (18)-(20), respectively. Note that we embed x0 as the first 
component of the disturbance process.

GT =[g T
0 g T

1  g T
T ] (18)

uT =[uT
0 uT

1  uT
T ] (19)

γT =[x T
0     γT

0        γT
T - 1 ] (20)

Based on system level synthesis (SLS) [38], [39], we have 
a direct optimization over system responses Tg and Tu, 
which are defined as:

é
ë
êêêê ù

û
úúúú

GT

u*

= é
ë
êêêê ù

û
úúúú

Tg

Tu

γ (21)

where TgÎRpT ´ pT and TuÎRqT ´ pT are two block-lower trian‐
gular matrices representing system responses.

It has been proved in [38], [39] that for any Tg and Tu sat‐
isfying (22), the controller TuT -1

g ÎRqT ´ pT achieves the de‐
sired response.

(I -ZA -ZB ) é
ë
êêêê ù

û
úúúú

Tg

Tu

=I (22)

where A is formed by diagonally concatenating T instances 
of A along with a p ´ p zero matrix, expressed as A =
blkdiag(AA0p ´ p ); B is constructed through diagonal 
concatenation of T instances of B and a p ´ q zero matrix, 
expressed as B = blkdiag(BB0p ´ q ); and Z is the block-
downshift operator, i.e., a matrix with the identity matrix on 
the first subdiagonal block and zeros elsewhere.

Based on the definition above, we further examine the ef‐
fect of inaccurate Koopman linear representations Ā B̄ and 
ḡ on the controlled system dynamics and provide an estima‐
tion of the upper error bound given as (23)-(29).

For the identified model Ā = blkdiag(ĀĀ0p ´ p ) and 
B̄ = blkdiag(B̄B̄0p ´ q ), the block-lower triangular matri‐
ces {T̄gT̄u } satisfy:

(I -ZĀ -ZB̄ ) é
ë
ê
êê
ê ù

û
ú
úú
úT̄g

T̄u

=I (23)

By rewriting (23), we can obtain:

ì

í

î

ï
ïï
ï

ï
ïï
ï

(I -ZA -ZB )T̄ =I -ZDDT̄
DD=Z[DDA    DDB ]

T̄ T =[T̄ T
g     T̄ T

u ]

(24)

where DDA and DDB are the block diagonal matrices satisfying 
DDA = Ā -A and DDB = B̄ -B, respectively. The response of 
(A B) with the controller T̄uT̄ -1

g  is given by:

é
ë
êêêê

ù
û
úúúú

GT (x)

u*

=[T̄ + T̄ DD(I - T̄ DD)-1T̄   ]γ (25)

We decompose T DD, and γ as follows to separate the ef‐
fects of the known initial condition of x0 from the unknown 
future disturbances:

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

T =
é

ë
ê
êê
ê ù

û
ú
úú
úT̄g

T̄u

=[T̄  0| T̄  γ͂]

γ = é
ë
êêêê

ù
û
úúúú

x0

γ͂

DD= é
ë
êêêê ù

û
úúúúDD0

DD γ͂

(26)

where T̄  0 is the first block column of T  ; the symbol ~ indi‐
cates portions of that matrix or vector; and DD0 is the first 
block row of DD. Then, we have:

é

ë
êêêê

ù

û
úúúú

Ḡ(x)

ū*

- é
ë
êêêê

ù
û
úúúú

G(x)

u*

= (T̄ -T )γ + T̄  γ͂DD γ͂ (I - T̄  γ͂DD γ͂ )-1T̄ γ (27)

(I -ZA -ZB )(T̄ -T )=DDT̄ = T̄  γ͂DD γ͂ (28)

(I - T̄  γ͂DD γ͂ )-1 = ∑
k = 0

k

(T̄  γ͂DD γ͂ )T (29)

||DD γ͂|| £ ||DD|| £ ||DDA DDB|| £ εA + εB (30)

Therefore, it can be concluded that when εA and εB con‐
verge to 0, ||[ḠT (x)ūT

* ]T -[ḠT (x) uT
* ]T|| converges to 0. In oth‐

er words, the error of the open-loop dynamics is limited by 
the representation errors of Koopman eigenpairs. Conse‐
quently, by incorporating a finite safety margin into the fre‐
quency safety constraints, we can ensure the frequency safe‐
ty despite the presence of errors in the frequency dynamic 
characteristics in (4).

B. Safety Margin Tuning Scheme

In Section III-A, we examine the errors in frequency tra‐
jectory prediction, and the optimal control measures that 
stem from inaccuracies in Koopman linear representations. 
Given these considerations, it is important to incorporate a fi‐
nite safety margin within the frequency safety constraints in 
(6) to ensure that the system frequency trajectory remains 
within the prescribed hard limits.

Although (30) provides the upper bound of errors in fre‐
quency trajectory and control measures caused by Koopman 
linear representation error, the acquisition of εA and εB is 
challenging. Hence, this subsection proposes an analytical 
method for calculating the safety margin to prevent both the 
Koopman linear representation error and the rounded opti‐
mal control strategy from causing the system frequency to 
exceed the prescribed hard limits.

Proposition 1 By replacing the frequency limits in (6) 
with (31), it ensures that the optimal control strategy ob‐
tained from KLS, when rounded to the nearest larger value, 
does not violate the prescribed hard limits on the system fre‐
quency.

ω̄t ³ωmin + σ (31)

σ ³






 







C∑
k = 0

t - 1

A(t - 1)- k B
d
2
+ max

αÎAβÎBuÎU
 ||ω̄αβ

t (u)-ωαβ
t (u)|| (32)

where σ is the safety margin; and C =[C1C2...Cp ]ÎRp is 
an observation matrix with the first element C1 equal to 1 
and the remaining elements equal to 0.

Remark 4 The values of ωαβ
t (×) can be obtained through 

power system simulation experiments, while the values of 
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ω̄αβ
t (×) can be calculated using the linear prediction system 

(4). Since α  β, and u are in the training set for (4), the last 
term on the right hand side of (32) is the largest prediction 
error of (4) on the frequency trajectories in the training set. 
Hence, the last term on the right hand side of (32) is ac‐
quired upon the completion of the training process for (4).

Proof The constraints in the optimal control problem (6) 
guarantee that the minimum value of ω̄αβ

t (ūαβ
* ) is no less 

than ωmin + σ, and the steady-state value is no less than 
ω¥min + σ. Thus, it is crucial to find an upper bound on the 
difference between ω̄αβ

t (ūαβ
* ) and ωαβ

t (Qd (ūαβ
* )) in order to 

determine the value of σ. The estimation of this upper bound 
is given as:

||ω̄αβ
t (ūαβ

* )-ωαβ
t (Qd (ūαβ

* ))|| £ ||ω̄αβ
t (ūαβ

* )- ω̄αβ
t (Qd (ūαβ

* ))|| +

||ω̄αβ
t (Qd (ūαβ

* ))-ωαβ
t (Qd (ūαβ

* ))|| £






 







C∑
k = 0

t - 1

A(t - 1)- k B
d
2
+

||ω̄αβ
t (Qd (ūαβ

* ))-ωαβ
t (Qd (ūαβ

* ))|| £






 







C∑
k = 0

t - 1

A(t - 1)- k B
d
2
+

max
αÎAβÎBuÎU

 ||ω̄αβ
t (u)-ωαβ

t (u)|| (33)

where ūαβ
*  denotes the optimal load shedding solution ob‐

tained by solving (6); Qd (ūαβ
* ) denotes the actual load shed‐

ding amounts at each load node i; ω̄αβ
t (ūαβ

* ) denotes the pre‐
dicted frequency of the linear prediction system at time t 
when the load shedding amount is ūαβ

* ; and ωαβ
t (Qd (ūαβ

* )) 
and ω̄αβ

t (Qd (ūαβ
* )) denote the actual and predicted system 

frequencies at time t, when the load shedding amount is 
Qd (ūαβ

* ), respectively. The values of ωαβ
t (×) can be obtained 

through power system simulation, while the values of ω̄αβ
t (×) 

can be calculated using the linear prediction system (4).
In (33), the first inequality is based on the triangle in‐

equality of the induced norm. The third inequality utilizes 
the largest prediction error from the training set to estimate 
the upper limit of the prediction error in the testing set. The 
proof for the second inequality in (33) is given as:

ω̄t (ū)- ω̄t (Q(ū))=CĀt g(x0 )+C∑
k = 0

t - 1

Ā(t - 1)- k B̄uk -CĀt g(x0 )-

C∑
k = 0

t - 1

Ā(t - 1)- k B̄Q(uk )=C∑
k = 0

t - 1

Ā(t - 1)- k B̄(uk -Q(uk ))£







 







C∑
k = 0

t - 1

Ā(t - 1)- k B̄
d
2

(34)

σ is expected to ensure that the KLS guarantees the sys‐
tem frequency to remain within the safety range under antici‐
pated operating conditions αÎA and faults βÎB.

Therefore, when the inequality (31) holds, it ensures that 
the frequency trajectory of the actual power system is within 
the safety range, under the load shedding amount Qd (ūαβ

* ).
Remark 5 Manual adjustment of σ is possible, which en‐

tails the following steps. First, simulating the system frequen‐
cy by rounding the optimal control strategy to the nearest 
feasible value for each operating condition and fault in the 
training set. Then, instances where the system frequency 
fails to meet the hard limits are selected. σ is then increased 
and the system frequency is simulated under the new σ. This 
step is repeated until the system frequency complies with the 
limits. By contrast, our method avoids the extensive simula‐

tion required to find suitable values of σ. Instead, it relies on 
A  and  B in (4), and the prediction error already computed 
during the training of the encoder, thus enhancing the effi‐
ciency of safety margin design.

Here, we further discuss when the equality holds in the in‐
equality (33).

In the deviation of the upper bound for ||ω̄αβ
t (ūαβ

* )-
ωαβ

t (Qd (ūαβ
* ))||, the first inequality in (33) and the last in‐

equality in (34) are based on the sub-multiplicative inequali‐
ty and the triangle inequality of the induced norm, respec‐
tively. For any two arrays M and N, equality for the trian‐
gle inequality holds when the two arrays are linearly depen‐
dent, while the equality for the sub-multiplicative inequality 
holds if and only if each row of M and each column of N 
are linearly dependent.

||ω̄αβ
t (ūαβ

* )-ωαβ
t (Qd (ūαβ

* ))|| is often strictly lower than the 
upper bound derived in (33). The reason is the equality con‐
ditions of the triangle inequality and the sub-multiplicative 
inequality in (33) and (34) are hard to satisfy. The gap be‐
tween ||ω̄αβ

t (ūαβ
* )-ωαβ

t (Qd (ūαβ
* ))|| and its upper bound will 

be further illustrated in the simulation results in Section IV.

IV. CASE STUDY 

In this section, the prediction capability and control effec‐
tiveness of KLS are illustrated using simulation data through 
a case study on the CloudPSS platform [40], [41].

A. Test System and Datasets

To validate the effectiveness of the proposed KLS, we 
conducted simulation experiments on the CEPRI-FS test sys‐
tem. The electromechanical transient model for this case 
study is available for access at [42]. The CEPRI-FS test sys‐
tem consists of 102 500 kV buses, and possesses a load lev‐
el of 2600 MW, with installed capacities of 2400 MW and 
5400 MW for renewable and conventional energy sources, 
respectively. The load composition consists of 40% dynamic 
load and 60% constant impedance loads. In CEPRI-FS test 
system, all synchronous machines use the 5th-order synchro‐
nous generator model, with each having different parameters 
for generators and governors. The full electromagnetic tran‐
sient (EMT) model of the test system is built on the Cloud‐
PSS platform [43].

Based on the model of synchronous generator, system iner‐
tia is an important parameter that affects frequency safety. 
The influence of operating conditions on frequency dynam‐
ics can be attributed, in part, to the variations in system iner‐
tia caused by changes under operating conditions. Therefore, 
in this subsection, we assume a certain level of randomness 
in system inertia to capture unanticipated operating condi‐
tions.

The training and testing sets are generated as follows. In 
CEPRI-LF test system, synchronous generators in a region 
are represented as an equivalent single unit. Variations in sys‐
tem operating conditions may result in changes in the unit 
commitment, potentially leading to variations in the system 
inertia of the equivalent unit. Therefore, to represent varia‐
tions under the operating conditions, we obtain a set of pos‐
sible system inertia by enumerating different commitment of 

772



CAO et al.: DATA-ENABLED KOOPMAN-BASED LOAD SHEDDING FOR POWER SYSTEM FREQUENCY SAFETY

the generating units. When obtaining different system trajec‐
tories, different inertia values are employed. We assume that 
ui at bus i is a uniformly distributed random number be‐
tween 0 and 1. The fault set of the system is generated by 
traversing N - 1, N - 2, and N - 3 generator trippings. For 
simulating each trajectory, each fault in the fault set is cho‐
sen at the same probability.

The training set consists of 600 frequency trajectories, 
while the testing set consists of 300 frequency trajectories. 
Each frequency trajectory has a length of 1 min. The time in‐
tervals in t = 12...T is set to be 1 s, while in t - τ t - τ +
Dt...t, Dt is set to be 1 ms. When generating a frequency 
trajectory, ui and faults are randomly generated according to 
their respective distributions. When tuning the hyperparame‐
ters of the neural network, the training data are further split 
into a training set and a validation set in an 8:2 ratio.

Frequency trajectories from the testing set are used to as‐
sess the prediction accuracy of KLS. Furthermore, 300 test 
scenarios are created, with the same operating conditions 
and faults as in the 300 frequency trajectories. In the 300 
test scenarios, the control effect of different load shedding 
strategies is compared.

The frequency nadir and steady-state frequency values 
SSV in various power imbalance scenarios are presented in 
Fig. 1, where TP and WT are short for thermal plant and 
wind turbine, respectively. The system inertia is based on 
the original manufacturer data. A nadir of 40 Hz indicates 
that the system frequency has reached the lower limit of the 
simulation software. The proposed KLS focuses on power 
system frequency safety. For trip events that lead to voltage 
or angle stability issues, we exclude them from the test sce‐
narios.

It is important to note that system inertia is not the sole 
critical factor influencing frequency dynamics. Other signifi‐
cant elements, such as governors, also play a role. This sub‐
section uses system inertia as an example to demonstrate 
that the introduction of time-delay embedding enables the 
identification of hidden variables, which is not directly mea‐
sured, corresponding to unexpected operating conditions and 
faults.

B. Adaptability

Figure 2 demonstrates that KLS is capable of extracting la‐
tent variables strongly correlated with the system inertia and 
power imbalance from the frequency trajectory within a 300 
ms time window after a fault occurs. Here, the system iner‐
tia equals 1 when the system inertia for each equivalent unit 
equals the corresponding original manufacturer data. Specifi‐
cally, Latent 1 and Latent 2 exhibit a remarkably high corre‐
lation with the system inertia and power imbalance, respec‐
tively, providing the evidence that Koopman linear represen‐
tations are capable of capturing parameter variations in the 
original state space system model using measurements. This 
result validates the adaptability of KLS to diverse operating 
conditions and faults. Furthermore, as the results presented 
in Fig. 1 are based on the training set, it confirms that KLS 
is able to adapt to unanticipated operating conditions and 
faults.

C. Prediction Capability

The strong nonlinearity of dynamics makes the local lin‐
earization method hard to fit the model accurately in global 
horizon, and the piecewise linearization has difficulty in re‐
maining a balance between accuracy and simplicity. There‐
fore, only Koopman-based methods are compared. As the 
benchmark of the learning algorithm, the dynamic mode de‐
composition (DMD) and extended dynamic mode decomposi‐
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Fig. 1.　Frequency nadir and SSV in various power imbalance scenarios.
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tion (EDMD) are implemented with 100 radial basis func‐
tions (RBFs) as observables. To illustrate the effectiveness 
of incorporating time delay embedding, KLS without time 
delay embedding (KLS-WTDE), i.e., when τ = 0 in (5), is al‐
so tested as a benchmark. In subsequent discussions, we re‐
fer to KLS-WTDE, DMD, and EDMD as the state-of-the-art 
methods (SOTAMs) for brevity and clarity.

To illustrate the capability of the proposed KLS to learn 
the dynamics of system frequency from the online measure‐
ment, the frequency measurement of 1 min after a fault oc‐
curs is used to fit the linear model in (4) for the system with 
different system inertia, control inputs, and faults.

Figure 3(a) presents the true and predicted frequency tra‐
jectories under random control inputs. The red line repre‐
sents the simulated dynamic process, while the blue, green, 
orange, and black lines represent the predicted results ob‐
tained from EDMD, DMD, KLS-WTDE, and KLS, respec‐
tively.

Based on the frequency sequence observed within 300 ms 
after the generator tripping at 40 s, the proposed KLS dem‐
onstrates accurate prediction of the evolving frequency for 
the subsequent 60 s under different control inputs. This high‐
lights the effectiveness of the latent extractor combined with 
time-delayed measurements in capturing the dynamics of the 
system frequency. In contrast, DMD and EDMD exhibit 
poorer performance, which can be attributed to their limited 
capability in incorporating time-delay information and har‐
nessing the powerful non-linear representation offered by 
deep learning techniques.

The prediction accuracy of the proposed KLS and SOTA‐
Ms on the training and testing sets is illustrated, as shown in 
Fig. 4. The MAE is employed as a measure of prediction ac‐
curacy. Due to the capability of the proposed KLS to track 
parameter variations in the original state space system mod‐
el, the prediction accuracy is consistently high on both the 
training and testing sets.

D. Control Effect

In this subsection, we focus on investigating the impact of 
prediction accuracy on control effectiveness. 

It is assumed that a continuous adjustment of load shed‐
ding can be achieved, and σ is set to be zero. The effective‐
ness of the proposed KLS and SOTAMs is evaluated by as‐
sessing the power system frequency safety after the imple‐
mentation of these control strategies. Furthermore, to demon‐
strate the adaptability of the proposed KLS to unanticipated 
operating conditions and faults, all results in this subsection 
are computed using the test dataset. The normalized safety 
metric Safety is calculated as:

Safety = α
Nadir* -Nadir S

0

Nadir S
1 -Nadir S

0

+ β
SSV * - SSV S

0

SSV S
1 - SSV S

0

(35)

where the superscripts * and S denote the frequency nadir 
and steady-state frequency, respectively. 

In (35), when the frequency nadir is no less than Nadir S
1 

and the steady-state frequency is no less than SSV S
1 , Safety is 

assigned a value of 1; when the frequency nadir Nadir* is 
less than Nadir S

0 and the steady-state frequency SSV * is less 
than SSV S

0 , Safety is assigned a value of 0. The weights for 
measuring the safety indicators of nadir and steady-state val‐
ue are represented by α and β, respectively. In this paper, the 
values of Nadir S

1 and SSV S
1  are set to be 9.0 Hz and 49.5 Hz, 

respectively, which are equal to ωmin and ω¥min. Nadir S
0 and 

SSV S
0  are set to be 48.5 Hz and 49.0 Hz, respectively. In Fig. 

4, Safety is calculated by setting the values of α and β as 0.5 
without loss of generality. Any α and β satisfying α + β = 1, 
α > 0, β > 0 can calculate this metric, balancing the impor‐
tance of not violating the minimum allowable value versus 
keeping the steady-state frequency within the safety range.

The average control safety metrics of proposed KLS, KLS-
WTDE, EDMD, and DMD on the test scenarios are shown 
in Fig. 5. T-tests are conducted to compare the effectiveness 
of various methods. Among the 300 test scenarios, the pro‐
portions of Safety exceeding 0.9 for the proposed KLS, KLS-
WTDE, EDMD, and DMD are 97.5%, 49.3%, 41.6%, and 
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4%, respectively. KLS, with its superior predictive accuracy 
compared with SOTAMs, enhances the power system fre‐
quency safety. However, without incorporating a safety mar‐
gin into the frequency constraints of the optimal control 
problem (6), the average control safety metric of the pro‐
posed KLS fails to reach a value of 1.

In Fig. 6, the predictive results and control effectiveness 
of the proposed KLS are demonstrated, compared with 
SOTAMs in one of the test scenarios. It is evident that the 
proposed KLS offers higher frequency prediction accuracy. 
Although KLS-WTDE is less accurate than the proposed 
KLS, it outperforms both DMD and EDMD. In terms of con‐
trol effectiveness, the proposed KLS achieves the minimum 
one-shot load shedding and frequency safety. While KLS-
WTDE ensures frequency safety, its control measures are not 
optimal. DMD and EDMD, due to the inability to make ac‐
curate predictions, fail to guarantee the power system fre‐
quency safety.

E. Safety Margin

This subsection analyzes the control effectiveness after the 
introduction of a safety margin in Section III-B. The evalua‐
tion of control measures is based on two indicators: the pow‐
er system frequency safety and the control cost. Increasing 

the amount of load shedding typically results in a higher sys‐
tem frequency. If the system frequency remains within the 
safety range (i.e., Safety = 1), the greater the deviation of the 
nadir and the steady-state value of the system frequency 
from the specified hard limits are, the higher the associated 
control cost becomes. Hence, a normalized economic metric 
Economy, ranging from 0 to 1, is introduced in (36) as an in‐
dicator to measure the control cost. Nadir E

1 = 49.0 Hz and 
SSV E

1 = 49.5 Hz indicate that when the nadir is equal to 49.0 
Hz and the SSV is equal to 49.5 Hz, the Economy of load 
shedding measures is assigned a value of 1. Similarly, 
Nadir E

0 = 49.5 Hz and SSV E
0 = 50.0 Hz indicate that when the 

nadir is no less than 49.5 Hz and the SSV is no less than 50.0 
Hz, the Economy of load shedding measures is assigned a val‐
ue of 0.

Economy =min ( Nadir* -Nadir E
0

Nadir E
1 -Nadir E

0


SSV * - SSV E

0

SSV E
1 - SSV E

0 ) (36)

Figure 7 presents the safety improvement when incorporat‐
ing the safety margin calculated using (32) when d takes val‐
ues of 10 MW, 25 MW, and 50 MW. It can be observed that 
the introduction of the safety margin enhances the power sys‐
tem frequency safety for different load levels associated with 
a feeder. Moreover, as d increases, the safety improvement 
becomes more significant.

For the sake of clarity, we will refer to the method in (8) 
as the ceiled KLS (KLS-C). The Economy of KLS-C and the 
proposed KLS is demonstrated in Fig. 8. It can be observed 
that by incorporating the load shedding amount in (7) along 
with the safety margin, the proposed KLS achieves a re‐
duced level of load shedding amount compared with that of 
KLS-C. This reduction is achieved while ensuring the power 
system frequency safety.
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F. Comparison with Traditional UFLS

Frequency thresholds and load shedding proportions at 
each stage for traditional UFLS are determined according to 
[44]. The control effectiveness of traditional UFLS and the 
proposed KLS across 300 test scenarios is then compared. 
The results in two of the scenarios are shown in Fig. 9. In 
Fig. 9(a), it is demonstrated that in an envisioned scenario, 
both the proposed KLS and traditional UFLS ensure the 
power system frequency safety. In Fig. 9(b), in a non-envi‐
sioned scenario, traditional UFLS fails to guarantee the mini‐
mum frequency within the specified range, and additionally, 
overshooting occurs.

The comparison between traditional UFLS and proposed 
KLS in 300 test scenarios (non-envisioned) is presented in 
Fig. 10. It is evident that shedding preassigned loads alone 
cannot ensure frequency safety under various operating con‐
ditions and power imbalances. However, the proposed KLS 
demonstrates its capability to adapt to such intricate varia‐
tions in the inertia and the power imbalance.

V. CONCLUSION 

In this paper, the proposed KLS, which adapts to diverse 
operating conditions and under frequency events, is intro‐

duced to achieve the optimal one-shot load shedding for 
power system frequency safety. To address approximation in‐
accuracies and the restriction of load shedding to discrete 
values, a safety margin tuning scheme is incorporated within 
KLS framework. Simulation results demonstrate that the pro‐
posed KLS effectively captures latent variables strongly cor‐
related with the system inertia and power imbalance within a 
300 ms time window after a fault occurs. The proposed KLS 
exhibits high prediction accuracy on both the training and 
testing sets, indicating its generalizability beyond the train‐
ing set. Furthermore, the safety margin tuning scheme en‐
hances the power system frequency safety.
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