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Abstract—The high proportion of renewable energy integra-
tion and the dynamic changes in grid topology necessitate the
enhancement of voltage/var control (VVC) to manage voltage
fluctuations more rapidly. Traditional model-based control algo-
rithms are becoming increasingly incompetent for VVC due to
their high model dependence and slow online computation
speed. To alleviate these issues, this paper introduces a graph at-
tention network (GAT) based deep reinforcement learning for
VVC of topologically variable power system. Firstly, combining
the physical information of the actual power grid, a physics-in-
formed GAT is proposed and embedded into the proximal poli-
cy optimization (PPO) algorithm. The GAT-PPO algorithm can
capture topological and spatial correlations among the node fea-
tures to tackle topology changes. To address the slow training,
the ReliefF-S algorithm identifies critical state variables, signifi-
cantly reducing the dimensionality of state space. Then, the
training samples retained in the experience buffer are designed
to mitigate the sparse reward issue. Finally, the validation on the
modified IEEE 39-bus system and an actual power grid demon-
strates superior performance of the proposed algorithm com-
pared with state-of-the-art algorithms, including PPO algorithm
and twin delayed deep deterministic policy gradient (TD3) algo-
rithm. The proposed algorithm exhibits enhanced convergence
during training, faster solution speed, and improved VVC per-
formance, even in scenarios involving grid topology changes
and increased renewable energy integration. Meanwhile, in the
adopted cases, the network loss is reduced by 6.9%, 10.8%, and
7.7%., respectively, demonstrating favorable economic outcomes.

Index Terms—Voltage/var control, grid topology, renewable
energy, graph attention network, deep reinforcement learning.
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[. INTRODUCTION

ITH the increasing penetrations of renewable energy

resources such as wind and solar, the randomness
and fluctuation of these resources bring more uncertainty to
power systems, resulting in more frequent and severe volt-
age fluctuations [1], [2], which poses significant challenges
for intraday real-time voltage optimization and control. If the
voltage cannot be regulated to the normal range in a timely
manner by the reactive power compensation devices, the
voltage may violate constraints or collapse, resulting in cata-
strophic accidents [3], [4]. Therefore, it is necessary to study
the voltage/var control (VVC) methods in adapting to the un-
certainties of wind power and load demand.

Many studies have been conducted to solve the voltage or
reactive power optimization and control problem considering
the uncertainties of renewable energy generation and load de-
mand [5]-[7]. The commonly used solution methods are
mainly divided into four categories: stochastic programming
(SP), robust optimization (RO), interval programming (IP),
and deep reinforcement learning (DRL). In SP, uncertain
variables are expressed by specific probability density as dif-
ferent scenarios [8]. In [9], a two-stage SP model consider-
ing the uncertainties of renewable energy generation and
load demand is proposed to achieve voltage optimization
and control. However, the SP may result in operation con-
straint violations and a high computation burden. RO deals
with the uncertainty of interval uncertain sets [10]. Refer-
ence [11] proposes a distributed adaptive robust VVC meth-
od to ensure the operation constraints are satisfied. However,
RO is only applicable to convex models. In addition, it may
neglect the economic objectives. IP regards the uncertain
variables of the reactive power optimization model as an in-
terval value, and then formulates a reactive power optimiza-
tion model considering interval uncertainty [12]. In [13], the
uncertain values are expressed as different intervals, and a re-
active power optimization model with interval uncertainties
is established. Then, the optimization strategy for satisfying
the voltage constraints is obtained. However, the perfor-
mance of IP is directly affected by the formulated uncertain-
ty model.

Unlike SP, RO, and IP, DRL is an artificial intelligence al-
gorithm that does not rely on an accurate physical model. A
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VVC method based on the deep deterministic policy gradi-
ent (DDPG) algorithm is proposed in [14], which verifies
the applicability of DDPG under the uncertainty of renew-
able energy output. However, the stability and convergence
speed of DDPG are worse than the proximal policy optimiza-
tion. An off-policy DRL algorithm based on soft actor-critic
(SAC) is proposed in [15], which can achieve VVC with re-
newable energy resources. However, all samples in the expe-
rience buffer are randomly sampled with equal probability,
which may result in unstable and low efficient training pro-
cess. Reference [16] proposes a voltage control method
based on deep meta-reinforcement learning to improve the
adaptability of DRL algorithm to new grid operation condi-
tions and system parameters. However, the proposed method
suffers the sparse reward problem, which can lead to slow
training. To cope with the impact of grid topology changes
on VVC, [17] proposes a simplified DRL algorithm based
on the side-tuning transfer learning algorithm. The proposed
algorithm improves the adaptability to different grid topolo-
gies while achieving voltage control. However, the proposed
algorithm can only be applied to topologies similar to the
training topology. A graph convolutional network (GCN) -
based DRL algorithm is developed in [18], which is used to
deal with the voltage control issue when the topology of the
power system changes. However, the importance difference
in each node in the power system is not considered. It is
well known that wind turbine nodes or load nodes with
heavy loads are more likely to cause voltage problems.
Therefore, these nodes should be given a higher priority for
voltage regulation. In summary, existing DRL-based solu-
tions show two significant problems as follows. Firstly, the
topological variations are difficult to capture using a classi-
cal fully connected neural network (FCN) model [18]. When
the grid topology changes, the trained model may lead to
poor application performance in different grid topologies.
Even though some algorithms employ graph neural net-
works, they cannot effectively leverage the physical knowl-
edge of power systems. Secondly, model training requires a
significant amount of time, and reinforcement learning en-
counters the sparse reward problem, leading to slow learning
by the agent or even inability to learn the optimal strategy.

With consideration of the above problems, a graph atten-
tion network based PPO (GAT-PPO) algorithm for power
systems with high proportion of wind power is proposed in
this paper. Firstly, wind turbine nodes and load nodes with
more active power are given larger weights. Then, the calcu-
lation of the attention coefficient in the GAT is improved
based on the weights. Secondly, the improved ReliefF algo-
rithm (defined as ReliefF-S algorithm hereafter) extracts the
critical features affecting system stability. Then, these fea-
tures are used as the state variables of the GAT-PPO algo-
rithm to reduce the dimension of state space. Finally, the
samples retained in the experience buffer are improved to
mitigate the sparse reward problem. The optimization and
control of voltage can be realized based on the above im-
provement strategy. The major contributions of this paper
can be summarized as follows.

1) The proposed GAT-PPO algorithm integrates the physi-
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cal information of the power system into the GAT, and it
can give more attention to the important nodes during volt-
age regulation. Moreover, compared with the traditional
DRL algorithms, the proposed GAT-PPO algorithm exhibits
better transfer learning performance and greater adaptability
to various grid topologies by integrating with GAT.

2) The critical state variables for DRL training are
screened out based on the ReliefF-S algorithm, which can re-
duce the dimension of state space and improve the training
efficiency of the algorithm. Additionally, in light of the prac-
tical issues of VVC, a reward function construction method
based on the constraints first and objective later is proposed,
providing a reference for related research.

3) Training samples retained in the experience buffer are
improved to mitigate the sparse reward problem. In the im-
proved training samples, some samples with large temporal
difference errors are retained as positive experiences to
guide the agent in training toward the correct direction.
Meanwhile, a small number of samples that violate con-
straints are also retained, which act as negative experiences
to warn the agent to avoid adopting the action strategies that
violate constraints. An expanded boundary in terms of man-
ageable grid topologies of the proposed GAT-PPO algorithm
is found.

The rest of this paper is organized as follows. Section II
introduces the DRL model for intraday VVC. The physics-in-
formed GAT is presented in Section III. Section IV elabo-
rates the state space reduction based on the ReliefF-S algo-
rithm. Section V introduces intraday VVC based on GAT-
PPO algorithm. Comparative studies are shown and dis-
cussed in Section VI. Finally, conclusions are drawn in Sec-
tion VIL

II. DRL MODEL FOR INTRADAY VVC

The PPO algorithm is an improvement upon the trust re-
gion policy optimization (TRPO) algorithm, which is capa-
ble of handling continuous and discrete action spaces with
good convergence [19]. The PPO algorithm consists of two
neural networks: policy network and value network.

In the paper, the state space, action space, and reward
function of the DRL model for VVC are designed and de-
fined. The concise schematic diagram of the proposed GAT-
PPO algorithm is shown in Fig. 1. The detailed settings are
as follows.

A. Agent and Environment

The system operator or control program is set as an agent.
The agent contains two neural networks: an improved GAT
and an FCN. The power system dynamic simulator interact-
ing with the agent is set as environment.

B. State Space

The grid state information in the model includes the wind
turbine output, traditional unit output, load demand, voltage
distribution, branch power distribution, reactive power out-
put of dynamic reactive power compensation device, and ad-
jacency matrix. The state space S, is as follows:

S={P/.0/.P{.0].P;.0;.U.S/.0}.Z,} (1
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Fig. 1. Concise schematic diagram of proposed GAT-PPO algorithm.

where P/ and Q] are the sets of active and reactive power
outputs of all wind turbines at time ¢, respectively; P and
Q¢ are the sets of active and reactive power outputs of tradi-
tional units at time ¢, respectively; P and Q" are the sets of
active and reactive power demands of all loads at time ¢, re-
spectively; U, is the set of voltage amplitudes of all nodes at
time # S? is the set of apparent power amplitudes of all
branches at time #; Q7 is the set of reactive power outputs of
all dynamic reactive power compensation devices at time ¢;
and Z, is the adjacency matrix of the system at time ¢.

C. Action Space

The action space represents the solution space. In this pa-
per, the following VVC measures are considered: reactive
power regulation of each static var generator (SVG) config-
ured in the wind farm and reactive power regulation of each
static var compensator (SVC). The action space 4, is defined
as:

4,={A07, A0 } )
where AQ? is the set of reactive power variations of all

SVGs at time t; and AQC is the set of reactive power varia-
tions of all SVCs at time .

D. Reward Function

The reward is crucial in guiding the learning direction of
the agent. In the study, a reward function construction meth-
od based on the constraints first and objective later is de-
signed in the paper. The main idea is to divide the reward
function according to the constraint conditions and the objec-
tive function. The objective function is considered only
when the states satisfy the constraints. Otherwise, a penalty
value is returned.

In this paper, the reward is designed based on the network
loss, and the network loss is the objective function of the
model. The smaller the network loss, the larger the reward.
The mathematical expression is:

R”_ (W

loswt e,) x 100% 3)
Sy

where P, is the preset network loss at time #;, P, , is the

actual network loss at time #; S is the base capacity, typical-

loss, t

217

ly 100 MVA; and e,=0.25 is the reward adjustment coeffi-
cient.

In this paper, the penalty is designed based on system se-
curity and stability constraints. The constraints consist of
four parts: branch power constraints, node voltage con-
straints, generator reactive power constraints, and generator
active power constraints. To ensure the safe and stable opera-
tion of the power system, the values of these variables need
to be within specified ranges. When designing the penalty,
the more serious the violation, the larger the penalty. In-
spired by [20], the mathematical expression of the designed
penalty is given as:

b max max min
S MBit MBi S Bi Ui B Ui
Rf = ;{P B max /1 max min
S\ s = U. —U;
k __ pmax _ pmin max __ )min
), 2PGi.t PGi PGi z 2QG1 t Gi Gi
P P max __ P min 0 max __ ,)min
i=1 Gi Gi Gi Gi

“4)
where A, Ay, Ap, and A, are the penalty factors of branch
power violation, node voltage violation, unit active power vi-
olation, and unit reactive power violation, respectively; b is
the number of branches; »n is the number of nodes; & is the
number of generators; Sy, , is the apparent power of branch i
at time #; Sp™ is the maximum apparent power allowed by
branch i; U,, is the voltage of node i at time ¢ U™ and
U™ are the maximum and minimum voltages of node i, re-
spectively; P, is the active power of generator 7 at time ¢
P> and P2 are the maximum and minimum active power
of generator i, respectively; O, is the reactive power of
generator i at time £ and Q%™ and Qpf" are the maximum
and minimum reactive power of generator i, respectively.
Each item in (4) is normalized to eliminate the inconsistency
problem of dimension and magnitude, the values of which
range from 0O to 1. Through multiple tests with different cas-
es, the values of all four penalty factors are set to be 0.25 in
the paper.

According to the designed reward and penalty, the mathe-
matical expression of the total reward function is given as:

—Ry, 5 28
o Rr.t_Rf,t

cons

R Q)

s, €S

cons

where S, is the set of state constraints; R, is the penalty
given for violation of constraints, and its purpose is to en-
able the agent to make decisions within constraints; and R,
is the reward given when all constraints are satisfied, en-
abling the agent to find the optimal decision based on the
feasible decisions.

According to the mathematical expression of the total re-
ward function, it can be observed that when any constraint
is violated, the agent gets a negative reward according to
(4). The purpose of this setting is to guide the agent to give
an action that satisfies all constraints. When all constraints
are not violated, it can be observed from (4) and (5) that the
closer the node voltage is to 1 p.u., the larger the positive re-
ward value the agent receives under the same other con-
straints. The purpose of this setting is to guide the agent to
learn an action that can obtain an ideal voltage distribution.
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III. PHYSICS-INFORMED GAT

A. GAT

The GAT introduces the attention mechanism into the
graph neural network, which obtains the overall information
of the network from the local information by calculating the
importance of adjacent nodes to the central node. The advan-
tage of the GAT is that it does not require any kind of costly
matrix operation or depends on knowing the graph structure
upfront, making it directly applicable to inductive learning is-
sues [21]. Therefore, GAT has a strong transfer learning per-
formance, which is conducive to being applied to voltage
control in various grid topologies.

The expression of the attention coefficient is given as [21]:

exp(LeakyReLU (a" [Wh,||Wh,])
S exp(LeakyReLU(a" [Wh,|Wh,])(©)

keM,

a,;=soft mjax (e;)=

where ¢ is the importance of node j to node i; W is the
weight matrix; a is the parameter of a single-layer feedfor-
ward neural network; LeakyReLU is the activation function;
M, is the set of neighbor nodes of node i(j € M,); h;, h;, and
h, are the characteristics of nodes i, j, and k, respectively;

and || represents the concatenation operation.

B. Improvement of GAT

Extensive physical knowledge has been developed in pow-
er systems, and the application of the GAT in the field of
electric power should be combined with the actual situation
in the field. In power systems, the wind turbine nodes and
load nodes are the key ones that affect voltage safety and
stability in the power system with the integration of wind
power. The higher the active power of these nodes, the more
likely voltage safety and stability issues are to occur [22].
Therefore, the larger the active power of these nodes, the
more attention should be paid during voltage regulation. In
the paper, the attention to these nodes in the voltage regula-
tion process is enhanced by assigning them larger weights in
the attention coefficients. The improved GAT is called the
physics-informed GAT.

The weight coefficients of wind turbine and load nodes
are defined as:

PW
l=—r=  PI#0 or P;,#0
' Pmml ' |
. Pi w L (7
Bi= pL P/#0 or P,#0
mmt
,, ﬁ,, 0.9 PW PL 0

where superscripts W and L denote the sets of wind turbine
nodes and load nodes, respectively; B and p, are the
weight coefficients of wind turbine node i and load node i at
time ¢, respectively; P}’ and P}, are the active power of wind
turbine node i and load node i at time ¢, respectively; and
Py . and PL. , are the minimum active power of all wind
turbines and the minimum active power of all loads at time
t, respectively.

According to the above calculation method of weight coef-
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ficient, it can be observed that the larger the active power of
node i, the larger its weight coefficient value. For each load
or wind turbine node whose active power is not equal to 0,
the weight coefficient is multiplied by the corresponding at-
tention coefficient e;. For other nodes, e, is multiplied by
0.9. Therefore, the key wind turbine and load nodes can be
paid more attention through the improved GAT.

IV. STATE SPACE REDUCTION BASED ON RELIEFF-S
ALGORITHM

One of the important causes for slow training and non-
convergence of reinforcement learning is that the dimension
of its state space or action space is too large. To solve the
problem, a state space reduction strategy is proposed. The
key features that have a great influence on voltage stability
are obtained through the method of key feature extraction,
and then these key features are taken as state variables of re-
inforcement learning. The method can reduce the state space
dimension and accelerate the convergence of the model.

The ReliefF algorithm is an efficient feature extraction al-
gorithm that assigns weights to features based on their corre-
lation with the labels. The feature whose weight is less than
the setting threshold value will be removed, and then the op-
timal feature subset can be obtained [23]. Since the algo-
rithm does not consider the correlation among samples when
determining the homogeneous and heterogeneous samples, it
may lead to inaccurate judgment of the homogeneous and
heterogeneous samples, ultimately affecting the identification
of key features. Furthermore, the correlation between two
samples is not considered when calculating the weight.

To address the above problems, the Spearman correlation
coefficient is adopted to improve the ReliefF algorithm as
the ReliefF-S algorithm. The reason for using the Spearman
correlation coefficient is that it does not require a specific
distribution between variables. The specific methods of the
improvement are described as follows.

Firstly, the Spearman correlation coefficient p [24], as
shown in (8), is used to replace the original sample category
judgment formula of the ReliefF algorithm, thereby helping
accurately identify homogeneous and heterogeneous samples.
Secondly, (8) is multiplied by the sample distance d(-) [23],
so the overall correlation among samples is considered when
calculating the weight contribution. The expression of im-
proved weight is shown in (9).

z(x -5y~ 7)

®)
/E(x -X (-3
, g pd(x,, &P pdx.M.f)
W 221 i
©)

where x; and y, represent two samples, respectively; x and y
represent the average values of the two samples, respective-
ly; n, is the total number of features in the sample; f; is the
feature; w; is the weight of f;; H, and M, are the J™ near-
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neighbor homogeneous samples and heterogencous samples
of sample x,, respectively; d(x;, H,.f;) or d(x;,M,f;) repre-
sents the distance between samples x; and H; or M; on f,, re-
spectively; m is the number of iterations of the algorithm; g
is the number of near-neighbor homogeneous samples; P(/)
is the probability of label /; /. is the label of sample x;

P(l, ) is the probability that sample x; belongs to some kind
d(xﬂ f)

of label; z is the weight contribution of sample

x, and g near- nelghbor homogeneous samples on f; and
S i Py dx,M.[)
g A1-pPd)  mg
sample x; and all near-neighbor heterogeneous samples on f..
Finally, the key factors affecting the system voltage stabili-
ty are screened out based on the proposed ReliefF-S algo-
rithm. These key factors are the state variables used in DRL
training.

is the weight contribution of

V. INTRADAY VVC BASED ON GAT-PPO ALGORITHM

A. Design of Experience Buffer

A lack of effective reward information will lead to slow
learning or even failure to learn the optimal strategy. To miti-
gate the sparse reward problem, the samples retained in the
experience buffer are improved in this paper. The designed
experience buffer retains both samples with a large temporal
difference error and a small number of samples that violate
voltage constraints. The former is used as a positive experi-
ence to guide the agent to train in the right direction, while
the latter is used as a negative experience to warn the agent
to avoid action strategies that violate constraints.

B. GAT-PPO Algorithm for Intraday VVC

This subsection introduces the structure and the training
process of the proposed GAT-PPO algorithm.

The structure of the proposed GAT-PPO algorithm is
shown in Fig. 2. It mainly includes three parts: the improved
GAT, policy network, and value network. Unlike the tradi-
tional PPO algorithm, the state information of the proposed
GAT-PPO algorithm needs to output node features through
the GAT. The GAT contains / layers. The policy network
and value network are constructed by the deep neural net-
work, and their detailed structures are as follows. The policy
network is responsible for the sequential decisions of VVC,
which consists of two parts: the policy layer and the action
layer. During training, the observed power system state vari-
ables are first input into the GAT to generate the node fea-
ture set. Then, the node feature set is input into the policy
layer for training. Finally, the output of the policy layer is in-
put to the action layer, and the action layer outputs action.

The value network maps the system state S, to the expect-
ed future cumulative rewards, which contains a state value
layer. During training, the observed power system state vari-
ables are first input into the GAT to generate the node fea-
ture set. Then, the node feature set is input into the state val-
ue layer for training. Finally, the state value layer outputs
the state value function.
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Policy network

FCN

Improved GAT

State value
function

Fig. 2. Structure of proposed GAT-PPO algorithm.

The objective function of conventional policy gradient
based DRL optimization is given as [19]:

L” (0)=E[log, m,(as,)4,] (10)

where 6 is the policy parameter; E[] represents the empirical
average over finite samples; s, and a, are the state and action
at time ¢, respectively; 7, is a stochastic policy; and /3, is an
estimator of the advantage function at time ¢.

The objective function of the value function L"(}) can be
formulated as:

(11)

V;w.get(sr):rzn+VV¢(51+1) (12)
where ¢ is the value function parameter; y €[0,1] is the dis-
count factor; V,(s,) is the state value function at time s,; r,, |
is the reward at time #+1; and V;"*'() is the target value of

TD error, and the parameter can be updated by the stochas-
tic gradient descent algorithm according to the gradient
VL (¢).

The training process of the proposed GAT-PPO algorithm
is shown in Fig. 3, where r,(0)=n,(a/s,)/r, (als,) denotes

L' (@)=EW [ (s,)~ V, (s,)]

the ratio of probability of action a, under the new policy and
old policy; and L“"(6) indicates that the clipping mecha-
nism in [19] is used to constrain the variation range of r,(6).
The training of the improved GAT is an end-to-end process.
The improved GAT and the FCN are trained at the same
time, and the error is transmitted and optimized through the
backpropagation in the entire model. During training, the pol-
icy network continuously interacts with the VVC training en-
vironment, and the environment sends the experience tuples
<st,a[, rHl,sM> to the experience buffer to form finite sam-
ples. Then, the samples are transmitted to the policy network
and the value network. The update processes of the policy
network and the value network are described as follows.
1) Policy Network

The sequences of power system state variables are sepa-
rately input into two action networks, resulting in two policy
distributions. Among them, one is for the new policy and the
other is for the old policy. According to the new and old pol-
icy distributions, the probabilities for selecting each action
under both policies are computed separately. Then, the proba-
bility of the new policy is divided by the probability of the
old policy to obtain the ratio of policy probability »,(6). The
objective function value of the improved GAT-PPO algo-
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rithm is calculated using the advantage function and the ra-
tio of policy probability. Subsequently, the negative of the
objective function is taken as the loss function of the neural
network. The parameters of the policy network are updated
through backpropagation using the loss function. Finally, a
new policy satisfying the clipping requirements is obtained.

Samples (length: ¢)
{Sgs Aoy 115 8105481, A T,

8205 ++es LSe1s Aoty Ter S Update ¥, with gradient

I VL"(¢) by stochastic
3 Improved GAT-PPO 3 gradient descent
| l /57

Value networkH l Vi(sia1)

i
L mlals)
|
|

ﬂ('),),(,(allsl)

i A
Experience ¢

buffer |

Policy network L)

Update x, with gradient

VL P(9) by stochastic
gradient descent

Action a,

VVC training
environment

Experience tuple
$Sp Aps Tyt Sy

Fig. 3. Training process of proposed GAT-PPO algorithm.

2) Value Network

The observed power system state variables are input into
the value network to obtain the corresponding value func-
tion. The discounted reward is computed based on the dis-
count reward calculation formula G,= zy”r (u=0,

1,...,0). Then, the advantage function is calculated. The val-
ue network parameters are updated by computing gradient
with respect to the function in (11) and performing back-
ward propagation.

When the loss function values of both the policy network
and the value network are stable and close to a small value,
and the moving average reward is positive and tends to stabi-
lize, it indicates that the algorithm has converged.

t+u+1

VI. CASE STUDIES

A. Case Overview

In the paper, the modified IEEE 39-bus system and an ac-
tual power grid are analyzed as cases. The single-line dia-
gram of the modified IEEE 39-bus system is shown in Fig.
4, and the symbol “W” and “G” represent the wind turbine
and traditional generator, respectively. The modifications of
the IEEE 39-bus system are described as follows. The tradi-
tional generators at buses 32, 35, 37, 38, and 39 are replaced
by wind turbines. After replacement, the penetration rate of
wind power is 70%, which means that the system is a power
system with high proportion of wind power. The SVGs are
configured at each wind turbine bus with a capacity range of
+20% of the total active power of wind turbines at each bus.
The SVCs are configured at buses 2, 3, 9, 12, 25, 27, and
29 with a capacity range of £150 Mvar. Loads on buses 31
and 39 are removed. The normal voltage ranges of the load
bus and the traditional generator bus are set to be 0.95-1.05
p.u. and 0.9-1.1 p.u., respectively. Considering the situation
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that the wind turbine bus should have a certain voltage sta-
bility margin, its normal voltage range is set to be 0.99-1.06
p.u.. The actual power grid is a power system with the inte-
gration of wind power comprising 222 bus nodes. The input
dimensions of the GAT are 39x6 and 222x6 in the modified
IEEE 39-bus system and the actual power grid, respectively.
The hidden layer dimension is 8, and the activation function
is LeakyReLU. The number of heads in the GAT is 8. The
output dimensions of the GAT are 39x2 and 222x2 in the
modified IEEE 39-bus system and the actual power grid, re-
spectively. The state space dimensions of the two systems
are 220 and 1102, respectively. The action space dimensions
of the two systems are 12 and 40, respectively.
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Fig. 4. Single-line diagram of modified IEEE 39-bus system.
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The simulation environment of power systems is provided
by PSSE software in the paper. The annual operation data of
an actual power system with the integration of wind power
are scaled to the modified IEEE 39-bus system, generating
numerous operation data. Meanwhile, the forecasting data of
load and wind power are processed as follows. The sample
data are generated by setting the forecasting errors from the
operation data of the modified IEEE 39-bus system, with a
maximum forecasting error of 20% for wind power and 15%
for load power. To change the operation conditions during al-
gorithm training, different grid topologies are selected in the
two systems. The grid topology changes are achieved by dis-
connecting the following transmission lines one at a time. In
the modified IEEE 39-bus system, four different grid topolo-
gies are selected: (D no disconnecting; 2 the line between
bus 5 and bus 6; @ the line between bus 16 and bus 24;
and @ the line between bus 22 and bus 23. In the actual
power grid, eight different grid topologies are randomly se-
lected in the same way. Then, the DRL algorithm is trained
based on these data.
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B. Screening of State Variables Based on ReliefF-S Algorithm

The modified IEEE 39-bus system is used as a case to il-
lustrate the screening of state variables. To obtain the sample
data, the active power margin of the system is calculated by
using the annual operation data in the modified IEEE 39-bus
system. When the active power margin of the sample is larg-
er than 10%, the sample is a voltage-stable sample. Other-
wise, the sample is a voltage-unstable sample. In this paper,
16529 voltage-stable samples and 15951 voltage-unstable
samples are obtained. Since the branch power is allowed to
exceed the limit to a certain extent without affecting the volt-
age stability, the branch power can be screened. The weights
of 34 branches are shown in Table I.

TABLE I
WEIGHTS OF 34 BRANCHES

From bus  To bus Weight From bus  To bus Weight
4 5 0.2176 1 2 0.1236
10 13 0.2073 2 25 0.1058
13 14 0.2048 4 14 0.1057
5 6 0.2047 23 24 0.1050
6 7 0.2008 8 9 0.1038
11 0.1902 9 39 0.1038

25 26 0.1840 26 29 0.1014
5 8 0.1764 26 28 0.0970
10 11 0.1762 2 3 0.0918
3 4 0.1687 26 27 0.0880
14 15 0.1653 3 18 0.0857
1 39 0.1434 17 18 0.0824
16 21 0.1420 17 27 0.0792
15 16 0.1418 28 29 0.0694
21 22 0.1373 16 19 0.0625
16 24 0.1284 22 23 0.0576
7 8 0.1245 16 17 0.0419

It can be observed from Table I that the weight values of
the 34 branches vary greatly, with the maximum value being
5.2 times the minimum value. It indicates that different
branches contribute differently to voltage stability. The aver-
age weight of 34 branches is 0.1299. Meanwhile, it is notice-
able that the weight values are mostly concentrated above
0.1. Therefore, 0.1014 is selected as the weight threshold. Fi-
nally, the apparent power of 24 branches is retained as the
state variables based on the weight threshold. Through the
above processing, the state space dimension of DRL can be
reduced by ten dimensions.

C. GAT Output Under Grid Topology Change

To illustrate the impact of grid topology changes on DRL
training, meanwhile, in view of the issues studied in the pa-
per, to identify the topological boundary that the GAT-PPO
algorithm can handle, the output features of GAT in the mod-
ified IEEE 39-bus system are extracted for comparison.

In the paper, the grid topology is changed by disconnect-
ing branches, and the GAT output under different grid topol-
ogies is shown in the matrix scatterplot in Fig. 5. An exam-
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ple is shown to illustrate the new grid topologies formed by
disconnecting branches of bus 3-bus 18, bus 4-bus 5, bus 5-
bus 6, as well as simultaneously disconnecting branches of
bus 3-bus 18 and bus 10-bus 11. Among them, Fig. 5(b) is a
locally enlarged graph of the two graphs in the lower left
corner of Fig. 5(a). Note that the confidence ellipse formed
by disconnecting branch of bus 5-bus 6 is the farthest from
the confidence ellipse formed by the original system. The
grid topology formed by simultaneously disconnecting
branches of bus 3-bus 18 and bus 10-bus 11 is a topology
that the proposed GAT-PPO algorithm cannot handle. Mean-
while, the confidence ellipse formed by the topology is clos-
est in distance to the confidence ellipse formed by discon-
necting branch of bus 5-bus 6.
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Fig. 5. Matrix scatterplots under different grid topologies. (a) Original

graph. (b) Local enlarged graph.

According to Fig. 5(a), the following two conclusions can
be drawn: (D the GAT output changes after the grid topolo-
gy is changed; and @ after the grid topology is changed, if
the numerical values of the features output by GAT are on
the left side of the numerical values of the original system
features, there may be a grid topology that the proposed
GAT-PPO algorithm cannot handle.

According to Fig. 5(b), it can be observed that the inter-
section points of the two topologies are A and B with the
corresponding two-dimensional coordinates of [-1.0578,
—0.6063] and [-0.7499, —1.0730], respectively. In a certain
grid topology, if the numerical values of GAT features are
primarily concentrated to the left of the line AB, the pro-
posed GAT-PPO algorithm will not be able to handle the sit-
uation.

D. Comparative Analysis of Algorithm Performance in Modi-
fied IEEE 39-bus System

To verify the effectiveness of the proposed GAT-PPO algo-
rithm, the comparative analyses are carried out from the per-
spectives of different algorithms and different voltage scenar-
ios. In terms of algorithm comparison, the proposed GAT-
PPO algorithm is compared with the PPO algorithm, TD3 al-
gorithm, particle swarm optimization (PSO)-based SP algo-
rithm, and genetic algorithm (GA)-based SP algorithm. Re-
garding voltage scenarios, the branch of bus 3-bus 18 is dis-
connected in the paper, which indicates that the grid topolo-
gy is changed. Then, two scenarios of high voltage and low
voltage are selected for comparison. In these two scenarios,
the prediction data of wind power output and load demand
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are randomly generated according to their fluctuation range.
The VVC based on the prediction data is applied to the cor-
responding actual scenario without random processing, there-
by comparing the performance of the proposed algorithm un-
der the uncertainties of wind power output and load demand.
The comparative analyses include the following four aspects:
training speed, importance features of nodes, VVC perfor-
mance, and control performance under different grid topolo-
gies.

1) Training Speed

Training speed is an important index to measure the supe-
riority of the proposed GAT-PPO algorithm. The faster the
training speed, the more conducive to the online application
of the proposed GAT-PPO algorithm. In the paper, the pro-
posed GAT-PPO algorithm is compared with PPO algorithm
and TD3 algorithm. Meanwhile, to verify the effectiveness
of the dimension reduction strategy, the proposed GAT-PPO
algorithm is compared with the GAT-PPO algorithm without
dimension reduction (referred to as “GAT-PPO-wdr”™).

The information entropy is used to measure the training
speed of four kinds of DRL algorithms [25]. The informa-
tion entropy curves of each algorithm are shown in Fig. 6(a).
In addition, the reward curves of four kinds of DRL algo-
rithms during training are shown in Fig. 6(b), where the re-
ward function of four DRL algorithms adopts the construc-
tion method proposed in the paper.
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Fig. 6. Information entropy and reward curves of each algorithm in modi-

fied IEEE 39-bus system. (a) Information entropy curves. (b) Reward curves.

As depicted in Fig. 6(a), the information entropy curve of
the proposed GAT-PPO algorithm drops the fastest, followed
by the PPO algorithm and TD3 algorithm, and the GAT-PPO-
wdr algorithm drops the slowest. Meanwhile, the proposed
GAT-PPO algorithm achieves the lowest entropy value at the
end of training. The above results show that: (D the training
speed of the proposed GAT-PPO algorithm is higher than
those of the other three DRL algorithms; and ) the training
speed of the GAT-PPO-wdr algorithm is significantly lower
than those of the other three DRL algorithms with dimension
reduction. The reasons for these phenomena are as follows:
(D the proposed GAT-PPO algorithm improves the experi-
ence buffer, which can guide the agent to accelerate the
training; and (2 reducing the state space dimension can ef-
fectively improve the training efficiency. Therefore, the train-
ing speed and convergence performance of the proposed
GAT-PPO algorithm are better than those of other three DRL
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algorithms, and it has better online application value.

According to Fig. 6(b), the reward value of the proposed
GAT-PPO algorithm is larger than those of other algorithms.
It shows that the proposed GAT-PPO algorithm can better
guide the agent training. Meanwhile, the reward curve of the
GAT-PPO-wdr algorithm rises at the slowest rate. The phe-
nomenon also indicates that when the dimensionality of the
state space is not reduced, and the training speed of the algo-
rithm is affected. In addition, during the training process,
both the PPO algorithm and the TD3 algorithm exhibit situa-
tions where their reward values surpass those of the other,
which indicates that both algorithms can achieve better con-
trol results than the other at different time. However, regard-
ing the issue studied in the paper, the final reward values of
the two algorithms do not differ significantly.
2) Importance Features of Nodes

Combined with the VVC problem in the paper, the nodes
with larger active power in the wind turbine nodes and load
nodes are more important. These nodes should be given high-
er priority during voltage regulation. Meanwhile, the higher-
priority nodes also represent the primary nodes in the graph.
To compare the importance features of the nodes in the
graph, the low-voltage scenario is taken as a case, and the
GCN-based PPO (GCN-PPO) algorithm is added for compar-
ison. The first six load nodes with larger active power and
the first three wind turbine nodes are selected for analysis in
the adopted case. The comparison of node voltages under dif-
ferent algorithms is shown in Table II, where the load nodes
and the wind turbine nodes are arranged in descending order
according to the active power.

TABLE I
COMPARISON OF NODE VOLTAGES UNDER DIFFERENT ALGORITHMS

Node Bus g(f\txi/\f: GAT- St (e GCN.
type (MW) op o_ PPO TD3 op o_
7 833.8 1.0092  1.0181  1.0336  1.0163
8 822.0 1.0038  1.0184  1.0309  1.0132
Load 20 680.0 1.0012 09982 09792  0.9901
node 4 600.0 1.0068  1.0166  1.0103  1.0120
16 329.0  0.9965 09893  0.9879  0.9897
3 322.0 1.0006  1.0319  1.0028  1.0169
Wind 37 1395.0 1.0208  1.0329  1.0439  1.0392
turbine 39 1000.0 1.0250  1.0438  1.0326  1.0403
node 38 830.0 1.0019  1.0110  1.0452  1.0104

According to Table II, compared with other algorithms,
the proposed GAT-PPO algorithm can make the voltages of
the primary nodes closer to 1 p.u., which indicates better
voltage distribution. The GCN-PPO algorithm does not en-
sure that the voltage of all primary nodes is closer to 1 p.u.
than those of the PPO and TD3 algorithms. The reason for
this phenomenon is that the proposed GAT-PPO algorithm in-
tegrates the physical knowledge of power systems in voltage
regulation, which gives higher priority to the primary nodes
during voltage regulation. Therefore, the voltage of primary
nodes is prioritized to be restored to normal.
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3) VVC Performance

The comparison of network loss for each algorithm is
shown in Table III. The comparison diagrams of node voltag-
es and voltage violation nodes for each algorithm are shown
in Figs. 7 and 8, respectively. Moreover, the effectiveness of
the continuous 6-hour VVC is validated using bus 4 as a
case, as shown in Fig. 9. The time interval is 15 min. To ob-
serve whether the voltage has returned to the normal range,
the boundary lines representing the upper and lower limits
of the voltage according to the actual needs are marked. As
shown by the dotted line in Figs. 7 and 8, the blue, orange,
and green dotted lines represent 1.06 p.u., 1.05 p.u., and
0.99 p.u., respectively.

TABLE III
COMPARISON OF NETWORK LOSS FOR EACH ALGORITHM

Network loss (MW)

High-voltage case

Algorithm
Low-voltage case

Original system 78.127 170.689
GAT-PPO 72.702 152.264
PPO 75.539 157.883
TD3 76.650 156.288
PSO 75.155 157.327
GA 76.358 157.496
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Fig. 7. Comparison of node voltages for each algorithm. (a) High-voltage
case. (b) Low-voltage case.

It can be observed from Fig. 7(a) that each algorithm can
restore the voltage of each node to the normal range. Mean-
while, for the node voltages optimized by each algorithm,
there will be a situation where some node voltages obtained
by one algorithm are closer to 1 p.u. than those obtained by
other algorithms. However, in terms of the voltage recovery
of the high-voltage nodes shown in Fig. 8(a), most of the
node voltages obtained by the proposed GAT-PPO algorithm
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are much closer to 1 p.u. than those obtained by the PPO al-
gorithm, indicating better voltage control performance. Mean-
while, although the TD3 algorithm obtains more nodes with
voltage values close to 1 p.u. than the GAT-PPO algorithm,
the proposed GAT-PPO algorithm achieves a 5.2% lower net-
work loss than the TD3 algorithm. This indicates that the
proposed GAT-PPO algorithm has better economy. Further-
more, the VVC performance based on the PSO algorithm
and GA algorithm is similar, with their performance falling
between the PPO algorithm and TD3 algorithm. However,
they require excessively long computation time to obtain
VVC strategy. For example, both PPO and TD3 algorithms
take more than 150 s, while the proposed GAT-PPO algo-
rithm takes less than 1 s. Additionally, it can be observed
from Table III that the proposed GAT-PPO algorithm
achieves the lowest network loss, which is 6.9% lower than
that of the original system. Therefore, in terms of voltage
control performance and economy, the overall VVC perfor-
mance of the proposed GAT-PPO algorithm is superior under
high-voltage condition.

Voltage (p.u.)

Voltage (p.u.)

092+

088 L L i
10 20 30 40
Bus nlglmber

—-GAT-PPO; —o-PPO; <-TD3; -o-PSO; -+ GA
—-Original system (initial state)

Fig. 8. Comparison of voltage violation nodes for each algorithm. (a)
High-voltage case. (b) Low-voltage case.

It can be observed from Fig. 7(b) that each algorithm can
restore the voltage of each node to the normal range. Mean-
while, the node voltage optimized by each algorithm also
presents the same situation, as shown in Fig. 7(a). However,
it can be observed from Fig. 8(b) that the proposed GAT-
PPO algorithm obtains more nodes with voltage values close
to 1 p.u. than the PPO algorithm and the TD3 algorithm,
which indicates that the proposed GAT-PPO algorithm has
better voltage control performance. Meanwhile, the VVC per-
formance based on the PSO algorithm and the GA algorithm
is inferior to that of the PPO algorithm, and they require ex-
cessively long computation time to obtain the VVC strategy.
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The solution time based on the PSO algorithm and the GA
algorithm also exceeds 150 s. Furthermore, it can be ob-
served from Table III that the proposed GAT-PPO algorithm
achieves the lowest network loss, which is 10.8% lower than
the network loss of the original system. Compared with oth-
er algorithms, the proposed GAT-PPO algorithm has a range
of 2.6% to 4% lower network loss, indicating its economic
efficiency. Therefore, the overall VVC performance of the
proposed GAT-PPO algorithm is superior under low-voltage
condition.

It can be observed from Fig. 9 that each algorithm can re-
store the voltage to the normal range. Meanwhile, within the
continuous time period, the voltage distribution of bus 4 ob-
tained by the proposed GAT-PPO algorithm is more ideal,
which indicates that the VVC performance of the proposed
GAT-PPO algorithm is better.
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Fig. 9. Comparison of continuous 6-hour VVC.

Moreover, it can be observed that the proposed GAT-PPO
algorithm can effectively cope with the uncertainty of the
power system. The primary reason is that the agent has
learned the patterns of changes in load demand and wind
power output during the training process, and has mastered
their probability distribution. Thus, the agent gives optimal
control from the perspective of expectation.

4) Control Performance Under Different Grid Topologies

To further verify the transfer learning capability of the pro-
posed GAT-PPO algorithm under different grid topologies,
the remaining alternating current (AC) branches are discon-
nected in turn, resulting in a total of 30 new grid topologies.
In each grid topology, two cases involving high voltage and
low voltage are selected first, and then the VVC perfor-
mance of the proposed GAT-PPO algorithm and the PPO al-
gorithm is compared. Since the power flow will not con-
verge when branches of bus 1-bus 39, bus 2-bus 3, bus 3-
bus 4, bus 2-bus 25, bus 8-bus 9, bus 9-bus 39, bus 15-bus
16, bus 16-bus 19, and bus 28-bus 29 are disconnected, 21x
2 test scenarios are generated finally. The comparison of net-
work loss difference under different grid topologies is shown
in Fig. 10. Note that the red column represents the case that
the PPO algorithm cannot achieve VVC, and it does not rep-
resent the network loss difference.

According to Fig. 10, the proposed GAT-PPO algorithm
can realize VVC under different new grid topologies, while
the PPO algorithm fails to achieve VVC under four new
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grid topologies. The results prove that the proposed GAT-
PPO algorithm has better transfer learning capability and
adaptability to different grid topologies.
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Comparison of network loss difference under different grid topolo-

E. Comparative Analysis of Algorithm Performance in Ac-
tual Power Grid

An actual power grid is adopted to verify the effective-
ness of the proposed GAT-PPO algorithm in the large scale
system. The actual power grid contains 222 bus nodes and
285 AC branches. The analyses will be conducted from three
aspects: training speed, VVC performance, and control per-
formance under different grid topologies.

1) Training Speed

For the actual power grid, the ReliefF-S algorithm is ad-
opted to remove a total of 61 branches. As a result, the di-
mension of the state space has been reduced by 61 dimen-
sions. The information entropy and reward curves of each al-
gorithm in actual power grid are shown in Fig. 11.
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Fig. 11. Information entropy and reward curves of each algorithm in actu-

al power grid. (a) Information entropy. (b) Reward.

It can be observed from Fig. 11(a) that the information en-
tropy curve of the proposed GAT-PPO algorithm decreases
the fastest, followed by the TD3 algorithm and the PPO algo-
rithm, while the entropy curve of the GAT-PPO-wdr algo-
rithm decreases the slowest. At the end of training, the pro-
posed GAT-PPO algorithm has the smallest entropy value.
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The reason is that the proposed GAT-PPO algorithm has im-
proved the experience buffer, which can effectively guide
the agent to accelerate training. Therefore, the training speed
and convergence of the proposed GAT-PPO algorithm are su-
perior to other DRL algorithms, offering better value for on-
line applications.

According to Fig. 11(b), it can be observed that both the
PPO algorithm and the TD3 algorithm have higher reward
values during the training process. Therefore, the perfor-
mance of the two algorithms in guiding agent training is sim-
ilar. However, the reward value of the proposed GAT-PPO al-
gorithm is higher than those of the PPO and TD3 algo-
rithms, indicating that the proposed GAT-PPO algorithm can
better guide agent training.

2) VVC Performance

A high-voltage case is used for comparison and analysis.
In this case, one branch is disconnected, indicating the grid
topology is changed. The comparison of node voltage ob-
tained by each algorithm is shown in Fig. 12, and the com-
parison of network loss for each algorithm is presented in
Table IV.
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Fig. 12. Comparison of node voltage obtained by each algorithm.
TABLE IV
COMPARISON OF NETWORK LOSS FOR EACH ALGORITHM IN ACTUAL POWER
GRID

Algorithm Network loss (MW)
Original system 56.199
GAT-PPO 51.847
PPO 53.596
TD3 54.055
PSO 55.388
GA 54.163

According to Fig. 12, it can be observed that the proposed
GAT-PPO algorithm obtains more nodes with voltage values
close to 1 p.u. than the PPO algorithm and the TD3 algo-
rithm, which indicates better voltage control performance of
the proposed GAT-PPO algorithm. Furthermore, the voltage
control performance based on the GA algorithm is the poor-
est.

According to Table IV, it can be observed that the pro-
posed GAT-PPO algorithm achieves the lowest network loss,
which is 7.7% lower than that of the original system. This
indicates that the proposed GAT-PPO algorithm has better
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economic efficiency. Therefore, the comprehensive perfor-
mance of the VVC of the proposed GAT-PPO algorithm is
superior.
3) Control Performance Under Different Grid Topologies

To further validate the adaptability of the proposed GAT-
PPO algorithm, the remaining AC branches are sequentially
disconnected, and a total of 173 new grid topologies is even-
tually formed. Under each grid topology, high-voltage cases
are selected, and then the VVC performance of the proposed
GAT-PPO algorithm and the PPO algorithm is compared.
The comparison of network loss difference under different
grid topologies is shown in Fig. 13. Note that the blank spac-
es on the horizontal axis indicate the scenarios where the
PPO algorithm cannot achieve VVC.
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Fig. 13. Comparison of network loss difference under different grid topolo-

gies in actual power grid.

According to Fig. 13, the proposed GAT-PPO algorithm
can achieve VVC under all new grid topologies, while the
PPO algorithm fails to achieve VVC under 24 new grid to-
pologies. Therefore, the proposed GAT-PPO algorithm dem-
onstrates better adaptability to different grid topologies.

F. Influence of DRL Algorithm Parameters on Result

The performance of the DRL algorithm in this paper is af-
fected by hyperparameters such as the discount factor y and
the number of neurons in the neural network. The value
range of y is usually 0.9-1. The larger the value of y, the
more the longer-term considerations of the agent, and the
training difficulty of the proposed GAT-PPO algorithm also
increases. The smaller the value of y, the more the agent fo-
cuses on immediate gains, and the training difficulty of the
proposed GAT-PPO algorithm decreases. Therefore, it is im-
portant to choose an appropriate y when training the agent.
The reward curves of different discount factors are shown in
Fig. 14.

It can be observed from Fig. 14 that the final reward val-
ue is the largest when the discount factor y=0.95, indicating
the best training performance. The training performance is
poorer when the yp=0.92, while a training failure occurs
when y=0.98. The reason is that the larger the value of y,
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the harder it is to train. The discount factor y=0.95 is also
that ultimately used in the paper after extensive testing.
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Fig. 14. Reward curves of different discount factors.

In addition, the paper sets the number of neurons in the
neural network to be 64 based on extensive testing. The
number of neurons is also crucial for algorithm training. If
the number of neurons is too small, such as 16, it may pre-
vent the neural network from learning correctly. Conversely,
if the number of neurons is too large, such as 256, it may
lead to an excessive number of parameters that the neural
network needs to train, thus increasing the learning difficulty
and affecting the network generalization ability.

VII. CONCLUSION AND FUTURE WORK

This paper proposes GAT-based deep reinforcement learn-
ing for VVC of topologically variable power system, which
incorporates voltage stability characteristics of system nodes
into the attention mechanism, prioritizing essential nodes dur-
ing voltage regulation. Furthermore, the challenges of slow
training and sparse reward in DRL are effectively mitigated
through the ReliefF-S algorithm and the optimization of the
experience buffer, respectively.

According to the results of case studies, it can be ob-
served that the proposed GAT-PPO algorithm not only has
rapid convergence speed and good adaptability to different
grid topologies but also possesses a strong ability to cope
with uncertainties. The proposed GAT-PPO algorithm reduc-
es the network loss by 6.9%, 10.8%, and 7.7%, respectively,
demonstrating favorable economic outcomes. The proposed
GAT-PPO algorithm can obtain an agent with strong transfer
learning capability using a small amount of grid topology da-
ta, without the need for data from all different grid topolo-
gies. Meanwhile, the design of the reward function, prioritiz-
ing constraints first and objective later, closely aligns with
practical VVC challenges. Additionally, the proposed GAT-
PPO algorithm showcases an expanded boundary in terms of
manageable grid topologies. In summary, the proposed GAT-
PPO algorithm has better VVC performance, which strongly
supports engineering applications.

The proposed GAT-PPO algorithm encounters two limita-
tions: the curse of dimensionality when facing large-scale
power grids, and the performance degradation due to the da-
ta quality of sensors. To overcome the above-mentioned
flaws, the future research directions include: (D the multi-
agent DRL algorithms will be explored to tackle the exten-
sive and complex power grids; and (2) during algorithm train-
ing, the data missing situations should be considered. Meth-
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ods to mitigate the impact of data missing will be adopted to
improve the proposed GAT-PPO algorithm, thereby continu-
ously enhancing its robustness. Additionally, measures such
as enhancing signal reception strength and improving trans-
mission methods can be adopted to alleviate transmission is-
sues with sensors.
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