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Abstract——With the rapid integration of renewable energy, 
wide-band oscillations caused by interactions between power 
electronic equipment and grids have emerged as one of the 
most critical stability issues. Existing methods are usually stud‐
ied for local power systems with around one hundred nodes. 
However, for a large-scale power system with tens of thousands 
of nodes, the dimension of transfer function matrix or the order 
of characteristic equation is much higher. In this case, the exist‐
ing methods such as eigenvalue analysis method and impedance-
based method have difficulty in computation and are thus hard 
to utilize in practice. To fill this gap, this paper proposes a nov‐
el method named the smallest eigenvalues based logarithmic de‐
rivative (SELD) method. It obtains the dominant oscillation 
modes by the logarithmic derivative of the k-smallest eigenvalue 
curves of the sparse extended nodal admittance matrix (NAM). 
An oscillatory stability analysis tool is further developed based 
on this method. The effectiveness of the method and the tool is 
validated through a local power system as well as a large-scale 
power system.

Index Terms——Large-scale power system, renewable energy in‐
tegration, k-smallest eigenvalue, eigenvalue analysis, smallest ei‐
genvalues based logarithmic derivative (SELD) method, oscilla‐
tory stability analysis.

I. INTRODUCTION 

OSILLATION issues are of great concern in modern 
power systems with massive integration of renewable 

energy [1] - [4]. The oscillations caused by interactions be‐
tween power electronic converters and grids have posed se‐
vere threatens to the safe and stable operation of the system. 
Therefore, it is necessary to evaluate the risk of oscillation 

in a large-scale power system. For this purpose, the existing 
methods have been developed in either time domain [5]-[11] 
or frequency domain [12] - [18]. However, these methods 
have difficulties in dealing with large-scale power systems 
with tens of thousands of nodes. Their shortages are specifi‐
cally introduced below.

The time-domain methods mainly include the eigenvalue 
analysis and electromagnetic transient (EMT) simulation [5]-
[11]. The former has the problem named “dimensional disas‐
ter”. The order of characteristic equation will become very 
high as the system expands, making it hard to calculate the 
eigenvalues accurately [19]. The latter also has an extremely 
high computational burden on numerical integration when 
there is a large amount of power electronics in the system.

The widely recognized frequency-domain methods are 
based on the impedance concept, for instance, the source-
load method [9] - [14], the frequency-domain modal analysis 
[15], [16], and the impedance aggregation method [17], [18]. 
The source-load method divides the system into converter 
side and grid side, and then uses the generalized Nyquist cri‐
terion (GNC) to judge the stability. However, this method 
has too many equivalences on the grid side and some oscilla‐
tion modes may not be observable. It is normally used in the 
oscillation analysis of the local power system [14]. The fre‐
quency-domain modal analysis involves the construction of 
nodal admittance matrix (NAM) and the solution of oscilla‐
tion modes. However, for a large-scale power system, the di‐
mension of NAM would be too high to fulfil singular value 
decomposition (SVD) or matrix inversion operation [19]. 
The impedance aggregation method aggregates the impedanc‐
es into a node. However, this method needs to calculate the 
inverse of the NAM in the aggregation of the impedances 
[17], which is very time-consuming for a high-dimensional 
NAM. Therefore, it is still an urgent necessity to develop an 
efficient method to evaluate oscillatory stability for extreme‐
ly large-scale power systems. Furthermore, there is a need to 
develop analysis tools for actual systems.

To solve the problem of oscillatory stability analysis in 
practical large-scale power systems, this paper proposes a 
novel method named the smallest eigenvalues based logarith‐
mic derivative (SELD) method. It has the following features:

1) For the modeling of large-scale power systems, the fre‐
quency-coupled admittance network model (FCANM) repre‐
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sented with sparse extended NAM is used to improve the 
performance in storage.

2) The implicit restarted Arnoldi method (IRAM) is ap‐
plied to calculate the k-smallest eigenvalues of the sparse 
matrix with the great improvement in time complexity of 
computation, thus making the proposed method applicable to 
extremely large-scale power systems.

3) A segmentation function based logarithmic derivative 
criterion is proposed to identify the dominant oscillation 
modes based on the curves of the k-smallest eigenvalues.

An oscillatory stability analysis tool is further developed 
to implement the proposed method for an actual large-scale 
power system. The effectiveness of the proposed method and 
tool is verified in a local power system and a large-scale 
power system, respectively.

The rest of the paper is organized as follows: Section II 
introduces the problem of oscillation analysis in a practical 
large-scale power system. Section III proposes the SELD 
method for analyzing the oscillatory stability of large-scale 
power systems and develops an oscillation stability analysis 
tool. Section IV validates the effectiveness of the method 
and tool in two practical systems with different sizes. Sec‐
tion V gives a brief conclusion.

II. PROBLEM STATEMENT 

A. Description of Large-scale Power System

The oscillatory stability of a practical large-scale power 
system in China Southern Power Grid is analyzed. The dia‐
gram of the large-scale power system is shown in Fig. 1. 
This system includes 4 regional power systems (Yunnan 
grid, Guizhou grid, Guangxi grid, Guangdong grid). The 
numbers of buses in Yunnan grid, Guizhou grid, Guangxi 
grid, and Guangdong grid are 5109, 1638, 2028, and 5203, 
respectively. Yunnan Grid is asynchronously connected to 
other grids by high-voltage direct current (HVDC) transmis‐
sions. Other grids are interconnected by HVDC and high-
voltage alternative current (HVAC) transmissions. The renew‐
able energy sources are mainly integrated into Yunnan grid 
and Guangdong grid. The total capacities of renewable ener‐
gy sources in Yunnan grid and Guangdong grid are approxi‐
mately 8000 MVA and 10000 MVA, respectively.

The order of the characteristic equation becomes extreme‐
ly high due to the large number of electrical equipment. The 
total numbers of nodes and branches are 14647 and 20309, 
respectively. There are approximately 6872 transmission 
lines, 11804 transformers, and 1459 thermal units or synchro‐
nous condensers in this system. Besides, there are around 86 
wind farms or photovoltaic power plants in the system. The 

total capacity of renewable energy sources is about 18000 
MVA. The transmission lines are considered as a π-equiva‐
lence model, which is a three-order circuit. The transformers 
can be equated to the inductors. The thermal units or syn‐
chronous condensers can be modeled as an 18-order state 
space model. For simplification, each wind farm is aggregat‐
ed as the wind turbine generators (WTGs) in parallel connec‐
tion. The order of the WTG model is 8 at least [20]. There‐
fore, the total order of the characteristic equation in this sys‐
tem can be estimated as 6872 × 3 × 2 + 11804 × 1 × 2 + 1459 ×
18 + 86 × 18 = 92650, which is extremely large. Note that 
since the frequency-coupled admittance model (FCAM) is 
applied, the “×2” is needed for transmission lines and trans‐
formers. The high order of the system obstacles to oscillato‐
ry stability analysis.

B. Computational Problem in Existing Analysis Methods

For the eigenvalue analysis method, according to the esti‐
mated order of the characteristic equation, the dimension of 
matrix A of the state space equation is approximately 105. 
The calculation of the eigenvalue of matrix A is impossible 
to achieve, as the eigenvalue computation requires O(n3 ) 
floating point operations (FLOPs), where O denotes the up‐
per bound of a function within a constant factor; and n is 
the dimension of matrix A [19]. Thus, the computational ef‐
fort of eigenvalue analysis method is unbearable for analyz‐
ing the large-scale power system in Fig. 1.

Conventional impedance-based methods analyze the stabil‐
ity by the closed-loop transfer function matrix. There are 
mainly two schemes. The first scheme uses the stability theo‐
ry of the multiple-input multiple-output (MIMO) system 
[18]. The closed-loop transfer function matrix of the system 
is denoted as Ŷ (s), and the oscillation modes are the zero ele‐
ments of det(Ŷ (s)), where det(×) denotes the determinant. The 
second scheme uses the MIMO system of the voltages and 
currents of an aggregated node [17]. The aggregated imped‐
ance ZΣ is defined and obtained by (1) and (2). The oscilla‐
tion modes are the zero elements of the det(ZΣ (s)). For sim‐
plicity, (s) is omitted.

Ui =ZΣ I i (1)

ZΣ = (Ŷ -1 )ii (2)

where i is the node number chosen to aggregate; Ui and I i 
are the voltage and current with coupled frequencies of node 
i, respectively; and subscript ii means the ith row and the ith 
column of the matrix by 2×2 partition.

However, both schemes have difficulties in computation. 
For the first one, the algorithm of determinant calculation is 
normally based on the LU decomposition. The determinant 
is the production of diagonal elements of L and U, where L 
and U are the decomposed lower and upper triangular matri‐
ces, respectively. The LU decomposition is based on Gauss‐
ian elimination. The transformation of the original matrix in‐
to an upper triangular matrix via the Gaussian elimination 
needs O(n3) FLOPs [19]. For the large-scale power system, 
n is normally very large, O(n3) FLOPs are hard to achieve 
for computers. For the second one, the calculation of inverse 
of matrix also needs O(n3) FLOPs, which is also very time-

Yunnan grid

5109 buses

Guangxi grid

2028 buses

Guangdong grid

5203 buses

Guizhou grid

1638 buses

HVDC-link; HVAC-link

Fig. 1.　Diagram of a large-scale power system.
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consuming.
Therefore, it is necessary to develop a method with high 

computational efficiency to analyze oscillatory stability for 
extremely large-scale power systems.

III. OSCILLATORY STABILITY ANALYSIS BY SELD METHOD 

A. FCANM Represented with Sparse Extended NAM

According to the impedance-based method, each compo‐
nent in a power system can be modeled as an FCAM repre‐
sented by a 2×2 matrix [21], which is described as:

é

ë
ê
êê
ê ù

û
ú
úú
úDIp (ω)

DI *
pc (ω)

=
é

ë
ê
êê
ê ù

û
ú
úú
úY11 (ω) Y12 (ω)

Y21 (ω) Y22 (ω)
é

ë
ê
êê
ê ù

û
ú
úú
úDUp (ω)

DU *
pc (ω)

(3)

where ΔUp, ΔUpc, DIp, and DIpc are the small-signal voltage 
and current phasors of two coupled frequencies fp and 2f1-fp, 
respectively, and f1 and fp are the fundamental and non-funda‐
mental frequencies, respectively; superscript * means the con‐
jugation of phasor; ω is the angular frequency of fp; and Yij 
is the element of FCAM.

The FCANM can be described by the extended NAM 
Ŷ (ω). Then, the network is expressed as:

Î n (ω)= Ŷ (ω)Û n (ω) (4)

where Û n (ω) is the nodal voltage vector; and Î n (ω) is the 
nodal current vector.

The FCANM can be represented by:

Ŷ (ω)= D̂ŶD (ω)D̂T (5)

D̂ =D⊗ I2 (6)

where ŶD (ω) is the diagonal matrix with each diagonal ele‐
ment representing the FCAM; D̂ is the extended node-
branch incidence matrix; I2 is a two-dimensional identity ma‐
trix; ⊗ denotes the Kronecker product; and D is the node-
branch incidence matrix generated by the system topology.

The huge number of AC nodes in a large-scale power sys‐
tem would result in problems in storage and calculation of 
FCANM. The cost of the matrix multiplication in (5) is 
O(nf (b

2nv + bnv
2 )) FLOPs, where nv is the number of nodes; 

b is the number of branches; and nf is the number of frequen‐
cy points. It is extremely time-consuming for a large-scale 
power system.

The sparse matrix technique is very effective in address‐
ing this issue. Similar to the power flow calculation, there 
are very few non-zero elements in D̂ (e. g., 0.1% non-zeros 
elements for a practical system). Besides, ŶD (ω) is a diago‐
nal matrix. Therefore, both the matrices are sparse.

In (5), the operation of the zero elements in the matrix is 
not necessary. Meanwhile, the storage of these zero elements 
is also redundant. The sparse matrix uses three vectors u, v, 
w to store and operate the non-zero elements in the matrix 
only, where u, v, and w are the vectors of horizontal coordi‐
nates, vertical coordinates, and values of non-zero elements, 
respectively. As a result, the massive storage and calculation 
of zero elements are eliminated. Using sparse matrix can ac‐
celerate the calculation by tens or even hundreds of times. 
The memory requirement can also be greatly reduced. The 

larger the scale of the power system, the more significant 
the benefits. Therefore, the computational efficiency in con‐
structing FCANM is highly improved by the sparse extended 
NAM, which is the extended NAM Ŷ (ω) with sparse matrix 
representation.

B. Improvement of Computational Efficiency Using k-small‐
est Eigenvalues

To improve the computational efficiency, the k-smallest ei‐
genvalues of the matrix Ŷ rather than the determinant or the 
inverse of the matrix is used, where Ŷ is Ŷ (ω) at any ω. The 
k-smallest eigenvalues are the k eigenvalues with the small‐
est modulus. By using them, the computational efficiency of 
oscillatory stability analysis is improved from O(n3) to O(n) 
FLOPs, which will be specifically introduced in Section III-
C. The reason for selecting the k-smallest eigenvalues is in‐
troduced as follows.

The SVD of Ŷ is given by:

Ŷ =T TΛT (7)
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where Λ and T are the orthogonal matrices, and the rows of 
Λ and the columns of T are the eigenvectors; and λi is the ei‐
genvalue.

For λi on the diagonal of Λ, these exists:

λ-1
i x i Î

n = x iÛ
n (9)

where xi is the eigenvector of λi.
The modal impedance is defined as | λ-1

i |. Each peak value 

of the modal impedance is usually corresponding to an oscil‐
latory mode [15], [16]. Meanwhile, the peak values of modal 
impedance are usually accompanied with small eigenvalues 
λi. Therefore, the oscillation modes are more easily identi‐
fied by the small eigenvalue curves λi (ω). To balance both 
the accuracy and the computational efficiency, the k-smallest 
eigenvalue curves among those eigenvalue curves are select‐
ed and the frequency-domain stability criterion is applied on 
them.

C. Calculation of k-smallest Eigenvalues

The IRAM is applied to calculate the k-smallest eigenval‐
ues of the n-dimensional matrix A. The key idea of IRAM is 
to decrease the dimension. The specific process is introduced 
as follows.
1)　Krylov Subspace

Define the Krylov subspace of the n-dimensional matrix A 
as:

Km (Ax)= span{xAx...Am - 1 x} (10)

where x is a n-dimensional vector; m is an integer; and 
span{×} is the set of all possible vectors with linear combina‐
tions of the vectors.
2)　Arnoldi Process

The Arnoldi process is an efficient way to reduce the di‐
mension of matrix A, thereby improving the computational 
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efficiency. It transfers the n-dimensional matrix A to a m-di‐
mensional matrix Hm by Krylov subspace, where m << n.

The first step of the Arnoldi process is to find the ortho‐
normal basis q1q2qm (11) of the Krylov subspace (10). 
The Gram-Schmidt process is used in this step, i.e.,

span{xAx...Am - 1 x}= span{q1q2...qm } (11)

q1 =
x

 x
(12)

q i + 1 =
1

hi + 1i (Aq i -∑
j = 1

i

qjhji ) (13)

where hj,i is the Gram-Schmidt coefficient.

hji = qT
j Aq i (14)

The Gram-Schmidt coefficients form the (m + 1)´m upper 
Hessenberg matrix H̄m.
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(15)

AQm + 1 =Qm + 1 H̄m (16)

where Qm + 1 =[q1q2qm + 1 ].
The transformation of Arnoldi process can be written as:

AQm =Qm Hm + hm + 1mqm + 1eT
m (17)

where Hm is H̄m without the last row; and eT
m =[0001].

AQmui »Qm Hmui = λiQmui (18)

vi =Qmui (19)

According to (18), the eigenvalues {λi } and eigenvectors 
{ui } of Hm are calculated to approximate the eigenvalues {λi } 
and eigenvectors {vi } of A. This approximation holds when 
the term hm + 1mqm + 1eT

mui is small or:

 hm + 1mqm + 1eT
mui £ hm + 1m|uim | < ε (20)

where ε is the tolerance; and uim is the mth component of ui.
3)　Procedure of IRAM

In the Arnoldi process, the restriction (20) does not usual‐
ly hold. Therefore, the restart process is used to iterate the 
initial value of the algorithm until (20) holds. The IRAM im‐
proves the Arnoldi process by adding the restart process and 
using the implicit QR decomposition.

The focus is on the k-smallest eigenvalues, while leaving 
p = m−k eigenvalues ignored. The Arnoldi process begins 
with a unit vector v and computes the m step Arnoldi decom‐
position (13). Then, the eigenvalues and eigenvectors of Hm 
are calculated by the reduction to the upper Hessenberg 
form. The eigenvalues are sorted from the largest to the 
smallest by the magnitude. The m−k largest eigenvalues are 
used as a shift to enhance the calculation of the required k-
smallest eigenvalues. The restart is chosen by the filtering 
polynomial pr(Hm) in (21). The pr(Hm) shifts away from the 
undesirable m−k eigenvalues, as opposed to shifts closer to 
the desirable k eigenvalues.

pr (Hm )= (Hm - λk + 1 I)(Hm - λk + 2 I)× ×(Hm - λm I)    (21)

where I is the m-dimensional identity matrix.
Apply the following implicit QR decomposition to these 

m−k eigenvalues.
Hm - λi I =Qi Ri (22)

where Qi is the orthogonal matrix; and Ri is the upper trian‐
gle matrix.

The Hm is iterated to H͂m by:

H͂m = Q͂T HmQ͂ (23)

Q͂ = ∏
i = k + 1

m

Qi (24)

Then, the restart initial vector v͂ is derived as [19]:

v͂ =Qk + 1 H͂mkk + 1 + v̄Q͂mk (25)

where Qk + 1 is the (k + 1)th column of Qm in the previous itera‐
tion; H͂mkk + 1 is the element at the k th row and (k + 1)th col‐
umn of H͂m; v̄ is the previous initial vector; and Q͂mk is the 
element at the mth row and kth column of Q͂.

We use v͂ as the new initial vector and apply the Arnoldi 
process to obtain the eigenvalues and eigenvectors. If (20) 
holds for the k-smallest eigenvalues, return the k-smallest ei‐
genvalues. Otherwise, repeat the above restart process.
4)　Computational Efficiency

Since the Arnoldi process uses the Gram-Schmidt process, 
the approximate number of FLOPs for the algorithm is 2m2n 
[19]. In the procedure of IRAM, the filter polynomial (21) is 
evaluated by the implicit QR decomposition. The implicit 
QR decomposition only costs O(m2) FLOPs. Therefore, the 
IRAM requires O(m2n) FLOPs. Since m is a very small val‐
ue in the case of calculating the k-smallest eigenvalues, 
O(m2n) is equivalent to O(n), which is a huge improvement 
comparing to O(n3) FLOPs in the LU decomposition. For 
the oscillatory stability analysis in an extremely large-scale 
power system, the time complexity of this method O(n) is 
sufficient.

D. Identification of Dominant Oscillation Modes by Segmen‐
tation Function Based Logarithmic Derivative Criterion

The dominant oscillation modes of a power system are 
identified by the logarithmic derivative of the k-smallest ei‐
genvalue curves. Due to the utilization of the small-signal 
linearized model, the general form of eigenvalue curves 
λi (ω) takes the following expression:

λi (ω)=K
∏
i = 1

N

( )jω - zi

∏
i = 1

M

( )jω - pi

(26)

where zi = αzi + jωzi and pi = αpi + jωpi are the zeros and poles 
of the λi (s), respectively; N and M are the numbers of zeros 
and poles, respectively; and K is a constant coefficient.

The jth smallest eigenvalue λminj (ω) ( j = 12k) is the 
segmentation function of λi (ω). Except for the non-differen‐
tiable points, λminj (ω) follows (26). The logarithmic deriva‐
tive criterion is used to identify the dominant zeros of 
λminj (ω).

The logarithmic derivative of a function f (ω) is defined as 
the derivative of the logarithm of the function (27). Its differ‐
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ential form is given in (28), which is more pragmatic.

DL ( f )=
dIn( f )
d(jω)

=
f ′ (ω)
jf (ω) (27)

DL ( f )=
1

jDω
f (ω +Dω)- f (ω)

f (ω) (28)

where f ′ (ω) is the derivative of f (ω).
The logarithmic derivative of λi (ω) in (26) is presented as:

DL (λi )=∑
i = 1

N 1
jω - zi

-∑
i = 1

M 1
jω - pi

(29)

From (29), it can be observed that DL (λi ) is the sum of 
DL (Gzi

) minus the sum of DL (Gpi
). DL (Gzi

) and DL (Gpi
) 

have the same expression, as shown in (30). The real- and 
imaginary-part curves of DL (Gzi

) are shown in Fig. 2.

ì

í

î

ï
ïï
ï

ï
ïï
ï

DL (Gzi
)=

1
jω - zi

DL (Gpi
)=

1
jω - pi

(30)

According to (30) and Fig. 2, DL (Gzi
) and DL (Gpi

) have 

the following properties.
1) The real part of the logarithmic derivative curve is larg‐

er only near the oscillation frequency ωi and decays sharply 
at the inverse square rate away from ωi. ωi is the extreme 
point whose value of the real part of the logarithmic deriva‐
tive is the negative inverse of the real part of zi.

Re(DL (Gzi
)) | ωi

=-
1
αi

(31)

where αi is the divergence rate.
2) The imaginary part of the logarithmic derivative curve 

is approximately symmetric about the center of the point 
(ωi,0), and again has a large absolute value only near ωi, 
while it decays at an inverse rate away from ωi. As the fre‐
quency increases, the imaginary part of the logarithmic deriv‐
ative curve rises, then falls, then rises again and has a nega‐
tive slope -1/α2

i  at ωi.
The properties of the real- and imaginary-part curves of 

the DL (λi ) can be obtained by (29) and the properties of 
DL (Gzi

) and DL (Gpi
). Suppose there is a dominant zero zi =

αi + jωi.

Firstly, since the real part of DL (Gzi
) decays sharply at the 

inverse square rate away from ωi, the influence of other ze‐
ro-poles on the real part of DL (λi ) can be approximately ne‐
glected near the frequency ωi of the dominant zero zi.

Secondly, due to that the real-part curve has an extreme 
value on ωi, the stationary points of the real part of DL (λi ) 
can be used to identify the dominated zeros.

Thirdly, based on the surge of the imaginary-part curve at 
ωi, the slope of the imaginary part of the logarithmic deriva‐
tive curve can be used to distinguish the zeros from the 
poles. The slope of the imaginary part of the zero (pole) 
term at the frequency ωi is negative (positive).

Finally, the real part of the logarithmic derivative is 
solved for the real part of the zero-pole based on the ex‐
treme value of the real part of the logarithmic deriva‐
tive [22].

According to the properties of the real- and imaginary-
part curves of DL (λi ), the logarithmic derivative criterion is 
given as follows.

If Re(DL (λi )) exhibits as a stationary point (Re(DL (λi ))′=
0) at the oscillation frequency ω and the slope of Im(DL (λi )) 
at ω is negative, there exists a zero z = α+ jω, and the real 
part α can be solved by:

α =
|

|
|
||
|-1

Re(DL (λi )) ω

(32)

Examine all the identified zeros. If there is a zero z = α+
jω with a positive real part, it corresponds to an unstable os‐
cillation mode. Conversely, if the real parts of all the ob‐
tained zeros are less than 0, the system is considered stable.

For those non-differentiable points, both the real- and 
imaginary-part curves charge abruptly at this point, thus the 
slope cannot be calculated, and the above criterion can ig‐
nore those points.

E. Oscillatory Stability Analysis Tool Based on SELD Meth‐
od

1)　Process of Oscillatory Stability Analysis Tool
A platform of data collection and its interfaces are devel‐

oped. This platform collects the original data of the power 
system. The original data include both the static and dynam‐
ic data. The static data include the parameters of transmis‐
sion lines, WTGs, thermal units, transformers, etc. The dy‐
namic data include wind speed, system load, operating condi‐
tion of power system, etc. These data are transformed into 
standard data files, which are the inputs of the tool.

The process of the oscillatory stability analysis tool is giv‐
en in Fig. 3. The original data are collected to obtain the pa‐
rameters of electrical equipment, initial value of power flow, 
and the system topology. The power flow is firstly calculat‐
ed by these data to determine the operating condition of the 
electrical equipment. Wide-band FCAMs are established 
based on the parameters of electrical equipment and the pow‐
er flow. Then, the FCANM represented with sparse matrix is 
built by the FCAMs. Finally, the proposed method is applied 
to identify the dominant oscillation modes.
2)　Algorithm

The algorithm of the proposed method in the oscillatory 
stability analysis tool is given in Algorithm 1.

Re

Im
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i
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(b)
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i

Fig. 2.　Real- and imaginary-part curves of DL (Gzi
). (a) Real-part curve. 

(b) Imaginary-part curve.
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F. A Demonstrative Example for Proposed Method

A demonstrative example of two parallel RLC circuits, as 
shown in Fig. 4, is used to help understand the implementa‐
tion of the proposed method. Obviously, the circuit has two 
parallel resonance modes 1 and 2 formed by L1, C1 and L2, 
C2, respectively.

The NAM is derived as (33). The circuit parameters are: 
R1 = 1 Ω, L1 = 1 H, C1 = 10 F, R2 = 1 Ω, L2 = 0.1 H, C2 = 5 F, 
R0 = 100 Ω. The resonance modes are: -0.1010 ± j0.2245 × 2π 
and -0.0505 ± j0.0497 × 2π.
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  (33)

The eigenvalue of Y (ω) is calculated. The two modal im‐
pedance curves 1 and 2 are obtained by calculating the in‐
verse of absolute value of eigenvalues. The extreme points 
of modal impedance curves indicate the oscillation modes. 
The curve of the largest modal impedance is selected to con‐
tain the extreme points. The modes 1 and 2 are clearly iden‐
tified by the peak value of the curve of the largest modal im‐
pedance in Fig. 5. The curve of the largest modal impedance 
also corresponds to the curve of the smallest eigenvalue. 
Therefore, the smallest eigenvalue curve contains more infor‐
mation about the oscillations and should be selected. The 
IRAM method is used to calculate the k-smallest eigenvalues 
with high computational efficiency.

The smallest eigenvalue curve has the expression of (26). 
The logarithmic derivative criterion is adopted to the small‐
est eigenvalue curve to obtain the oscillation modes. The log‐
arithmic derivative curves obtained by the proposed method 
are shown in Fig. 6. It is shown that there are two stable 
modes at the frequency of 0.0497 Hz and 0.02244 Hz, re‐
spectively, which is consistent with results of circuit analysis.

IV. APPLICATIONS IN TWO PRACTICAL SYSTEMS 

Two practical systems are used to validate the effective‐
ness of the proposed method and the developed tool. A local 
power system is used to verify the correctness. The large-
scale power system in Fig. 1 with 14000 nodes is used to 
validate the computational efficiency.

A. Local Power System

1)　Local Power System Modeling
The simplified diagram of a real offshore wind-integrated 
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Fig. 3.　Process of oscillatory stability analysis tool.

Algorithm 1: proposed SELD method

Input: data collected by the platform.

1. Initialize the array of “branch” and “node” by the data. The parameters 
of the equipment xj (j = 12b), initial value of power flow, and node-
branch incidence matrix D are acquired.

2. The nodal Ui, δi, Pi, Qi (i = 12n) are calculated by the power flow 
analysis.

3. The FCAMs Yj of each branch are obtained by the parameters xj and 

the nodal Ui, δi, Pi, Qi.

4. The sparse-matrix-based FCANM Ŷ (ω) is constructed by (5).

5. The k-smallest eigenvalue curves λl(ω) are obtained by IRAM, where l =
12k.

6. The dominant oscillation modes zi = αi + jωi are identified by DL(λl(ω)) 
(28), (32).

Output: the dominant oscillation modes zi of the system.
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Fig. 6.　Logarithmic derivative curves obtained by proposed method.
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local power system is shown in Fig. 7.

The WTGs in these wind farms are all the same type of 
direct-drive permanent magnet synchronous generator 
(PMSG), with a total capacity of 2734.2 MVA. The local load 
in this area is very small. The power from QZ, YY, and PT 
wind farms is collected to the 500 kV PL station via 220 kV 
transmission lines, and then to the EH2 station via a 500 kV 
transmission line (EH2-PL). The power from QZ6 wind 
farm is collected to the 500 kV EH1 station via several trans‐
mission lines. The EH1 station and EH2 station are connect‐
ed to the external network equivalence via 500 kV transmis‐
sion lines. This local power system is equipped with five 
thermal units, all of which have a rated capacity of 1112 
MVA. The BH1-3 thermal power plant is equipped with 
three thermal units. The BH4 thermal power plant and the 
YX thermal power plant are each equipped with one thermal 
unit. The numbers of nodes and branches are 64 and 93, re‐
spectively, in this local power system.

The FCAMs of components in this power system are es‐
tablished based on the collected parameters. The FCAMs of 
the PMSGs are derived in [20]. The FCAM of each wind 
farm is created by aggregating the FCAMs of the PMSGs. 
The FCAMs of thermal units are derived by the state-space 
equations. Additionally, other components such as transmis‐
sion lines and transformers are also modeled as FCAMs. 
The external system is represented as voltage-behind-reac‐
tance model based on the short-circuit capacities at the WL 
and CJ stations, respectively. The sparse-matrix-based imped‐
ance network model is constructed in Section III-A.
2)　Oscillatory Stability Analysis in Local Power System

To verify the effectiveness of the proposed method, eigen‐
value analysis, zero-crossing stability criterion [17], and for 
comparison purposes, the proposed method are applied.

With the derived FCAMs of components, the s-domain 
FCANM is constructed by (5) and next transferred into state-
space equations. Then, the eigenvalue analysis can be car‐
ried out. It is observed that there is an eigenvalue with a pos‐

itive real part, 2.7497 + j46.23 × 2π. This indicates an unsta‐
ble oscillation mode at the frequency of 46.23 Hz.

Apply the zero-crossing stability criterion to the extended 
NAM det(Ŷ (ω)). Its real and imaginary parts with the fre‐
quency around 46 Hz are plotted in Fig. 8. The real-part 
curve has a zero-crossing point at the frequency of 46.24 Hz. 
The product of the slope at the zero-crossing point and the val‐
ue of the imaginary part at this frequency is larger than 0. This 
analysis reveals the presence of an unstable oscillation mode 
characterized by an oscillation frequency of 46.24 Hz.

Next, the proposed method is employed and the smallest 
eigenvalue λmin (ω) is calculated by the IRAM. The real and 
imaginary parts of the logarithmic derivative within the fre‐
quency range of 45.5-47 Hz are plotted in Fig. 9.

There are several stationary points within the colored inter‐
vals of the real-part curve. Since the slope of the imaginary-
part curve is positive in the blue interval, the stationary 
point corresponds to a pole of the transfer function. The sta‐
tionary points in the green intervals are the non-differentia‐
ble points of the smallest eigenvalue and cannot be identi‐
fied by the criterion in Section III-D. Since the slope of the 
imaginary-part curve is negative in the red interval, the sta‐
tionary point corresponds to a dominant oscillation mode. 
By calculating the real part of this mode (32), an unstable 
mode is identified, and the oscillation frequency is 46.31 Hz.

Comparing the results obtained from the proposed method 
with the zero-crossing stability criterion, the relative error of 
the latter in the frequency is 0.15%. Such small relative er‐
rors demonstrate the accuracy of the proposed method, as 
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the results closely align with those obtained from the zero-
crossing stability criterion.

The proposed and existing methods were also validated in 
other scenarios, and the results verify the effectiveness of 
the proposed method as well.
3)　Validation by Time-domain Simulation

The accuracy of the proposed method is further validated 
by comparing its results with commercial EMT simulation. 
When the output reactive power of the WTGs is increased to 
0.3 p. u., sub-/super-synchronous oscillation is excited. The 
output active power of the WTGs is plotted in Fig. 10.

The frequency spectrum of the output current in the sub-/
super-synchronous band are presented in Fig. 11, clearly indi‐
cating the presence of distinct sub-/super-synchronous oscil‐
lations with frequencies of 46.27 Hz and 53.73 Hz. Compar‐
ing these results, it is observed that the oscillation frequen‐
cies obtained through the EMT simulation are consistent 
with the results of the proposed method, which further con‐
firms the accuracy and reliability of the proposed method in 
capturing and analyzing the oscillatory behavior of the sys‐
tem under investigation.

B. Large-scale Power System

1)　Large-scale Power System Modeling
The large-scale power system in Fig. 1 is modeled for the 

oscillation analysis.
Firstly, the original data are collected using the dynamic 

simulation program (DSP) developed by Electric Power Re‐
search Institute of China Southern Power Grid. The data are 
converted into the standard format by our developed tool.

Secondly, the FCAMs are constructed by the data. Due to 

the large number and type of new energy units in the actual 
power system, it is difficult to obtain all the new energy unit 
models from the manufacturers. For simplicity, we use typi‐
cal models of new energy units in the analysis. The direct-
driven PMSGs and photovoltaic units are equivalent by the 
admittance model derived in [20]. The utilized FCAMs of 
both the doubly-fed induction generators (DFIGs) and the 
thermal units are derived by the state-space equations. The 
transformers are modeled as resistance and reactance in se‐
ries connection by the leakage reactance and losses. The 
transmission lines are treated as the π -equivalent circuit.

Then, the extended node-branch incidence matrix D̂ is ob‐
tained by the system topology and stored by the sparse ma‐
trix. The diagonal matrix ŶD (ω) is obtained by the FCAMs 
of the branches and stored by the sparse matrix.

Finally, the FCANM is constructed by (5), and the k-
smallest eigenvalue curves are obtained by IRAM (k = 10).
2)　Oscillatory Stability Analysis in Large-scale Power Sys‐
tem

The k-smallest eigenvalue curves are used to identify the 
dominant zeros by the improved logarithmic derivative crite‐
rion. Figure 12 displays the logarithmic derivative curves of 
the 4th smallest eigenvalue curve in the frequency range of 
45-49 Hz. By applying the evaluation criterion of the pro‐
posed method, the oscillation mode is identified as unstable 
and the oscillation frequency is identified as 46.94 Hz.

3)　Computational Efficiency
The above results indicate that the oscillation analysis in 

the extremely large-scale power system is achievable. The to‐
tal time consumed for the proposed method is 410.57 s.

As a comparison, the existing methods are applied to this 
large-scale power system. According to the analysis in Sec‐
tion II-B, the computational efficiency of both the eigenval‐
ue analysis method and conventional impedance-based meth‐
od is very low. The number of FLOPs of the eigenvalue 
analysis method is (105 )3 = 1015 at least, where 105 is the esti‐
mated order of the characteristic equation. The CPU used 
has a base frequency of 2.90 GHz, so the computational 
time is 1015 /2.90/109 /3600 = 95.8 hours, which is too long, 
not to mention the huge amount of time consumed in memo‐
ry access. As for the conventional impedance-based method, 
assuming that the number of selected frequency points is 40, 
the estimated computational time is 40 ´(14000 ´ 2)3 /2.90/109 / 
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3600 = 84.1 hours, which is also too long. In practical appli‐
cations, the eigenvalue analysis method and the conventional 
impedance-based method are unable to produce results in 12 
hours. This indicates that the proposed method has an advan‐
tage over the above two methods in terms of computational 
efficiency.

The aforementioned computation was performed on an In‐
tel Core i7-10700 CPU with a base frequency of 2.90 GHz, 
16.0 GB RAM, and Windows 10 operating system.

V. CONCLUSION 

This paper proposes an SELD method to analyze the oscil‐
latory stability of the large-scale power systems. Compared 
with the existing methods, the proposed method has follow‐
ing advantages.

1) The sparse extended NAM based modeling method has 
better performance in storage than the conventional method 
in the modeling of large-scale power systems.

2) The k-smallest eigenvalues of the sparse extended 
NAM are used to represent the dynamics of the power sys‐
tem. The IRAM significantly improves the time complexity 
of computation from O(n3) to O(n).

3) The segmentation function based logarithmic derivative 
criterion is proposed to quickly and accurately identify the 
dominant oscillation modes based on the k-smallest eigenval‐
ues.

The accuracy and computational efficiency of the pro‐
posed method and the developed oscillatory stability analysis 
tool are demonstrated through case studies on two practical 
systems. In the case of a local power system, the results of 
the proposed method are equivalent to those of the imped‐
ance-based method and EMT simulations. In the case of a 
large-scale power system with 14000 nodes, the total time 
consumed for the proposed method is 410.57 s. The pro‐
posed method has better computational efficiency over the ei‐
genvalue analysis method and the conventional impedance-
based method.
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