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Learning-aided Collaborative Optimization of 
Power, Hydrogen, and Transportation Networks

Sheng Chen, Hao Cheng, Si Lv, Zhinong Wei, Peiyue Li, and Jiahui Jin

Abstract——The gradual replacement of gasoline vehicles with 
electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) 
in recent years has provided a growing incentive for the collab‐
orative optimization of power distribution network (PDN), ur‐
ban transportation network (UTN), and hydrogen distribution 
network (HDN). However, an appropriate collaborative optimi‐
zation framework that addresses the prevalent privacy concerns 
has yet to be developed, and a sufficient pool of system opera‐
tors that can competently operate all three networks has yet to 
be obtained. This study proposes a differentiated taxation-subsi‐
dy mechanism for UTNs, utilizing congestion tolls and subsidies 
to guide the independent traffic flow of EVs and HFCVs. An in‐
tegrated optimization model for this power-hydrogen-transpor‐
tation network is established by treating these vehicles and the 
electrolysis equipment as coupling bridges. We then develop a 
learning-aided decoupling approach to determine the values of 
the coupling variables acting among the three networks to en‐
sure the economic feasibility of collaborative optimization. This 
approach effectively decouples the network, allowing it to oper‐
ate and be optimized independently. The results for a numerical 
simulation of a coupled system composed of a IEEE 33-node 
power network, 13-node Nguyen-Dupuis transportation net‐
work, and 20-node HDN demonstrate that the proposed learn‐
ing-aided approach provides nearly equivalent dispatching re‐
sults as those derived from direct solution of the physical mod‐
els of the coupled system, while significantly improving the com‐
putational efficiency.

Index Terms——Power-hydrogen-transportation network, collab‐
orative optimization, operational independence, learning-aided 
decoupling.

NOMENCLATURE

A. Sets

π(i) Set of child buses for bus i

Ψ L
m Set of hydrogen demands connected to node m

Ψ H
m Set of hydrogen refueling stations (HRSs) con‐

nected to node m

Ψ S
m Set of hydrogen sources connected to node m

Ψ P
m Set of electrolytic tanks connected to node m

Ce (i) Set of charging links powered by bus i

Ch (i) Set of electrolytic tanks powered by bus i

EN Set of buses in power distribution network 
(PDN)

EL Set of transmission lines in PDN

G(m) Set of hydrogen pipelines connected to node m

K e
rsK

h
rs Sets of electric vehicle (EV) and hydrogen fu‐

el cell vehicle (HFCV) paths connecting an or‐
igin-destination (O-D) pair rs

P(m) Set of hydrogen compressors connected to 
node m

TN Set of nodes in urban transportation network 
(UTN)

TR Set of origin nodes, TRÍ TN

TS Set of destination nodes, TSÍ TN

TRS Set of O-D pairs

T rg
A Set of regular links in UTN

T ch
A Set of charging links in UTN

T hr
A Set of hydrogen refueling links in UTN

B. Parameters

λe
a Charging price at charging station (CS)

λh
a Hydrogen refueling price at HRS

ξ Power-to-hydrogen (P2H) conversion coeffi‐
cient

π eπh Ratios of EV and HFCV traffic demands

π f
mπ

r
m Lower and upper limits of hydrogen pressure 

at node m

ρ Hydrogen gas density

σ Cf
p σ Cr

p Lower and upper ratio limits of hydrogen com‐
pressor p

ω Monetary cost of travel time

bi Energy production cost coefficient of distribut‐
ed generation (DG)

crg
a Traffic flow capacity of link aÎ T rg

A

cch
a The maximum allowable vehicular flow of 

charging link aÎ T ch
A

chr
a The maximum allowable vehicular flow of hy‐

drogen refueling link aÎ T hr
A

cS
w Production cost of hydrogen source wÎΨ S

m
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Cmn Weymouth constant of hydrogen pipeline 
mnÎG(m)

Ee Charging demand of unit traffic flow
F Cr

p Capacity of hydrogen compressor pÎP(m)

F Sr
w The maximum production of hydrogen source 

wÎΨ S
m

F P2Hr
τ Capacity of electrolytic tank τÎΨ P

m

Hh Hydrogen refueling demand of unit traffic 
flow

ir
l Square of current flow capacity of line lÎEL

pgf
i p

gr
i Lower and upper limits for active generation 

of DG at bus i
qgf

i q
gr
i Lower and upper limits for reactive generation 

of DG at bus i
qrs Traffic demand between O-D pair rs

t 0
a Travel time with free flow on regular link 

aÎ T rg
A

t c0
a Travel time with free flow on charging link 

aÎ T ch
A

t h0
a Travel time with free flow on hydrogen refuel‐

ing link aÎ T hr
A

U f
i U

r
i Lower and upper bounds of squared voltage 

magnitude at bus i
ν Electricity price of main grid
V0 Voltage magnitude at slack bus

C. Variables

δrg
akrs Binary term: if path kÎK e

rsK h
rs passes link 

aÎ T rg
A , δrg

akrs = 1; otherwise, δrg
akrs = 0

δe
akrs Binary term: if path kÎK e

rs passes link 
aÎ T ch

A , δe
akrs = 1; otherwise, δe

akrs = 0

δh
akrs Binary term: if path kÎK h

rs passes link 
aÎ T hr

A , δh
akrs = 1; otherwise, δh

akrs = 0

θp Energy conversion efficiency of hydrogen 
compressor p

πm Hydrogen pressure at node m
π in

p π
out
p Hydrogen pressures of compressor pÎP(m) at 

inlet and outlet
ce

krs EV travel cost on path kÎK e
rs between O-D 

pair rs
ch

krs HFCV travel cost on path kÎK h
rs between O-

D pair rs
f e

krs EV flow on path kÎK e
rs between O-D pair rs

f h
krs HFCV flow on path kÎK h

rs between O-D pair 
rs

Feee
a Charging service fee on link aÎ T ch

A

Feehr
a Hydrogen refueling service fee on link aÎ T hr

A

F L
e Amount of hydrogen demand eÎΨ L

m con‐
sumed

F h
a Hydrogen consumption of HRSs on link 

aÎ T hr
A

------
F h

a Predicted hydrogen consumption of HRSs on 
link aÎ T hr

A

F S
w Hydrogen production of hydrogen source 

wÎΨ S
m

F P2H
τ Hydrogen production of electrolytic tank 

τÎΨ P
m

- -- -----
F P2H
τ Predicted hydrogen production of electrolytic 

tank τÎΨ P
m

F C
p Hydrogen flow through compressor pÎP(m)

Fmn Hydrogen flow through pipeline mn
il

ij Squared current magnitude of line l from bus‐
es i to j

pd
i Active power demand at bus i

pe
i Total charging power demand at bus i

preg
i Regular power demand at bus i
-
pe

i Predicted total charging power demand at bus i

pP2H
i Total power demand for hydrogen production 

at bus i
- -------
pP2H

i Predicted total power demand for hydrogen 
production at bus i

pg
i Generated active power at bus i

P l
ij Active power flow of line l from buses i to j

qd
i Reactive power demand at bus i

qg
i Generated reactive power at bus i

Ql
ij Reactive power flow of line l from buses i to j

r l
ij Resistance of line l from buses i to j

t rg
a Travel time on link aÎ T rg

A

t ch
a Average time spent by EVs on link aÎ T ch

A

t hr
a Average time spent by HFCVs on link aÎ T hr

A

Toll e
a Congestion toll of EVs on link aÎ T rg

A

Toll h
a Congestion toll of HFCVs on link aÎ T rg

A

ue
rs The minimum travel cost of EVs between O-

D pair rs
uh

rs The minimum travel cost of HFCVs between 
O-D pair rs

Ui Squared voltage magnitude at bus i
xrg

a Aggregated traffic flow on link aÎ T rg
A

xch
a Aggregated EV flow on link aÎ T ch

A--
xch

a Predicted aggregated EV flow on link aÎ T ch
A

xhr
a Aggregated HFCV traffic flow on link aÎ T hr

A--
xhr

a Predicted aggregated HFCV traffic flow on 
link aÎ T hr

A

xl
ij Reactance of line l from buses i to j

z l
ij Impedance of line l from buses i to j, (z l

ij )
2 =

(r l
ij )

2 + (xl
ij )

2

I. INTRODUCTION 

TO effectively reduce the carbon emissions within the 
transportation sector, the global transition toward renew‐

able energy sources has promoted the increasing use of new 
energy vehicles [1]. Of these, electric vehicles (EVs) have 
been a subject of considerable interest [2]. However, due to 
the advancement of power-to-hydrogen (P2H) technologies 
[3], the promotion of green hydrogen production technolo‐
gies, and the anticipated reduction in hydrogen costs in the 
foreseeable future, hydrogen fuel cell vehicles (HFCVs), 
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which are often overlooked, hold promising developmental 
prospects [4]. These prospects have motivated several gov‐
ernments to foster the development of HFCVs.

The increased presence of charging stations (CSs) and 
EVs has significantly enhanced the coupling between power 
distribution networks (PDNs) and urban transportation net‐
works (UTNs) [5]. This also applies to the coupling between 
hydrogen distribution networks (HDNs) and UTNs under the 
increasing implementation of hydrogen refueling stations 
(HRSs) and HFCVs [6]. Increasing the penetration of renew‐
able energy generation would also strengthen the interactions 
between PDNs and UTNs because reducing the production 
cost of hydrogen would increase the implementation of HF‐
CVs [7]. These conditions provide a growing incentive for 
the collaborative optimization of PDNs, HDNs, and UTNs 
via approaches considering the significant operational chal‐
lenges involved. For example, these three networks are oper‐
ated by different entities that must be responsive to preva‐
lent information privacy concerns.

Existing studies have primarily focused on the coordinated 
optimization of PDNs and UTNs while considering EVs. For 
example, [8] proposed a hybrid economic-emission dispatch 
model that employs a differentiated pricing scheme and an 
accuracy-aware adaptive piecewise linearization method to 
coordinate the operations of PDNs and UTNs. Reference [9] 
proposed a novel collaborative pricing scheme for coupled 
PDNs and UTNs using a variational inequality approach, 
where the operational cost is effectively minimized through 
coordinated nodal electricity prices and congestion tolls. Ref‐
erence [10] developed a decentralized bi-level decomposition 
method to optimize the operation of EVs in coupled UTN 
and PDN, thereby effectively managing power-traffic flows 
while preserving network data privacy. Reference [11] intro‐
duced a novel bi-level optimal scheduling framework to co‐
ordinate the operation schedules of electric bus fleets and in‐
tegrate the dispatch of heterogeneous energy resources into a 
regional integrated energy system. Reference [12] proposed 
a method for the service restoration of distribution networks 
using transportable power sources and repair crews, employ‐
ing a two-stage stochastic program and a two-phase scenario 
reduction method for efficient solution.

In terms of the efforts to achieve coordinated optimization 
of HDNs with UTNs and PDNs when considering HFCVs, 
[13] achieved efficient resource allocation for coupled HDNs 
and UTNs by applying the demand response of HFCV users, 
and [14] proposed a coordinated planning strategy for PDNs 
and HDNs with hydrogen supply chains. Compared with sys‐
tems that operate in isolation, this strategy was shown to en‐
hance the flexibility and reliability of the combined system 
by taking advantage of the synergistic effects and coupling 
relationships of the two networks.

The learning-aided approaches have also been extensively 
employed to coordinate the operations of PDN and UTN. 
For example, [15] proposed a mobility-aware charging sched‐
uling approach for a shared EV fleet using deep reinforce‐
ment learning combined with binary linear programming. 
Reference [16] developed a dynamic pricing framework for 
CSs using a customized deep reinforcement learning ap‐

proach to maximize the quality of service at a differentiated 
service requirement level. Reference [17] presented a multi-
agent deep reinforcement learning approach to model and op‐
timize the pricing game of CSs in a UTN. Reference [18] 
proposed a novel deep learning based surrogate modeling 
method that combined an edge-conditioned convolutional net‐
work and a deep belief network to accurately map the spa‐
tial dependencies and uncertainties in EV user equilibrium 
(UE). Reference [19] developed a dynamic pricing strategy 
for fast-charging CSs using deep reinforcement learning. A 
prediction method was applied to determine the charging de‐
mand distributions, and an EV satisfaction model was ap‐
plied to make charging decisions. Reference [20] proposed a 
transfer learning method based on deep reinforcement learn‐
ing for developing an EV charging strategy in new environ‐
ments. The accurate policy evaluation was achieved by add‐
ing a critic network to the target task and utilizing a Markov 
decision process to describe the EV charging control model. 
Reference [21] developed a deep reinforcement learning ap‐
proach to minimize the travel time and charging costs of EV 
users navigating to CSs by coordinating the operations of in‐
telligent UTNs. Reference [22] proposed a multi-agent deep 
reinforcement learning approach with centralized training for 
scheduling decentralized EV charging operations in a smart 
grid, and its effectiveness in minimizing operational costs 
was demonstrated. The complex problem of coordinating the 
operations of PDNs, HDNs, and UTNs in conjunction with 
HFCVs was addressed by [23], which utilized deep rein‐
forcement learning to determine the optimal hydrogen refuel‐
ing price.

Although many studies have investigated collaborative op‐
timization of the operations of PDN, HDN, and UTN, the ef‐
forts to coordinate the operations of these networks still 
have two major limitations.

1) As previously discussed, limited attention has been di‐
rected toward the coordinated optimization of HDNs while 
considering HFCVs. An appropriate collaborative optimiza‐
tion framework for power-hydrogen-transportation networks 
that fully addresses privacy concerns has yet to be devel‐
oped. In addition, the computational efficiency of an integrat‐
ed optimization model for PDN, HDN, and UTN is insuffi‐
cient to satisfy real-world scheduling demands. However, di‐
rectly employing a data-driven approach to produce the col‐
laborative optimization results of a power-hydrogen-transpor‐
tation network often violates physical constraints such as 
voltage constraints.

2) Because PDNs, HDNs, and UTNs are operated by dif‐
ferent entities, significant operational challenges are greatly 
exacerbated by the absence of a single operator that can 
competently operate all three networks. This challenge is 
compounded by the implementation of distributed dispatch 
algorithms, as this condition can produce numerous second‐
ary issues such as significant increases in communication 
time, computational delays, and convergence problems due 
to the non-convexity of energy flow models.

This paper addresses these limitations by proposing a 
learning-aided collaborative optimization framework for an 
integrated power-hydrogen-transportation network that en‐
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sures the economic feasibility of collaborative operations. 
Accordingly, this paper makes the following contributions.

1) The proposed collaborative optimization framework 
considers the constraints of the PDN, HDN, and UTN indi‐
vidually. This framework incorporates coupling constraints 
between ① the PDN and UTN with respect to the charging 
activities of EV users, ② the HDN and UTN with respect to 
the refueling activities of HFCV users, and ③ the PDN and 
HDN with respect to P2H units. We also introduce a differ‐
entiated taxation-subsidy mechanism for UTN that guides ve‐
hicles toward less congested routes by imposing congestion 
tolls on regular links and encourages users to consume re‐
newable energy via subsidies at CSs and HRSs. The conges‐
tion tolls and subsidies are tailored specifically for EVs and 
HFCVs. This mechanism enhances the flexibility of UTN 
management to improve the traffic dispatch efficiency. It al‐
so prevents the “collective punishment” phenomenon in vehi‐
cle scheduling and ensures that the UTN operates efficiently 
with the PDN and HDN, thereby reducing the overall opera‐
tional costs of the three networks.

2) The proposed learning-aided approach employs a mod‐
el-free deep neural network (DNN) framework to determine 
the optimal values of the coupling variables acting between 
the three networks. These optimal values are then applied to 
decouple the network for independent operation. This greatly 
simplifies the optimization process, restricts the exchange of 
private information between the three network operators, and 
eliminates the need for operators to have specific informa‐
tion about the operations of all three networks. Therefore, 
the proposed learning-aided approach aligns with the opera‐
tional independence of each network while simultaneously 
showcasing the merits of collaborative coordination.

3) The results of numerical computations demonstrate that 
the proposed learning-aided approach provides dispatching 
results that are nearly equivalent to those obtained by direct‐
ly solving the physical models of the coupled system. The 
proposed learning-aided approach also reduces the required 
computation time by 96%. We also clarify the potential for 
PDNs and HDNs integrated with P2H units to accommodate 
renewable energy generation based on the energy consump‐
tion of EVs and HFCVs, respectively.

The remainder of this paper is organized as follows. Sec‐
tion II presents the coupling relationships in a typical power-
hydrogen-transportation network, i. e., the combined system 
with PDN, HDN, and UTN. These relationships are then in‐
cluded with the mathematical formulations of the UTN, 
HDN, and PDN to establish a collaborative optimization 
model. Section III presents the DNN architecture of the pro‐
posed learning-aided approach and individual optimization 
models applied to each network following decoupling via 
the DNN. Section IV presents the results of a numerical sim‐
ulation of an IEEE 33-node power network, 13-node Nguy‐
en-Dupuis transportation network, and 20-node HDN. Sec‐
tion V concludes this study.

II. POWER-HYDROGEN-TRANSPORTATION NETWORK MODEL 

Figure 1 illustrates the coupling relationships in a typical 
combined system with PDN, HDN, and UTN. Here, CSs, 

HRSs, and P2H units (i.e., electrolyzers) act as bridges con‐
necting the operations of the three networks together, where 
EV charging via CSs in the UTN requires electricity from 
the PDN, the refueling of HFCVs via HRSs in the UTN re‐
quires hydrogen supply from the HDN, and the operation of 
P2H units requires electricity from the PDN to generate hy‐
drogen for the HDN. In addition, the traffic flows of EVs 
and HFCVs dictate the electricity and hydrogen demands of 
the CSs and HRSs, respectively. This study considers both 
EVs and HFCVs, as they play a dominant and strategically 
important role in the transition to a sustainable energy fu‐
ture. This choice is also driven by the expected integration 
of renewable energy and decarbonization in the transporta‐
tion sector.

A. UTN Modeling

As illustrated in Fig. 2, the coupling among the three net‐
works is facilitated by categorizing four types of transporta‐
tion links in the UTN: regular, charging, hydrogen refueling, 
and bypass links. Regular links refer to physical connections 
between individual roadways. Charging, hydrogen refueling, 
and bypass links are conceptual connections, where charging 
links correspond to the queuing and charging events of EVs 
at CSs, hydrogen refueling links correspond to the queuing 
and refueling events of HFCVs at HRSs, and bypass links 
depict events involving EVs/HFCVs bypassing CSs/HRSs. 
We assume a static traffic assignment model in which the 
traffic conditions and network parameters remain constant. 
This model implicitly assumes perfect rationality among driv‐
ers who seek the most efficient routes to minimize their trav‐
el costs, including time, charging, and refueling expenses. Al‐
though the models of EVs and HFCVs in the UTN are simi‐
lar, EVs primarily serve the coupling of the UTN and PDN, 
whereas HFCVs mainly serve the coupling of the UTN and 
HDN. Therefore, it is necessary to design differentiated pric‐
ing mechanisms to provide guidances while prevent the “col‐
lective punishment” effect.

G PDN

 

CSs

HDN

HRSs

UTN

UTN operator

Energy flow; Information flow;

HDN operatorPDN operator

G

G
E

E

HRS HRS HRSCS CS CS

Charging link; Hydrogen refuling link;

EV; HFCV;

E

G Generator unit

Electrolyzer; Road link

Fig. 1.　Coupling relationships in a typical combined system with PDN, 
HDN, and UTN.
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For the UTN, the mixed UE conditions between EVs and 
HFCVs can be modeled as follows [24].
1)　Traffic Flow Constraints

π eqrs = ∑
kÎK e

rs

f e
krs (1)

πhqrs = ∑
kÎK h

rs

f h
krs (2)

xrg
a =∑

rs
∑
kÎK e

rs

f e
krsδ

rg
akrs +∑

rs
∑
kÎK h

rs

f h
krsδ

rg
akrs  aÎ T rg

A (3)

xch
a =∑

rs
∑
kÎK e

rs

f e
krsδ

e
akrs  aÎ T ch

A (4)

xhr
a =∑

rs
∑
kÎK h

rs

f h
krsδ

h
akrs  aÎ T hr

A (5)

Here, (1) and (2) describe the relationships between traffic 
demands and traffic flows on paths, and (3)-(5) describe the 
relationship between traffic flows on links and paths.
2)　Travel Time Constraints

For regular links, we correlate the travel time and traffic 
flow according to the function of the Bureau of Public 
Roads as:

t rg
a = t 0

a (1 + 0.15( xg
a

crg
a ) 4 ) aÎ T rg

A (6)

For charging and hydrogen refueling links, the queuing 
time of EVs and HFCVs at the CSs and HRSs is defined as 
(7) and (8), respectively, according to the Davidson model.

t ch
a = t c0

a ( )1 + J
xch

a

cch
a - xch

a

 xch
a < cch

a aÎ T ch
A (7)

t hr
a = t h0

a (1 + J
xhr

a

chr
a - xhr

a ) xhr
a < chr

a aÎ T hr
A (8)

where J is typically set to be 0.05.
3)　Travel Cost Constraints

The travel costs for EVs and HFCVs are defined as:

ce
krs = ∑

aÎ T rg
A

(ωt rg
a + Toll e

a )δe
akrs + ∑

aÎ T ch
A

(ωt ch
a + λe

a Ee -Feee
a )δe

akrs

(9)

ch
krs = ∑

aÎ T rg
A

(ωt rg
a + Toll h

a )δh
akrs + ∑

aÎ T hr
A

(ωt hr
a + λh

a Hh -Feehr
a )δh

akrs

(10)

As can be seen, the overall travel costs are the sum of the 

travel costs on each link and mainly include the time, charg‐
ing, hydrogen refueling, and response costs to the price regu‐
lations of the system operator. We incorporate the response 
cost from previous studies into the differentiated taxation-
subsidy mechanism, guiding users to less-congested road 
links by imposing separate congestion tolls on EVs and HF‐
CVs. In addition, subsidies are provided at CSs and HRSs to 
attract EVs and HFCVs to stations with shorter queues or 
higher renewable energy availability. This pricing mecha‐
nism effectively mitigates the traffic congestion and reduces 
travel costs.
4)　UE Constraints

The UE constraints for the traffic flow on path k between 
origin-destination (O-D) pair rs are based on Wardrop’s first 
principle.

0 £ f e
krs^ ce

krs - ue
rs ³ 0 (11)

0 £ f h
krs^ ch

krs - uh
rs ³ 0 (12)

This principle posits that a UTN reaches an equilibrium 
state when all road users are fully aware of network traffic 
conditions and select the most efficient available routes. Con‐
sequently, users cannot further reduce their travel expendi‐
tures by modifying their route preferences under UE condi‐
tions. Notably, without the incorporation of the differentiated 
taxation-subsidy mechanism under the UE criterion, EVs 
and HFCVs can only achieve equilibrium operations in the 
UTN. In this case, EVs and HFCVs lack sufficient price in‐
centives to alter their routes or choose alternative CSs and 
HRSs, thereby preventing the UTN from coordinating with 
the PDN and HDN. By contrast, via the introduction of this 
novel pricing mechanism, EVs and HFCVs become connect‐
ing bridges of the UTN with PDN and HDN.

The UTN constraints include (1)-(12).

B. HDN Modeling

The steady-state operational constraints of an HDN are 
analogous to those of a natural gas network and can be ex‐
pressed as [25]:∑

eÎΨ L
m

F L
e + ∑

aÎΨ H
m

F h
a - ∑

wÎΨ S
m

F S
w - ∑

τÎΨ P
m

F P2H
τ +

∑
pÎP(m)

(1 + θp )F C
p + ∑

nÎG(m)

Fmn = 0 (13)

0⩽F S
w⩽F Sr

w (14)

0⩽F P2H
τ ⩽F P2Hr

τ (15)

0⩽F C
p ⩽F Cr

p (16)

π in
p σ

Cf
p ⩽π out

p ⩽π in
p σ

Cr
p (17)

Fmn| Fmn | /C 2
mn = π

2
m - π

2
n (18)

π f
m⩽πm⩽π r

m (19)

As (13) shows, all hydrogen demands at node m of the 
HDN must be balanced. Constraint (14) corresponds to the 
supply constraint of the gas source w, (15) represents the 
supply constraint of the electrolytic tank τ, (16) and (17) rep‐
resent the operational constraints of the compressor p, (18) 
describes the nonlinear relationship between the hydrogen 
flow in the pipeline mn and the pressure values at its inlet 

T1 I1 E1
CS

T2

T1 T2

T3 I2 E2 T4

T3 T4

Bypass link;Regular link; Charging link

HRS

HRS

CS

CS

HRS Hydrogen refueling link; I Origin node of CS or HRS

T UTN node; E Destination node of CS or HRS

Fig. 2.　Schematic illustrating four types of transportation links applied in 
UTN.
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and outlet, and (19) enforces safety constraints on the pres‐
sure values at node m.

The hydrogen consumption F h
a  of the HRSs on link a rep‐

resents the coupling between the HDN and UTN, which is 
defined as:

F h
a = xhr

a Hh /ρ aÎΨ H
m (20)

Utilizing second-order cone (SOC) relaxation, the nonlin‐
ear functional relationship given in (18) can be reformulated 
as:

F 2
mn /C 2

mn £ π
2
m - π

2
n (21)

The standardized SOC representation of (21) is given 
as [26]:



 


Fmn /Cmn

πn

⩽πm (22)

The HDN constraints include (13)-(22).

C. PDN Modeling

A PDN is typically described by a conventional DistFlow 
model. However, this model includes nonlinear terms that 
are non-convex and challenging to solve. This issue can be 
addressed effectively by applying the SOC relaxation tech‐
nique to the nonlinear terms in the DistFlow model, and we 
can obtain [27], [28]:
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Equations (23) and (24) denote the active and reactive 
power balances, respectively. Equation (25) establishes a 
nonlinear Ohm’s law relationship between the line voltage 
and current in the squared form, and (26) represents its cor‐
responding SOC relaxation. Note that the voltage magnitude 
at the slack bus is constant. Equation (27) imposes the upper 
and lower bounds on the squared values of the voltage and 
current amplitudes, and (28) specifies the upper and lower 
bounds for the active and reactive power outputs of distribut‐
ed generation (DG) units. The total active power demand is 
defined as:

pd
j = preg

j + pe
j + pP2H

j (29)

where pe
j  signifies the coupling between the PDN and UTN, 

and pP2H
i  signifies the coupling between the PDN and HDN. 

The two demand terms can be expressed as:

pe
j = xch

a Ee aÎCe ( j) (30)

pP2H
j = ρF P2H

τ ξ τÎCh ( j) (31)

The PDN constraints include (23)-(31).

D. Power-hydrogen-transportation Network Dispatch Model

Under the UE conditions, all routes carrying a positive 
traffic flow between O-D pair rs share the same travel costs. 
Therefore, the overall travel cost for travelers in UTN can 
be formulated as:
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rs

ce
krs f e

krs +∑
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rs∑

kÎK h
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f h
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rsπ

eqrs +∑
rs

uh
rsπ

hqrs (32)

The economic cost of PDN encompasses both the genera‐
tion cost of the DG units and the cost of purchasing electrici‐
ty from the main grid, which is defined as:

F eco
PDN =∑

iÎEN

bi pg
i + ν∑

jÎ π(0)

P l
0j (33)

The economic cost of HDN is the supply cost of hydro‐
gen sources, which can be formulated as:

F eco
HDN = ∑

wÎΨ S
m

cS
w F S

w (34)

Finally, the applied economic optimization model for the 
power-hydrogen-transportation network is derived by mini‐
mizing the sum of the defined economic costs as:

{min Feco =F eco
UTN +F eco

PDN +F eco
HDN

s.t.  (1)-(31)
(35)

III. PROPOSED LEARNING-AIDED APPROACH 

The proposed collaborative optimization framework en‐
sures the operational independence of the PDN, HDN, and 
UTN by learning the coupling variables (i. e., EV charging 
demand, HFCV hydrogen consumption, and power demand 
for hydrogen production) between them via a learning-aided 
approach. This approach leverages a DNN to predict the cou‐
pling variables, thereby minimizing the need for data sharing 
and maintaining the confidentiality of operational data in 
each network. In addition, the model-free architecture of 
DNN and aggregated anonymized data exchange protect 
against unauthorized access and potential data breaches. Pri‐
vacy is further enhanced through strict access control, trans‐
parent data usage policies, and regular security audits, all of 
which contribute to safeguarding sensitive information while 
allowing for efficient network optimization.

A. DNN

1)　Structure and Learning Goals
In general, DNNs are machine learning models that con‐

sist of multiple layers, where each layer takes the outputs 
from the previous layer as its inputs. In standard feedfor‐
ward neural networks, each node in one layer is connected 
to all nodes in the next layer. The function that connects 
these layers is given by:

y = π(Wx + b) (36)

where xÎRN and yÎRM are the input and output vectors, 
and N and M are the numbers of demands and coupling vari‐
ables, respectively; WÎRM ´N is the weight matrix; bÎRM 
is the bias vector; and π(×) is a nonlinear activation function, 
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and in this paper, a rectified linear unit (ReLU) activation 
function is applied.

Figure 3 illustrates the architecture of the DNN applied. 
Specifically, the input of DNN x includes the known traffic, 
electricity, and hydrogen demands, i.e., qrs, preg

i , and F L
e , re‐

spectively, and the output of DNN y is the predicted values 
of the coupling variables, including the hydrogen consump‐
tion of HRSs on link a, the total charging power demand at 
bus i, and the total electricity demand for hydrogen produc‐
tion at bus i, i.e., 

------
F h

a , 
-
pe

i , and 
- -------
pP2H

i , respectively.

Formally, the resulting predictor learns the mapping O:
RN®RM. The input of the learning task is a dataset D =
(xlyl ), xl = (qrsp

reg
i F L

e ) and yl = (F h
a p

e
i p

P2H
i ) represent the 

l th observations of the demands and coupling variables, re‐
spectively, and yl =O(xl ). The output is a function Ô, which 
ideally represents the outcome of the following optimization 
problem:

min ∑
l

Lo (ylÔ(xl )) (37)

where the Huber loss function Lo is expressed as (38), which 
offers improved robustness over the commonly-used loss 
functions by effectively reducing the sensitivity to outli‐
er [29].

Lo (ylÔ(xl ))=

ì

í

î

ïïïï

ï
ïï
ï

1
2

(yl - Ô(xl ))
2                || yl - Ô(xl ) £ δ

δ || yl - Ô(xl ) -
1
2
δ2      || yl - Ô(xl ) > δ

(38)

where the parameter δ is set to be a default value of 1.
In this paper, we use Bayesian search to tune the hyperpa‐

rameters of DNN, which navigates vast hyperparameter spac‐
es systematically and efficiently by leveraging probabilistic 
models to pinpoint configurations that maximize the model 
performance [30]. We apply the open-source Optuna hyper‐
parameter optimization framework, the core of which is an 
Optuna study object composed of a collection of trial objects 
that share the same search space and objective function. Ac‐
cordingly, an initial search space for hyperparameters is first 
defined, which is followed by iterative trials. For each itera‐
tion, a probabilistic model suggests a new hyperparameter 
combination based on the outcomes of prior trials. The DNN 
is then trained using the suggested hyperparameters, and its 
prediction performance is evaluated using the coefficient of 
determination R2 to reflect the fitting performance of the 

trained DNN, which achieves a maximum performance at 
R2 = 1.0. This iterative process refines the search and ulti‐
mately yields a hyperparameter combination that maximizes 
the R2 value. Note that the coupling relationships between 
the three networks are more complex in reality. For simplici‐
ty, we focus on the learning-aided decoupling of three typi‐
cal coupling variables. The main challenges in the practical 
implementation of the proposed collaborative optimization 
framework include ensuring high-quality real-time data ac‐
quisition, managing computational complexity for large-scale 
network optimization, generalizing the DNN model across di‐
verse operational scenarios, integrating with existing infra‐
structure, navigating regulatory diversity, aligning economic 
incentives for stakeholders, and achieving user acceptance.

B. Decoupled Optimization of Power-hydrogen-transporta‐
tion Network

As previously discussed, the optimal values of the cou‐
pling variables between the three networks are predicted by 
the DNN, and these predicted values are applied to decouple 
these networks. Accordingly, we first replace F h

a  in (13) with 
the predicted value 

------
F h

a  and replace pe
i  and pP2H

i  in (29) with 

the predicted values 
-
pe

i  and 
- -------
pP2H

i , respectively. From (31), we 

can deduce 
- -- -----
F P2H
τ  as:

- -- -----
F P2H
τ =

- -------
pP2H

j

ρξ
 τÎCh ( j) (39)

Thus, (13) can be transformed into (40) with predicted val‐
ues:

∑
eÎΨ L

m

F L
e + ∑

aÎΨ H
m

------
F h

a - ∑
wÎΨ S

m

F S
w - ∑

τÎΨ P
m

- -- -----
F P2H
τ +

∑
pÎP(m)

(1 + θp )F C
p + ∑

nÎG(m)

Fmn = 0 (40)

The newly obtained HDN constraints include (15) - (21), 
(39), and (40). The decoupled HDN model can be described 
succinctly as:

{min Feco =F eco
HDN

s.t.  (15)-(21) (39) (40)
(41)

Similarly, (29) is transformed into:

pd
j = preg

j +
-
pe

j +
- -------
pP2H

j (42)

The newly obtained PDN constraints include (23) - (28), 
(42). The decoupled PDN model can be expressed succinctly 
as:

{min Feco =F eco
PDN

s.t.  (23)-(28) (41)
(43)

To decouple the UTN, the power demand and hydrogen 
consumption values predicted by the DNN for the PDN and 
HDN essentially represent the predicted distributions of the 
EVs and HFCVs at the CSs and HRSs, respectively. Based 
on (20) and (30), the flow distributions of EVs and HFCVs 
can be expressed as:

--
xch

a =
-
pe

j

Ee

 aÎCe ( j) (44)
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Fig. 3.　Architecture of DNN.
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--
xhr

a =
------
F h

a ρ
Hh

 aÎΨ H
m (45)

In addition, (7) and (8) can be transformed into:

t ch
a = t c0

a (1 + J
--
xch

a

cch
a -

--
xch

a ) aÎ T ch
A (46)

t hr
a = t h0

a (1 + J
--
xhr

a

chr
a -

--
xhr

a ) aÎ T hr
A (47)

The newly obtained UTN constraints include (1) - (3), (6), 
(9) - (12), and (44) - (47). The decoupled UTN model can be 
described succinctly as:

{min Feco =F eco
UTN

s.t.  (1)-(3) (6) (9)-(12) (44)-(47)
(48)

In the real world, the application of proposed learning-aid‐
ed approach may encounter regulatory and policy challenges. 
It is imperative to harmonize regulations across various de‐
partments to ensure cohesive and effective policy implemen‐
tation. In addition, the stringent adherence to data privacy 
regulations is essential to safeguard the sensitive information 
of individuals and organizations.

Furthermore, structural reforms are needed. Market struc‐
tures must be reconfigured to incentivize participation by all 
relevant stakeholders. Concurrently, the integration of sup‐
porting technologies is critical, where the establishment of 
requisite infrastructure and systems is required to facilitate 
the implementation of the proposed learning-aided approach.

The role of the predictor can be fulfilled by specialized 
agencies or departments within existing utility companies 
that already perform data analysis and forecasting tasks. 
These entities are well-equipped with the necessary expertise 
and infrastructure to extend their services to the proposed 
collaborative optimization framework.

IV. CASE STUDY 

Figure 4 shows the coupled system composed of IEEE 33-
node power network [31], 13-node Nguyen-Dupuis transpor‐
tation network [32], and 20-node HDN [33]. Other details of 
the test system are available in Supplementary Material A. 
All computational analyses are performed on a laptop com‐
puter equipped with an Intel i5-12500H processor and 16 
GB of RAM. The decoupled models are solved using the IP‐
OPT solver implemented on a general algebraic modeling 
system (GAMS) platform.

We establish a DNN consisting of three hidden layers. To 
train and test the DNN, we extract the hourly load ratio vari‐
ation data recorded for the 3rd, 6th, 8th, and 12th months of an 
8760-hour dataset [34]. These data are employed to establish 
the electrical loads at the 33 nodes of PDN. The traffic de‐
mands for the four O-D pairs of UTN and the loads at the 

20 nodes of HDN vary randomly from 80% to 100%. Em‐
ploying GAMS to collaboratively optimize the three net‐
works produce a dataset consisting of 8385 entries, which 
were divided into training and test datasets at the ratios of 
80% and 20%, respectively. The DNN is implemented, 
trained, and tested using the PyTorch open-source machine 

1 2
3

4 5

6 7 8 9 10

11 12 13 14 15 16 17 18

19
20 21 22

23
24

25 26 27 28
29 30 31 32 33

DG3

DG1 DG4

2 3 4 5 61 7

8

9

10 11 12 13 15 16

18 19 20
17

W2

W1

T1 T12

T5 T6

T9 T10

T7

T11

T8

T2

T13

T4

#4L4

L2

L1

L6

L3

L8

L5

L12

L17

L13

L14

L7

L19

L16

L9

L15

L10 L11

L18

T3

Conventional DG; Renewable DG;Electrolysis tank; DGDG W UTN node

Traffic link;LDestination node;T T

UTN

Origin node;

T

Hydrogen refueling flowP2H flow; Charging power;

DG2

CS2

CS1

HRS3 CS3

CS4

HRS2 HRS1

HRS4

Hydrogen supplier; Hydrogen compressor;

PDN HDN

P2H1

P2H2

Fig. 4.　Topology of coupled system.

482



CHEN et al.: LEARNING-AIDED COLLABORATIVE OPTIMIZATION OF POWER, HYDROGEN, AND TRASPORTATION NETWORKS

learning framework in Python 3.6.

A. Comparison of Differentiated and Non-differentiated Pric‐
ing Mechanisms

We evaluate the performance of the proposed differentiat‐
ed pricing mechanism in scheduling a heterogeneous fleet 
comprising EVs and HFCVs along with its advantages in re‐
ducing user travel costs. We first investigate the congestion 
tolls imposed on various regular links under differentiated 
and non-differentiated pricing mechanisms in the economical‐
ly optimal conditions of tri-network coordinated operation. 
As shown in Fig. 5, as EVs constitute 70% of the heteroge‐
neous vehicle fleet, the congestion tolls under the non-differ‐
entiated pricing mechanism are primarily driven by EVs, 
with charges closely aligned with those under the differenti‐
ated pricing mechanism. However, because of different loca‐
tions of HRSs and CSs in the UTN, if HFCVs are subjected 
to the congestion pricing guidance designed for EVs, the re‐
sult would be a “collective punishment” on the HFCV fleet, 
which would in turn reduce the economic efficiency of the 
network scheduling. The differentiated pricing mechanism 
mitigates these drawbacks by imposing separate congestion 
tolls on EVs and HFCVs. The results shown in Fig. 5 indi‐
cate that HFCVs are guided to refuel at HRS1 and HRS2 
with lower congestion tolls on links L7 and L9, as these 
HRSs are supplied directly by hydrogen sources with mini‐
mal HDN losses. The pricing logic for EVs follows a similar 
rationale, even though EVs primarily serve the PDN. Over‐
all, the tri-network coordinated operation achieves global op‐
timization through the flexible scheduling of EVs and HF‐
CVs.

Furthermore, we investigate the traffic flow distribution in 
the UTN under different pricing mechanisms. Figure 6 pres‐
ents the 3D color-mapped surface of the traffic flow distribu‐
tion in the UTN under different pricing mechanisms. It is ob‐

vious that the road capacities of different regular links vary. 
Therefore, a uniform distribution of traffic flow in the UTN 
is not necessarily advantageous. The optimal strategy in‐
volves allocating traffic based on road capacities and direct‐
ing more vehicles to segments with higher capacities and 
that are less susceptible to congestion. For example, the re‐
sults shown in Fig. 6 indicate that the differentiated pricing 
mechanism enables links L1, L4, and L7, which have higher 
traffic capacities, to capture more flow, while simultaneously 
alleviating congestion on links L2, L3, and L5, which have 
lower traffic capacities. This more efficient pricing mecha‐
nism ultimately results in a reduction in user travel costs by 
approximately 1.3%.

B. Performance of Proposed Learning-aided Approach

1)　Bayesian Hyperparameter Tuning
The hyperparameters of the established DNN subject to 

Bayesian hyperparameter tuning comprise the number of neu‐
rons in each of the three hidden layers as well as the learn‐
ing rate and batch size. The tuning framework includes neu‐
ron counts in the hidden layers 1-3 in the integer ranges of 
[64, 256], [256, 1024], and [64, 256], respectively. The learn‐
ing rate is evaluated over a logarithmic range of [0.0001, 
0.1], and the batch size is evaluated with three commonly 
employed values of 32, 64, and 128.

Table I lists the initial hyperparameters and hyperparame‐
ters obtained after tuning. Notably, the tuning process signifi‐
cantly increases the R2 value from 0.74 to 0.91, which repre‐
sents a substantial enhancement of the fitting capabilities of 
the DNN. Figure 7 shows the evolution of the loss values 
obtained for the training and test datasets under an increas‐
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ing number of epochs. As shown in Fig. 7, the training and 
test loss values converge to approximately 0.02 before tun‐
ing. After tuning, these losses converge to approximately 
0.015 and 0.005, respectively. Clearly, the prediction perfor‐
mance of the DNN is enhanced after tuning.

2)　Comparison with Solutions Obtained by Directly Solving 
Coupled Physical Models

We first compare the computational time between directly 
solving the coupled physical models of the PDN, HDN, and 
UTN using the sample data in the test dataset and the pro‐
posed learning-aided approach, as shown in Table II. The 
proposed learning-aided approach, which decouples the three 
networks and optimizes them separately based on hydrogen 
consumption and power demands as predicted by the trained 
DNN, reduces the required total time by 96.66% from 
212.11 to 7.09 s. In addition, directly solving the coupled 
models yields the highest accuracy. We compare the opera‐
tional costs of the PDN, HDN, and UTN obtained by direct‐
ly solving the coupled physical models with those obtained 
by the proposed learning-aided approach based on the maxi‐
mum relative error observed for the PDN, HDN, and UTN 
in the test dataset. The proposed learning-aided approach 
clearly obtains the highest scheduling accuracy for the PDN, 

with the maximum relative error rate of 0.11%. In addition, 
the inherent complexity and numerous nonlinear terms of the 
UTN results in the lowest scheduling accuracy, with the 
maximum relative error rate of 0.79%. In summary, the max‐
imum relative error rate remains less than 0.8% for all the 
three networks and the combined system.

Compared with PDN, HDN exhibits more complex charac‐
teristics, which leads to greater difficulties in calculating the 
hydrogen consumption of HRSs and the power demand for 
hydrogen production, and brings greater differences in opti‐
mization costs. In addition, the proposed learning-aided ap‐
proach relies on DNNs to predict coupled variables. If not 
properly accounted for, any inaccuracies in these predictions 
can lead to suboptimal HDN operations and increased costs. 
These findings demonstrate that the proposed learning-aided 
approach retains the economic advantages of collaborative 
optimization, even though the scheduling of each network is 
solved independently. This approach also significantly en‐
hances the computational efficiency. Although the proposed 
learning-aided approach exhibits strong performance under 
normal operating conditions, its adaptability must be ad‐
dressed under constraints such as power line overloads and 
voltage violations. To address these abnormal conditions, the 
proposed learning-aided approach requires regular retraining 
of the DNN using a more extensive dataset that includes cas‐
es that violate constraints. In addition, it is necessary to em‐
ploy centralized optimization methods to coordinate solu‐
tions when dealing with these issues. This ensures that the 
proposed collaborative optimization framework remains ef‐
fective with operational abnormalities.
3)　Operation Results from Model-driven Centralized Ap‐
proach and Learning-aided Decomposed Approach

We compare the dispatch solutions by directly solving the 
coupled physical models of the PDN, HDN, and UTN (mod‐
el-driven approach) and the proposed learning-aided ap‐
proach. Figure 8 compares the scheduling results for the 
PDN and HDN, and Fig. 9 shows the EV and HFCV distri‐
butions obtained at the CSs and HRSs in the UTN, respec‐
tively, under the two approaches. It is evident that the sched‐
uling of the three networks is remarkably similar under the 
two approaches. For example, both approaches fully utilize 
the zero-cost photovoltaic outputs of DG3 and DG4. In addi‐
tion, the relatively high cost of DG2, i.e., 49.41 $/MWh, re‐
sults in a lower utilization rate than DG1 with a lower cost 
of 39.22 $/MWh. In fact, DG2 remains completely inactive 
under the model-driven approach, whereas the proposed 
learning-aided approach takes the power generated by DG2 
to replace some of the power purchased from the main pow‐
er grid at a similar cost of 47.51 $/MWh, which has only a 

TABLE II
COMPARISON OF COMPUTATIONAL TIME BETWEEN DIRECTLY SOLVING 

COUPLED PHYSICAL MODEL AND PROPOSED LEARNING-AIDED APPROACH

Approach

Directly solving

Proposed

PDN 
time (s)

0.25

HDN 
time (s)

0.17

UTN 
time (s)

2.32

Prediction
time (s)

4.35

Total 
time (s)

212.11

7.09
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Fig. 7.　Comparison of loss values obtained before and after tuning. (a) 
Before tuning. (b) After tuning.

TABLE I
COMPARISON OF INITIAL HYPERPARAMETERS AND HYPERPARAMETERS 

OBTAINED AFTER TUNING

Hyperparam‐
eter

Initial

After tuning

Neurons 
of hidden 

layer 1

150

140

Neurons 
of hidden 

layer 2

600

566

Neurons 
of hidden 

layer 3

200

252

Learning
 rate

0.05000

0.00546

Batch
 size

32

64

R2 
value

0.74

0.91
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minor impact on the PDN operation cost. Similarly, the topo‐
logical structure of the HDN and its compressor configura‐
tion, as shown in Fig. 4, make hydrogen supplier W2 bear a 
greater hydrogen demand than hydrogen supplier W1 under 
both approaches, even though the cost coefficient of hydro‐
gen supplier W1 (i.e., 5 $/kcf) is less than that of hydrogen 
supplier W2 (i.e., 6 $/kcf).

The results in Figs. 8 and 9 show that DG3 primarily sup‐
plies power to P2H1, whereas the minimum hydrogen pro‐
duction in P2H2 draws little power from DG4. Consequent‐
ly, much less hydrogen is dispatched to HRS4 than to 

HRS3. By contrast, DG4 mainly powers CS4, which results 
in more EVs dispatched to CS4 than to CS3, thus ensuring 
that the output of photovoltaic resources is fully consumed. 
Regarding the dispatch of conventional units DG1 and DG2, 
we observe that more EVs are dispatched to CS1 than to 
CS2 due to the lower electricity cost from DG1 than that 
from DG2. Similarly, more HFCVs are dispatched to HRS1 
than to HRS2 due to the lower hydrogen cost from hydrogen 
supplier W1 than that from hydrogen supplier W2. This ef‐
fectively demonstrates the spatial responsiveness of the dis‐
patching solutions to EV and HFCV traffic flows.
4)　Effects of Renewable DG Output Levels on Collaborative 
Optimization Results

The renewable DG output levels directly influence the hy‐
drogen output of the P2H units and the distribution of EVs 
and HFCVs at the CSs and HRSs, respectively. Therefore, 
we evaluate the dispatch solutions and P2H flow obtained us‐
ing the proposed learning-aided approach under different re‐
newable DG output levels of 0.5, 1, and 2 MW, as shown in 
Fig. 10.

As the renewable DG output level increases, the full con‐
sumption of renewable energy sources is supported by dis‐
patching an increasing proportion of electricity and hydrogen 
from DG3 and DG4 to CS3, CS4, HRS3, and HRS4. In addi‐
tion, the P2H flow steadily increases with the increasing re‐
newable DG output levels. This indicates that the P2H tech‐
nology plays a significant role in ensuring full consumption 
of renewable energy sources.
5)　Effects of Hydrogen Loads on HFCV Distributions

We also evaluate the dispatch solutions obtained using the 
proposed learning-aided approach with hydrogen load factors 
of 0.9, 1.0, 1.1, and 1.2, as shown in Fig. 11. The hydrogen 
supply dispatched to HRS1 and HRS2 notably increases 
with the hydrogen load factor. By contrast, the hydrogen sup‐
ply dispatched to HRS3 and HRS4 gradually decreases.

These results can be attributed to the inherent losses in hy‐
drogen transport in the HDN, which increases as the HDN 
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becomes more heavily loaded. Therefore, the dispatch solu‐
tions obtained with increasing hydrogen load factors may 
mitigate losses to some extent by increasing the proportion 
of hydrogen directly dispatched from hydrogen suppliers W1 
and W2 located at nodes 1 and 8 of the HDN, respectively.

V. CONCLUSION 

This study develops a coordinated optimization model for 
a power-hydrogen-transportation network and employs a dif‐
ferentiated taxation-subsidy mechanism to guide EVs and 
HFCVs more effectively, thereby facilitating the coordinated 
operation of the UTN with the PDN and UTN while reduc‐
ing user travel costs by approximately 1.3%. This study also 
addresses significant limitations in current efforts to coordi‐
nate the operations of coupled PDN, HDN, and UTN by pro‐
posing a learning-aided approach. Applying the predicted val‐
ues capitalizes on the economic benefits of joint optimiza‐
tion and enables the networks to be decoupled, thereby en‐
abling them to operate and be optimized independently. This 
greatly simplifies the optimization process, restricting the ex‐
change of private information between the three network op‐
erators and eliminating the requirement of operators to have 
specific information regarding the operations of all three net‐
works. Given the nonlinear complexity of the physical sys‐
tem models, Bayesian hyperparameter tuning is applied to 
determine the optimal hyperparameters of DNN, which im‐
proves its prediction performance. The results of numerical 
simulations of a coupled system composed of an IEEE 33-
node power network, 13-node Nguyen-Dupuis transportation 
network, and 20-node HDN demonstrates that the dispatch‐
ing results yielded by the proposed learning-aided approach 
differ from those by the model-driven approach by less than 
1% while improving the computational efficiency by more 
than 96%.

This study is important for the application of learning ma‐
chine approaches in improving the computational efficiency 
of traditional large-scale optimization models of energy sys‐
tems. In addition, the information privacy of multi-energy 
networks is preserved by learning the coupling power infor‐
mation, which contributes to a sufficiently coordinated solu‐

tion while maintaining the existing operational independence 
of each energy system. Notably, the data-driven approaches 
have limitations in terms of data quality, availability, and the 
possibility of model overfitting. To address these limitations, 
we incorporate strategies such as rigorous data preprocessing 
to ensure quality and regularization techniques within the 
DNN to prevent overfitting.

This study focuses on static PDN, HDN, and UTN mod‐
els. In the future work, we hope to explore the dynamic ver‐
sions of these networks while considering the potential inte‐
gration of physical or graph neural networks. For a dynamic 
version, we suggest incorporating a temporal discretization 
approach into the model to allow it to capture the dynamic 
evolution of network states. In addition, we suggest imple‐
menting a rolling-horizon optimization strategy coupled with 
event-triggered updates to ensure the computational efficien‐
cy and to redirect the focus on critical decision-making mo‐
ments.
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