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A Continuous Operating Envelope for Managing
Intra-interval Fluctuations: Modeling and Solution

Menghan Zhang, Zhifang Yang, Juan Yu, and Wenyuan Li

Abstract—Maintaining a continuous power balance is crucial
for ensuring operational feasibility in power systems. However,
due to forecasting difficulties and computational limitations,
economic dispatch often relies on discrete interval horizons,
which fail to guarantee feasibility within each interval. This pa-
per introduces the concept of a continuous operating envelope
for managing intra-interval fluctuations, delineating the range
within which fluctuations remain manageable. We propose a
parametric programming model to construct the envelope, rep-
resented as a polytope that accounts for both timescale and fluc-
tuation dimensions. To address the computational challenges in-
herent in the parametric programming model, we develop a
fast solution method to provide an approximated polytope. The
approximated polytope, initially derived from lower-dimension-
al projections, represents a subset of the exact polytope that en-
sures operational feasibility. Additionally, we apply a polytope
expansion strategy in the original dimensions to refine the ap-
proximated polytope, bringing the approximation closer to the
exact polytope. Case studies on an illustrative 5-bus and a utili-
ty-scale 661-bus system demonstrate that the method effectively
and stably provides a continuous operating envelope, particular-
ly for high-dimensional problems.

Index Terms—Continuous operating envelope, economic dis-
patch, intra-interval fluctuation, feasibility, uncertainty, poly-
tope, parametric programming, ancillary service.

I. INTRODUCTION

HE primary duty of a power system is to guarantee just-
Tin-time production and transmission of bulk power to
meet just-in-time customer demand [1]. Although maintain-
ing power balance over a continuous time horizon would be
ideal, it is often impractical due to forecasting difficulties
and computational limitations. Instead, system operators com-
monly employ a discrete interval horizon [2]. For example,
in China, a 15-min horizon is used for the day-ahead dis-
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patch. In the US, the independent system operators (ISOs)
use an hourly horizon for the day-ahead dispatch and a 5-
min horizon for the real-time operations.

To mitigate the limitations of discrete interval horizons,
ISOs can rely on ancillary services to manage uncertainties
within these intervals. However, the operational feasibility of
dispatch under intra-interval fluctuations is not guaranteed,
which may lead to reliability issues during real-time opera-
tions [3]. With the increasing integration of renewable ener-
gy sources into the power system, their inherent intermitten-
cy and volatility heighten the need for timely assessments of
operational feasibility under intra-interval fluctuations. Estab-
lishing a clear operating range, termed as the continuous op-
erating envelope in this paper, is crucial for evaluating
whether upcoming fluctuations threaten system operations.
The continuous operating envelope provides clearer physical
insights by explicitly defining the allowable range of intra-in-
terval fluctuations, ensuring operational feasibility.

In practice, ancillary services are widely used to mitigate
the impact of intra-interval fluctuations. For example, mid-
continent ISO (MISO) and California ISO (CAISO) have de-
veloped flexible ramping products [4], while Electric Reli-
ability Council of Texas (ERCOT) has offered a fast regula-
tion response [5]. Additionally, CAISO has introduced the
concept of regulation mileage as an ancillary service [6].
These services improve the system ability to respond to vari-
able demand and generation. However, these services lack a
well-defined range of fluctuations that can be effectively
managed.

Notably, fluctuations in the interval generally have a tight-
er allowable range compared with those occurring later. This
phenomenon reflects temporal variance in the system ability
to manage fluctuations. Relying solely on discrete interval
horizons fails to capture this variance adequately, resulting
in reactive rather than proactive fluctuation management. For
example, the transitioning from day-ahead hourly results to
real-time 5-min operations often requires reactive measures,
such as curtailments or additional adjustments, in response
to violations involving ramping or transmission issues [7].

The high-resolution formulation offers an alternative meth-
od for managing intra-interval fluctuations. In this formula-
tion, the number of discrete intervals throughout the decision
period is increased to provide a finer granularity of dispatch
and to better capture fluctuations [8]. Intervals are set to be
much denser, allowing them to approximate a continuous
curve [9]. This method improves the power balance by con-
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sidering all expected values within the forecasted range.
However, it fails to establish an allowable range of fluctua-
tions. Moreover, this method significantly increases computa-
tional burden at higher resolutions and the feasibility in
shorter dispatch intervals remains uncertain [10]. Therefore,
the high-resolution formulation is less commonly used for
the day-ahead dispatch decisions.

Stochastic optimization offers another method for manag-
ing fluctuations. It models uncertainties through specific sce-
narios [11] or uncertainty sets [12], which are determined by
pre-specified probability distributions [13]. These distribu-
tions theoretically define the allowable range of fluctuations.
However, these methods focus exclusively on power balance
uncertainties at specific time steps within discrete interval
horizons. They fail to provide a comprehensive description
for managing intra-interval fluctuations, especially given that
the system ability to manage fluctuations varies over time.

Moreover, region-based methods have been developed to
delineate the allowable range of fluctuations caused by vari-
able demand and generation [14], [15]. The security region
concept is first introduced for transmission networks [16],
[17] and is later extended to distribution networks [18], [19].
The methods of active-power steady-state security region
provide insights into ramping constraints and describe the
corresponding polytope for each time step [20]. Recent re-
search works have further extended these methods to incor-
porate various stability constraints under different operation-
al conditions [21], [22]. However, security regions cannot ex-
plicitly represent polytope hyperplanes over time, thus requir-
ing extensive sampling to approximate continuous outcomes.
Additionally, security regions are determined solely by net-
work topology, neglecting operational conditions resulting
from dispatch decisions [23], [24].

In market-based power systems, day-ahead dispatch re-
sults require additional guidances to manage operational
risks from intra-interval fluctuations and to adjust dispatch
outcomes for active power flow. For instance, out-of-market
corrections in the US market [25] and short-term adequacy
assessment in the EU market [26] are used to adjust genera-
tion and network constraints based on the updated operation-
al conditions for active power flow.

In summary, managing intra-interval fluctuations remains
a significant challenge under a discrete interval horizon. Cur-
rent research methods lack a well-defined allowable range to
ensure feasibility within each interval, which may neglect op-
erational risks. Therefore, a new method is needed to define
an allowable range for intra-interval fluctuations while con-
sidering temporal variance in the system ability over time.

In this paper, we introduce the concept of a continuous op-
erating envelope, which supports fluctuation management by
accounting for temporal variations in the system ability (rep-
resented by ramping capacities in this paper). The envelope
is represented by a theoretical polytope, which delineates the
allowable range of fluctuations that the system can sustain
without compromising reliability. The contributions are two-
fold.

1) We present a parametric programming model for theo-
retically constructing the continuous operating envelope, cap-
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turing the system ability to manage intra-interval fluctua-
tions. The model uses a parametric timescale to describe
time-varying constraints and treats fluctuations as indepen-
dent parameters, resulting in a polytope that incorporates
both timescale and fluctuations in the parameter space. Fur-
thermore, we provide a theoretical analysis of the computa-
tional complexity of the model.

2) We develop a fast solution method to stably construct a
continuous operating envelope. To reduce computational
complexity, this method explores multiple lower-dimensional
projections and then algebraically reconstructs the approxi-
mated polytope in the original dimensions. As a subset of
the exact solution, the approximated polytope ensures full
feasibility within its interior, making it suitable to be used as
the continuous operating envelope. Furthermore, we propose
a polytope expansion strategy to refine the approximated
polytope, bringing it closer to the exact polytope.

The continuous operating envelope serves as an analytical
tool to determine whether fluctuations are feasible and
whether they pose a threat to system operations. Case stud-
ies include a illustrative 5-bus system to explain the basic
concept and a utility-scale 661-bus system to verify the scal-
ability. Results show the proposed method accurately con-
structs the envelope for the illustrative 5-bus system and suc-
cessfully generates the approximated polytope as the enve-
lope for the utility-scale 661-bus system. The results in the
utility-scale 661-bus system also validate the effectiveness of
the proposed method for high-dimensional problems.

II. MATHEMATICAL FORMULATION OF CONTINUOUS
OPERATING ENVELOPE

A. Feasibility Examination for Intra-interval Fluctuations

Feasibility examination for intra-interval fluctuations plays
a crucial role in proactively identifying and mitigating opera-
tional risks. Day-ahead dispatch provides hourly results, and
feasibility examinations can be conducted at any time step
within these intervals. It helps ensure the feasibility in re-
sponse to forecasted intra-interval demand and renewable en-
ergy output fluctuations. If operations are found to be infeasi-
ble, operators can promptly mitigate risks through curtail-
ments or other corrective measures.

Assume the feasibility examination is conducted at a spe-
cific time step ¢. The time step ¢ lies within the interval 7,
defined by *<¢<¢* where 5 and ¢* are the start and end of
the interval, respectively. To conduct the feasibility examina-
tion, the direct current (DC) optimal power flow (OPF) mod-
el is employed, which includes:

1) Objective function

ng(it?z:HlG(t)-i-Hzeg (1)

2) Power balance constraint
e;G()+e, Pr(t)=e, P, (1) )

3) Transmission constraints
PSP, (<P 3)
PL(t):F(ZGG(t)J"ZRPR(t)_ZDPD(t)) (4)



428

4) Ramping constraint

(t=5)R,<G(O)- G )<(t—t°)R, (5)
5) Generation constraint
Gmin < G(I)S Gmax (6)

where H, and H, are the row vectors representing the mar-
ginal production costs and no-load costs of online units, re-
spectively; z is the objective function value; G(¢) is the col-
umn vector of decision variables representing the unit output
(dispatchable resources) at time step #; P,(f) and P, (¢) are
the column vectors of the forecasted values representing the
fluctuations in intra-interval renewable energy output and de-
mand at time step ¢, respectively; e, e, and e, are the row
vectors filled with “all ones” associated with G(¢), P, (¢), and
P, (1), respectively; P, () is the power flow at time step
Z,, Z,, and Z, are the corresponding incident matrices; I is
the matrix of power transfer distribution factor; R, and R,
are the ramping capacities per-unit time of dispatchable re-
sources; superscripts max and min denote the maximum and
minimum limits of variables and parameters, respectively;
the superscript T is the transpose of a matrix; and G(t°) is
the unit output at time ¢° based on the given discrete dis-
patch decisions, such as the day-ahead hourly results.

In our analysis, temporal variations in ramping capacities
at time step ¢ play a crucial role in determining the system
ability to manage fluctuations, as these capacities typically
vary across time steps [27]. To emphasize the impact of tem-
poral constraints, we express R, and R, as per-unit time val-
ues, which makes time step ¢ a significant factor in (5).

P, (t) and P, (¢) are non-dispatchable resources. They can
be represented as forecasted functions of time step 7. At any
node, P;(f) and P, () can be treated as fluctuations, while
other nodes are considered non-fluctuating nodes. The model
in (1)-(6) conducts a feasibility examination to ensure opera-
tional feasibility for these forecasted fluctuations. To facili-
tate the analysis, P, (f) and P, (¢) are combined into a single
vector F(f). This vector represents deviations at specific
nodes resulting from the forecasted fluctuations at time step
t and is expressed as:

F(t)zzR(PR(t)_PR (ts))+ZD(PD(t)_PD(tS)) (7)
where P,(t°) and P, (t°) are the renewable energy output
and demand at the start of the interval (t=¢°) based on the
given discrete dispatch decisions, respectively. If P, (f) and
P, (¢) deviate from P,(¢*) and P, (t*), respectively, this indi-
cates that fluctuations are present at fluctuating nodes. Py (¢)
and P, (f) can fluctuate throughout the interval 7. In (7),
F(t) represents all nodes, but for clarity, the following analy-
sis will focus solely on the fluctuating nodes, excluding the
non-fluctuating ones. To simplify visualization, we display
the fluctuations F(¢) as P,(¢) and P, (f) in the subsequent fig-
ures, without subtracting the constant values P,(t°) and
P, (%) at t=1°.

To focus on the key aspects, the feasibility examination
model in (1)-(6) can be reformulated as the following gener-
al linear optimization problem in (8) with G(¢), F(f), and the
given time step ¢. Let n denote the dimension of the decision
variables, and G(¢) is an n x 1 decision variable vector. Let m
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denote the dimension of the fluctuation parameters, and F(¢)

is an mx1 parameter vector representing m fluctuating

nodes. Let p denote the dimension of the constraints in (8).

A is a pxn constant matrix. B is a px 1 column vector. C is

a pxm constant matrix. D is a px 1 column vector. G is the

polytope of G(¢). We can obtain:
min z=H,G(t)+ H,e(,
G(1) (8)
st. AGH)SB+CF(t)+tD G(t)e G R”

In this optimization problem, F(¢) is treated as a constant
vector with the forecasted values. By collecting all feasible
F(t) samples in (8), we define a closed range that ensures
feasibility for each time step ¢. Figure 1 visualizes these find-
ings using 2-dimensional F(z) samples (F,(f) and F,(#)) and
the time step ¢. In Fig. 1, green points represent infeasible
F(t) samples, while the blue points represent feasible ones.
As more F(f) samples are found to be feasible, the points
gradually approximate a closed blue line, indicating the al-
lowable range of fluctuations at time step ¢. However, achiev-
ing the theoretical blue line would require an infinite num-
ber of F(f) samples.

Time Time
(EL £

5 T

L 4
i
W '/,
i,

Fy(0)

Fi@) Fy(0)

(@) (b)

Fig. 1. Feasibility examination for intra-interval fluctuations. (a) Closed al-
lowable range for a single time step. (b) Allowable range for entire interval.

Moving beyond a single time step, we extend the analysis
by continuously taking samples of F(¢) across the time steps
within the interval 7. The red point represents the initial
F(t%) at the start of the interval (r=¢°) based on the given
discrete dispatch decision. This process gradually accumu-
lates a series of blue points, eventually shaping a polytope.
With an infinite number of samples, this polytope can be pre-
cisely defined. As shown in Fig. 1(b), the boundaries of the
polytope, marked in blue, delineate the overall allowable
range of intra-interval fluctuations.

In the rest of this paper, this polytope, which delineates
the allowable range of intra-interval fluctuations, is defined
as the continuous operating envelope. However, the model in
(8) cannot analytically provide the continuous operating en-
velope from a finite number of samples. While the DC OPF
method is effective for discrete analysis, it requires a more
efficient and theoretical method for the continuous examina-
tion. The new method should minimize the repeated calcula-
tions, eliminate the need for infinite samples, and provide a
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more accurate and efficient feasibility examination.

B. Parametric Programming for Intra-interval Fluctuations

The continuous operating envelope physically represents
the system ability to manage intra-interval fluctuations and
defines the extreme operational boundaries. Revisiting the
optimization problem in (8), the feasibility and the value of the
objective function depend on given values of F(¢) and ¢.

By treating F(¢) and ¢ as varying parameters, we formulate
a parametric programming model for the continuous operat-
ing envelope. In this model, all fluctuations are considered
independent parameters and are no longer linked to ¢. To dis-
tinguish them from the original optimization problem, the
parametric fluctuation vector of dimension m x 1 is denoted
by F”, and the superscript P denotes the parametric program-
ming.

min z=H,G(F", 1)+ H,e(,
G(F".1)

st. AG(F*,)<B+CF" +tD
G(F'.H)e GcR" F'e FcR",te TcR'

)

where F is the polytope of F”.
We combine F” and ¢ into a single vector @ of dimension
(m+1)x 1. Thus, G(F”, ) can be written as G(0).

P
0::[";] 9cOcR" (10)

where O is the polytope of 6.

In (9), F” at the fluctuating nodes is treated as a variable,
meaning its specific values do not need to be known in ad-
vance, unlike that in (8). For clarity, in the following text,
G(¢) and F(¢) are used in the optimization problem in (8),
while G(0) and F” are used in the parametric programming
model.

In parametric solutions, G() is characterized by 6. Once
6 is fully specified, the model in (9) becomes equivalent to
the optimization problem in (8). For example, the samples of
F(t) and ¢, which are known when executing the feasibility
examination, can be regarded as a specific set-point 8" of 0.
The model in (9) provides the decision variable vector
G(0"), which is identical to the optimal result G(¢) from the
model in (8) with F(f) and ¢. Therefore, all feasible set-
points in (8) belong to @, and @ serves as the theoretical
polytope representation of the continuous operating envelope.

The process is outlined for determining @ using the model
in (9). By selecting a 8", G(0"), Lagrange multiplier A(8"),
and objective value z(@") can be obtained from the model in
(9). At this point, the model in (9) is reduced to an optimiza-
tion problem. According to sensitivity analysis theory [28],
after optimization, the values in the neighborhood of " can
be expressed as affine functions of the varying 6.

G’ 0)=hs(0)
2 (O)=h.(0)
2 0)=h,(0)

(11)

where hg, h_, and h, are the affine functions in parametric
solutions of G(@), z(#), and A(@), respectively.
By introducing the affine functions G” (@) into the con-
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straint in (9), the constraints are classified as active and inac-
tive constraints, which become parametric constraints.

h,(F",t)=h,0)=0

AG" 0)<B+CF'+D= .
h,(F",t)=h,(0)<0

(12)
where the subscripts J and [ are the active and inactive con-
straint sets, respectively; and 4, and h, are the affine func-
tions for active and inactive constraint sets, respectively.

G"(0) bounded by the same inactive constraints can be
gathered in one region Q as:

Q:={0cR"": h,(0)<0} (13)

where the region £ is a polyhedron that represents the inac-
tive constraint set, and it is defined by the parametric con-
straints.

The feasibility condition is ensured by substituting the
G” (0) into the inactive constraints given by Q. Additionally,
the optimality condition is given by A”(#)>0, which adheres
to the Karush-Kuhn-Tucker optimality condition. In accor-
dance with parametric programming theory [29], [30] and
taking into account the parameter bounds, the critical region
‘H is defined by:

H:={0 e R"": h,(0)<0,2"(0)>0,0<0™} (1)

In the above analysis, hg, h,, h., h, and h; are calculated
at @". The corresponding H refers to a region in the parame-
ter space, where the structure of the affine functions remains
unchanged.

In order to distinguish each critical region and its associat-
ed affine functions, we introduce the subscript i € N* as the
region index, involving M, G (@)=hg,0), i, (0)=h, (),
zF =h_;(0), h,;(0), and h, (0). In this paper, a collection of
objects, e.g., {H,, ..., H;, ... H;}, is denoted by {H,}%, where
the superscript Z is the total number of critical regions.

Once all the critical regions are identified, {7, }* is collect-
ed and termed a polyhedral partition of @. ©®, which is de-
fined by the outermost boundaries of {#,}?, represents the
continuous operating envelope.

O:=bd({H,}")

where bd is the outermost facet of a polyhedral partition.

As shown in (13)-(15), @ is expressed in terms of its half-
space representation (H-rep), which is the intersection of a fi-
nite number of halfspaces. An equivalent representation is
the vertex representation (V-rep). The polytope is defined as
O:=conv({V;}*), where {V,}¥'={V,,...V,....V;}, and V, is
the set of vertices corresponding to the critical region H..

To illustrate the process for determining @, we visualize
the 2-dimensional F” (F| and F7) and ¢ In Fig. 2(a), we ini-
tially identify a critical region H, (green region) at a specific
0" (blue point) from (9), which executes a single optimiza-
tion problem with a given @". The parametric programming
model then explores beyond this critical region to identify
new critical regions at different set-points. This exploration
continues until no additional critical regions emerge. Figure
2(b) displays the outcome: five critical regions (Z=5) identi-
fied by using at least five feasible set-points, each marked
by a unique color. Finally, @ is defined by merging the five
regions {H,}’ according to (15).

(15)
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Fig. 2. Continuous operating envelope from parametric programming mod-

el. (a) A critical region H, with 0", (b) @ in parameter space.

C. Computational Complexity of Parametric Programming

The advantage of the parametric programming model is
its ability to represent decision variables as affine functions
of parameters, eliminating the need for exhaustive sampling
in (8). For the envelope problem, the model in (9) offers an
efficient alternative to exhaustive sampling of F(¢) and ¢. Us-
ing F” and ¢, it generates G/ (@) for H, and constructs {H,}Z.
Thorough exploration of all critical regions is crucial for ac-
curately defining 6.

The computational complexity of the model in (9) is influ-
enced by both the number of active constraints and the di-
mensionality of the parameter space. The computational com-
plexity is primarily determined by the number of critical re-
gions. Assume there is a given set of p constraints, and at
any set-point in the parameter space, a maximum of ¢ con-
straints can be active. Thus, the number of possible combina-
tions of active constraints, denoted by #, is equal to (16) in
the worst case.

» ! (16)
(z) " (p-D!

According to [31], the number of critical regions a is
bounded in the worst case.

n-1
o< zg!pg
g=0

where g can be regarded as the search tree level.

As the number of parameters increases, the dimensionality
of the parameter space expands, which further increases the
computational complexity. For a closed polyhedron of H, in
(m + 1)-dimensional parameter space, at least m+2 halfspaces
are required. According to [32], for a polyhedron with m+2
halfspaces, the size of the unexplored regions f is calculated
as:

an

-1

m+1 m+2
p= 2( (18)
1=0 l
Typically, a closed polyhedron in an (m + 1)-dimensional

parameter space has m+e¢ halfspaces, where ¢>2. As ¢ in-
creases, the size of the unexplored regions increases. For
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simplicity, we assume that ¢=2 for all polyhedra. The re-
quired number of set-points to identify all critical regions is:
nzaf (19)
To identify the entire {H,}?, at least a feasible set-points
and u set-points are required. The total number u depends on
the method used to select set-points but is subject to a lower
bound. In high-dimensional parameter spaces, this lower
bound grows exponentially. Therefore, addressing the inher-
ent computational challenges is crucial to improving the ap-
plicability of the parametric programming model. For the en-
velope problem, this paper proposes a fast solution method
to calculate the polytope, which will be discussed in the
next section.

III. FAST SOLUTION METHOD OF CONTINUOUS OPERATING
ENVELOPE

A. Main Idea of Fast Solution Method

The primary aim of this paper is to develop a theoretical
method for assessing the feasibility of intra-interval fluctua-
tions. In Section II, we introduce the concept of a continu-
ous operating envelope, represented by ©@. According to (15),
O is defined by the outermost boundaries of {H,}?, and con-
structing @ does not require identifying all critical regions.
Instead, it can be constructed by focusing on a smaller sub-
set of critical regions that encompass the outermost ones,
which significantly reduces computational complexity by ex-
cluding certain critical regions.

One major challenge is discerning which critical regions
are essential and which are less important. To address this,
we analyze the characteristics of fluctuations. In high-dimen-
sional parameter spaces, identifying critical regions, where
multiple fluctuations interact simultaneously, requires a sig-
nificant number of set-points. These critical regions, howev-
er, are absent in lower-dimensional parameter spaces.

The fast solution method prioritizes exploring critical re-
gions in low-dimensional projections. Since ramping capaci-
ties are defined by the timescale, we focus on 2-dimensional
projections that include both a single fluctuation and the tim-
escale. Through algebraic manipulation, critical regions in
these 2-dimensional projections are transformed back into
their original dimensions to form an approximated polytope.
Additionally, a polytope expansion strategy is introduced to
refine the approximated polytope by subdividing unexplored
regions.

Mathematically, the parametric programming model in
high-dimensional spaces often faces the curse of dimension-
ality. By analyzing high-dimensional results through low-di-
mensional projections, we offer a stable method for obtain-
ing the approximated polytope, which reduces the initial
complexity and lays the foundation for further refinement.
The polytope expansion strategy improves the approximated
polytope, aiming for greater accuracy and possibly achieving
the exact polytope. This two-step method provides a stable
envelope for high-dimensional problems, with the approxi-
mated polytope followed by more accurate refinement.

In summary, the proposed fast solution method stably con-
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structs an approximated polytope, serving as a continuous
operating envelope. While ensuring operational feasibility,
the approximated polytope introduces a degree of conserva-
tism since it is a subset of the accurate polytope. The poly-
tope expansion strategy balances computational efficiency
with accuracy, which aims to progressively refine the poly-
tope.

B. Low-dimensional Projections for Single Fluctuation

As the dimensionality of the parameter space increases, as-
signing suitable set-points to identify critical regions be-
comes increasingly difficult. In an (m+ 1)-dimensional space,
each 0" for @ corresponds to an (m + 1)-dimensional point.

0:= {F P} =[F7, .. FF . F'.A (20)
: . UL LF),
where F” is the parameter of fluctuation ¢; and the subscript
¢ € N* indexes each distinct fluctuation among the m-dimen-
sional fluctuations.

When addressing the envelope problem, the proposed fast
solution method prioritizes exploring critical regions located
on 2-dimensional projections. The proposed fast solution
method determines set-points by fixing certain fluctuations
and decomposing the m-dimensional F” into m 2-dimension-
al F”.

az[Fﬂ :>01=[ﬂ,...,ac:[lzf},...,am:[iﬂ Q1)

To distinguish among the m 2-dimensional problems, we
also use the subscript ¢ to index them. The 2-dimensional
parametric programming model is presented as:

rGr(lg(r}z:HlG(Bc)+H2eg 22)

s.t.
AG@O)<B,+C,F'+tD
G@O,)e GcR" F'e F.cR',te TcR' (23)
0.=[F'.{" 0.e0,cR’

where C, is a px 1 constant matrix corresponding to the ¢™
column of C; B, is a px 1 constant matrix that modifies the
original B by accounting for other fixed fluctuations (other
parameters in @ except F'); F, is the 1-dimentional polytope
of F’; and @, is the 2-dimensional polytope of 0,.

By employing the 2-dimensional decompositions in (21),
we significantly reduce the computational complexity of the
original model in (9). This acceleration is achieved by ex-
cluding critical regions that are not present in the 2-dimen-
sional projections. For the m-dimensional F”, the model in
(22) and (23) needs to calculate m 2-dimensional projections.

In Fig. 3, the results is visualized using the 2-dimensional
fluctuation parameter F"=[F,F/]" and ¢. In Fig. 3(a), the
2-dimensional critical regions of F} with ¢ are presented.
These critical regions, represented by two different colors,
merge to form a 2-dimensional polytope ©,(0,), outlined by
the red line. For comparison, the blue dotted line indicates
the exact 3-dimensional polytope @. The red points mark the
vertices of @,, while the blue points correspond to the verti-
ces of @. In Fig. 3(b), the results of different parameters F
and F7 are presented using the model in (22) and (23). Two

2-dimensional polytopes, ©®, and ©,, are obtained, and their
vertices lie within @. The red dotted line indicates the inter-
section of the two 2-dimensional projections.

Time Time
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Fig. 3. 2-dimensional projections and accurate 3-dimensional polytope. (a)
2-dimensional projection of @,. (b) 2-dimensional projections of @, and 0,.

C. Algebraic Manipulation for Original-dimensional Results

Utilizing sensitivity analysis [28] and parametric program-
ming theory [31], [33], we can efficiently transform the 2-di-
mensional projections back to the original dimensions with-
out additional optimizations. Algebraic manipulations are
used for dimension-raising to obtain the approximated poly-
tope @ in the original-dimensional parameter space.

In a general parametric programming problem in (9), the
Jacobian matrices of the system for decision variables can
be derived. These matrices are transformed into matrices M,
and N, for the parameter vectors using parametric program-
ming theory [31]. M, is an (n+p)x(n+p) matrix and V, is an
(n+p)x(m+1) matrix, which represent the Jacobian of the
system corresponding to the critical region H, These matri-
ces can be derived with 0 as:

0 AT ... AT A, ]

3,04, -W, ... 0 .. 0
M.Z :* . . .
T-1,0)4, 0 W, .. 0

: : . 24

|—,0)4, 0 .. 0 -w, ]
N=[¥" 2, 0K, ....2 (0K, ..., (0 )K"
W,=A,G0 )-B,~-K.0°

where Q is an nxn symmetric constant matrix; ¥ is an n x
(m+1) null matrix; G(@") is the optimal value obtained from
the model in (9) at 8"; K=[CID] is a px(m+1) matrix,
formed by horizontally concatenating the p x m matrix C and
the px 1 matrix D; the subscript » € N* refers to the ™ row
vector in the original matrices, indexing the r" constraint
among the total p constraints; and A,(0") is the Lagrange
multiplier of the ™ constraint.

According to (24), once @ and its corresponding values
G(0") and A(@") are obtained, M, and N, for H, can be calcu-
lated directly. The algebraic manipulations start by obtaining
0", G@), and A(@") from low-dimensional projections.

To clarify, we add the subscript ¢ to indicate the 2-dimen-
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sional results derived from the model in (22) and (23), and
the subscript £ € N* indexes subsequent results derived from
2-dimensional critical regions H,,. We then use algebraic
manipulation to transform these critical regions back into
their original H, For each 2-dimensional critical region
H.; we arbitrarily select a point 8., on H_, as the set-
point. The values of G(@,) and A(@,,) can be directly calcu-
lated from the affine functions of parametric solutions associ-
ated with H_,.

Notably, H,, is a projection of H,. We set values of ",
G@O), and A0") as 0,,, G(@.,), and A(@,,), respectively. Us-
ing 0", G(0"), and A(@") according to (24), we can calculate
M, and N, for H,.

After obtaining M, and N,, we calculate the affine func-
tions G, (0) and A; (@) associated with H,. As mentioned in
Section III-B, in the 2-dimensional results, only a single fluc-
tuation is treated as a varying parameter, while the other
fluctuations in the (m + 1)-dimensional vector 6 are held con-
stant. When calculating the original-dimensional results, the
previously constant fluctuations are treated as varying param-
eters. G/ (0) and A% () are derived in the neighborhood of 8"

as:
[Gk (0)} =—M;'N,(0-0")+ [G(a )} (25)

4 (0) H0")

G/ (0) and 4] (0) can further define H, as shown in (12)-
(14). Finally, G/ (0), A% (0), and H, are all obtained through
algebraic manipulation.

Repeating algebraic manipulations for all 2-dimensional
critical regions results in a total of U dimension-raising criti-
cal regions. Each H, has a corresponding set of vertices, de-
noted by ). These sets are collectively expressed as {} }F=
V...V ..., Vi), where KC is less than or equal to the total
number 7 of original-dimensional critical regions. Finally,
O =conv({V,}*) is defined via V-rep.

Figure 4 builds upon the 2-dimensional projections shown
in Fig. 3 to illustrate the transformation into 3-dimensional
results.

Time Time
Bt (EE
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Fig. 4. Algebraic manipulations for approximated polytope. (a) Dimension-
raising operations for 2-dimensional results. (b) Critical regions obtained
from dimension-raising and vertices of 3-dimensional approximated poly-
tope.

Notably, some 2-dimensional projections represent differ-
ent views of the same 3-dimensional critical regions. In Fig.
4(a), all 2-dimensional critical regions are transformed into

3-dimensional critical regions, and consistent colors are used
to highlight the corresponding 3-dimensional critical regions.
Figure 4(b) removes the 2-dimensional projections to clearly
display the 3-dimensional results. The vertices (red points)
form @°. @ as a subset of the exact polytope @, omits cer-
tain vertices (blue points) of O, indicating accuracy loss
when relying solely on low-dimensional projections.

D. Polytope Expansion Strategy for More Accurate Results

We propose a polytope expansion strategy to identify criti-
cal regions beyond ‘. By subdividing the unexplored re-
gions and merging newly identified critical regions, we can
achieve a more accurate polytope.

As defined in (14), each H, in the original dimension is
determined by a set of halfspaces corresponding to paramet-
ric inactive constraints f,,. At a specific boundary facet of
‘H,, a parametric constraint transitions from inactive to ac-
tive. This transition is also reflected in the decision variable
space, where the corresponding constraint moves from inac-
tive to active. These transitions form the basis for further
analysis.

In Section III-C, we have identified several critical re-
gions {),}* that shape @°. Based on {},}X, we can find
boundary facets of ©@“. Each boundary facet of @“ corre-
sponds to a halfspace. Moving along the normal vector from
the interior of ®“, a parametric constraint transitions from in-
active to active upon crossing the boundary facet. Then, at
an arbitrary proximal-point just outside this boundary facet,
the active and inactive constraints in the decision variable
space can be identified based on the corresponding boundary
facet, regardless of whether a constraint transition occurs in
the decision variable space.

More specifically, consider a parametric constraint j,
where j e N* indexes the boundary facet of ©®‘ and corre-
sponds to a halfspace of H,. The set of parametric inactive
constraints associated with H,, denoted by h,,, includes the
parametric constraint j. Thus, the boundary facet defines a
halfspace P, ;. When crossing the boundary facet defined by
parametric constraint j, P, is flipped, transforming it into
the halfspace Q, ;.

Pii=t0 R\ by (0) <0}
Qi ={0eR" "y, (0) >0}

kj

(26)

Replacing P, ; with Q, ; in ©“ delineates an unexplored re-
gion defined by the parametric constraint j. Our goal is to
identify the omitted critical regions within this unexplored re-
gion to refine the polytope. When the boundary facet de-
fined by parametric constraint j is reached, a previously inac-
tive constraint may become active in the decision variable
space, which can be identified by introducing Gy (@) in the
parametric constraint j. At the same time, the remaining con-
straints can also be confirmed to remain inactive. If all previ-
ously inactive constraints remain inactive, the active and in-
active constraints in the decision variable space are also
clearly identified. Therefore, once the unexplored region is
defined, the active and inactive constraints are determined
with the introduction of G} (6).

Given that the sets of active and inactive constraints are
already established, we now focus on the feasible domain at
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a given proximal-point. If a feasible domain is confirmed,
this proximal-point, located just outside the boundary facet,
is selected as the new set-point @°. @" is then used to identi-
fy critical regions beyond the approximated polytope. This
process is repeated for other parametric constraints, defining
the unexplored regions and facilitating the discovery of new
critical regions.

The advantage of polytope expansion strategy lies in pre-
defining unexplored regions in the parameter space and es-
tablishing the corresponding sets of active and inactive con-
straints. For a specific set-point, effective optimization tech-
niques, such as the active-set method [34] and proximal-
point iterations [35], can be employed to navigate the feasi-
ble domain. However, as new critical regions emerge, the
computational burden of -calculating unexplored regions
grows, leading to the curse of dimensionality. Although the
polytope expansion strategy helps define new regions, it
does not inherently resolve the computational challenges as-
sociated with high-dimensional problems. Therefore, focus-
ing on specific regions of interest helps strike a balance be-
tween polytope accuracy and computational efficiency.

Figure 5 illustrates the polytope expansion strategy for
more accurate results, based on ©°, as shown in Fig. 4. Ini-
tially, in Fig. 5(a), ®“ is formed by several halfspaces. Mov-
ing along the normal vectors to the boundary facets (indicat-
ed by blue arrows), we identify unexplored regions. Among
these, only two regions (outlined by red facets) have feasible
domains in the decision variable space after flipping all para-
metric constraints associated with the boundary facets. By
optimizing at two specific set-points (proximal points), two
new critical regions are discovered within these unexplored
regions, as shown in Fig. 5(b). Finally, the polytope expan-
sion strategy allows @° to merge these newly identified criti-
cal regions, refining the polytope for a more accurate repre-
sentation of the continuous operating envelope.
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Fig. 5. Polytope expansion strategy for more accurate results. (a) Defini-

tion of unexplored regions. (b) Identification of new critical regions.

IV. CASE STUDIES

This paper introduces the concept of a continuous operat-
ing envelope to support fluctuation management and demon-
strates its effectiveness in two power systems: an illustrative
5-bus system and a utility-scale 661-bus system. A 3-dimen-
sional parameter space is visualized to provide an intuitive
representation. Furthermore, this paper evaluates the compu-
tational performance in handling high-dimensional envelope

problems, with a particular focus on the utility-scale 661-bus
system results. The findings show that the multi-parametric
toolbox (MPT3) [36] encounters significant difficulties in
generating polytopes for higher-dimensional cases, primarily
due to the increased dimensionality and its computational
burden. In contrast, the proposed fast solution method consis-
tently generates a continuous operating envelope through an
approximated polytope, while maintaining predictable com-
putational efficiency.

All optimizations are performed in a MATLAB environ-
ment using CPLEX v12.7.1 on a ThinkPad X1 2021 with an
Intel™ Core™" i5-1135G7 CPU. The benchmark for multi-
parametric programming solutions is established using the
publicly available MPT3 tool.

A. Illustration of Continuous Operating Envelope

The concept of the continuous operating envelope is de-
tailed in an illustrative 5-bus system, as shown in Fig. 6.

Gen, Gen,

Bus, Bus,

Line, Line,

Fig. 6. An illustrative 5-bus system.

This system consists of thermal units (Gen, and Gen,),
which are dispatchable resources, and wind units (Gen, and
Gen,), which are non-dispatchable resources. The physical
limits of the units are listed in Table 1. The transmission ca-
pacity of Line, is 200 MW, while other lines each have a ca-
pacity of 400 MW. The reactance of all lines is assumed to
be identical.

TABLE I
PHYSICAL LIMITS OF UNITS IN ILLUSTRATIVE 5-BUS SYSTEM

Produc- ) ]
Resour Unit tion cost Bid capacity (MW) R, R,
esource bid (MW/h) (MW/h)
($/MWh) Maximum Minimum
Gen, Thermal 25 700 200 100 100
Gen, Thermal 30 500 200 50 50
Gen, Wind 0 120 0 - -
Gen, Wind 0 80 0 - -

4

Initially, a discrete dispatch decision is made to match the
demand over an hourly interval. Specifically, Load, and
Load, are 418.90 MW and 214.82 MW, respectively. Gen,
and Gen, generate 233.72 MW and 200 MW, respectively,
while Gen, and Gen, generate 120 MW and 80 MW, respec-
tively. These values represent the known dispatch results at
the start of the interval (r=¢").

To analyze the system ability and handle intra-interval
fluctuations, the outputs of Gen, and Gen, are treated as fluc-
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tuating parameters, denoted by F”=[F/,FJ]". For simplici-
ty, the loads are assumed to remain constant throughout the
intra-interval (intra-hourly) period, without any fluctuations.
The goal is to construct a 3-dimensional continuous operat-
ing envelope for the output of Gen, and Gen,, spanning
from =0 min to t*=60 min, based on the known dispatch
decision at t=1¢°.

Assume that Gen, and Gen, have the installed capacities
of 300 MW each, which exceed their maximum bid capaci-
ties shown in Table I. This means that Gen, and Gen, have
the potential to increase their generation during the interval.
These excess capacities represent potential intra-interval fluc-
tuations due to production uncertainty. In the following anal-
ysis, F[ and F] represent the outputs of Gen, and Gen,, re-
spectively. The difference between the known dispatch result
(120 MW for Gen, and 80 MW for Gen,) at the start of the
interval (¢=¢°) and the outputs represents deviations within
the interval 7, defined by <¢<t". For general consider-
ation, F7 and F! at t=¢° are also treated as potential fluctua-
tions. To simplify the subsequent visualization of Gen, and
Gen,, we regard the fluctuations F” as outputs of renewables
here, without subtracting the constant outputs at t=¢° as
done in (7).

In Fig. 7(a), the closed lines outline two critical regions in
the 2-dimensional space, with each region defined by a dis-
tinct set of inactive constraints. Merging these critical re-
gions forms the 2-dimensional polytope @,, which represents
the continuous operating envelope for Gen, in 2-dimensional
parameter space. The H-rep of @, is given in (27).

60 60
— 40} — 40
E c
E g
<20t <20}

Fig. 7. Continuous operating envelope in an illustrative 5-bus system. (a)
2-dimensional projection of Gen,. (b) 2-dimensional projection of Gen,. (c)
Algebraic manipulation. (d) 3-dimensional polytope.
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The first and second halfspaces in (27) represent the para-
metric formulation of ramping constraints, modeled with re-
spect to ¢. The ramping capacities of Gen, and Gen, define
the feasible operational range at various points in time. The
third constraint is a parametric formulation of the transmis-
sion in (27), which limits injected power to manage fluctua-
tions. The fourth and fifth halfspaces in (27) represent the
parameter bounds. Figure 7(b) presents a similar result for
Gen,, where the 2-dimensional continuous operating enve-
lope, denoted by @,, is calculated.

Next, algebraic manipulation is used to extend the previ-
ously obtained 2-dimensional projections to the original-di-
mensional regions. Figure 7(c) demonstrates the process of
extending the results to higher dimensions, where the 2-di-
mensional results are used to construct an approximated
polytope. For example, @, is extended by calculating the sys-
tem’s Jacobian corresponding to the critical regions, repre-
sented by yellow and blue in Fig. 7(a), respectively. A simi-
lar algebraic manipulation is applied to @,. Finally, the 3-di-
mensional envelope is represented by the approximated poly-
tope as shown in Fig. 7(d), with its H-rep given in (28).

0:=[F[,FI.{]" 0 OcR’
[3 3 =5 [ 600 T
-2 -2 -5 —-400
Fy Ff
11 0 13372 (28
O:=3| F'| eR*: rl<
F; ST 0 o th 0
0O -1 0 0
L 0 0 1 ] L 60 |

To obtain a more accurate polytope, we continue to use
the polytope expansion strategy. Note that the fourth to sixth
halfspaces in (28) represent the parameter bounds, which
cannot be flipped. The remaining three parametric con-
straints can be flipped and require additional analysis.

For example, we analyze the first halfspace of @¢ in (28),
corresponding to the yellow critical region in Fig. 7(c). The
affine functions for Gen, G¢, () and Gen, G¢, (") in this criti-
cal region are given as:

co-leol[i 3 W5 @

By substituting the affine functions from (29) into the first
halfspace of @°, we derive the corresponding constraint ex-
pression in the decision variable space as:

5

233.72- 315G, 0) (30)

The constraint (30) represents the ramping constraint, spe-
cifically focusing on the ramp-down capacity of Gen,. At
this stage, Gen, has already reached its minimum output and
cannot ramp down any further. As a result, the first half-
space of @ in (28) is flipped to form halfspace © in the pa-
rameter space as:

O={0  R*: 3F"+3F"—5t>600} 31)

We select a proximal-point (set-point) of F'=120 MW,
F;=101 MW, and #=12 min as an example. This point satis-
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fies (31) and is located outside the boundary facet of (28).
At t=12 min, it shows that G%, (0) can only decrease by 20
MW, which is insufficient to accommodate the 21 MW in-
crease in Gen, output. In fact, we can validate that the sys-
tem is not feasible within the halfspace defined by (31), as
the inequality constraint in (30) becomes active, and the
ramping-down capability of the system is exhausted. There-
fore, no feasible domain exists after flipping the boundary
facet indicated by the first halfspace of ®“ in (28).

When performing the same operation on the second and
third halfspaces of @° in (28), we identify no unexplored re-
gions in the parameter space. This is due to the exhausted
ramping and transmission capacities in the decision space.
As a result, no further optimization or expansion of the poly-
tope is needed. The polytope @° in Fig. 7(d) accurately rep-
resents the continuous operating envelope. Here, the approxi-
mated polytope @° is accurate due to the small number of
parametric constraints. A detailed discussion of the approxi-
mated polytope is provided in the subsequent case. More-
over, a direct solution using MPT3 yields the same polytope,
as shown in Fig. 7(d).

In summary, the proposed fast solution method incorpo-
rates the fluctuations of two wind units and ¢ to determine a
3-dimensional polytope, which represents the continuous op-
erating envelope. This polytope is shaped by constraints in
(9), with key factors being the ramping capacities of dis-
patchable resources (Gen, and Gen,) and the transmission ca-

pacity.
B. Efficiency of Continuous Operating Envelope

To demonstrate the efficiency of the continuous operating
envelope in managing fluctuations, we begin by analyzing
the intra-interval fluctuations of Gen, and Gen,, each repre-
sented by its respective 2-dimensional envelope. Assuming
that fluctuations are recorded every 15 s, this results in 240
set-points (as shown in Fig. 8), forming a fluctuation curve
over an hour. These data are based on actual wind unit sam-
ples. As shown in Fig. 8(a) and Fig. 8(b), all individual fluc-
tuations fall within their respective 2-dimensional envelopes,
indicating that the fluctuations are manageable.

However, when Gen, and Gen, fluctuate simultaneously,
the interaction between their fluctuations leads to intra-inter-
val infeasibility. Consequently, some set-points become infea-
sible. As shown in Fig. 8(c), the envelope defined in (28)
clearly distinguishes between feasible set-points (marked in
green) and infeasible ones (marked in red). For comparison,
the 3-dimensional infeasible fluctuations are also projected
as red points in Fig. 8(a) and Fig. 8(b).

The continuous operating envelope is particularly effective
in directly pinpointing infeasible fluctuations. In the scenari-
os where Gen, and Gen, frequently adjust their outputs in re-
al time, feasibility examinations become increasingly com-
plex. Each update involves checking the feasibility of 240
set-points, which becomes cumbersome when performed re-
peatedly. For example, examining nine fluctuation curves
would require performing 240 optimizations for each curve.
In contrast, the continuous operating envelope simplifies this
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process by directly identifying infeasible fluctuations
(marked in red), as demonstrated in Fig. 8(d).
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Fig. 8. Fluctuation management using continuous operating envelope. (a)
Validation of Gen, fluctuations. (b) Validation of Gen, fluctuations. (c) Vali-
dation of simultaneous fluctuations of Gen, and Gen,. (d) Identification of
infeasible points among nine additional curves of simultaneous fluctuations.

Thus, the continuous operating envelope not only stream-
lines the assessment of operational risks due to intra-interval
fluctuations but also significantly reduces the workload in-
volved in performing repeated feasibility examinations for
each update.

C. Computational Performance of Proposed Fast Solution
Method

We assess the computational performance of the proposed
fast solution method on a utility-scale 661-bus system,
which includes 37 generation units and 1047 transmission
lines. In this paper, we focus initially on two wind units as
primary sources of intra-interval fluctuations and calculate
their corresponding continuous operating envelope.

In Fig. 9, the results generated by the proposed fast solu-
tion method are illustrated. As depicted in Fig. 9(a) and Fig.
9(b), two 2-dimensional projections are calculated, with the
black regions indicating the accumulation of critical regions.
These 2-dimensional projections are then algebraically trans-
formed into their original 3-dimensional regions. In different
2-dimensional projections, critical regions that correspond to
the same 3-dimensional regions are shown in the same color.
For clarity, Fig. 9(c) highlights two representative critical re-
gions in purple and blue, demonstrating how the dimension-
raising process works. The final approximated polytope is
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outlined in blue in Fig. 9(c) after the algebraic manipulation
process.
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Fig. 9. Continuous operating envelope in utility-scale 661-bus system. (a)
2-dimensional projection of Wind,. (b) 2-dimensional projection of Wind,.
(c) 3-dimensional polytope.

However, as the number of parametric constraints increas-
es in more complex systems, such as the utility-scale 661-
bus system, the approximated polytope obtained from low-di-
mensional projections may result in accuracy loss. To miti-
gate this, the polytope expansion strategy can be applied to
enhance accuracy. By flipping the boundary facets of the ap-
proximated polytope (outlined in blue), unexplored regions
in the parameter space are revealed. In Fig. 9(c), two such
unexplored regions (in red) are outlined, where feasible do-
mains exist. To refine the polytope and achieve higher accu-
racy, these unexplored regions need to be further subdivided
and explored.

In particular, the unexplored region in the upper left cor-
ner of Fig. 9(c) is selected for detailed analysis. As shown in
Fig. 10(a), this region is subdivided by calculating a suffi-
cient number of set-points to explore its full extent. Through
the polytope expansion strategy, these subdivisions reveal
new critical regions beyond the original approximated poly-
tope. Once all unexplored regions are fully subdivided, the
accurate polytope is constructed by merging the new critical
regions with the initial approximated polytope. This refined
polytope, as outlined in blue in Fig. 10(b), more accurately
represents the continuous operating envelope.
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Fig. 10. Continuous operating envelope obtained by proposed fast solu-
tion method. (a) Illustration of polytope expansion strategy. (b) Accurate

polytope.
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Table II highlights the computational efficiency for 3-di-
mensional results. In the 2-dimensional projections of differ-
ent fluctuations, some critical regions are the projections of
the same 3-dimensional critical regions. Here, 48 critical re-
gions are shared.

TABLE II
COMPUTATIONAL EFFICIENCY FOR 3-DIMENSIONAL RESULTS

Number of .
Volume of  Time
Method explored olytope (%) (s)
critical regions polytope (7o

2-dimensional projections (Wind,) 49 - 29.12
2-dimensional projections (Wind,) 61 - 36.26

Algebraic manipulation 62 99.42 0
Polytope expansion strategy 553 100.00 638.65
Benchmark (MPT3) 659 100.00 734.83

Besides, the time required for algebraic manipulation to
generate the matrices is less than 0.01 s. The approximated
polytope (algebraic manipulation part) is constructed with 62
explored critical regions, which results in a slight reduction
in volume and indicates a loss in accuracy. To further refine
the results, the polytope expansion strategy is applied, lead-
ing to the identification of the exact polytope with 553 ex-
plored critical regions. Compared with the benchmark, the
proposed fast solution method efficiently constructs the ex-
act polytope, excluding 106 non-outermost critical regions.

As shown in Table II, the polytope expansion strategy is
the most time-consuming, which takes 638.65 s. Despite the
extended time, the volume of the polytope increases by only
0.58%, indicating that many critical regions in the unex-
plored region contribute minimally to the overall volume but
significantly increase the computational burden. In contrast,
an approximated polytope can be computed in just 65.38 s
before applying the polytope expansion strategy. It shows
that the polytope expansion refines accuracy without signifi-
cantly altering the overall polytope.

With sufficient time, the proposed fast solution method
can generate a comprehensive and exact polytope. However,
the computational burden of the polytope expansion strategy
remains on the same order of magnitude as MPT3 (bench-
mark). In time-constrained scenarios, the proposed fast solu-
tion method provides a practical trade-off by generating an
approximated polytope, either without or with partial poly-
tope expansion. While this method may incur some loss in
accuracy, it significantly reduces the computational burden.

To further validate the accuracy of the envelope, we incor-
porate four additional wind units at different buses. Each
new wind unit introduces a parametric fluctuation, increasing
the dimensionality of the continuous operating envelope (six
parametric fluctuations in total, plus one parametric times-
cale). In this analysis, low-dimensional projections are used
to handle high-dimensional results. Previously calculated
low-dimensional information remains valid when new fluctu-
ations are introduced, with only the newly fluctuating nodes
requiring recalculation. This new information is then algebra-
ically transformed into the high-dimensional polytope.

For example, when a new fluctuating node is introduced
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into a 2-dimensional parameter space, the dimensionality in-
creases to 3. As shown in Table III, the additional time re-
quired is 65.38—-29.12=36.26 s, which corresponds to calcu-
lating the 2-dimensional projection of the new fluctuating
node. Table III also shows that the total parameter dimen-
sions reach 7 by calculating six independent 2-dimensional
projections. The total computation time is the sum of these
independent 2-dimensional results. If previous results are
available, updating the continuous operating envelope (ap-
proximated polytope) only requires calculating the additional
2-dimensional projections of newly fluctuating nodes. More-
over, parallel algorithms can be used to speed up the process
when multiple fluctuations occur simultaneously.

TABLE III
PERFORMANCE OF APPROXIMATED POLYTOPE AND MPT3 IN VARIOUS
DIMENSIONS

Approximated polytope MPT3
Dimension  Number of Time Volume  Number of Time

critical regions (s) (%) critical regions (s)
2 49 29.12  100.00 49 29.12
3 62 65.38 99.42 659 734.83
4 78 82.34 96.99 1456 1386.47
5 81 93.47 98.64 1682 1683.62
6 108 119.06 - - -
7 121 144.11 - - -

In high-dimensional problems, where volume is difficult
to intuitively define, envelope accuracy is estimated by com-
paring set-points to a benchmark. For instance, we use the 4-
dimensional MPT3 results in Table III as the benchmark,
generating 5 million set-points within the accurate polytope
to verify them against the approximated polytope. This sam-
pling method is also employed to estimate the volume dis-
crepancy of the 5-dimensional results. Note that in Table III,
the 4-dimensional sampling result is 4849340/5000000; and
the 5-dimensional sampling result is 4931986/5000000. The
volume of the approximated polytope closely matches that
of the accurate MPT3 polytope, while significantly reducing
the computational burden.

Table III highlights the performance of the approximated
polytope across different dimensions. The results show that
computational cost increases linearly with dimensionality,
while accuracy loss remains limited. This demonstrates that
the proposed fast solution method can stably generate an ap-
proximated polytope, offering a significant advantage over
MPT3 in higher-dimensional cases. For instance, in the 6-di-
mensional case, after evaluating 3500 critical regions, the
number of regions has yet converged, leading us to conclude
that the problem is unsolvable using MPT3.

The discussion above focuses on the approximated poly-
tope without the polytope expansion strategy. In time-con-
strained scenarios, the approximated polytope can still serve
as a continuous operating envelope, with fluctuations within
the envelope considered feasible. Fluctuations outside the en-
velope, while potentially feasible, are treated as operational
risks due to the exclusion of high-dimensional critical re-
gions, which results in some accuracy loss. Although the

polytope expansion strategy can improve accuracy, it is time-
consuming for high-dimensional problems, much like tradi-
tional parametric programming methods. When time permits,
the polytope expansion strategy can be employed to obtain a
more precise polytope, but its computational burden increas-
es exponentially with dimensionality.

In summary, in time-constrained situations, the approxi-
mated polytope offers a rapid solution that effectively repre-
sents the continuous operating envelope for intra-interval
fluctuations. Conversely, when more time is available, the
polytope expansion strategy can be applied to obtain a more
accurate polytope. This method is particularly advantageous
in high-dimensional problems, ensuring that at least an ap-
proximated polytope is attained to conservatively manage
fluctuations. In practice, when frequent updates to the contin-
uous operating envelope are necessary, a conservative ap-
proximated polytope can serve as the envelope, with only
low-dimensional analysis needed for newly added fluctuating
nodes.

V. CONCLUSION

In power systems with discrete interval horizons, maintain-
ing intra-interval feasibility is a challenging task due to fluc-
tuations. This paper introduces the concept of a continuous
operating envelope, which provides physical insights into the
allowable range of intra-interval fluctuations. The continuous
operating envelope is formulated as a parametric program-
ming model, and its computational complexity is theoretical-
ly analyzed. To overcome the inherent computational chal-
lenges, we develop a fast solution method to efficiently con-
struct the envelope and ensure the scalability for high-dimen-
sional problems. The proposed fast solution method is vali-
dated through both an illustrative 5-bus system to illustrate
the concept and a utility-scale 661-bus system to verify its
scalability and efficiency.

The continuous operating envelope offers a proactive tool
for fluctuation management, enabling more reliable and effi-
cient power system operations. By defining a clear range of
manageable fluctuations, the proposed fast solution method
has the potential to support real-time dispatch decisions and
reduce operational risks associated with intra-interval fluctua-
tions.
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