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Abstract——Realistic uncertainties of renewable energies and 
loads may possess complicated probability distributions and cor‐
relations, which are difficult to be characterized by standard 
probability density functions and hence challenge existing uncer‐
tainty propagation analysis (UPA) methods. Also, nonintrusive 
spectral representation (SR)-based UPA methods can only esti‐
mate system responses at each time point separately, which is 
time-consuming for analyzing power system dynamics. Thus, 
this paper proposes a generic multi-output SR (GMSR) method 
to effectively tackle the above limitations by developing the ge‐
neric correlation transformation and multi-output structure. 
The effectiveness and superiority of GMSR in efficiency and ac‐
curacy are demonstrated by comparing it with existing SR 
methods.

Index Terms——Probabilistic stability, renewable energy, spec‐
tral representation, power system dynamics, uncertainty.

I. INTRODUCTION 

RECENTLY, increasing uncertainties in power systems in‐
duced by high penetration of renewable energies pose a 

huge threat to system stability [1]. Thus, effective uncertain‐
ty propagation analysis (UPA) methods for power system dy‐
namics aiming at calculating the probability distributions of 
system dynamic responses caused by uncertainties are in 
pressing need.

UPA methods can be mainly categorized into three types, 
including numerical methods, analytical methods, and ap‐
proximation methods. Among numerical methods, Monte 
Carlo simulation (MCS) is one of the most widely applied 
methods in power system dynamics. Although there are 

some techniques to improve the sampling efficiency of 
MCS, e.g., Latin hypercube sampling, Halton sampling, and 
Sobol sampling [2], thousands of simulations are normally 
required, which is time-consuming. By comparison, analyti‐
cal methods significantly improve efficiency. Among analyti‐
cal methods, Taylor series expansion needs derivative opera‐
tions, and convolution methods require independent uncer‐
tainty inputs, which only have limited applications in power 
systems [3], [4]. By comparison, point estimation methods 
and cumulant-based methods are applied in power systems 
more widely [1]. However, as pointed out in [5], they cannot 
guarantee the accuracy in calculating the probability distribu‐
tions of system dynamic responses. Thus, numerical methods 
and analytical methods have drawbacks in efficiency and ac‐
curacy, respectively.

The emerging approximation methods provide solutions 
that balance efficiency and accuracy. Gaussian process re‐
gression is based on Bayesian inference [2]. However, the 
kernel functions of Gaussian process regression need to be 
preselected based on experience, and the computational com‐
plexity is high. By comparison, spectral representation (SR) 
has been applied in power system dynamics more widely, 
mainly including low-rank approximation (LRA) and polyno‐
mial chaos expansion (PCE) [1], [5]. However, there are still 
some obstacles to the further broad application of SR. The 
first one is that most SR methods can only estimate the sys‐
tem dynamic response at each time point separately, restrict‐
ed by the single output [5]-[8], whereas UPA for power sys‐
tem dynamics focuses on the system dynamic response at all 
time points during the concerned period of time. This means 
that massive SR models need to be constructed, which is 
cumbersome and time-consuming. Although some SR meth‐
ods with multiple outputs have been proposed based on 
Galerkin [9], [10], they are intrusive, which means that they 
need the complicated transformation for power system state-
space equations and all the detailed structure and parameters 
of power systems, which are difficult to measure in reality 
accurately. The second limitation is that SR methods require 
independent uncertainties as inputs, and correlated uncertain‐
ties should be transformed into independent ones firstly. 
Most uncertainty transformation methods are based on 
Rosenblatt or Nataf transformations [5] - [7], which require 
that the joint probability distributions of uncertainties can be 
accurately characterized, or the joint probability distributions 
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can be approximated by existing Copula functions. However, 
for complicated uncertainties in reality, these assumptions 
may not be guaranteed. Although there are some data-driven 
uncertainty transformation methods, e. g., principal compo‐
nent analysis-based methods [11], [12], they can only ensure 
the transformed uncertainties are uncorrelated rather than in‐
dependent.

Therefore, to overcome the above limitations, this paper 
proposes a UPA method named generic multi-output spectral 
representation (GMSR) for power system dynamics. The ma‐
jor contributions can be summarized as follows.

1) The proposed GMSR has multiple outputs and thus can 
estimate system dynamics at different time points simultane‐
ously, which significantly improves efficiency. Also, as a 
nonintrusive method, GMSR only needs the measurements 
of uncertainties and system dynamic responses.

2) It is discovered by case studies that the realistic uncer‐
tainties of renewable energies and loads may not be accurate‐
ly modeled by standard probability distributions and have 
complicated correlations. The uncertainty transformation in‐
cluded in GMSR can effectively transform uncertainties with 
arbitrary correlations into independent ones only based on 
measurements of uncertainties and without any priori knowl‐
edge, which is the fundamental step for SR methods.

3) The proposed GMSR integrates the merits of existing 
SR methods, including being applicable to uncertainties with 
arbitrary probability distributions and having sparse struc‐
ture, thereby avoiding the curse of dimensionality.

4) As a universal UPA method, the proposed GMSR can 
be applied to various probabilistic stability issues of power 
systems related to system dynamics and thus has wide appli‐
cations.

II. METHODOLOGY DESCRIPTION 

Uncertainties of renewable energies and loads are widely 
concerned in power systems and thus are considered in this 
paper. The proposed GMSR utilizes weight summation of 
spectral functions to approximate the relationship M(ξ) be‐
tween independent uncertainties ξ and the system response 
y =[y(Dt)y(iDt)y(Td )]T with Td as the concerned time 
period of system dynamic response and Dt as the step length.

y =M(ξ)» ŷ = M̂(ξ)=Wφ(ξ)=
é

ë
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ê∑
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(1)

where Nr is the number of representation items; the subscript 
Ny = Td /Dt denotes the number of GMSR outputs y; the su‐
perscript  ̂ represents the approximation derived from GM‐
SR; φj (ξ) is the j th item of spectral function φ(ξ), which de‐
notes the spectral function arranged in ascending order; and 
ωij is the entry in ith row and jth column of the weight coeffi‐
cient matrix W.

From (1), one of the major differences between the form 
of GMSR and that of the existing nonintrusive SR is that 
GMSR has multiple outputs, whereas the existing nonintru‐
sive SR only has one output. Also, according to (1), the 

main tasks of deriving GMSR model can be summarized 
as: ① transformation of correlated uncertainties into indepen‐
dent ones ξ; ② construction of spectral function φ(ξ); and ③ 
calculation of weight coefficient matrix W. It should be not‐
ed that W is directly derived in GMSR as a whole rather 
than calculating ωi separately and combining them into W. 
Otherwise, (1) is only a combination of the existing nonintru‐
sive SR models. Additionally, GMSR relies on the sampling 
data of uncertainties and system dynamic responses, which 
can be obtainable in realistic power systems [13], [14]. 
Moreover, many existing studies on UPA are based on the 
premise that the data of uncertainties and system dynamic re‐
sponses are obtainable [6] - [9]. Thus, data reliance will not 
limit the application of GMSR.

A. Generic Transformation for Correlated Uncertainties

There are similarities between uncertainty transformation 
and blind source separation. In detail, correlated uncertain‐
ties are similar to the observed and mixed signals in blind 
source separation. And transforming correlated uncertainties 
into independent ones is similar to restoring the observed sig‐
nals to the original ones. Thus, the methods with blind 
source separation have the potential to be used in uncertain‐
ty transformation. And the basic idea of independent compo‐
nent analysis (ICA) that can effectively separate mixed sig‐
nals into uncorrelated and independent signals is applied in 
this paper.

For a set of correlated uncertainties after centering ς =
[ς1ς2ςNc

]T, where Nc is the number of correlated uncer‐

tainties, Ns sampling data of ς are expressed as ς(1~Ns ). First‐
ly, whitening processing is conducted to transform the corre‐
lated uncertainties into uncorrelated ones ς͂ with unit vari‐
ance based on eigenvalue decomposition, which can be for‐
mulated as:

ς͂(1~Ns )=US
-

1
2U Tς(1~Ns ) (2)

where U is the right eigenvector of ς(1~Ns ) (ς(1~Ns ) )T. The diago‐
nal entries of S are the eigenvalues of ς(1~Ns ) (ς(1~Ns ) )T.

Then, based on ICA, the transformation from uncorrelated 
uncertainties into independent ones can be regarded as find‐
ing a transformation matrix B =[b1b2bNc

]T that can max‐

imize the non-Gaussianity [15], which can be formulated as:
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(3)

where E(×) is the mean operator; υ is an uncertainty follow‐
ing the standard Gaussian distribution; G(×) is the contrast 
function, which can be chosen as logcosh; and  is the Had‐
amard product operator.

To solve (3), the fixed-point algorithm [16], as presented 
in (4), is used to update bn iteratively until it converges so 
that the fast ICA can be implemented.

ì
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ïïïï

bnv′=E(ς͂(1~Ns )  Ġ(bT
n(v - 1)ς͂

(1~Ns ) ))-E(G̈(bT
n(v - 1)ς͂

(1~Ns ) ))bn(v - 1)

bnv =
bnv′

||bnv′||2

(4)
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where Ġ(×) and G̈(×) are the first- and second-order deriva‐
tives of G(×), respectively; bnv and bnv′ are the updated bn at 
the vth iteration with and without normalization, respectively; 
and || × ||2 is the ℓ2 norm.

After B is calculated, the transformation from correlated 
uncertainties ς to independent ones ξ can be derived as:

ξ =BUS
-

1
2U Tς (5)

It should be noted that the ICA is only effective when da‐
ta do not follow Gaussian distributions. And since realistic 
uncertainties are complicated, they will not strictly follow 
Gaussian distributions. Thus, this ICA-based uncertainty 
transformation is universally effective for realistic uncertain‐
ties.

B. Construction of Spectral Functions for Uncertainties with 
Arbitrary Probability Distributions

Spectral functions are formed by orthogonal bases. For 
the orthogonal basis ψ[ jm ] (ξm ) with respect to ξm with the or‐
der of jm, it can be expressed as:

ψ[ jm ] (ξm )=∑
n = 0

jm

κnξ
n
m     κ jm

= 1 (6)

where κn is the coefficient of ξ n
m.

To construct bases applicable to uncertainties with arbi‐
trary probability distributions, the orthogonality is used, 
which is described as:

∑
h = 1

Ns

ψ[ jm ] (ξ (h)
m )ψ[ jq ] (ξ (h)

m )

Ns

= 0    0 £ jq < jm

(7)

where jq indicates the order.
According to (7), when jq = 01, there is:

ì

í

î

ï

ï
ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

∑
h = 1

Ns

ψ[ jm ] (ξ (h)
m )

Ns

= 0

∑
h = 1

Ns

ψ[ jm ] (ξ (h)
m )(κ0 + ξ

(h)
m )

Ns
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Then, the following equation can be derived by substitut‐
ing the first equation of (8) into the second equation of (8).

∑
h = 1

Ns

ψ[ jm ] (ξ (h)
m )ξ (h)

m

Ns

= 0
(9)

Moreover, the following equation can be derived by substi‐
tuting jq = 23jm - 1 in turns into (7) and repeating the 
above procedure.

∑
h = 1

Ns

ψ[ jm ] (ξ (h)
m )ξ jq(h)

m

Ns

= 0    jq = 01jm - 1
(10)

According to (10) and (6), when jq = ju - 1, we have:

∑
h = 1

Ns

(κ0 + + ξ jm(h)
m ) ξ ju - 1(h)

m

Ns

= 0    1 £ ju £ jm

(11)

Formula (11) can be rewritten as (12) by defining χ ju
=

∑
h=1

Ns

ξ ju+ jm-1(h)
m /Ns, 1£ ju£ jm, Θ =[θ ju jn

]jm ´ jm
, θju jn

=-∑
h=1

Ns

ξ ju+ jn-2(h)
m /Ns, 

1 £ ju, jn £ jm.

κ0θ ju1
+ κ1θ ju2 + + κ jm - 1θ ju jm

= χ ju (12)

jm equations similar to (12) can be derived by assigning 
ju = 12jm. Then, these equations are formulated into the 
matrix form as:

[κ0κ1κ jm - 1 ]T =Θ-1 [χ1χ2χ jm
]T

(13)

After orthogonal bases are determined according to (6) 
and (13), spectral functions can be constructed. To alleviate 
the curse of dimensionality, the hyperbolic truncation is in‐
troduced. Thus, φj (ξ) can be formed as:
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where No expresses the order of GMSR; and cγ is the hyper‐
bolic truncation coefficient.

C. Weight Coefficient Calculation

The calculation of W as a whole in (1) can be regarded as 
the multiple linear regression (MLR), where the sampling da‐
ta of system dynamic response y(1~Ns ) and spectral functions 
φ(ξ)(1~Ns ) have already been derived. To avoid overfitting and 
reduce the complexity of W, the form of multi-task elastic 
net [17] is introduced in calculating W, which can be formu‐
lated as the following optimization problem:

min
W

||y(1~Ns )-Wφ(ξ)(1~Ns )||2
F /2Ns + λρ||W||21 +

λ
2

(1 - ρ)||W||F (15)

where λ is the penalty factor of the complexity of W; ρ is 
the weight coefficient of different norms; and || × ||F and || × ||21 
are the Frobenius norm and ℓ1 ℓ2 norm, respectively, which 
are expressed as:
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a2
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k

||ak||2

(16)

where akl is the entry in the k th row and l th column of the in‐
dicated matrix A.

To solve (15), the coordinate descent algorithm can be 
used. And the introduction of ||W||F in (15) is for avoiding 
overfitting. The introduction of ||W||21 in (15) is for reducing 
the ℓ2 norm of A in every row, which restricts the complexi‐
ty of W in every row, i. e., ensuring the sparse structure of 
GMSR, thereby avoiding the curse of dimensionality.

D. Probabilistic Analysis of GMSR Outputs

After deriving the GMSR model in (1), arbitrary moments 
can be estimated based on the GMSR outputs since its out‐
puts are the values of system dynamic responses under un‐
certainties with different values. Also, mean μi and variance 
σ 2

i  of y(iDt) are usually concerned in existing studies [7], [8], 
which are estimated as examples and expressed as:
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ŷ(iDt)(h) /Np

σ̂ 2
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Np

( ŷ(iDt)(h) )2 /Np - μ̂
2
i

(17)

where Np is the number of sampling data derived from GM‐
SR.

Based on kernel density estimation (KDE), the probability 
density function (PDF) p(×) of y(iDt) can be estimated as:

p̂( ŷ(iDt))=∑
h = 1

Np

Φ(( ŷ(iDt)- ŷ(iDt)(h) ) /ϑi )/(Npϑi ) (18)

where Φ(×) is the Gaussian kernel function of KDE; and ϑi is 
the bandwidth of KDE with respect to y(iDt), which can be 
chosen as 1.06σ̂i N

-0.2
p  [7].

III. CASE STUDY 

A. Case 1: IEEE 68-bus 5-area Benchmark System

Case 1 is conducted in IEEE 68-bus 5-area benchmark 
system [18]. There are 3 wind power generation units 
(WPG1-WPG3), 3 photovoltaic units (PV1-PV3), and 3 
loads with realistic uncertainties based on measurements in 
[13] connecting at buses 29, 31, 41, buses 6, 10, 36, and bus‐
es 27, 47, 48, respectively. The simulation platform is a com‐
puter with the hardware of Intel Core i7-8700 CPU @ 3.20 
GHz and 16 GB memory and Python as software. The ap‐
plied simulation models of generators and automatic voltage 
regulators are simplified 3rd-order model and 1st-order model, 
separately [19]. To illustrate the probability distributions and 
the correlations among uncertainties, their PDFs after nor‐
malization are drawn, as shown in Fig. 1, and the correlation 
coefficients of pairwise uncertainties (U1-U9) are listed in 
the upper triangular units of Table I. The correlation coeffi‐
cients and the independence hypothesis test results of uncer‐
tainties after conducting the uncertainty transformation are 
listed in the lower triangular units of Table I to show the per‐
formance of the uncertainty transformation.

From Fig. 1, the PDFs of realistic uncertainties are compli‐
cated, especially those of PV3 and load 3, the shapes of 
which are quite different from the standard PDFs. And in Ta‐
ble I, the correlation coefficients between different pairwise 
uncertainties are various. By comparison, after uncertainty 
transformation, all correlation coefficients among uncertain‐
ties are close to 0, and all independence hypothesis tests are 
passed. The results demonstrate the effectiveness of the un‐

certainty transformation in transforming the correlated uncer‐
tainty into independent ones.

1)　Probabilistic Frequency Stability Analysis
GMSR is applied to analyze the system frequency re‐

sponse fsys (t) and area-level frequency response in Area 1 
fa1 (t) with the trip of the largest infeed generator at 0.1 s, 
where Td = 10  s, Dt = 0.01  s. The results of 5000 MCSs are 
regarded as the baselines [18]. The performance of the pro‐
posed GMSR in efficiency and accuracy is compared with 
those of other SR methods, including sparse PCE (SPCE) 
and LRA with the setting as: Ns = 200, No = 4 [5], λ = 1/(2Ns ), 
ρ = 0.5. The selection of λ and ρ is to equally consider the 
sparsity and generalization. And SPCE is chosen as the com‐
parison method since the conventional PCE is infeasible 
with the above setting due to the curse of dimensionality.

Firstly, the efficiency of various methods in analyzing 
fsys (t) is compared, as illustrated in Table II. From Table II, 
since SPCE, LRA, and GMSR only require 200 simulations, 
whereas MCS requires 5000 simulations, the simulation time 
needed for SPCE, LRA, and GMSR is significantly shorter 
than that needed for MCS. Moreover, the efficiency of GM‐
SR is greatly superior to that of SPCE and LRA. The meth‐
od execution time of GMSR is more than 40 times shorter 
than that of SPCE and LRA. The reason is that SPCE and 
LRA only have one output. To analyze fsys (t) at each time 
point, Ny = Td /Dt = 1000 models are required to be construct‐
ed separately. By comparison, GMSR has multiple outputs, 
and the number of the constructed GMSR model is only 1, 
indicating the time-saving merit.

TABLE I
CORRELATION COEFFICIENTS AND INDEPENDENCE HYPOTHESIS AMONG 

UNCERTAINTIES BEFORE AND AFTER UNCERTAINTY TRANSFORMATION IN 
CASE 1

Uncertainty

U1

U2

U3

U4

U5

U6

U7

U8

U9

U1

-

0/Y

0/Y

0/Y

0/Y

0/Y

0/Y

0/Y

0/Y

U2

0.01

-

0/Y

0/Y

0/Y

0/Y

0/Y

0/Y

0/Y

U3

0.02

0.54

-

0/Y

0/Y

0/Y

0/Y

0/Y

0/Y

U4

-0.24

-0.03

0.01

-

0/Y

0/Y

0/Y

0/Y

0/Y

U5

-0.08

-0.22

-0.30

0.40

-

0/Y

0/Y

0/Y

0/Y

U6

-0.06

-0.25

-0.29

0.41

0.89

-

0/Y

0/Y

0/Y

U7

0.04

0.08

0.15

-0.07

-0.09

-0.10

-

0/Y

0/Y

U8

0.16

0.17

0.07

-0.33

-0.47

-0.48

0.53

-

0/Y

U9

0.08

0.09

0.12

-0.14

-0.23

-0.23

0.82

0.81

-

Note: 0/Y denotes that the correlation coefficient is 0, and the independence 
hypothesis is accepted at a 5% level of significance.

Power (p.u.)

P
D

F

0 0.2 0.4 0.6 0.8 1.0

2

4

6
Load 1WPG1;

WPG2;
WPG3;

PV1;
PV2;
PV3;

Load 2
Load 3

Fig. 1.　PDFs of realistic uncertainties.

TABLE II
EFFICIENCY COMPARISON OF PROBABILISTIC FREQUENCY STABILITY 

ANALYSIS IN CASE 1

Method

MCS

SPCE

LRA

GMSR

Simulation time (s)

9852.744

391.659

391.659

391.659

Method execution time (s)

-

110.944

101.016

2.320

Total time (s)

9852.744

502.603

492.675

393.979
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Moreover, the accuracy of various methods in estimating 
the moments, i. e., mean and standard deviation (Std.), of 
fsys (t) and fa1 (t) is compared, as shown in Fig. 2. PDFs of ab‐
solute errors (AEs) of moments are introduced to assess 
overall accuracy, as shown in Fig. 3.

According to Fig. 2(a) and (b), for fsys (t), the overlapping 
degree between the moment curves derived from MCS and 
those from GMSR are higher than those from SPCE and 
LRA. Moreover, from Fig. 2(b), the Std. curve from GMSR 
is smoother since each time point corresponds to one SPCE 
or LRA, ωi of which is calculated separately. 

By comparison, W of GMSR is calculated as a whole. 
Similar results can be found in Fig. 2(c) and (d) for fa1 (t), 
where the moment curves derived from GMSR are closer to 
those from MCS compared with those from SPCE and LRA. 
Moreover, in Fig. 3, LRA presents the worst performance. 
And the peaks of PDF of AE associated with fa1 (t) from 
SPCE are closer to 0 compared with those associated with 
fsys (t), which means that the accuracy of SPCE in estimating 
fa1 (t) is higher than that in estimating fsys (t). However, its 
performance is still not as good as that of GMSR. And the 
PDF of AE from GMSR has higher peaks and thinner tails, 
the peaks of which are closer to 0. These results indicate 
that GMSR has higher accuracy in estimating the moments 
of both system and area-level frequency responses. The rea‐
son is that the complicated correlations among realistic un‐
certainties cannot be transformed accurately in SPCE and 
LRA, which decreases their estimation accuracy.

Also, to assess the accuracy of various methods in estimat‐
ing PDFs of frequency responses, AE of PDF, i.e., |p( f.(t))-
p̂( f.̂(t))|, is presented in Fig. 4. The shape difference of PDFs 

ε, i.e., ε = ||p( f.(t))- p̂( f.̂(t))||2, is introduced to assess the over‐
all accuracy, the PDFs of which are drawn in Fig. 5.

From Fig. 4, the AEs of PDFs of fsys (t) and fa1 (t) from 
GMSR are much smaller than those from SPCE and LRA, 

0 0.00005 0.00010 0.00015 0.00020

100000

200000

300000

400000

SPCE; LRA; GMSR

P
D

F

AE of fsys(t) mean

(a)

0 0.000015 0.000030 0.000045 0.000060

150000

300000

450000

P
D

F

(b)

AE of fsys(t) Std.

0 0.00005 0.00010 0.00015 0.00020

100000

200000

300000

400000

P
D

F

AE of fa1(t) mean

(c)

0 0.000015 0.000030 0.000045 0.000060

150000

300000

450000

P
D

F

(d)

AE of fa1(t) Std.

Fig. 3.　PDFs of AEs of moments. (a) PDF of AE of fsys (t) mean. (b) PDF 
of AE of fsys (t) Std.. (c) PDF of AE of fa1 (t) mean. (d) PDF of AE of fa1 (t) 
Std..

2.5 5.0 7.5 10.0

50.00

49.94

49.88

0

0.5

1.0

1.5

2.0

2.5

Time (s)
(a)

AE of PDF

0
49.82

50.0

49.9

49.8

49.7f s
y
s(
t)

 (
H

z)

f a
1
(t

) 
(H

z)

2.5 5.0 7.5 10.0
Time (s)

(b)

0

2.5 5.0 7.5 10.0

50.00

49.94

49.88

Time (s)
(c)

0
49.82

50.0

49.9

49.8

49.7f s
y
s(
t)

 (
H

z)

f a
1
(t

) 
(H

z)

2.5 5.0 7.5 10.0
Time (s)

(d)

0

2.5 5.0 7.5 10.0

50.00

49.94

49.88

Time (s)
(e)

0
49.82

50.0

49.9

49.8

49.7f s
y

s(
t)

 (
H

z)

f a
1
(t

) 
(H

z)

2.5 5.0 7.5 10.0
Time (s)

(f)

0

Fig. 4.　AEs of PDFs of fsys (t) and fa1 (t). (a) AE of PDF of fsys (t) from 
SPCE. (b) AE of PDF of fa1 (t) from SPCE. (c) AE of PDF of fsys (t) from 
LRA. (d) AE of PDF of fa1 (t) from LRA. (e) AE of PDF of fsys (t) from GM‐
PR. (f) AE of PDF of fa1 (t) from GMSR.

0 2 4 6 8 10
49.84

49.90

49.96

50.02

0 2 4 6 8 10
-0.001

-0.001

0.001

0.003

0.005

0.68 0.72 0.76
49.85210

49.85228

49.85246

7.86 7.88 7.90

1.87 1.91 1.95

Time (s)
(a)

Time (s)
(c)

Time (s)
(d)

Time (s)
(b)

MCS; SPCE; LRA; GMSR

0 2 4 6 8 10
49.72

49.82

49.92

50.02

0.91 0.95 0.99
49.7540

49.7546

49.7552

0 2 4 6 8 10

1.85 1.89 1.93

0.005000

f s
y
s(
t)

 m
ea

n
 (

H
z)

f s
y

s(
t)

 S
td

. 
(H

z)

0.004497
0.004487
0.004477

0.00195

0.00188

f a
1
(t

) 
m

ea
n
 (

H
z)

f a
1
(t

) 
S

td
. 
(H

z)

0.001

0.003

0.005

0.007 0.004988
0.004994

Fig. 2.　 Accuracy of various methods in estimating moments. (a) fsys (t) 
mean. (b) fsys (t) Std.. (c) fa1 (t) mean. (d) fa1 (t) Std..

761



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 13, NO. 3, May 2025

which can be observed more clearly from the results at only 
one time point, as shown in Fig. 5(a) and (c). Moreover, 
from Fig. 5(b), for fsys (t), the PDF of ε from GMSR has the 
thinner tail and higher peak closer to 0 at 2.242, whereas the 
peaks of PDF of ε from SPCE and LRA are at 28.130 and 
71.548. Also, from Fig. 5(d), for fa1 (t), the peak of PDF of ε 
from GMSR is at 2.162, and those from SPCE and LRA are 
at 5.547 and 61.297, respectively. These results indicate the 
higher accuracy of GMSR in estimating PDFs of both fsys (t) 
and fa1 (t) at different time points.

2)　Probabilistic Transient Stability Analysis
Then, GMSR is applied to analyze the difference between 

the rotor angle of generator 1 and that of generator 2, denot‐
ed as δ12 (t), in the system with a short-circuit fault at bus 16 
during 0.1-0.2 s, as an example. It can also be used to ana‐
lyze the maximal rotor angle difference; however, the results 
are not shown for saving space. The rest settings are the 
same as those in the previous section. The efficiency compar‐
ison of probabilistic transient stability analysis in Case 1 is 
presented in Table III. The accuracy comparison of δ12 (t) mo‐
ment estimation and δ12 (t) PDF estimation among various 
UPA methods are illustrated in Figs. 6, and 7, respectively.
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TABLE III
EFFICIENCY COMPARISON OF PROBABILISTIC TRANSIENT STABILITY 

ANALYSIS IN CASE 1

Method

MCS

SPCE

LRA

GMSR

Simulation time (s)

10243.150

407.539

407.539

407.539

Method execution time (s)

-

111.090

101.282

2.429

Total time (s)

10243.150

518.629

508.821

409.968
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Similar to the results in probabilistic frequency stability 
analysis, from Table II, the total time of GMSR is shorter 
than those of SPCE and LRA due to the multi-output struc‐
ture, and the total time of GMSR is significantly shorter 
than that of MCS since the needed simulation quantity is 
less. Compared with the total time in probabilistic frequency 
stability analysis, the method execution time in probabilistic 
transient stability analysis is very close to that in probabilis‐
tic frequency stability analysis, and only the simulation time 
of them has certain differences. Moreover, though the accura‐
cy of GMSR is not the best at all time points, e.g., the zoom‐
ing area in Fig. 6(b), the overall accuracy of GMSR is the 
best. This can be observed based on Figs. 6(c), 6(d), and 7
(e) that the probability distributions of AEs corresponding to 
the moment and PDF estimation from GMSR are more con‐
centrated to 0 compared with those from SPCE and LRA. 
Thus, these results demonstrate the superiority of GMSR in 
efficiency and accuracy of probabilistic transient stability 
analysis.

B. Case 2: 240-bus WECC System

To verify the scalability and applicability of GMSR in the 
larger power system with numerous uncertainties, case stud‐
ies implemented in the 240-bus WECC system are conduct‐
ed, where 37 renewable energies are integrated [20]. Also, 
the top 13 loads with the highest active power are selected 
as uncertainties as cases. Thus, the total uncertainty quantity 
of renewable energies and loads in the system is 50. These 
uncertainties are based on the measurements in [21]. Firstly, 
the proposed uncertainty transformation is carried out. Limit‐
ed by space, only the correlation coefficients and indepen‐
dence hypothesis among the first 9 uncertainties before and 
after uncertainty transformation are listed in Table IV. Be‐
fore uncertainty transformation, the uncertainties have com‐
plicated correlations with the maximal correlation coefficient 
of 0.61 and the minimal correlation coefficient of -0.48. Af‐
ter applying the proposed uncertainty transformation, all un‐
certainties are independent, which demonstrates the effective‐
ness of the proposed uncertainty transformation in different 
uncertainty datasets.

Next, probabilistic frequency stability analysis is conduct‐
ed by using GMSR to analyze the system frequency re‐
sponse fWsys (t) and area-level frequency response in Area 1 
fWa1 (t) of the system with the trip of the largest infeed gener‐
ator at 0.1 s. Firstly, the efficiency comparison of probabilis‐
tic frequency stability analysis is presented in Table V. Com‐
pared with the total time shown in Table II, the simulation 
time rises around 4.5 times with the increase of the analyzed 
system scale. And GMSR, as a nonintrusive method, only 
needs the data of uncertainties and data of system dynamic 
responses as inputs and outputs to determine its structure 
and calculate the coefficients. The method execution time of 
GMSR rises around 3.5 times with the increase of uncertain‐
ty quantity rather than that of analyzed system scale. More‐
over, similar total time increase can be found in other meth‐
ods, and the increase of method execution time of GMSR is 
limited compared with other methods. Thus, these results 
demonstrate that GMSR possesses the time-saving merit in 
UPA of the large-scale power system with numerous uncer‐
tainties.

Then, the accuracy of methods in estimating the moments 
and PDFs of frequency responses are compared, as indicated 
by Figs. 8, 9 and Figs. 10, 11, respectively. From Fig. 8(a) 
and (c), for mean of frequency responses, all mean curves 
derived from various methods are very close to the curves 
from MCS, which illustrates their high accuracy in estimat‐
ing the mean of frequency responses. Moreover, from Fig. 
9(a) and (c), though the peaks of PDFs of AE from LRA are 
closer to 0 than those from GMSR, the values of their peaks 
are lower than those from GMSR, and the tails of PDFs of 
AE from LRA are fatter. This means that the errors of LRA 
in estimating the mean of frequency responses will fluctuate 
in a relatively large range compared with GMSR. And for 
Std. of frequency responses presented in Fig. 9(b) and (d), 
the peaks of PDFs of AE from GMSR are much higher and 
closer to 0 compared with those from SPCE and LRA, 
which means that the Std. curves from GMSR are closer to 
those from MCS, as shown in Fig. 8(b) and (d). Moreover, 
for PDFs of frequency responses, it can be clearly observed 
that AEs of frequency response PDFs from GMSR are much 
smaller than those from SPCE and LRA, as presented in 
Fig. 10, and the shape differences of frequency response 
PDFs from GMSR are also smaller, as illustrated in Fig. 
11(b) and (d). These results indicate the high accuracy of 
GMSR in estimating the moments and PDFs of frequency re‐
sponses of the large-scale power system with numerous un‐
certainties.

TABLE IV
CORRELATION COEFFICIENTS AND INDEPENDENCE HYPOTHESIS AMONG 

UNCERTAINTIES BEFORE AND AFTER UNCERTAINTY TRANSFORMATION IN 
CASE 2

Uncertainty

U1

U2

U3

U4

U5

U6

U7

U8

U9

U1

-

0/Y

0/Y

0/Y

0/Y

0/Y

0/Y

0/Y

0/Y

U2

0.09

-

0/Y

0/Y

0/Y

0/Y

0/Y

0/Y

0/Y

U3

0.04

0.44

-

0/Y

0/Y

0/Y

0/Y

0/Y

0/Y

U4

0.10

-0.27

-0.32

-

0/Y

0/Y

0/Y

0/Y

0/Y

U5

-0.06

-0.40

-0.09

0.61

-

0/Y

0/Y

0/Y

0/Y

U6

0.13

-0.19

-0.32

-0.16

-0.31

-

0/Y

0/Y

0/Y

U7

-0.05

-0.01

0.05

-0.10

0.03

-0.48

-

0/Y

0/Y

U8

0.05

0.08

0.05

-0.13

0.03

-0.16

0.39

-

0/Y

U9

-0.23

0.31

0.35

-0.33

-0.39

0.05

0.02

-0.18

-

TABLE V
EFFICIENCY COMPARISON OF PROBABILISTIC FREQUENCY STABILITY

ANALYSIS IN CASE 2

Method

MCS

SPCE

LRA

GMSR

Simulation time (s)

43932.563

1750.381

1750.381

1750.381

Method execution time (s)

-

308.453

236.691

8.179

Total time (s)

43932.563

2058.834

1987.072

1758.560
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IV. CONCLUSION 

This paper proposes a GMSR method for UPA of power 
system dynamics. The simulation results demonstrate that 
the data-driven uncertainty transformation can effectively 
transform realistic uncertainties with complicated correla‐
tions and probability distributions into uncorrelated and inde‐
pendent ones, which can be integrated into other SR-based 
UPA methods as a widely used preprocessing. Moreover, 
compared with existing nonintrusive SR-based UPA meth‐
ods, GMSR significantly improves the efficiency and accura‐

0 2 4 6 8 10
59.90

59.94

59.98

60.02

0 2 4 6 8 10
-0.0010

-0.0002

0.0006

0.0014

0.0022

0.990 1.015 1.040
59.90620
59.90626
59.90632

2.52 2.56 2.60

Time (s)
(a)

Time (s)
(c)

Time (s)
(d)

Time (s)
(b)

MCS; SPCE; LRA; GMSR

0 2 4 6 8 10
59.78

59.86

59.94

60.02

f W
sy

s(
t)

 m
ea

n
 (

H
z)

f W
sy

s(
t)

 S
td

. 
(H

z)

0.00207
0.00204
0.00201

f W
a1

(t
) 

m
ea

n
 (

H
z)

f w
a1

(t
) 

S
td

. 
(H

z)

0.580 0.595 0.610
59.80614
59.80617
59.80620

0 2 4 6 8 10
-0.0003

0.0004

0.0011

0.0018

0.0025
2.50 2.54 2.58

0.00230
0.00227
0.00224

Fig. 8.　fWsys (t) mean and Std. and fWa1 (t) mean and Std.. (a) fWsys (t) mean. 
(b) fWsys (t) Std.. (c) fWa1 (t) mean. (d) fWa1 (t) Std..

0 0.00002 0.00004 0.00006

200000

400000

600000

SPCE; LRA; GMSR

P
D

F

AE of fWsys(t) mean

(a)

0 0.00001 0.00002 0.00003 0.00004

P
D

F

(b)

AE of fWsys(t) Std.

0 0.00002 0.00004 0.00006

100000

200000

300000

400000

P
D

F

AE of fWa1(t) mean

(c)

0

P
D

F

(d)

AE of fWa1(t) Std.

300000

600000

900000

1500000

1200000

200000

400000

800000

600000

0.00001 0.00002 0.00003 0.00004

Fig. 9.　PDFs of AEs in Case 2. (a) PDF of AE of fWsys (t) mean. (b) PDF 
of AE of fWsys (t) Std.. (c) PDF of AE of fWa1 (t) mean. (d) PDF of AE of 
fWa1 (t) Std..

0

1

2

3

4

7

6

5
2.5 5.0 7.5 10.0

60.00

59.95

Time (s)
(a)

AE of PDF

0
59.90

60.0

59.9

59.8f W
sy

s(
t)

 (
H

z)

f W
a1

(t
) 

(H
z)

2.5 5.0 7.5 10.0
Time (s)

(b)

0

2.5 5.0 7.5 10.0
Time (s)

(c)

0

f W
sy

s(
t)

 (
H

z)

f W
a1

(t
) 

(H
z)

2.5 5.0 7.5 10.0
Time (s)

(d)

0

2.5 5.0 7.5 10.0
Time (s)

(e)

0

f W
sy

s(
t)

 (
H

z)

f W
a1

(t
) 

(H
z)

2.5 5.0 7.5 10.0
Time (s)

(f)

0

60.00

59.95

59.90

60.0

59.9

59.8

60.00

59.95

59.90

60.0

59.9

59.8

Fig. 10.　AEs of PDFs of fWsys (t) and fWa1 (t) in Case 2. (a) AE of PDF of 
fWsys (t) from SPCE. (b) AE of PDF of fWa1 (t) from SPCE. (c) AE of PDF of 
fWsys (t) from LRA. (d) AE of PDF of fWa1 (t) from LRA. (e) AE of PDF of 
fWsys (t) from GMPR. (f) AE of PDF of fWa1 (t) from GMPR.

59.910 59.918 59.922

83

0

166

249

0 125 250 375 500

0.015

0.030

0.045
59.9142 59.9150
220
230
240

(a) (b)
Shape difference

P
D

F

P
D

F

59.914
fWsys(t) (Hz)

59.910 59.918 59.922

83

0

166

249

0 100 200 300 400

0.03

0.06

0.09
59.9150 59.9158
210
220
230

(c) (d)
Shape difference

P
D

F

P
D

F

59.914
fWa1(t) (Hz)

MCS
SPCE
LRA
GMSR

SPCE
LRA
GMSR

SPCE
LRA
GMSR

MCS
SPCE
LRA
GMSR

Fig. 11.　PDFs of fWsys (t), fWa1 (t), and ε of fWa1 (t) in Case 2. (a) PDF of 
fWsys (t) at t = 5 s. (b) PDF of ε of fWsys (t). (c) PDF of fWa1 (t) at t = 5 s. (d) 
PDF of ε of fWa1 (t).

764



WANG et al.: GENERIC MULTI-OUTPUT SPECTRAL REPRESENTATION METHOD FOR UNCERTAINTY PROPAGATION...

cy in analyzing probabilistic frequency and transient stabili‐
ty. Since the proposed GMSR is nonintrusive, it can be easi‐
ly applied to other probabilistic stability issues related to 
power system dynamics. Additionally, in this paper, some 
GMSR parameters are selected based on existing studies. 
However, they may affect the performance of GMSR in dif‐
ferent scenarios. Also, since the inputs and outputs of GM‐
SR are data, when they are influenced by noises, GMSR ac‐
curacy will be affected. Thus, further studies will focus on 
parameter selection optimization and data preprocessing in 
filtering distorted data or restoring original data to improve 
the applicability and robustness of GMSR. Additionally, as a 
generic method, GMSR has the potential to be extended to 
UPA of multiple stability indices simultaneously and the de‐
sign of probabilistic stability enhancement strategies.
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