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A Continuous Operating Envelope for Managing 
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Abstract——Maintaining a continuous power balance is crucial 
for ensuring operational feasibility in power systems. However, 
due to forecasting difficulties and computational limitations, 
economic dispatch often relies on discrete interval horizons, 
which fail to guarantee feasibility within each interval. This pa‐
per introduces the concept of a continuous operating envelope 
for managing intra-interval fluctuations, delineating the range 
within which fluctuations remain manageable. We propose a 
parametric programming model to construct the envelope, rep‐
resented as a polytope that accounts for both timescale and fluc‐
tuation dimensions. To address the computational challenges in‐
herent in the parametric programming model, we develop a 
fast solution method to provide an approximated polytope. The 
approximated polytope, initially derived from lower-dimension‐
al projections, represents a subset of the exact polytope that en‐
sures operational feasibility. Additionally, we apply a polytope 
expansion strategy in the original dimensions to refine the ap‐
proximated polytope, bringing the approximation closer to the 
exact polytope. Case studies on an illustrative 5-bus and a utili‐
ty-scale 661-bus system demonstrate that the method effectively 
and stably provides a continuous operating envelope, particular‐
ly for high-dimensional problems.

Index Terms——Continuous operating envelope, economic dis‐
patch, intra-interval fluctuation, feasibility, uncertainty, poly‐
tope, parametric programming, ancillary service.

I. INTRODUCTION

THE primary duty of a power system is to guarantee just-
in-time production and transmission of bulk power to 

meet just-in-time customer demand [1]. Although maintain‐
ing power balance over a continuous time horizon would be 
ideal, it is often impractical due to forecasting difficulties 
and computational limitations. Instead, system operators com‐
monly employ a discrete interval horizon [2]. For example, 
in China, a 15-min horizon is used for the day-ahead dis‐

patch. In the US, the independent system operators (ISOs) 
use an hourly horizon for the day-ahead dispatch and a 5-
min horizon for the real-time operations.

To mitigate the limitations of discrete interval horizons, 
ISOs can rely on ancillary services to manage uncertainties 
within these intervals. However, the operational feasibility of 
dispatch under intra-interval fluctuations is not guaranteed, 
which may lead to reliability issues during real-time opera‐
tions [3]. With the increasing integration of renewable ener‐
gy sources into the power system, their inherent intermitten‐
cy and volatility heighten the need for timely assessments of 
operational feasibility under intra-interval fluctuations. Estab‐
lishing a clear operating range, termed as the continuous op‐
erating envelope in this paper, is crucial for evaluating 
whether upcoming fluctuations threaten system operations. 
The continuous operating envelope provides clearer physical 
insights by explicitly defining the allowable range of intra-in‐
terval fluctuations, ensuring operational feasibility.

In practice, ancillary services are widely used to mitigate 
the impact of intra-interval fluctuations. For example, mid‐
continent ISO (MISO) and California ISO (CAISO) have de‐
veloped flexible ramping products [4], while Electric Reli‐
ability Council of Texas (ERCOT) has offered a fast regula‐
tion response [5]. Additionally, CAISO has introduced the 
concept of regulation mileage as an ancillary service [6]. 
These services improve the system ability to respond to vari‐
able demand and generation. However, these services lack a 
well-defined range of fluctuations that can be effectively 
managed.

Notably, fluctuations in the interval generally have a tight‐
er allowable range compared with those occurring later. This 
phenomenon reflects temporal variance in the system ability 
to manage fluctuations. Relying solely on discrete interval 
horizons fails to capture this variance adequately, resulting 
in reactive rather than proactive fluctuation management. For 
example, the transitioning from day-ahead hourly results to 
real-time 5-min operations often requires reactive measures, 
such as curtailments or additional adjustments, in response 
to violations involving ramping or transmission issues [7].

The high-resolution formulation offers an alternative meth‐
od for managing intra-interval fluctuations. In this formula‐
tion, the number of discrete intervals throughout the decision 
period is increased to provide a finer granularity of dispatch 
and to better capture fluctuations [8]. Intervals are set to be 
much denser, allowing them to approximate a continuous 
curve [9]. This method improves the power balance by con‐
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sidering all expected values within the forecasted range. 
However, it fails to establish an allowable range of fluctua‐
tions. Moreover, this method significantly increases computa‐
tional burden at higher resolutions and the feasibility in 
shorter dispatch intervals remains uncertain [10]. Therefore, 
the high-resolution formulation is less commonly used for 
the day-ahead dispatch decisions.

Stochastic optimization offers another method for manag‐
ing fluctuations. It models uncertainties through specific sce‐
narios [11] or uncertainty sets [12], which are determined by 
pre-specified probability distributions [13]. These distribu‐
tions theoretically define the allowable range of fluctuations. 
However, these methods focus exclusively on power balance 
uncertainties at specific time steps within discrete interval 
horizons. They fail to provide a comprehensive description 
for managing intra-interval fluctuations, especially given that 
the system ability to manage fluctuations varies over time.

Moreover, region-based methods have been developed to 
delineate the allowable range of fluctuations caused by vari‐
able demand and generation [14], [15]. The security region 
concept is first introduced for transmission networks [16], 
[17] and is later extended to distribution networks [18], [19]. 
The methods of active-power steady-state security region 
provide insights into ramping constraints and describe the 
corresponding polytope for each time step [20]. Recent re‐
search works have further extended these methods to incor‐
porate various stability constraints under different operation‐
al conditions [21], [22]. However, security regions cannot ex‐
plicitly represent polytope hyperplanes over time, thus requir‐
ing extensive sampling to approximate continuous outcomes. 
Additionally, security regions are determined solely by net‐
work topology, neglecting operational conditions resulting 
from dispatch decisions [23], [24].

In market-based power systems, day-ahead dispatch re‐
sults require additional guidances to manage operational 
risks from intra-interval fluctuations and to adjust dispatch 
outcomes for active power flow. For instance, out-of-market 
corrections in the US market [25] and short-term adequacy 
assessment in the EU market [26] are used to adjust genera‐
tion and network constraints based on the updated operation‐
al conditions for active power flow.

In summary, managing intra-interval fluctuations remains 
a significant challenge under a discrete interval horizon. Cur‐
rent research methods lack a well-defined allowable range to 
ensure feasibility within each interval, which may neglect op‐
erational risks. Therefore, a new method is needed to define 
an allowable range for intra-interval fluctuations while con‐
sidering temporal variance in the system ability over time.

In this paper, we introduce the concept of a continuous op‐
erating envelope, which supports fluctuation management by 
accounting for temporal variations in the system ability (rep‐
resented by ramping capacities in this paper). The envelope 
is represented by a theoretical polytope, which delineates the 
allowable range of fluctuations that the system can sustain 
without compromising reliability. The contributions are two‐
fold.

1) We present a parametric programming model for theo‐
retically constructing the continuous operating envelope, cap‐

turing the system ability to manage intra-interval fluctua‐
tions. The model uses a parametric timescale to describe 
time-varying constraints and treats fluctuations as indepen‐
dent parameters, resulting in a polytope that incorporates 
both timescale and fluctuations in the parameter space. Fur‐
thermore, we provide a theoretical analysis of the computa‐
tional complexity of the model.

2) We develop a fast solution method to stably construct a 
continuous operating envelope. To reduce computational 
complexity, this method explores multiple lower-dimensional 
projections and then algebraically reconstructs the approxi‐
mated polytope in the original dimensions. As a subset of 
the exact solution, the approximated polytope ensures full 
feasibility within its interior, making it suitable to be used as 
the continuous operating envelope. Furthermore, we propose 
a polytope expansion strategy to refine the approximated 
polytope, bringing it closer to the exact polytope.

The continuous operating envelope serves as an analytical 
tool to determine whether fluctuations are feasible and 
whether they pose a threat to system operations. Case stud‐
ies include a illustrative 5-bus system to explain the basic 
concept and a utility-scale 661-bus system to verify the scal‐
ability. Results show the proposed method accurately con‐
structs the envelope for the illustrative 5-bus system and suc‐
cessfully generates the approximated polytope as the enve‐
lope for the utility-scale 661-bus system. The results in the 
utility-scale 661-bus system also validate the effectiveness of 
the proposed method for high-dimensional problems.

II. MATHEMATICAL FORMULATION OF CONTINUOUS 
OPERATING ENVELOPE 

A. Feasibility Examination for Intra-interval Fluctuations

Feasibility examination for intra-interval fluctuations plays 
a crucial role in proactively identifying and mitigating opera‐
tional risks. Day-ahead dispatch provides hourly results, and 
feasibility examinations can be conducted at any time step 
within these intervals. It helps ensure the feasibility in re‐
sponse to forecasted intra-interval demand and renewable en‐
ergy output fluctuations. If operations are found to be infeasi‐
ble, operators can promptly mitigate risks through curtail‐
ments or other corrective measures.

Assume the feasibility examination is conducted at a spe‐
cific time step t. The time step t lies within the interval T , 
defined by tS £ t £ tE, where tS and tE are the start and end of 
the interval, respectively. To conduct the feasibility examina‐
tion, the direct current (DC) optimal power flow (OPF) mod‐
el is employed, which includes:

1)　Objective function

min
G(t)

z =H1G(t)+H2eT
G (1)

2)　Power balance constraint

eGG(t)+ eR PR (t)= eD PD (t) (2)

3)　Transmission constraints

P min
L £PL (t)£P max

L (3)

PL (t)=Γ(ΖGG(t)+ΖR PR (t)-ΖD PD (t)) (4)
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4)　Ramping constraint
(t - tS )RD £G(t)-G(tS )£(t - tS )RU (5)

5)　Generation constraint
G min £G(t)£G max (6)

where H1 and H2 are the row vectors representing the mar‐
ginal production costs and no-load costs of online units, re‐
spectively; z is the objective function value; G(t) is the col‐
umn vector of decision variables representing the unit output 
(dispatchable resources) at time step t; PR (t) and PD (t) are 
the column vectors of the forecasted values representing the 
fluctuations in intra-interval renewable energy output and de‐
mand at time step t, respectively; eG, eR, and eD are the row 
vectors filled with “all ones” associated with G(t), PR (t), and 
PD (t), respectively; PL (t) is the power flow at time step t; 
ZG, ZR, and ZD are the corresponding incident matrices; Γ is 
the matrix of power transfer distribution factor; RD and RU 
are the ramping capacities per-unit time of dispatchable re‐
sources; superscripts max and min denote the maximum and 
minimum limits of variables and parameters, respectively; 
the superscript T is the transpose of a matrix; and G(tS ) is 
the unit output at time tS based on the given discrete dis‐
patch decisions, such as the day-ahead hourly results.

In our analysis, temporal variations in ramping capacities 
at time step t play a crucial role in determining the system 
ability to manage fluctuations, as these capacities typically 
vary across time steps [27]. To emphasize the impact of tem‐
poral constraints, we express RD and RU as per-unit time val‐
ues, which makes time step t a significant factor in (5).

PR (t) and PD (t) are non-dispatchable resources. They can 
be represented as forecasted functions of time step t. At any 
node, PR (t) and PD (t) can be treated as fluctuations, while 
other nodes are considered non-fluctuating nodes. The model 
in (1)-(6) conducts a feasibility examination to ensure opera‐
tional feasibility for these forecasted fluctuations. To facili‐
tate the analysis, PR (t) and PD (t) are combined into a single 
vector F(t). This vector represents deviations at specific 
nodes resulting from the forecasted fluctuations at time step 
t and is expressed as:

F(t)=ZR (PR (t)-PR (tS ))+ZD (PD (t)-PD (tS )) (7)

where PR (tS ) and PD (tS ) are the renewable energy output 
and demand at the start of the interval (t = tS ) based on the 
given discrete dispatch decisions, respectively. If PR (t) and 
PD (t) deviate from PR (tS ) and PD (tS ), respectively, this indi‐
cates that fluctuations are present at fluctuating nodes. PR (t) 
and PD (t) can fluctuate throughout the interval T . In (7), 
F(t) represents all nodes, but for clarity, the following analy‐
sis will focus solely on the fluctuating nodes, excluding the 
non-fluctuating ones. To simplify visualization, we display 
the fluctuations F(t) as PR (t) and PD (t) in the subsequent fig‐
ures, without subtracting the constant values PR (tS ) and 
PD (tS ) at t = tS.

To focus on the key aspects, the feasibility examination 
model in (1)-(6) can be reformulated as the following gener‐
al linear optimization problem in (8) with G(t), F(t), and the 
given time step t. Let n denote the dimension of the decision 
variables, and G(t) is an n ´ 1 decision variable vector. Let m 

denote the dimension of the fluctuation parameters, and F(t) 
is an m ´ 1 parameter vector representing m fluctuating 
nodes. Let p denote the dimension of the constraints in (8). 
A is a p ´ n constant matrix. B is a p ´ 1 column vector. C is 
a p ´m constant matrix. D is a p ´ 1 column vector. G is the 
polytope of G(t). We can obtain:

ì
í
î

ïï

ïï

min
G(t)

z =H1G(t)+H2eT
G

s.t.  AG(t)£B +CF(t)+ tD    G(t)ÎGÍRn
(8)

In this optimization problem, F(t) is treated as a constant 
vector with the forecasted values. By collecting all feasible 
F(t) samples in (8), we define a closed range that ensures 
feasibility for each time step t. Figure 1 visualizes these find‐
ings using 2-dimensional F(t) samples (F1 (t) and F2 (t)) and 
the time step t. In Fig. 1, green points represent infeasible 
F(t) samples, while the blue points represent feasible ones. 
As more F(t) samples are found to be feasible, the points 
gradually approximate a closed blue line, indicating the al‐
lowable range of fluctuations at time step t. However, achiev‐
ing the theoretical blue line would require an infinite num‐
ber of F(t) samples.

Moving beyond a single time step, we extend the analysis 
by continuously taking samples of F(t) across the time steps 
within the interval T . The red point represents the initial 
F(tS ) at the start of the interval (t = tS ) based on the given 
discrete dispatch decision. This process gradually accumu‐
lates a series of blue points, eventually shaping a polytope. 
With an infinite number of samples, this polytope can be pre‐
cisely defined. As shown in Fig. 1(b), the boundaries of the 
polytope, marked in blue, delineate the overall allowable 
range of intra-interval fluctuations.

In the rest of this paper, this polytope, which delineates 
the allowable range of intra-interval fluctuations, is defined 
as the continuous operating envelope. However, the model in 
(8) cannot analytically provide the continuous operating en‐
velope from a finite number of samples. While the DC OPF 
method is effective for discrete analysis, it requires a more 
efficient and theoretical method for the continuous examina‐
tion. The new method should minimize the repeated calcula‐
tions, eliminate the need for infinite samples, and provide a 

E
t

F2(t)

F1(t)

St

t

E
t

F2(t)

F1(t)

St

(a) (b)

Time Time

Fig. 1.　Feasibility examination for intra-interval fluctuations. (a) Closed al‐
lowable range for a single time step. (b) Allowable range for entire interval.
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more accurate and efficient feasibility examination.

B. Parametric Programming for Intra-interval Fluctuations

The continuous operating envelope physically represents 
the system ability to manage intra-interval fluctuations and 
defines the extreme operational boundaries. Revisiting the 
optimization problem in (8), the feasibility and the value of the 
objective function depend on given values of F(t) and t.

By treating F(t) and t as varying parameters, we formulate 
a parametric programming model for the continuous operat‐
ing envelope. In this model, all fluctuations are considered 
independent parameters and are no longer linked to t. To dis‐
tinguish them from the original optimization problem, the 
parametric fluctuation vector of dimension m ´ 1 is denoted 
by F P, and the superscript P denotes the parametric program‐
ming.

ì

í

î

ï
ïï
ï

ï
ïï
ï

min
G(F Pt)

z =H1G(F Pt)+H2eT
G

s.t.  AG(F Pt)£B +CF P + tD

                   G(F Pt)ÎGÍRnF PÎFÍRmtÎ TÍR1

(9)

where F is the polytope of F P.
We combine F P and t into a single vector θ of dimension 

(m + 1)´ 1. Thus, G(F Pt) can be written as G(θ).

θ: = é
ë
êêêê ù

û
úúúúF P

t
    θÎΘÍRm + 1 (10)

where Θ is the polytope of θ.
In (9), F P at the fluctuating nodes is treated as a variable, 

meaning its specific values do not need to be known in ad‐
vance, unlike that in (8). For clarity, in the following text, 
G(t) and F(t) are used in the optimization problem in (8), 
while G(θ) and F P are used in the parametric programming 
model.

In parametric solutions, G(θ) is characterized by θ. Once 
θ is fully specified, the model in (9) becomes equivalent to 
the optimization problem in (8). For example, the samples of 
F(t) and t, which are known when executing the feasibility 
examination, can be regarded as a specific set-point θ* of θ. 
The model in (9) provides the decision variable vector 
G(θ* ), which is identical to the optimal result G(t) from the 
model in (8) with F(t) and t. Therefore, all feasible set-
points in (8) belong to Θ, and Θ serves as the theoretical 
polytope representation of the continuous operating envelope.

The process is outlined for determining Θ using the model 
in (9). By selecting a θ*, G(θ* ), Lagrange multiplier λ(θ* ), 
and objective value z(θ* ) can be obtained from the model in 
(9). At this point, the model in (9) is reduced to an optimiza‐
tion problem. According to sensitivity analysis theory [28], 
after optimization, the values in the neighborhood of θ* can 
be expressed as affine functions of the varying θ.

ì

í

î

ïïïï

ïïïï

GP (θ)= hG (θ)

zP (θ)= hz (θ)

λP (θ)= hλ (θ)

(11)

where hG, hz, and hλ are the affine functions in parametric 
solutions of G(θ), z(θ), and λ(θ), respectively.

By introducing the affine functions GP (θ) into the con‐

straint in (9), the constraints are classified as active and inac‐
tive constraints, which become parametric constraints.

AGP (θ)£B +CF P + tDÞ
ì
í
î

hJ (F Pt)= hJ (θ)= 0

hI (F Pt)= hI (θ)£ 0
(12)

where the subscripts J and I are the active and inactive con‐
straint sets, respectively; and hJ and hI are the affine func‐
tions for active and inactive constraint sets, respectively.

GP (θ) bounded by the same inactive constraints can be 
gathered in one region Ω as:

Ω: ={θÎRm + 1: hI (θ)£ 0} (13)

where the region Ω is a polyhedron that represents the inac‐
tive constraint set, and it is defined by the parametric con‐
straints.

The feasibility condition is ensured by substituting the 
GP (θ) into the inactive constraints given by Ω. Additionally, 
the optimality condition is given by λP (θ)³ 0, which adheres 
to the Karush-Kuhn-Tucker optimality condition. In accor‐
dance with parametric programming theory [29], [30] and 
taking into account the parameter bounds, the critical region 
H is defined by:

H: ={θÎRm + 1: hI (θ)£ 0λP (θ)³ 0θ £ θmax } (14)

In the above analysis, hG, hλ, hz, hJ, and hI are calculated 
at θ*. The corresponding H refers to a region in the parame‐
ter space, where the structure of the affine functions remains 
unchanged.

In order to distinguish each critical region and its associat‐
ed affine functions, we introduce the subscript iÎN+ as the 
region index, involving Hi, G P

i (θ)= hGi (θ), λP
i (θ)= hλi (θ), 

z P
i = hzi (θ), hJi (θ), and hIi (θ). In this paper, a collection of 

objects, e.g., {H1HiHI }, is denoted by {Hi }I, where 
the superscript I is the total number of critical regions.

Once all the critical regions are identified, {Hi }I is collect‐
ed and termed a polyhedral partition of Θ. Θ, which is de‐
fined by the outermost boundaries of {Hi }I, represents the 
continuous operating envelope.

Θ: = bd({Hi }I ) (15)

where bd is the outermost facet of a polyhedral partition.
As shown in (13)-(15), Θ is expressed in terms of its half‐

space representation (H-rep), which is the intersection of a fi‐
nite number of halfspaces. An equivalent representation is 
the vertex representation (V-rep). The polytope is defined as 
Θ: = conv({V i }I ), where {V i }I ={V1ViVI }, and Vi is 
the set of vertices corresponding to the critical region Hi.

To illustrate the process for determining Θ, we visualize 
the 2-dimensional F P (F P

1  and F P
2 ) and t. In Fig. 2(a), we ini‐

tially identify a critical region Hi (green region) at a specific 
θ* (blue point) from (9), which executes a single optimiza‐
tion problem with a given θ*. The parametric programming 
model then explores beyond this critical region to identify 
new critical regions at different set-points. This exploration 
continues until no additional critical regions emerge. Figure 
2(b) displays the outcome: five critical regions (I = 5) identi‐
fied by using at least five feasible set-points, each marked 
by a unique color. Finally, Θ is defined by merging the five 
regions {Hi }

5 according to (15).
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C. Computational Complexity of Parametric Programming

The advantage of the parametric programming model is 
its ability to represent decision variables as affine functions 
of parameters, eliminating the need for exhaustive sampling 
in (8). For the envelope problem, the model in (9) offers an 
efficient alternative to exhaustive sampling of F(t) and t. Us‐
ing F P and t, it generates G P

i (θ) for Hi and constructs {Hi }I. 
Thorough exploration of all critical regions is crucial for ac‐
curately defining Θ.

The computational complexity of the model in (9) is influ‐
enced by both the number of active constraints and the di‐
mensionality of the parameter space. The computational com‐
plexity is primarily determined by the number of critical re‐
gions. Assume there is a given set of p constraints, and at 
any set-point in the parameter space, a maximum of q con‐
straints can be active. Thus, the number of possible combina‐
tions of active constraints, denoted by η, is equal to (16) in 
the worst case.

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

η =∑
l = 0

q ( )p

l

( )p

l
=

p!
(p - l)!l!

(16)

According to [31], the number of critical regions α is 
bounded in the worst case.

α £∑
g = 0

η - 1

g!pg (17)

where g can be regarded as the search tree level.
As the number of parameters increases, the dimensionality 

of the parameter space expands, which further increases the 
computational complexity. For a closed polyhedron of Hi in 
(m + 1)-dimensional parameter space, at least m + 2 halfspaces 
are required. According to [32], for a polyhedron with m + 2 
halfspaces, the size of the unexplored regions β is calculated 
as:

β =∑
l = 0

m + 1( )m + 2
l

- 1 (18)

Typically, a closed polyhedron in an (m + 1)-dimensional 
parameter space has m + ε halfspaces, where ε ³ 2. As ε in‐
creases, the size of the unexplored regions increases. For 

simplicity, we assume that ε = 2 for all polyhedra. The re‐
quired number of set-points to identify all critical regions is:

μ ³ αβ (19)

To identify the entire {Hi }I, at least α feasible set-points 
and μ set-points are required. The total number μ depends on 
the method used to select set-points but is subject to a lower 
bound. In high-dimensional parameter spaces, this lower 
bound grows exponentially. Therefore, addressing the inher‐
ent computational challenges is crucial to improving the ap‐
plicability of the parametric programming model. For the en‐
velope problem, this paper proposes a fast solution method 
to calculate the polytope, which will be discussed in the 
next section.

III. FAST SOLUTION METHOD OF CONTINUOUS OPERATING 
ENVELOPE 

A. Main Idea of Fast Solution Method

The primary aim of this paper is to develop a theoretical 
method for assessing the feasibility of intra-interval fluctua‐
tions. In Section II, we introduce the concept of a continu‐
ous operating envelope, represented by Θ. According to (15), 
Θ is defined by the outermost boundaries of {Hi }I, and con‐
structing Θ does not require identifying all critical regions. 
Instead, it can be constructed by focusing on a smaller sub‐
set of critical regions that encompass the outermost ones, 
which significantly reduces computational complexity by ex‐
cluding certain critical regions.

One major challenge is discerning which critical regions 
are essential and which are less important. To address this, 
we analyze the characteristics of fluctuations. In high-dimen‐
sional parameter spaces, identifying critical regions, where 
multiple fluctuations interact simultaneously, requires a sig‐
nificant number of set-points. These critical regions, howev‐
er, are absent in lower-dimensional parameter spaces.

The fast solution method prioritizes exploring critical re‐
gions in low-dimensional projections. Since ramping capaci‐
ties are defined by the timescale, we focus on 2-dimensional 
projections that include both a single fluctuation and the tim‐
escale. Through algebraic manipulation, critical regions in 
these 2-dimensional projections are transformed back into 
their original dimensions to form an approximated polytope. 
Additionally, a polytope expansion strategy is introduced to 
refine the approximated polytope by subdividing unexplored 
regions.

Mathematically, the parametric programming model in 
high-dimensional spaces often faces the curse of dimension‐
ality. By analyzing high-dimensional results through low-di‐
mensional projections, we offer a stable method for obtain‐
ing the approximated polytope, which reduces the initial 
complexity and lays the foundation for further refinement. 
The polytope expansion strategy improves the approximated 
polytope, aiming for greater accuracy and possibly achieving 
the exact polytope. This two-step method provides a stable 
envelope for high-dimensional problems, with the approxi‐
mated polytope followed by more accurate refinement.

In summary, the proposed fast solution method stably con‐

(a) (b)

P
F2

P
F1
P
F

t

E
t

St

P
F1

P
F2

E
t

St

Time Time

Fig. 2.　Continuous operating envelope from parametric programming mod‐
el. (a) A critical region Hi with θ*. (b) Θ in parameter space.
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structs an approximated polytope, serving as a continuous 
operating envelope. While ensuring operational feasibility, 
the approximated polytope introduces a degree of conserva‐
tism since it is a subset of the accurate polytope. The poly‐
tope expansion strategy balances computational efficiency 
with accuracy, which aims to progressively refine the poly‐
tope.

B. Low-dimensional Projections for Single Fluctuation

As the dimensionality of the parameter space increases, as‐
signing suitable set-points to identify critical regions be‐
comes increasingly difficult. In an (m + 1)-dimensional space, 
each θ* for θ corresponds to an (m + 1)-dimensional point.

θ: = é
ë
êêêê ù

û
úúúúF P

t
=[F P

1 F P
c F P

m t]
T (20)

where F P
c  is the parameter of fluctuation c; and the subscript 

cÎN+ indexes each distinct fluctuation among the m-dimen‐
sional fluctuations.

When addressing the envelope problem, the proposed fast 
solution method prioritizes exploring critical regions located 
on 2-dimensional projections. The proposed fast solution 
method determines set-points by fixing certain fluctuations 
and decomposing the m-dimensional F P into m 2-dimension‐
al F P

c .

θ = é
ë
êêêê ù

û
úúúúF P

t
Þ θ1 =
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úúúúF P
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t
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û
úúúúF P

c

t
θm =

é
ë
êêêê ù

û
úúúúF P

m

t
(21)

To distinguish among the m 2-dimensional problems, we 
also use the subscript c to index them. The 2-dimensional 
parametric programming model is presented as:

min
G(θc )

z =H1G(θc )+H2eT
G (22)

s.t.
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AG(θc )£Bc +Cc F P
c + tD

                    G(θc )ÎGÍRnF P
c ÎFcÍR1tÎ TÍR1

θc: =[F P
c t]

T    θcÎΘcÍR2

(23)

where Cc is a p ´ 1 constant matrix corresponding to the cth 
column of C; Bc is a p ´ 1 constant matrix that modifies the 
original B by accounting for other fixed fluctuations (other 
parameters in θ except F P

c ); Fc is the 1-dimentional polytope 
of F P

c ; and Θc is the 2-dimensional polytope of θc.
By employing the 2-dimensional decompositions in (21), 

we significantly reduce the computational complexity of the 
original model in (9). This acceleration is achieved by ex‐
cluding critical regions that are not present in the 2-dimen‐
sional projections. For the m-dimensional F P, the model in 
(22) and (23) needs to calculate m 2-dimensional projections.

In Fig. 3, the results is visualized using the 2-dimensional 
fluctuation parameter F P =[F P

1 F
P
2 ]T and t. In Fig. 3(a), the 

2-dimensional critical regions of F P
2  with t are presented. 

These critical regions, represented by two different colors, 
merge to form a 2-dimensional polytope Θ2 (Θc ), outlined by 
the red line. For comparison, the blue dotted line indicates 
the exact 3-dimensional polytope Θ. The red points mark the 
vertices of Θ2, while the blue points correspond to the verti‐
ces of Θ. In Fig. 3(b), the results of different parameters F P

1  
and F P

2  are presented using the model in (22) and (23). Two 

2-dimensional polytopes, Θ1 and Θ2, are obtained, and their 
vertices lie within Θ. The red dotted line indicates the inter‐
section of the two 2-dimensional projections.

C. Algebraic Manipulation for Original-dimensional Results

Utilizing sensitivity analysis [28] and parametric program‐
ming theory [31], [33], we can efficiently transform the 2-di‐
mensional projections back to the original dimensions with‐
out additional optimizations. Algebraic manipulations are 
used for dimension-raising to obtain the approximated poly‐
tope Θa in the original-dimensional parameter space.

In a general parametric programming problem in (9), the 
Jacobian matrices of the system for decision variables can 
be derived. These matrices are transformed into matrices M i 
and Ni for the parameter vectors using parametric program‐
ming theory [31]. M i is an (n + p)´(n + p) matrix and Ni is an 
(n + p)´(m + 1) matrix, which represent the Jacobian of the 
system corresponding to the critical region Hi. These matri‐
ces can be derived with θ* as:
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    (24)

where Q is an n ´ n symmetric constant matrix; Y is an n ´
(m + 1) null matrix; G(θ* ) is the optimal value obtained from 
the model in (9) at θ*; K =[C∣D] is a p ´(m + 1) matrix, 
formed by horizontally concatenating the p ´m matrix C and 
the p ´ 1 matrix D; the subscript rÎN+ refers to the r th row 
vector in the original matrices, indexing the r th constraint 
among the total p constraints; and λr (θ* ) is the Lagrange 
multiplier of the r th constraint.

According to (24), once θ* and its corresponding values 
G(θ* ) and λ(θ* ) are obtained, M i and Ni for Hi can be calcu‐
lated directly. The algebraic manipulations start by obtaining 
θ*, G(θ* ), and λ(θ* ) from low-dimensional projections.

To clarify, we add the subscript c to indicate the 2-dimen‐
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Fig. 3.　2-dimensional projections and accurate 3-dimensional polytope. (a) 
2-dimensional projection of Θ2. (b) 2-dimensional projections of Θ1 and Θ2.
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sional results derived from the model in (22) and (23), and 
the subscript kÎN+ indexes subsequent results derived from 
2-dimensional critical regions Hck. We then use algebraic 
manipulation to transform these critical regions back into 
their original Hk. For each 2-dimensional critical region 
Hck, we arbitrarily select a point θ *

ck on Hck as the set-
point. The values of G(θ *

ck ) and λ(θ *
ck ) can be directly calcu‐

lated from the affine functions of parametric solutions associ‐
ated with Hck.

Notably, Hck is a projection of Hk. We set values of θ*, 
G(θ* ), and λ(θ* ) as θ *

ck, G(θ *
ck ), and λ(θ *

ck ), respectively. Us‐
ing θ*, G(θ* ), and λ(θ* ) according to (24), we can calculate 
Mk and Nk for Hk.

After obtaining Mk and Nk, we calculate the affine func‐
tions G P

k (θ) and λP
k (θ) associated with Hk. As mentioned in 

Section III-B, in the 2-dimensional results, only a single fluc‐
tuation is treated as a varying parameter, while the other 
fluctuations in the (m + 1)-dimensional vector θ are held con‐
stant. When calculating the original-dimensional results, the 
previously constant fluctuations are treated as varying param‐
eters. G P

k (θ) and λP
k (θ) are derived in the neighborhood of θ* 

as:
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(25)

G P
k (θ) and λP

k (θ) can further define Hk as shown in (12)-
(14). Finally, G P

k (θ), λP
k (θ), and Hk are all obtained through 

algebraic manipulation.
Repeating algebraic manipulations for all 2-dimensional 

critical regions results in a total of K dimension-raising criti‐
cal regions. Each Hk has a corresponding set of vertices, de‐
noted by Vk. These sets are collectively expressed as {Vk }K =
{V1VkVK }, where K is less than or equal to the total 
number I of original-dimensional critical regions. Finally, 
Θa: = conv({Vk }K ) is defined via V-rep.

Figure 4 builds upon the 2-dimensional projections shown 
in Fig. 3 to illustrate the transformation into 3-dimensional 
results. 

Notably, some 2-dimensional projections represent differ‐
ent views of the same 3-dimensional critical regions. In Fig. 
4(a), all 2-dimensional critical regions are transformed into 

3-dimensional critical regions, and consistent colors are used 
to highlight the corresponding 3-dimensional critical regions. 
Figure 4(b) removes the 2-dimensional projections to clearly 
display the 3-dimensional results. The vertices (red points) 
form Θa. Θa, as a subset of the exact polytope Θ, omits cer‐
tain vertices (blue points) of Θ, indicating accuracy loss 
when relying solely on low-dimensional projections.

D. Polytope Expansion Strategy for More Accurate Results

We propose a polytope expansion strategy to identify criti‐
cal regions beyond Θa. By subdividing the unexplored re‐
gions and merging newly identified critical regions, we can 
achieve a more accurate polytope.

As defined in (14), each Hk in the original dimension is 
determined by a set of halfspaces corresponding to paramet‐
ric inactive constraints hIk. At a specific boundary facet of 
Hk, a parametric constraint transitions from inactive to ac‐
tive. This transition is also reflected in the decision variable 
space, where the corresponding constraint moves from inac‐
tive to active. These transitions form the basis for further 
analysis.

In Section III-C, we have identified several critical re‐
gions {Vk }K that shape Θa. Based on {Vk }K, we can find 
boundary facets of Θa. Each boundary facet of Θa corre‐
sponds to a halfspace. Moving along the normal vector from 
the interior of Θa, a parametric constraint transitions from in‐
active to active upon crossing the boundary facet. Then, at 
an arbitrary proximal-point just outside this boundary facet, 
the active and inactive constraints in the decision variable 
space can be identified based on the corresponding boundary 
facet, regardless of whether a constraint transition occurs in 
the decision variable space.

More specifically, consider a parametric constraint j, 
where jÎN+ indexes the boundary facet of Θa and corre‐
sponds to a halfspace of Hk. The set of parametric inactive 
constraints associated with Hk, denoted by hIk, includes the 
parametric constraint j. Thus, the boundary facet defines a 
halfspace Pkj. When crossing the boundary facet defined by 
parametric constraint j, Pkj is flipped, transforming it into 
the halfspace Qkj.
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Pkj: ={θÎRm + 1: hIkj( )θ £ 0}

Qkj: ={θÎRm + 1: hIkj( )θ ³ 0}
(26)

Replacing Pkj with Qkj in Θa delineates an unexplored re‐
gion defined by the parametric constraint j. Our goal is to 
identify the omitted critical regions within this unexplored re‐
gion to refine the polytope. When the boundary facet de‐
fined by parametric constraint j is reached, a previously inac‐
tive constraint may become active in the decision variable 
space, which can be identified by introducing G P

k (θ) in the 
parametric constraint j. At the same time, the remaining con‐
straints can also be confirmed to remain inactive. If all previ‐
ously inactive constraints remain inactive, the active and in‐
active constraints in the decision variable space are also 
clearly identified. Therefore, once the unexplored region is 
defined, the active and inactive constraints are determined 
with the introduction of G P

k (θ).
Given that the sets of active and inactive constraints are 

already established, we now focus on the feasible domain at 
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Fig. 4.　Algebraic manipulations for approximated polytope. (a) Dimension-
raising operations for 2-dimensional results. (b) Critical regions obtained 
from dimension-raising and vertices of 3-dimensional approximated poly‐
tope.
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a given proximal-point. If a feasible domain is confirmed, 
this proximal-point, located just outside the boundary facet, 
is selected as the new set-point θ*. θ* is then used to identi‐
fy critical regions beyond the approximated polytope. This 
process is repeated for other parametric constraints, defining 
the unexplored regions and facilitating the discovery of new 
critical regions.

The advantage of polytope expansion strategy lies in pre-
defining unexplored regions in the parameter space and es‐
tablishing the corresponding sets of active and inactive con‐
straints. For a specific set-point, effective optimization tech‐
niques, such as the active-set method [34] and proximal-
point iterations [35], can be employed to navigate the feasi‐
ble domain. However, as new critical regions emerge, the 
computational burden of calculating unexplored regions 
grows, leading to the curse of dimensionality. Although the 
polytope expansion strategy helps define new regions, it 
does not inherently resolve the computational challenges as‐
sociated with high-dimensional problems. Therefore, focus‐
ing on specific regions of interest helps strike a balance be‐
tween polytope accuracy and computational efficiency.

Figure 5 illustrates the polytope expansion strategy for 
more accurate results, based on Θa, as shown in Fig. 4. Ini‐
tially, in Fig. 5(a), Θa is formed by several halfspaces. Mov‐
ing along the normal vectors to the boundary facets (indicat‐
ed by blue arrows), we identify unexplored regions. Among 
these, only two regions (outlined by red facets) have feasible 
domains in the decision variable space after flipping all para‐
metric constraints associated with the boundary facets. By 
optimizing at two specific set-points (proximal points), two 
new critical regions are discovered within these unexplored 
regions, as shown in Fig. 5(b). Finally, the polytope expan‐
sion strategy allows Θa to merge these newly identified criti‐
cal regions, refining the polytope for a more accurate repre‐
sentation of the continuous operating envelope.

IV. CASE STUDIES 

This paper introduces the concept of a continuous operat‐
ing envelope to support fluctuation management and demon‐
strates its effectiveness in two power systems: an illustrative 
5-bus system and a utility-scale 661-bus system. A 3-dimen‐
sional parameter space is visualized to provide an intuitive 
representation. Furthermore, this paper evaluates the compu‐
tational performance in handling high-dimensional envelope 

problems, with a particular focus on the utility-scale 661-bus 
system results. The findings show that the multi-parametric 
toolbox (MPT3) [36] encounters significant difficulties in 
generating polytopes for higher-dimensional cases, primarily 
due to the increased dimensionality and its computational 
burden. In contrast, the proposed fast solution method consis‐
tently generates a continuous operating envelope through an 
approximated polytope, while maintaining predictable com‐
putational efficiency.

All optimizations are performed in a MATLAB environ‐
ment using CPLEX v12.7.1 on a ThinkPad X1 2021 with an 
Intel(R) Core(TM) i5-1135G7 CPU. The benchmark for multi-
parametric programming solutions is established using the 
publicly available MPT3 tool.

A. Illustration of Continuous Operating Envelope

The concept of the continuous operating envelope is de‐
tailed in an illustrative 5-bus system, as shown in Fig. 6.

This system consists of thermal units (Gen1 and Gen2), 
which are dispatchable resources, and wind units (Gen3 and 
Gen4), which are non-dispatchable resources. The physical 
limits of the units are listed in Table I. The transmission ca‐
pacity of Line4 is 200 MW, while other lines each have a ca‐
pacity of 400 MW. The reactance of all lines is assumed to 
be identical.

Initially, a discrete dispatch decision is made to match the 
demand over an hourly interval. Specifically, Load1 and 
Load2 are 418.90 MW and 214.82 MW, respectively. Gen1 
and Gen2 generate 233.72 MW and 200 MW, respectively, 
while Gen3 and Gen4 generate 120 MW and 80 MW, respec‐
tively. These values represent the known dispatch results at 
the start of the interval (t = tS ).

To analyze the system ability and handle intra-interval 
fluctuations, the outputs of Gen3 and Gen4 are treated as fluc‐
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Fig. 5.　Polytope expansion strategy for more accurate results. (a) Defini‐
tion of unexplored regions. (b) Identification of new critical regions.
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Fig. 6.　An illustrative 5-bus system.

TABLE I
PHYSICAL LIMITS OF UNITS IN ILLUSTRATIVE 5-BUS SYSTEM

Resource

Gen1

Gen2

Gen3

Gen4

Unit

Thermal

Thermal

Wind

Wind

Produc‐
tion cost 

bid 
($/MWh)

25

30

0

0

Bid capacity (MW)

Maximum

700

500

120

80

Minimum

200

200

0

0

RU 
(MW/h)

100

50

-

-

RD 
(MW/h)

100

50

-

-
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tuating parameters, denoted by F P =[F P
1 F

P
2 ]T. For simplici‐

ty, the loads are assumed to remain constant throughout the 
intra-interval (intra-hourly) period, without any fluctuations. 
The goal is to construct a 3-dimensional continuous operat‐
ing envelope for the output of Gen3 and Gen4, spanning 
from tS = 0 min to tE = 60 min, based on the known dispatch 
decision at t = tS.

Assume that Gen3 and Gen4 have the installed capacities 
of 300 MW each, which exceed their maximum bid capaci‐
ties shown in Table I. This means that Gen3 and Gen4 have 
the potential to increase their generation during the interval. 
These excess capacities represent potential intra-interval fluc‐
tuations due to production uncertainty. In the following anal‐
ysis, F P

1  and F P
2  represent the outputs of Gen3 and Gen4, re‐

spectively. The difference between the known dispatch result 
(120 MW for Gen3 and 80 MW for Gen4) at the start of the 
interval (t = tS ) and the outputs represents deviations within 
the interval T , defined by tS £ t £ tE. For general consider‐
ation, F P

1  and F P
2  at t = tS are also treated as potential fluctua‐

tions. To simplify the subsequent visualization of Gen3 and 
Gen4, we regard the fluctuations F P as outputs of renewables 
here, without subtracting the constant outputs at t = tS as 
done in (7).

In Fig. 7(a), the closed lines outline two critical regions in 
the 2-dimensional space, with each region defined by a dis‐
tinct set of inactive constraints. Merging these critical re‐
gions forms the 2-dimensional polytope Θ1, which represents 
the continuous operating envelope for Gen3 in 2-dimensional 
parameter space. The H-rep of Θ1 is given in (27).
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Fig. 7.　Continuous operating envelope in an illustrative 5-bus system. (a) 
2-dimensional projection of Gen3. (b) 2-dimensional projection of Gen4. (c) 
Algebraic manipulation. (d) 3-dimensional polytope.
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The first and second halfspaces in (27) represent the para‐
metric formulation of ramping constraints, modeled with re‐
spect to t. The ramping capacities of Gen1 and Gen2 define 
the feasible operational range at various points in time. The 
third constraint is a parametric formulation of the transmis‐
sion in (27), which limits injected power to manage fluctua‐
tions. The fourth and fifth halfspaces in (27) represent the 
parameter bounds. Figure 7(b) presents a similar result for 
Gen4, where the 2-dimensional continuous operating enve‐
lope, denoted by Θ2, is calculated.

Next, algebraic manipulation is used to extend the previ‐
ously obtained 2-dimensional projections to the original-di‐
mensional regions. Figure 7(c) demonstrates the process of 
extending the results to higher dimensions, where the 2-di‐
mensional results are used to construct an approximated 
polytope. For example, Θ1 is extended by calculating the sys‐
tem’s Jacobian corresponding to the critical regions, repre‐
sented by yellow and blue in Fig. 7(a), respectively. A simi‐
lar algebraic manipulation is applied to Θ2. Finally, the 3-di‐
mensional envelope is represented by the approximated poly‐
tope as shown in Fig. 7(d), with its H-rep given in (28).
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To obtain a more accurate polytope, we continue to use 
the polytope expansion strategy. Note that the fourth to sixth 
halfspaces in (28) represent the parameter bounds, which 
cannot be flipped. The remaining three parametric con‐
straints can be flipped and require additional analysis.

For example, we analyze the first halfspace of Θa in (28), 
corresponding to the yellow critical region in Fig. 7(c). The 
affine functions for Gen1 GP

G1 (×) and Gen2 GP
G2 (×) in this criti‐

cal region are given as:
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By substituting the affine functions from (29) into the first 
halfspace of Θa, we derive the corresponding constraint ex‐
pression in the decision variable space as:

233.72 -
5
3

t £GP
G1 (θ) (30)

The constraint (30) represents the ramping constraint, spe‐
cifically focusing on the ramp-down capacity of Gen1. At 
this stage, Gen2 has already reached its minimum output and 
cannot ramp down any further. As a result, the first half‐
space of Θa in (28) is flipped to form halfspace Q in the pa‐
rameter space as:

Q ={θÎR3: 3F P
1 + 3F P

2 - 5t ³ 600} (31)

We select a proximal-point (set-point) of F P
1 = 120 MW, 

F P
2 = 101 MW, and t = 12 min as an example. This point satis‐
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fies (31) and is located outside the boundary facet of (28). 
At t = 12 min, it shows that GP

G1 (θ) can only decrease by 20 
MW, which is insufficient to accommodate the 21 MW in‐
crease in Gen4 output. In fact, we can validate that the sys‐
tem is not feasible within the halfspace defined by (31), as 
the inequality constraint in (30) becomes active, and the 
ramping-down capability of the system is exhausted. There‐
fore, no feasible domain exists after flipping the boundary 
facet indicated by the first halfspace of Θa in (28).

When performing the same operation on the second and 
third halfspaces of Θa in (28), we identify no unexplored re‐
gions in the parameter space. This is due to the exhausted 
ramping and transmission capacities in the decision space. 
As a result, no further optimization or expansion of the poly‐
tope is needed. The polytope Θa in Fig. 7(d) accurately rep‐
resents the continuous operating envelope. Here, the approxi‐
mated polytope Θa is accurate due to the small number of 
parametric constraints. A detailed discussion of the approxi‐
mated polytope is provided in the subsequent case. More‐
over, a direct solution using MPT3 yields the same polytope, 
as shown in Fig. 7(d).

In summary, the proposed fast solution method incorpo‐
rates the fluctuations of two wind units and t to determine a 
3-dimensional polytope, which represents the continuous op‐
erating envelope. This polytope is shaped by constraints in 
(9), with key factors being the ramping capacities of dis‐
patchable resources (Gen1 and Gen2) and the transmission ca‐
pacity.

B. Efficiency of Continuous Operating Envelope

To demonstrate the efficiency of the continuous operating 
envelope in managing fluctuations, we begin by analyzing 
the intra-interval fluctuations of Gen3 and Gen4, each repre‐
sented by its respective 2-dimensional envelope. Assuming 
that fluctuations are recorded every 15 s, this results in 240 
set-points (as shown in Fig. 8), forming a fluctuation curve 
over an hour. These data are based on actual wind unit sam‐
ples. As shown in Fig. 8(a) and Fig. 8(b), all individual fluc‐
tuations fall within their respective 2-dimensional envelopes, 
indicating that the fluctuations are manageable.

However, when Gen3 and Gen4 fluctuate simultaneously, 
the interaction between their fluctuations leads to intra-inter‐
val infeasibility. Consequently, some set-points become infea‐
sible. As shown in Fig. 8(c), the envelope defined in (28) 
clearly distinguishes between feasible set-points (marked in 
green) and infeasible ones (marked in red). For comparison, 
the 3-dimensional infeasible fluctuations are also projected 
as red points in Fig. 8(a) and Fig. 8(b).

The continuous operating envelope is particularly effective 
in directly pinpointing infeasible fluctuations. In the scenari‐
os where Gen3 and Gen4 frequently adjust their outputs in re‐
al time, feasibility examinations become increasingly com‐
plex. Each update involves checking the feasibility of 240 
set-points, which becomes cumbersome when performed re‐
peatedly. For example, examining nine fluctuation curves 
would require performing 240 optimizations for each curve. 
In contrast, the continuous operating envelope simplifies this 

process by directly identifying infeasible fluctuations 
(marked in red), as demonstrated in Fig. 8(d). 

Thus, the continuous operating envelope not only stream‐
lines the assessment of operational risks due to intra-interval 
fluctuations but also significantly reduces the workload in‐
volved in performing repeated feasibility examinations for 
each update.

C. Computational Performance of Proposed Fast Solution 
Method

We assess the computational performance of the proposed 
fast solution method on a utility-scale 661-bus system, 
which includes 37 generation units and 1047 transmission 
lines. In this paper, we focus initially on two wind units as 
primary sources of intra-interval fluctuations and calculate 
their corresponding continuous operating envelope.

In Fig. 9, the results generated by the proposed fast solu‐
tion method are illustrated. As depicted in Fig. 9(a) and Fig. 
9(b), two 2-dimensional projections are calculated, with the 
black regions indicating the accumulation of critical regions. 
These 2-dimensional projections are then algebraically trans‐
formed into their original 3-dimensional regions. In different 
2-dimensional projections, critical regions that correspond to 
the same 3-dimensional regions are shown in the same color. 
For clarity, Fig. 9(c) highlights two representative critical re‐
gions in purple and blue, demonstrating how the dimension-
raising process works. The final approximated polytope is 
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Fig. 8.　Fluctuation management using continuous operating envelope. (a) 
Validation of Gen3 fluctuations. (b) Validation of Gen4 fluctuations. (c) Vali‐
dation of simultaneous fluctuations of Gen3 and Gen4. (d) Identification of 
infeasible points among nine additional curves of simultaneous fluctuations.
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outlined in blue in Fig. 9(c) after the algebraic manipulation 
process.

However, as the number of parametric constraints increas‐
es in more complex systems, such as the utility-scale 661-
bus system, the approximated polytope obtained from low-di‐
mensional projections may result in accuracy loss. To miti‐
gate this, the polytope expansion strategy can be applied to 
enhance accuracy. By flipping the boundary facets of the ap‐
proximated polytope (outlined in blue), unexplored regions 
in the parameter space are revealed. In Fig. 9(c), two such 
unexplored regions (in red) are outlined, where feasible do‐
mains exist. To refine the polytope and achieve higher accu‐
racy, these unexplored regions need to be further subdivided 
and explored.

In particular, the unexplored region in the upper left cor‐
ner of Fig. 9(c) is selected for detailed analysis. As shown in 
Fig. 10(a), this region is subdivided by calculating a suffi‐
cient number of set-points to explore its full extent. Through 
the polytope expansion strategy, these subdivisions reveal 
new critical regions beyond the original approximated poly‐
tope. Once all unexplored regions are fully subdivided, the 
accurate polytope is constructed by merging the new critical 
regions with the initial approximated polytope. This refined 
polytope, as outlined in blue in Fig. 10(b), more accurately 
represents the continuous operating envelope.
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Fig. 10.　Continuous operating envelope obtained by proposed  fast solu‐
tion method. (a) Illustration of polytope expansion strategy. (b) Accurate 
polytope.

Table II highlights the computational efficiency for 3-di‐
mensional results. In the 2-dimensional projections of differ‐
ent fluctuations, some critical regions are the projections of 
the same 3-dimensional critical regions. Here, 48 critical re‐
gions are shared.

Besides, the time required for algebraic manipulation to 
generate the matrices is less than 0.01 s. The approximated 
polytope (algebraic manipulation part) is constructed with 62 
explored critical regions, which results in a slight reduction 
in volume and indicates a loss in accuracy. To further refine 
the results, the polytope expansion strategy is applied, lead‐
ing to the identification of the exact polytope with 553 ex‐
plored critical regions. Compared with the benchmark, the 
proposed fast solution method efficiently constructs the ex‐
act polytope, excluding 106 non-outermost critical regions.

As shown in Table II, the polytope expansion strategy is 
the most time-consuming, which takes 638.65 s. Despite the 
extended time, the volume of the polytope increases by only 
0.58%, indicating that many critical regions in the unex‐
plored region contribute minimally to the overall volume but 
significantly increase the computational burden. In contrast, 
an approximated polytope can be computed in just 65.38 s 
before applying the polytope expansion strategy. It shows 
that the polytope expansion refines accuracy without signifi‐
cantly altering the overall polytope.

With sufficient time, the proposed fast solution method 
can generate a comprehensive and exact polytope. However, 
the computational burden of the polytope expansion strategy 
remains on the same order of magnitude as MPT3 (bench‐
mark). In time-constrained scenarios, the proposed fast solu‐
tion method provides a practical trade-off by generating an 
approximated polytope, either without or with partial poly‐
tope expansion. While this method may incur some loss in 
accuracy, it significantly reduces the computational burden.

To further validate the accuracy of the envelope, we incor‐
porate four additional wind units at different buses. Each 
new wind unit introduces a parametric fluctuation, increasing 
the dimensionality of the continuous operating envelope (six 
parametric fluctuations in total, plus one parametric times‐
cale). In this analysis, low-dimensional projections are used 
to handle high-dimensional results. Previously calculated 
low-dimensional information remains valid when new fluctu‐
ations are introduced, with only the newly fluctuating nodes 
requiring recalculation. This new information is then algebra‐
ically transformed into the high-dimensional polytope.

For example, when a new fluctuating node is introduced 
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Fig. 9.　Continuous operating envelope in utility-scale 661-bus system. (a) 
2-dimensional projection of Wind1. (b) 2-dimensional projection of Wind2. 
(c) 3-dimensional polytope.

TABLE Ⅱ
COMPUTATIONAL EFFICIENCY FOR 3-DIMENSIONAL RESULTS

Method

2-dimensional projections (Wind1)

2-dimensional projections (Wind2)

Algebraic manipulation

Polytope expansion strategy

Benchmark (MPT3)

Number of 
explored 

critical regions

49

61

  62

553

659

Volume of 
polytope (%)

-

-

99.42

100.00

100.00

Time 
(s)

29.12

36.26

  0

638.65

734.83
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into a 2-dimensional parameter space, the dimensionality in‐
creases to 3. As shown in Table III, the additional time re‐
quired is 65.38 - 29.12 = 36.26 s, which corresponds to calcu‐
lating the 2-dimensional projection of the new fluctuating 
node. Table III also shows that the total parameter dimen‐
sions reach 7 by calculating six independent 2-dimensional 
projections. The total computation time is the sum of these 
independent 2-dimensional results. If previous results are 
available, updating the continuous operating envelope (ap‐
proximated polytope) only requires calculating the additional 
2-dimensional projections of newly fluctuating nodes. More‐
over, parallel algorithms can be used to speed up the process 
when multiple fluctuations occur simultaneously.

In high-dimensional problems, where volume is difficult 
to intuitively define, envelope accuracy is estimated by com‐
paring set-points to a benchmark. For instance, we use the 4-
dimensional MPT3 results in Table III as the benchmark, 
generating 5 million set-points within the accurate polytope 
to verify them against the approximated polytope. This sam‐
pling method is also employed to estimate the volume dis‐
crepancy of the 5-dimensional results. Note that in Table III, 
the 4-dimensional sampling result is 4849340/5000000; and 
the 5-dimensional sampling result is 4931986/5000000. The 
volume of the approximated polytope closely matches that 
of the accurate MPT3 polytope, while significantly reducing 
the computational burden.

Table III highlights the performance of the approximated 
polytope across different dimensions. The results show that 
computational cost increases linearly with dimensionality, 
while accuracy loss remains limited. This demonstrates that 
the proposed fast solution method can stably generate an ap‐
proximated polytope, offering a significant advantage over 
MPT3 in higher-dimensional cases. For instance, in the 6-di‐
mensional case, after evaluating 3500 critical regions, the 
number of regions has yet converged, leading us to conclude 
that the problem is unsolvable using MPT3.

The discussion above focuses on the approximated poly‐
tope without the polytope expansion strategy. In time-con‐
strained scenarios, the approximated polytope can still serve 
as a continuous operating envelope, with fluctuations within 
the envelope considered feasible. Fluctuations outside the en‐
velope, while potentially feasible, are treated as operational 
risks due to the exclusion of high-dimensional critical re‐
gions, which results in some accuracy loss. Although the 

polytope expansion strategy can improve accuracy, it is time-
consuming for high-dimensional problems, much like tradi‐
tional parametric programming methods. When time permits, 
the polytope expansion strategy can be employed to obtain a 
more precise polytope, but its computational burden increas‐
es exponentially with dimensionality.

In summary, in time-constrained situations, the approxi‐
mated polytope offers a rapid solution that effectively repre‐
sents the continuous operating envelope for intra-interval 
fluctuations. Conversely, when more time is available, the 
polytope expansion strategy can be applied to obtain a more 
accurate polytope. This method is particularly advantageous 
in high-dimensional problems, ensuring that at least an ap‐
proximated polytope is attained to conservatively manage 
fluctuations. In practice, when frequent updates to the contin‐
uous operating envelope are necessary, a conservative ap‐
proximated polytope can serve as the envelope, with only 
low-dimensional analysis needed for newly added fluctuating 
nodes.

V. CONCLUSION 

In power systems with discrete interval horizons, maintain‐
ing intra-interval feasibility is a challenging task due to fluc‐
tuations. This paper introduces the concept of a continuous 
operating envelope, which provides physical insights into the 
allowable range of intra-interval fluctuations. The continuous 
operating envelope is formulated as a parametric program‐
ming model, and its computational complexity is theoretical‐
ly analyzed. To overcome the inherent computational chal‐
lenges, we develop a fast solution method to efficiently con‐
struct the envelope and ensure the scalability for high-dimen‐
sional problems. The proposed fast solution method is vali‐
dated through both an illustrative 5-bus system to illustrate 
the concept and a utility-scale 661-bus system to verify its 
scalability and efficiency.

The continuous operating envelope offers a proactive tool 
for fluctuation management, enabling more reliable and effi‐
cient power system operations. By defining a clear range of 
manageable fluctuations, the proposed fast solution method 
has the potential to support real-time dispatch decisions and 
reduce operational risks associated with intra-interval fluctua‐
tions.
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