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Abstract——As the proportion of renewable energy sources con‐
tinues to increase, the local damping contributions of sources in 
power system decrease, posing a challenge to the power system 
stability. Therefore, online tracking of the damping contribu‐
tions of each source is crucial for the prevention of low-frequen‐
cy oscillations. This paper proposes an online tracking method 
of local damping under ambient data. The proposed method is 
based on dissipation energy spectrum analysis (DESA) and the 
energy dissipation factor (EDF). First, the feasibility of using 
frequency-domain analysis for the dissipation energy of genera‐
tor is analyzed. The frequency spectral function of dissipation 
energy of generator is then derived by integrating with Parse‐
val’s theorem, and the EDF is defined. Second, the generator 
energy dissipation factor (GEDF) for the dominant oscillation 
mode frequency is established. The modal information of the 
dominant oscillation in the power system is obtained through 
DESA. The relationship between the frequency spectral func‐
tion and eigenvalues is also established. Finally, an online track‐
ing method of local damping is proposed based on DESA and 
GEDF. The effectiveness of the proposed method is validated 
through simulations on a four-machine 11-bus power system 
and an actual power system in Northwest China.

Index Terms——Low-frequency oscillation, renewable energy 
sources, generator energy dissipation factor (GEDF), dissipation 
energy spectrum analysis (DESA), local damping, online track‐
ing, frequency domain, energy dissipation factor.

I. INTRODUCTION

THE utilization of wind, solar, and other renewable ener‐
gy sources in power systems is increasing [1], [2]. This 

shift is accompanied by the emergence of features character‐
ized by low inertia and damping. Consequently, power sys‐
tems are becoming more vulnerable to low-frequency oscilla‐
tions [3]-[5], which could compromise the secure operation.

Damping is a crucial aspect in the study of oscillations. 
Sources with positive damping dissipate energy during oscil‐
lations, thereby aiding the attenuation of oscillations. By con‐
trast, sources with negative damping emit energy during os‐
cillations, thereby exacerbating the oscillations. Alterations 
in the structural configuration of the power system can cause 
some sources to exhibit negative damping, which triggers os‐
cillations [6] - [8]. Thus, the online tracking and assessment 
of local damping and identification of sources with negative 
damping are crucial for curtailing oscillations and enhancing 
the power system stability.

The eigenvalue analysis is a classic method in small-dis‐
turbance stability analysis [9], [10]. The eigenvalue analysis 
can be employed to select critical sources and install them in 
power system stabilizers in multi-machine systems [11]. In 
addition, this method can be used to assess the stability of 
electronic-based power systems [12]. The dimensionality in‐
creases as the power system scale expands, leading to the 
curse of dimensionality during the computation of eigenval‐
ues. The curse of dimensionality poses challenges for effi‐
cient online analysis. The component of the generator elec‐
tromagnetic torque, known as damping torque, is an essen‐
tial factor in studying the dynamic stability of power sys‐
tems [13]. The principle of weakened system damping in 
weakly interconnected systems caused by reduced line im‐
pedance can be explained using the damping torque method 
[14]. An analysis of the effects of different generator rotor 
damping structures on the damping torque coefficients can 
provide a theoretical foundation for enhancing the power sys‐
tem stability by altering the damping structures [15]. Howev‐
er, the damping torque of generators in multi-machine sys‐
tems is highly complex, and the online computation of 
torque coefficients is challenging.

With the implementation of wide-area measurement sys‐
tems (WAMSs) in power systems, the obtained phasor mea‐
surement data play an essential role in real-time state detec‐
tion [16], [17]. In addition, phasor measurement data support 
power system stability analysis. A calculation method for net‐
work energy flow based on WAMS data is proposed in [18] 
to address the challenge to constructing an energy function 
within a system. This method operates independently of the 
energy function and facilitates energy flow computation us‐
ing the phasor measurement data. The correlation between 
the energy consumption of generator and its damping torque 
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in a single-machine infinite-bus system is explored in [19], 
highlighting the close relationship between system damping 
and energy dissipation. Furthermore, the energy flow analy‐
sis method, which involves signal reconstruction and decom‐
position, can be employed to investigate low-frequency oscil‐
lations in power systems. The consistency between the ener‐
gy flow and modal analysis methods in multi-system scenari‐
os is demonstrated through derivation in [20]. Finally, [21] 
derives the damping torque coefficient of multi-machine 
power systems, defines the energy attenuation coefficient, 
and rigorously establishes the essential equivalence between 
the damping torque and energy flow analysis methods.

As the energy flow analysis method aligns with system 
damping, an online assessment of damping can be achieved 
using this method [22]. By integrating the energy flow theo‐
ry with the damping representation in elasticity, an online as‐
sessment of local damping during oscillation becomes feasi‐
ble. Reference [23] proposes a method for identifying oscilla‐
tion sources by analyzing the energy sources and flows with‐
in the network. In [24], the dissipation energy curve is com‐
puted using eigenvectors, and the energy dissipation factor 
(EDF) is defined. Reference [25] separates the average dissi‐
pation power across the oscillation modes of varying fre‐
quencies. It employs eigenvectors to calculate the energy dis‐
sipation coefficient specific to a single mode of generator. In 
addition, [26] introduces an energy-based method that utiliz‐
es phasor measurement data to trace poorly damped natural 
and forced oscillation sources in power systems. However, 
the assessment of local damping requires filtering the phasor 
measurement data. Bandwidth selection significantly affects 
the evaluation results, and real-time applications are hin‐
dered by the substantial amount of data required for assess‐
ment.

To overcome the limitations of previous research works, 
this paper integrates Parseval’s theorem with dissipation en‐
ergy, derives the expression of dissipation energy in frequen‐
cy domain, and defines a spectral function. The relationship 
between the spectral function and the eigenvalue is elucidat‐
ed. Then, through spectral and phase analysis of the derived 
spectral function, an online tracking method of local damp‐
ing under ambient data is proposed.

The contributions of this paper are as follows.
1) Based on Parseval’s theorem, the frequency spectral 

function and expression of dissipation energy in frequency 
domain are derived. An EDF is established based on the 
modal coupling.

2) The generator energy dissipation factor (GEDF) is de‐
fined by analyzing and calculating the amplitude and phase 
of the spectral function of dissipation energy. The relation‐
ship between the spectral function and eigenvalues is ana‐
lyzed.

3) An online tracking method of local damping in frequen‐
cy domain under ambient data is proposed, where simulation 
results verify the effectiveness of the proposed method.

The remainder of this paper is organized as follows. Sec‐
tion II describes the expression of dissipation energy in the 
frequency domain. Section III introduces the assessment of 
local damping in frequency domain using EDF. Section IV 

introduces the assessment of local damping in frequency do‐
main under ambient data. Section V validates the proposed 
method through case studies. Section VI concludes this paper.

II. EXPRESSION OF DISSIPATION ENERGY IN FREQUENCY 
DOMAIN

The feasibility of assessing system damping in the fre‐
quency domain can be illustrated through the ambient re‐
sponse of power systems, dissipation energy, and time-fre‐
quency transformations of signals.

A. Ambient Response of Power Systems

The differential algebraic equations of a power system can 
be expressed as:

ì
í
î

ẋ = f (xy)

0 = g(xyl) (1)

where x is the state variable of the system; y is the algebraic 
variable; l is the load fluctuation variable; and f (×) and g(×) 
are the continuous functions.

Based on the assumption that the load fluctuations follow 
an Ornstein-Uhlenbeck distribution, the dynamic model of 
the load can be expressed as:

İ =-K(l - leq )+ δξ (2)

where leq is the load value at the equilibrium point; K is the 
load response rate; δ is the noise intensity; and ξ is an ambi‐
ent fluctuation following a Gaussian distribution.

Linearizing (1) and (2) results in:
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where gx, gy, and gl are the Jacobian matrices corresponding 
to variables x, y, and l, respectively; fx and fy are the Jacobi‐
an matrices corresponding to variables x and y, respectively; 
Δx is the change in state variable x; Dl is the change in load 
relative to the equilibrium point; and Inl is the identity ma‐
trix.
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Equation (3) can then be represented as:

ż =Az + δBξ (4)

Given that matrix A contains the characteristic information 
of electromechanical oscillations under load fluctuations, the 
eigenvalues λk = σk + jωk (k = 12...n) corresponding to n 
electromechanical oscillation modes can be calculated. There‐
fore, the time-domain analytical solution of the system state 
variables can be expressed as:

z(t)=∑
k = 1

n

vku
T
k z(0)eσkt sin(ωkt + φk )+ δBξ (5)

where uk and vk are the left and right eigenvectors corre‐
sponding to eigenvalue λk, respectively; z(0) is the initial val‐
ue of the state variables; and φk is the initial phase of the si‐
nusoidal oscillation for mode k.

The mathematical representation of the ambient response 
of the power system in (5) consists of two parts: an oscilla‐
tion component, and a stochastic component that contains 
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the measurement noise. During normal operation, the power 
system is subjected to small disturbances uniformly distribut‐
ed in the spectrum carrying a specific amount of energy. 
Therefore, when the frequency of environmental excitation is 
close to that of a specific mode within the power system, os‐
cillation modes are triggered. The following equation (6) 
shows that the ambient response of the power system con‐
tains rich modal information. Let Ck = vku

T
k z(0)eσkt and 

ε = δBξ. Substituting these into (5) yields:

z(t)=∑
k = 1

n

Ck sin(ωkt + φk )+ ε (6)

Thus, during the operation of the power system under am‐
bient data, the variations in the active power, reactive power, 
voltage magnitude, and voltage phase angle at generator port 
i can be expressed as:

DXi (t)=∑
k = 1

n

CXk
sin(ωkt + φXk

)+ εnoiseXi
(7)

where Xi can be Pi, Qi, Ui, or θi, and Pi, Qi, Ui, and θi are 
the active power, reactive power, voltage amplitude, and volt‐
age phase angle of generator port i, respectively; and εnoiseXi

 

is the random component of the measured noise composition 
in Xi.

B. Theory of Energy Flow

The energy flowing from node i to branch Lij in a power 
system can be expressed as:

Wi = ∫Im(I *
ij dUi )= ∫Pijdθi + ∫Qijd(ln Ui ) (8)

where Iij is the current flowing on branch Lij; Pij and Qij are 
the active power and reactive power flowing from node i in‐
to branch Lij, respectively; and Im(×) represents the imaginary 
part. Here, the term “energy” refers to an energy function de‐
rived from Lyapunov functions, which are commonly used 
to describe the energetic states of systems or objects.

The electrical quantities previously referenced can be pre‐
sented using steady-state and incremental values as:

Wi =W O
i +W D

i (9)

ì

í

î

ïïïï

ïïïï

W O
i = ∫PijsdDθi + ∫Qijsd(D ln Ui )

W D
i = ∫DPijdDθi + ∫DQijd(D ln Ui ) =W D1

i +W D2

i

(10)

where Δ is the variation in each electrical quantity; Pijs and 
Qijs are the steady-state values of active power and reactive 
power, respectively; W O

i  is the oscillation component repre‐
senting the transient energy of the power system; W D

i  is the 
continuously changing component over time, known as the 
dissipation energy; and W D1

i  and W D2

i  are the integral terms 
containing the variation in active power and the variation in 
reactive power, respectively. A positive W D

i  indicates energy 
consumption that contributes to positive damping, whereas a 
negative value indicates negative damping. Given the consis‐
tency between the dissipation energy and damping torque, 
the power system damping can be assessed by analyzing the 
dissipation energy.

The dissipation energy calculated based on the response 
data from different generator ports includes contributions 

from various modal components because the system re‐
sponse to ambient data encompasses multiple modal compo‐
nents. Therefore, the measurement data from generator port i 
can be used to calculate the dissipation energy W D

i , and 
these measurement data enable an analysis of how each 
mode manifests in dissipating energy. The measurement data 
from generator port i are substituted into the formula, and 
the results for W D1

i  and W D2

i  are expressed in (11) and (12), 
respectively.

W D1

i = ∑
a = b = 1

n

M Pθ
a (t2 - t1 )+ ∑

a = 1a ¹ b

n ∑
b = 1

n

N Pθ
ab + ε1 (11)

W D2

i » ∑
a = b = 1

n

M QU
a (t2 - t1 )+ ∑

a = 1a ¹ b

n ∑
b = 1

n

N QU
ab + ε2 (12)

W D
i =W D1

i +W D2

i » ∑
a = b = 1

n

Ma (t2 - t1 )+∑
a = 1

n ∑
b = 1a ¹ b

n

Nab + ε1 + ε2 

(13)

where a and b are the modes; M Pθ
a  is the damping term for 

mode a calculated using the incremental variables DPi (t) and 
Dθi (t); N Pθ

ab  is the harmonic and coupling term for modes a 
and b computed using the incremental variables DPi (t) and 
Dθi (t); ε1 is the ambient component in DPi (t) and Dθi (t) com‐
posed of measurement noise; M QU

a  is the damping term for 
mode a calculated using the incremental variables DQi (t) 
and DUi (t); N QU

ab  is the harmonic and coupling term for 
modes a and b computed using the incremental variables 
DQi (t) and DUi (t); ε2 is the ambient component in DQi (t) 
and DUi (t) composed of measurement noise, and the deriva‐
tion is presented in Supplementary Material A; Ma =M Pθ

a +
M QU

a ; and Nab =N Pθ
ab +N QU

ab .
According to (13), between time t1 and t2, the dissipation 

energy at generator port i is primarily divided into the fol‐
lowing three components.

1) The first component represents the monotonic damping 
term that changes over time. This component accumulates 
contributions from the damping terms of various modes.

2) The second component represents the time-varying peri‐
odic terms including harmonic terms for different modes and 
coupling terms between various modes.

3) The third component is the ambient term formed by 
measurement noise.

Time-domain methods ignore the possibility that the fre‐
quencies of the harmonic and coupling terms in the second 
component may match the frequency of the dominant oscilla‐
tion mode. This oversight can reduce the precision of assess‐
ment. Local damping assessment in the frequency domain 
can solve the aforementioned problem and obtain accurate re‐
sults. In addition, the sum of the damping terms of the vari‐
ous modes in (13) collectively constitutes the damping of 
the generator port, indicating the feasibility of assessing lo‐
cal damping in frequency domain.

III. ASSESSMENT OF LOCAL DAMPING IN FREQUENCY 
DOMAIN USING EDF

Section II presents qualitative analysis of local damping 
of the power system, which demonstrates the feasibility of 
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assessing the local damping in frequency domain. The specif‐
ic generator modes of interest are quantitatively analyzed 
based on Parseval’s theorem. This section presents the ex‐
pression of dissipation energy under ambient data and intro‐
duces the EDF.

A. Parseval’ s Theorem

Parseval’s theorem states that the energy contained in a 
signal equals the sum of the energies of its components with‐
in a complete orthogonal function set. The total energy of a 
signal in time domain is equal to the total energy of the sig‐
nal in frequency domain. Here, the term “energy” refers to 
signal energy, specifically the total energy of signals over a 
defined period. Use signal f (t) as an example. The following 
equation is given:

∫
-¥

+¥

| f (t) |2dt =
1

2π ∫-¥+¥| F(jω) |2dω (14)

where F(jω) is obtained from f (t) through Fourier transform.
For two signals fi (t) and fj (t), in line with (14), the deriva‐

tion process is given as:

∫
-¥

+¥

fi (t) fj (t)dt = ∫
-¥

+¥

fj (t) ( )1
2π ∫-¥+¥Fi (ω)ejωtdω dt =

1
2π

Fi (ω) ( )∫
-¥

+¥

fj (t)e
jωtdt dω =

1
2π ∫-¥+¥Fi (ω)F *

j (ω)dω (15)

where Fi (ω) and Fj (ω) are the Fourier transforms of signals 
fi (t) and fj (t), respectively. The integrated product of the two 
time-domain signals can be transformed into the frequency 
domain for analysis by applying (15).

B. Local Damping Assessment Index in Frequency Domain 
Based on Dissipation Energy

Analysis of the generator ports via (10) allows to express 
the dissipation energy at generator port i as:

W D
Gi
= ∫DPi (t)dDθi (t)+ ∫DQi (t)d(D ln Ui (t))=∫DPi (t)

dDθi (t)
dt

dt + ∫DQi (t)
d(D ln Ui (t))

dt
dt (16)

Let A(t)=DPi (t), B(t)= d(Dθi (t))/dt, C(t)=DQi (t), and D(t)=
d(ln Ui (t))/dt. In this case, the expression for W D

Gi
 is:

W D
Gi
= ∫A(t)B(t)dt + ∫C(t)D(t)dt (17)

Fourier transform is then performed on the aforemen‐
tioned variables. Using A(t) as an example, the transforma‐
tion process can be expressed as:

A(jω)= ∫
-¥

+¥

A(t)e-jωtdt = ∫
-¥

+¥

A(t)cos(ωt)dt -

∫
-¥

+¥

A(t)jsin(ωt)dt =RA (ω)- jXA (ω) (18)

where RA (ω) and XA (ω) are the real and imaginary parts of 
A(t) after Fourier transformation, respectively, and the same 
applies below.

The results of the Fourier transform reveal that the real 
and imaginary parts are even and odd functions, respective‐
ly, with respect to ω.

Similarly, the remaining variables can be expressed as:

ì

í

î

ïïïï

ïïïï

B(jω)=RB (ω)- jXB (ω)

C(jω)=RC (ω)- jXC (ω)

D(jω)=RD (ω)- jXD (ω)
(19)

Equations (14), (18), and (19) can be substituted into (17) 
to obtain:

W D
Gi
= ∫A(t)B(t)dt + ∫C(t)D(t)dt =

1
2π (∫-¥+¥ A(jω)B(jω)* dω + ∫

-¥

+¥

C(jω)D(jω)* dω) (20)

Given that the real parts of the complex numbers obtained 
from the Fourier transform are all even functions, whereas 
the imaginary parts are all odd functions, which satisfy the 
following equations:
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∫RA (ω)jXB (ω)dω = 0

∫RC (ω)jXD (ω)dω = 0

∫RB (ω)jXA (ω)dω = 0

∫RD (ω)jXC (ω)dω = 0

(21)

The expression of dissipation energy in frequency domain 
at the generator port can be obtained by substituting (21) in‐
to (20) and simplifying the result to obtain:

W D
Gi
= ∫A(t)B(t)dt + ∫C(t)D(t)dt =

1
2π ∫(RA (ω)RB (ω)+XA (ω)XB (ω)+

RC (ω)RD (ω)+XC (ω)XD (ω))dω = ∫ξ(ω)dω (22)

where ξ(ω) is the energy spectral function of the dissipation 
energy. The value of the dissipation energy is equal to the in‐
tegral of its energy spectral function over the entire frequen‐
cy domain.

Given that the dissipation energy is composed of the su‐
perposition of various modes in the power system, in the 
analysis of low-frequency oscillation problems, the focus is 
on the low-frequency modes, particularly the interval oscilla‐
tion modes that significantly affect the power system stabili‐
ty. Therefore, the dominant oscillation modes must be fil‐
tered from the dissipation energy of various modes, and the 
damping contribution of the source must be assessed. If the 
frequency of the dissipation energy is divided into multiple 
frequency intervals with the modal frequency as the center, 
the dissipation energy at generator port i can be expressed as:

W D
Gi
= ∫ξ(ω)dω = ∫

ω1 - α1l

ω1 + α1u

ξ(ω)dω +

∫
ω2 - α2l

ω2 + α2u

ξ(ω)dω + ...+ ∫
ωk - αkl

ωk + αku

ξ(ω)dω (23)

W D
Gi
=W D

Gi
( f1 )+W D

Gi
( f2 )+ ...+W D

Gi
( fk )=

DGi
( f1 )+DGi

( f2 )+ ...+DGi
( fk ) (24)

where ωk is the angular frequency of the system mode k; αku 
and αkl are the upper and lower limits of the integration inter‐
val, respectively, which are used to calculate the dissipation 
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energy corresponding to mode k; fk is the oscillation frequen‐
cy corresponding to mode k (ωk = 2πfk); ( fk - αkufk + αkl ) is 
the entire integration range of the energy spectral function; 
and W D

Gi
( fk ) is the dissipation energy corresponding to mode 

k. The integration intervals for the dissipation energy of each 
mode are connected successively without any overlap. Given 
that the dissipation energy in the generator is consistent with 
the damping torque, DGi

( fk ) is defined as the EDF for mode 

k, which corresponds to generator i. Figure 1 illustrates the 
division of the theoretical integration intervals corresponding 
to different modes.

Based on (23), the GEDF is defined as:

GDGi
( fd )= ∫

ωd - βd

ωd + βd

(RA (ω)RB (ω)+XA (ω)XB (ω)+

RC (ω)RD (ω)+XC (ω)XD (ω))dω = ∫
ωd - βd

ωd + βd

ξ(ω)dω (25)

where GDGi
( fd ) is the GEDF; and (ωd - βdωd + βd ) is the in‐

tegration interval of the dissipation energy in frequency do‐
main corresponding to the dominant oscillation mode d, and 
βd is the optimal integration interval used to calculate the 
GEDF (generally set to be 0.1 Hz). Although some power 
systems may have two dominant oscillation modes with simi‐
lar (distant) frequencies that lead to overlapping (or vacant) 
parts in the selected integration interval, this phenomenon 
does not affect the accuracy or effectiveness of the GEDF. 
Figure 2 shows the selection process of the integration inter‐
vals.

According to (25), GDGi
( fd ) is the dissipation energy cor‐

responding to mode d. Under dominant oscillation mode d, a 
large value of GDGi

( fd ) for a source indicates high energy 

dissipation, which suggests that the source contributes abun‐
dant damping to the power system. Positive and negative val‐
ues of GDGi

( fd ) indicate a positive or negative contribution 

to the damping, respectively.

C. Relationship Between Spectral Function and Eigenvalues 
of Dissipation Energy

The time-domain response of a power system under ambi‐
ent conditions can be represented by the analysis solution 
given in (5). The relationship between the eigenvalues and 
energy spectral function is exemplified by using W D1

i . The 
terms DPi (t) and Dθ′i (t) can be expressed as:

DPi (t)=∑
k = 1

n

vpkupk P(0)eσkt sin(ωkt + φk )+ εnoiseP (26)

Dθ′i (t)=∑
k = 1

n

vθ′kuθ′kθ(0)(σke
σkt sin(ωkt + φk )+

ωke
σkt cos(ωkt + φk ))+ εnoiseθ′ (27)

where upk and vpk are the values of the left and right eigen‐
vectors corresponding to the active power variation for mode 
k, respectively; and uθ′k and vθ′k are the values of the left and 
right eigenvectors corresponding to the phase angle deriva‐
tive variation for mode k, respectively.

Performing Fourier transform F on DPi (t) yields:

DPi (jω)=F (∑k = 1

n

vpku
T
pk P(0)eσkt sin(ωkt + φk )+ εnoiseP) =

∑
k = 1

n

vpku
T
pk P(0)F (eσkt

ejωktejφk - e-jωkte-jφk

2j ) + εP (28)

where εP is the Fourier transform of the measurement noise 
in variable DPi (t).

Given that σk represents the real part of the eigenvalue 
and that only modes with positive damping are considered, 
the real part of the eigenvalues is negative for t > 0 in DPi (t). 
Therefore, after the linearity and frequency shift properties 
of the Fourier transform are leveraged, as shown in (29) and 
(30), (28) can be transformed into (30).

fP (t)= eσkt
ejωktejφk - e-jωkte-jφk

2j
(29)

F ( fP (t))=
ωk cos φk + (σk + jω)sin φk

(σk + jω)2 +ω2
k

(30)

DPi (jω)=∑
k = 1

n

vpku
T
pk P(0)

ωk cos φk + (σk + jω)sin φk

(σk + jω)2 +ω2
k

+ εP (31)

Similarly, applying Fourier transform to variable Dθ′i (t) re‐
sults in:

Dθ′i (jω)=∑
k = 1

n

vθ′ku
T
θ′kθ(0)

é

ë

ê
êê
ê3σkωk + 2jωωk cos φk

(σk + jω)2 +ω2
k

+

ù

û

ú
úú
ú(σ 2

k + jσkω - 2ω2
k )sin φk

(σk + jω)2 +ω2
k

+ εθ' (32)

where εθ′ is the Fourier transform of the measurement noise 
in Dθ′i (t).
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Spectrum
function
amplitude

f1 f2 f3 fk

α1u α1l α2u α3uα2l α3l
αku αkl

�

Fig. 1.　Division of theoretical integration intervals.
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Therefore, when (31) is multiplied by (32), W D1

Gi
 in (10) 

can be expressed as:

W D1

Gi
= ∫

-¥

+¥ A(jω)B(jω)*

2π
dω = ∫

-¥

+¥ DPi (jω)Dθ′i (jω)*

2π
dω =

∫
-¥

+¥

F(σkωkφkω)dω + εPθ′ (33)

F(σkωkφkω)=∑
k = 1

n

vpku
T
pkvθ'ku

T
θ'k P(0)θ(0)×

ωk cos φk + (σk + jω)sin φk

2π(σk + jω)2 +ω2
k

é

ë

ê
êê
ê3σkωk + 2jωωk cos φk

(σk + jω)2 +ω2
k

+

ù

û

ú
úú
ú(σ 2

k + jσkω - 2ω2
k )sin φk

(σk + jω)2 +ω2
k

*

(34)

where the term obtained by multiplying the measured noise 
εP or εθ′ is expressed as εPθ′.

Equation (33) indicates that for a system with n oscilla‐
tion modes, the energy dissipation in the frequency domain 
can be represented using the real and imaginary parts of the 
eigenvalues. The relationship between these parameters can 
be derived via (34).

Similarly, W D2

Gi
 in (10) can be expressed by function L in‐

volving σk, ωk, φk, and ω as:

W D2

Gi
=

1
2π ∫-¥+¥C(jω)D(jω)* dω = ∫

-¥

+¥

L(σkωkφkω)dω + εQU

(35)

where εQU is the term multiplied by the noise component.
Accordingly, the dissipation energy in the frequency domain 

can be represented by (36), which includes the eigenvalue:

W D
Gi
= ∫

-¥

+¥

F(σkωkφkω)+ L(σkωkφkω)dω + εPθ′+ εQU (36)

where the original functions εPθ′ and εQU are the noise terms, 
and their Fourier transforms are obtained by multiplying 
each element in the vector by the impulse function. In the 
spectral analysis without considering the fundamental fre‐
quency component, εPθ' and εQU can be disregarded.

Equation (36) can then be rewritten as:

W D
Gi
= ∫(F(σkωkφkω)+ L(σkωkφkω))dω = ∫ξ(ω)dω

(37)
Equation (37) shows that a certain functional relationship 

exists between the spectral function of the dissipation energy 
at the generator port and the real and imaginary parts of the 
eigenvalues derived from the analysis. The spectral function 
in each source also contains modal information regarding the 
power system. This phenomenon indicates that this paper 
successfully uses the energy spectral function as an indicator 
and reveals the feasibility of using various online tracking 
methods to assess the damping in each source.

IV. ASSESSMENT OF LOCAL DAMPING IN FREQUENCY 
DOMAIN UNDER AMBIENT DATA

A. Identification of Dominant Oscillation Mode Based on 
Dissipation Energy Spectrum Analysis (DESA)

As the GEDF described in Section III tracks the damping 

contribution of each source under ambient data, the domi‐
nant oscillation modes of the power system must be identi‐
fied. In this paper, the modal identification is achieved pri‐
marily by applying the DESA method, and the frequency of 
the dominant oscillation mode and the oscillation area of the 
power system under that mode can be obtained.

The spectral function of dissipation energy for generator 
port i can be expressed as:

ξi (ω)=Rξi
(ω)+ jXξi

(ω)= | ξi (ω) |Ð arctan
Xξi

(ω)

Rξi
(ω) (38)

where Rξi
(ω) and Xξi

(ω) are the real and imaginary parts of 

the spectral function, respectively. The spectral function can 
also be presented in terms of the magnitude and phase angle.

First, the amplitude spectrum of the spectral function is 
analyzed, and then the point with the maximum amplitude in 
the low-frequency oscillation band is identified. The frequen‐
cy corresponding to this point (fd) is the dominant oscillation 
frequency.

| ξi (ω) |
max

= | ξi (2πfd ) |     0.2 Hz £ fd £ 2.5 Hz (39)

Second, the spectral function value of fd is extracted from 
ξi (ω) of each generator, and its phase is calculated. Given 
that the sources participating in the dominant oscillation 
mode have a phase difference of 180° during the oscillation, 
the phases of the various sources can be categorized into 
three types based on their direction and magnitude. The first 
and second types are the sources with positive and negative 
phases, respectively, and these sources participate in the 
dominant oscillation mode. The third type has zero phase, in‐
dicating that the sources do not participate in the oscillation.

Identifying the oscillation frequency and area of the domi‐
nant oscillation mode could facilitate the development of 
strategies to enhance the local damping after assessment.

B. Online Tracking of Local Damping

Figure 3 shows a schematic of the online tracking of local 
damping under ambient data. The main steps of this method 
are described as follows.

System control center

Global positioning system
 

 WAMS

Measurement data from terminals of
various generator units

 

DESA

Data concentrator

Measurement

information

flow

Obtain steady-state data

and variations

ΔPGi, ΔQGi, ΔUGi, and ΔθGi

Calculate A(t), B(t),

C(t), D(t), and ξ(ω)

Amplitude
spectrum
analysis

Phase
spectrum
analysis

Compute the local

damping indicator GEDF

Results of

the local

damping

assessment

GDGi
( fd)

Fig. 3.　Online tracking of local damping under ambient data.
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Step 1: measurement data are obtained from each genera‐
tor port under ambient data using a phasor measurement 
unit. The obtained data include active power, reactive power, 
voltage magnitude, and voltage phase angle.

Step 2: the response data from Step 1 are preprocessed, 
and variations in DPi (t), Dθi (t), DQi (t), and DUi (t) are calcu‐
lated for the measurement data of each generator port.

Step 3: initial calculations are performed based on the 
aforementioned variations. The logarithm of the voltage am‐
plitude is obtained, and the derivative of the voltage phase is 
calculated with respect to time to obtain A(t), B(t), C(t), and 
D(t). Fourier transform is then conducted on these variables. 
The energy spectral function ξ(ω) is computed, and the DE‐
SA method is employed to determine fd and the partition of 
generators.

Step 4: based on fd and the energy spectral function ob‐
tained in Step 3 for each source, a suitable integration interval 
is used to calculate the local damping assessment index GEDF.

Step 5: the damping contributions of each source are esti‐
mated based on the GEDF, and the nature of the contribu‐
tion is determined by the sign of the GEDF.

C. Discussion

1)　Assumptions
Several theoretical assumptions are made in this paper, 

which may affect the accuracy of local damping assessment. 
The first assumption is that each source in the power system 
is equipped with a phasor measurement unit at its generator 
port, which enables real-time measurements of electrical 
quantities. The second assumption is that when the local 
damping is being tracked online, the system operates normal‐
ly under ambient data. The proposed method is inapplicable 
to damping assessment during oscillations caused by distur‐
bances in the power system. The third assumption is that dur‐
ing the local damping assessment, the values of some fre‐
quency components in the spectral function of the dissipa‐
tion energy are small and located between two closely 
spaced modes. It is difficult to precisely determine the modes 
to which they belong. However, since their effects on the local 
damping assessment are minimal, they can be ignored.
2)　Window Selection

Under simulations conducted in DIGSILENT software, a 
time step of 0.01 s is used. Accordingly, the sampling interval 
Ts is 0.01 s, and the sampling frequency of Fs = 1/Ts = 100 Hz. 
The window selection is crucial for assessing the local damp‐
ing. In power systems, a small window allows for rapid on‐
line acquisition of the damping characteristics, thus facilitat‐
ing timely adjustments to the unstable operating conditions 
of the power system. However, for an accurate local damp‐
ing assessment, the minimum frequency spacing df of the 
spectral function is determined by the ratio of the sampling 
frequency Fs to the window length N. Therefore, a large win‐
dow results in small df, leading to an accurate local damping 
assessment. Given that the proposed method primarily ad‐
dresses the low-frequency oscillation modes of the system, a 
df of less than 0.01 Hz is sufficient. Therefore, df = 0.01 Hz 
and N = Fs /df = 10000. In the calculation of GEDF, βd = 0.1 

Hz, and the integration interval is ( fd - 0.1 Hzfd + 0.1 Hz).
3)　Advantages

First, when a local damping assessment of the power sys‐
tem is conducted using a spectral function based on the dissi‐
pation energy, the coupling between modes is considered. In 
addition, the integration interval is small, leading to the pre‐
cise local damping assessment results closely aligned with re‐
al-world scenarios. Second, the energy spectral function de‐
rived in this paper enables modal partitioning when conduct‐
ing the local damping assessment. Finally, the proposed 
method requires minimal data and uses a short window 
length, making it suitable for online applications.

V. CASE STUDIES 

The proposed online tracking method of local damping is 
validated through simulation using a four-machine 11-bus 
power system with renewable energy sources and an actual 
power system in Northwest China. The aim of simulation is 
to demonstrate the effectiveness of DESA and GEDF.

A. Four-machine 11-bus Power System

Figure 4 illustrates the four-machine 11-bus power system 
with wind power sources. The original active power output 
of generator G2 in this system is 700 MW. In this paper, the 
active power output of G2 is adjusted to 100 MW. In addi‐
tion, a wind farm consisting of 120 wind turbines is connect‐
ed to bus 6 through a transformer with an active power out‐
put of 5 MW for each wind turbine. The dominant oscilla‐
tion mode of the initial power system is the weak damping 
mode, as indicated by the modal analysis results, which re‐
veals a damping ratio of 2.33% for the dominant oscillation 
mode of the power system.

The energy spectral function of the dissipation energy for 
each source in the power system is calculated using the mea‐
surement data. The dominant oscillation mode is then ob‐
tained using DESA. Analysis of the amplitude of the spec‐
tral function reveals that the dominant oscillation mode of 
the power system has a frequency of 0.6 Hz, as shown in 
Fig. 5, where Load1 and Load2 are two loads in the four-ma‐
chine 11-bus power system.

Two peaks are observed near the frequency of 0.6 Hz, but 
they belong to the same mode. Therefore, the frequency cor‐
responding to the maximum peak is used as the frequency 
for this mode. The phase of the spectral function is then ana‐
lyzed to determine the phase value corresponding to a fre‐
quency of 0.6 Hz. The results indicate that G1, G2, and the 
new source belong to the same area, whereas G3 and G4 
form another area.
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Fig. 4.　Four-machine 11-bus power system with wind power sources.
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A modal analysis is conducted with wind power source 
Gwind. Table I shows the comparison of modal analysis results.

The modal analysis reveals that the dominant oscillation 
frequency is 0.61 Hz. The results for the oscillation area di‐
vision are consistent with the results of DESA. This demon‐
strates the effectiveness of the DESA.

The damping ratio is currently considered as an assess‐
ment index. Given that damping is the sum of the contribu‐
tions from the local damping of each generator and load in 
the power system, this paper validates the effectiveness of 
the local damping index GEDF by modifying the length of 
line L67 (red line in Fig. 4) and comparing the trends of the 
damping ratio and sum of GEDFs. The original length of L67 
in the system is 10 km, and the length is increased or de‐
creased in increments of 0.5 km to observe the trends in the 
GEDF indices. Figure 6 presents the results.

The damping ratio of the power system is used to mea‐
sure the stability of the corresponding modes. Figure 6 
shows that as the line length increases from 8.5 km to 11 

km, the damping ratio of the dominant oscillation mode 
monotonically decreases, which is in accordance with actual 
physical laws. Similarly, the sum of GEDFs decreases mono‐
tonically with the increase of line length, and the trend is 
consistent with that of the damping ratio. This preliminary 
analysis demonstrates the effectiveness of the GEDF indices.

Unlike traditional synchronous generators, traditional dou‐
bly-fed asynchronous wind turbines lack inertial response or 
primary frequency regulation capabilities due to the decou‐
pling between their rotational speed and grid frequency, which 
affects the frequency regulation capabilities of power systems. 
Currently, virtual inertia control is integrated into wind tur‐
bine. However, the integration of virtual inertia control intro‐
duces coupling between the wind turbine and existing synchro‐
nous generators, causing significant changes in the electrome‐
chanical oscillation characteristics of the power system.

This paper analyzes and compares the presence of virtual 
inertia control in wind turbines as well as different droop 
control coefficient settings to demonstrate the effectiveness 
of the proposed method. Tables II-V present the results.

TABLE II
LOCAL DAMPING ASSESSMENT RESULT WITHOUT VIRTUAL INERTIA FOR 

WIND TURBINE

Generator or load

G1

G2

G3

G4

GEDF

1.83×10-4

2.29×10-4

-8.04×10-5

-4.13×10-5

Generator or load

Gwind

Load1

Load2

GEDF

-1.97×10-5

-1.45×10-4

-2.08×10-4

TABLE Ⅲ
LOCAL DAMPING ASSESSMENT RESULT WITH A VIRTUAL INERTIA 

COEFFICIENT KVD = 0.5 FOR WIND TURBINE

Generator or load

G1

G2

G3

G4

GEDF

2.01×10-5

3.14×10-5

7.45×10-7

−8.70×10-7

Generator or load

Gwind

Load1

Load2

GEDF

1.41×10-4

−1.74×10-4

−1.68×10-5

TABLE Ⅳ
LOCAL DAMPING ASSESSMENT RESULT WITH A VIRTUAL INERTIA 

COEFFICIENT KVD = 1 FOR WIND TURBINE

Generator or load

G1

G2

G3

G4

GEDF

5.21×10-6

2.26×10-5

−4.76×10-7

−2.86×10-6

Generator or load

Gwind

Load1

Load2

GEDF

1.89×10-4

−1.89×10-4

−2.28×10-5

TABLE Ⅴ
COMPARISON RESULTS OF SUM OF GEDFS AND DAMPING RATIO IN 

DIFFERENT SCENARIOS

Scenario

Without virtual inertia control

With virtual inertia control (KVD=0.5)

With virtual inertia control (KVD=1)

Sum of GEDFs

9.99×10-7

1.61×10-6

2.00×10-6

Damping ratio (%)

1.28

2.25

2.33

A
m

p
li

tu
d

e

0.004

0.006

0

0 10 20

0.052
-0.0057

0.0057

0

0.060 0.068

30 40 50

0.002

-0.002

-0.004

-0.006

-0.008

Frequency (Hz)

G1; G2; G3; G4; G
wind

; Load1; Load2

Fig. 5.　Amplitude of spectral function of four-machine 11-bus power system.

TABLE I
COMPARISON OF MODAL ANALYSIS RESULTS OF FOUR-MACHINE 11-BUS 

POWER SYSTEM

Analysis method

Eigenvalue analysis

DESA

Modal frequency (Hz)

0.61

0.60

Oscillation area division

(G1, G2), (G3, G4, Gwind)

(G1, G2), (G3, G4, Gwind)

2.8

2.7

2.6

2.5

2.4

2.3

2.2
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Fig. 6.　Trends of damping ratio and sum of GEDFs of four-machine 11-
bus power system.
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The results show that the GEDF of the wind turbine is nega‐
tive in the absence of virtual inertial control. Introducing virtu‐
al inertial control in a wind turbine changes the GEDF to a 
positive value, demonstrating that virtual inertial control tight‐
ens the coupling between the wind farm and the original pow‐
er system, thereby substantially boosting the damping contri‐
bution of wind farm to the power system. In addition, an in‐
crease in the droop control coefficient KVD amplifies the posi‐
tive damping contribution from the wind turbine.

A comparison of the relationship between the sum of 
GEDFs and damping ratio of the power system across various 
scenarios clearly reveals that the integration of virtual inertia 
control into wind farms enhances the overall damping charac‐
teristics of the power system. In addition, the consistent trends 
in the changes of the sum of GEDFs and damping ratio under‐
score the effectiveness of the proposed method.

B. Actual Power System in Northwest China

An actual power system in Northwest China, as depicted 
in Fig. 7, is studied in this subsection. The power system in‐
cludes wind power sources, photovoltaics (PVs), and high-
voltage direct current components.

The DESA method is employed to extract the modal infor‐
mation of the power system. Figure 8 illustrates the ampli‐
tude of the energy spectral function, where G represents the 
generator, and the subscripts show the corresponding type 
(e.g., wind denotes the wind power generator represented by 
A-F; and PV denotes the PV generator represented by 1-6). 
The amplitude shows two peaks in the low-frequency inter‐
val corresponding to the frequencies of 1.51 Hz and 2.68 
Hz. Given that the frequency interval for low-frequency os‐
cillations should be between 0.2 Hz and 2.5 Hz, the domi‐

nant oscillation mode frequency of the system is determined 
to be 1.51 Hz.

The phase of each source at 1.51 Hz following the analy‐
sis of energy phase spectrum is obtained, as shown in Fig. 9. 
The sources in Areas 1 and 2 exhibit negative and positive 
phases, respectively. The phases of the wind and PV sources 
are zero. The oscillation areas of the power system show 
that the wind and PV sources do not participate in the oscil‐
lation.

Tables VI-IX present the results of the local damping as‐
sessment for the actual power system.

TABLE Ⅶ
GEDF VALUES FOR WIND TURBINES IN AREA 1

Generator

GwindA

GwindB

GwindC

GEDF

9.53×10-7

9.54×10-7

9.06×10-7

Generator

GwindD

GwindE

GwindF

GEDF

9.05×10-7

9.83×10-7

9.52×10-7
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Fig. 9.　Phase of energy spectrum function of actual power system.
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Fig. 7.　Actual power system in Northwest China.

TABLE Ⅵ
GEDF VALUES FOR SYNCHRONOUS GENERATORS IN AREA 1

Generator

GA1

GA2

GA3

GEDF

2.65×10-5

2.65×10-5

2.65×10-5

Generator

GA4

GA5

GEDF

1.72×10-5

1.26×10-5
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The effectiveness of the proposed method in the actual 
power system is also validated. The lengths of certain trans‐
mission lines in the power system are adjusted, and the 
trends of the system damping ratio and sum of GEDFs are 
compared, as shown in Fig. 10. The lengths of transmission 
lines AC13 and AC14 are modified (red lines in Fig. 7) to sim‐
ulate the effect. The initial lengths of both lines are 512 km, 
and adjustments are made with 10 km intervals by either in‐
creasing or decreasing their lengths.

The results indicate that the damping ratio and sum of 
GEDFs decrease gradually with the increase of line length. 
The consistent trends in their variations confirm the effec‐
tiveness of the proposed method.

Load fluctuations with different signal-to-noise ratios 
(SNRs) are introduced into the power system to illustrate the 
stability of the proposed method. The relative magnitudes of 
the GEDF indices for various generators under different 
noise levels and the nature of their contributions to damping 
are analyzed. SNRs of 34, 35, and 36 are considered. Fig‐
ures 11 and 12 present the simulation results.

The simulation results indicate that under different SNRs, 
the relative magnitudes of GEDFs of various generators in 
the power system and the nature of their damping contribu‐
tions remain consistent. The results suggest the stability of 
the proposed method in conducting online tracking of local 
damping of individual generators. The renewable energy gen‐
erators in the power system contribute minimally to the over‐
all damping, whereas the synchronous generators play a ma‐
jor role.

To further demonstrate the effectiveness of the proposed 
method in power systems with renewable energy sources, 
this paper compares the local damping assessment results 
without wide-area damping controllers (WADCs) with those 
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TABLE Ⅷ
GEDF VALUES FOR SYNCHRONOUS GENERATORS IN AREA 2

Generator

GB1

GB2

GB3

GB4

GEDF

-8.73×10-6

-1.41×10-5

-1.18×10-5

-1.17×10-5

Generator

GB5

GB61

GB62

GEDF

-1.32×10-5

-1.29×10-5

-1.29×10-5

TABLE Ⅸ
GEDF VALUES FOR PV GENERATORS IN AREA 2

Generator

GPV1

GPV2

GPV3

GEDF

1.19×10-9

1.19×10-9

1.16×10-9

Generator

GPV4

GPV5

GPV6

GEDF

9.48×10-10

8.81×10-10

1.57×10-9

412



SUN et al.: ONLINE TRACKING OF LOCAL DAMPING IN POWER SYSTEMS WITH HIGH PROPORTION OF RENEWABLE ENERGY...

with WADCs.
In the scenarios with WADCs, a compact design based on 

a power system stabilizer (PSS) is used, which adjusts the 
relative residual index by targeting specific dominant oscilla‐
tion modes and by enhancing the control loop selection strat‐
egy. The PSS-based WADC is as straightforward as the clas‐
sical PSS in which only two lead-lag phase compensation 
sources are incorporated [27].

The local damping indices of the power system with and 
without WADCs are assessed separately. The changes in the 
sum of GEDFs and damping ratio in both scenarios are com‐
pared, as presented in Table X.

Theoretically, the addition of a WADC to the power sys‐
tem should enhance its stability, which is confirmed by simu‐
lation results. The results also indicate that the damping ratio 
with WADC is higher than that without WADC. In addition, 
the sum of GEDFs is greater in the system with WADC than 
that without it. These findings are aligned with those of theo‐
retical analysis and further validate the effectiveness of the 
proposed method.

VI. CONCLUSION 

This paper proposes an online tracking method of local 
damping in power systems with high proportion of renew‐
able energy sources under ambient data. The expression of 
dissipation energy in frequency domain at the generator 
ports is derived, which enables the spectral functions for the 
dissipation energy in each generator to be obtained. The 
dominant oscillation modes of the power system are identi‐
fied by analyzing the amplitude and phase spectra of the 
spectral functions. The EDFs for each generator are then ob‐
tained by integration with the selected frequency interval. 
The simulation results demonstrate the effectiveness of the 
proposed method. The relationship between the eigenvalues 
and spectral functions is also analyzed. The indicators re‐
main stable under varying ambient disturbances and accurate‐
ly reflect the relationship between the damping contributions 
of different generators and their relative magnitudes. Notably, 
the proposed method requires the system to be in a normal op‐
eration state, and small disturbances may render the operation 
data unsuitable for the online tracking of local damping.

Future research work should consider the introduction of a 
decision-making step during the data acquisition process to 
extend the proposed method to a broad range of scenarios 
for the online tracking of local damping in power systems.
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