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Abstract——The high proportion of renewable energy integra‐
tion and the dynamic changes in grid topology necessitate the 
enhancement of voltage/var control (VVC) to manage voltage 
fluctuations more rapidly. Traditional model-based control algo‐
rithms are becoming increasingly incompetent for VVC due to 
their high model dependence and slow online computation 
speed. To alleviate these issues, this paper introduces a graph at‐
tention network (GAT) based deep reinforcement learning for 
VVC of topologically variable power system. Firstly, combining 
the physical information of the actual power grid, a physics-in‐
formed GAT is proposed and embedded into the proximal poli‐
cy optimization (PPO) algorithm. The GAT-PPO algorithm can 
capture topological and spatial correlations among the node fea‐
tures to tackle topology changes. To address the slow training, 
the ReliefF-S algorithm identifies critical state variables, signifi‐
cantly reducing the dimensionality of state space. Then, the 
training samples retained in the experience buffer are designed 
to mitigate the sparse reward issue. Finally, the validation on the 
modified IEEE 39-bus system and an actual power grid demon‐
strates superior performance of the proposed algorithm com‐
pared with state-of-the-art algorithms, including PPO algorithm 
and twin delayed deep deterministic policy gradient (TD3) algo‐
rithm. The proposed algorithm exhibits enhanced convergence 
during training, faster solution speed, and improved VVC per‐
formance, even in scenarios involving grid topology changes 
and increased renewable energy integration. Meanwhile, in the 
adopted cases, the network loss is reduced by 6.9%, 10.8%, and 
7.7%, respectively, demonstrating favorable economic outcomes.

Index Terms——Voltage/var control, grid topology, renewable 
energy, graph attention network, deep reinforcement learning.

I. INTRODUCTION 

WITH the increasing penetrations of renewable energy 
resources such as wind and solar, the randomness 

and fluctuation of these resources bring more uncertainty to 
power systems, resulting in more frequent and severe volt‐
age fluctuations [1], [2], which poses significant challenges 
for intraday real-time voltage optimization and control. If the 
voltage cannot be regulated to the normal range in a timely 
manner by the reactive power compensation devices, the 
voltage may violate constraints or collapse, resulting in cata‐
strophic accidents [3], [4]. Therefore, it is necessary to study 
the voltage/var control (VVC) methods in adapting to the un‐
certainties of wind power and load demand.

Many studies have been conducted to solve the voltage or 
reactive power optimization and control problem considering 
the uncertainties of renewable energy generation and load de‐
mand [5] - [7]. The commonly used solution methods are 
mainly divided into four categories: stochastic programming 
(SP), robust optimization (RO), interval programming (IP), 
and deep reinforcement learning (DRL). In SP, uncertain 
variables are expressed by specific probability density as dif‐
ferent scenarios [8]. In [9], a two-stage SP model consider‐
ing the uncertainties of renewable energy generation and 
load demand is proposed to achieve voltage optimization 
and control. However, the SP may result in operation con‐
straint violations and a high computation burden. RO deals 
with the uncertainty of interval uncertain sets [10]. Refer‐
ence [11] proposes a distributed adaptive robust VVC meth‐
od to ensure the operation constraints are satisfied. However, 
RO is only applicable to convex models. In addition, it may 
neglect the economic objectives. IP regards the uncertain 
variables of the reactive power optimization model as an in‐
terval value, and then formulates a reactive power optimiza‐
tion model considering interval uncertainty [12]. In [13], the 
uncertain values are expressed as different intervals, and a re‐
active power optimization model with interval uncertainties 
is established. Then, the optimization strategy for satisfying 
the voltage constraints is obtained. However, the perfor‐
mance of IP is directly affected by the formulated uncertain‐
ty model.

Unlike SP, RO, and IP, DRL is an artificial intelligence al‐
gorithm that does not rely on an accurate physical model. A 
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VVC method based on the deep deterministic policy gradi‐
ent (DDPG) algorithm is proposed in [14], which verifies 
the applicability of DDPG under the uncertainty of renew‐
able energy output. However, the stability and convergence 
speed of DDPG are worse than the proximal policy optimiza‐
tion. An off-policy DRL algorithm based on soft actor-critic 
(SAC) is proposed in [15], which can achieve VVC with re‐
newable energy resources. However, all samples in the expe‐
rience buffer are randomly sampled with equal probability, 
which may result in unstable and low efficient training pro‐
cess. Reference [16] proposes a voltage control method 
based on deep meta-reinforcement learning to improve the 
adaptability of DRL algorithm to new grid operation condi‐
tions and system parameters. However, the proposed method 
suffers the sparse reward problem, which can lead to slow 
training. To cope with the impact of grid topology changes 
on VVC, [17] proposes a simplified DRL algorithm based 
on the side-tuning transfer learning algorithm. The proposed 
algorithm improves the adaptability to different grid topolo‐
gies while achieving voltage control. However, the proposed 
algorithm can only be applied to topologies similar to the 
training topology. A graph convolutional network (GCN) -
based DRL algorithm is developed in [18], which is used to 
deal with the voltage control issue when the topology of the 
power system changes. However, the importance difference 
in each node in the power system is not considered. It is 
well known that wind turbine nodes or load nodes with 
heavy loads are more likely to cause voltage problems. 
Therefore, these nodes should be given a higher priority for 
voltage regulation. In summary, existing DRL-based solu‐
tions show two significant problems as follows. Firstly, the 
topological variations are difficult to capture using a classi‐
cal fully connected neural network (FCN) model [18]. When 
the grid topology changes, the trained model may lead to 
poor application performance in different grid topologies. 
Even though some algorithms employ graph neural net‐
works, they cannot effectively leverage the physical knowl‐
edge of power systems. Secondly, model training requires a 
significant amount of time, and reinforcement learning en‐
counters the sparse reward problem, leading to slow learning 
by the agent or even inability to learn the optimal strategy.

With consideration of the above problems, a graph atten‐
tion network based PPO (GAT-PPO) algorithm for power 
systems with high proportion of wind power is proposed in 
this paper. Firstly, wind turbine nodes and load nodes with 
more active power are given larger weights. Then, the calcu‐
lation of the attention coefficient in the GAT is improved 
based on the weights. Secondly, the improved ReliefF algo‐
rithm (defined as ReliefF-S algorithm hereafter) extracts the 
critical features affecting system stability. Then, these fea‐
tures are used as the state variables of the GAT-PPO algo‐
rithm to reduce the dimension of state space. Finally, the 
samples retained in the experience buffer are improved to 
mitigate the sparse reward problem. The optimization and 
control of voltage can be realized based on the above im‐
provement strategy. The major contributions of this paper 
can be summarized as follows.

1) The proposed GAT-PPO algorithm integrates the physi‐

cal information of the power system into the GAT, and it 
can give more attention to the important nodes during volt‐
age regulation. Moreover, compared with the traditional 
DRL algorithms, the proposed GAT-PPO algorithm exhibits 
better transfer learning performance and greater adaptability 
to various grid topologies by integrating with GAT.

2) The critical state variables for DRL training are 
screened out based on the ReliefF-S algorithm, which can re‐
duce the dimension of state space and improve the training 
efficiency of the algorithm. Additionally, in light of the prac‐
tical issues of VVC, a reward function construction method 
based on the constraints first and objective later is proposed, 
providing a reference for related research.

3) Training samples retained in the experience buffer are 
improved to mitigate the sparse reward problem. In the im‐
proved training samples, some samples with large temporal 
difference errors are retained as positive experiences to 
guide the agent in training toward the correct direction. 
Meanwhile, a small number of samples that violate con‐
straints are also retained, which act as negative experiences 
to warn the agent to avoid adopting the action strategies that 
violate constraints. An expanded boundary in terms of man‐
ageable grid topologies of the proposed GAT-PPO algorithm 
is found.

The rest of this paper is organized as follows. Section II 
introduces the DRL model for intraday VVC. The physics-in‐
formed GAT is presented in Section III. Section IV elabo‐
rates the state space reduction based on the ReliefF-S algo‐
rithm. Section V introduces intraday VVC based on GAT-
PPO algorithm. Comparative studies are shown and dis‐
cussed in Section VI. Finally, conclusions are drawn in Sec‐
tion VII.

II. DRL MODEL FOR INTRADAY VVC 

The PPO algorithm is an improvement upon the trust re‐
gion policy optimization (TRPO) algorithm, which is capa‐
ble of handling continuous and discrete action spaces with 
good convergence [19]. The PPO algorithm consists of two 
neural networks: policy network and value network.

In the paper, the state space, action space, and reward 
function of the DRL model for VVC are designed and de‐
fined. The concise schematic diagram of the proposed GAT-
PPO algorithm is shown in Fig. 1. The detailed settings are 
as follows.

A. Agent and Environment

The system operator or control program is set as an agent. 
The agent contains two neural networks: an improved GAT 
and an FCN. The power system dynamic simulator interact‐
ing with the agent is set as environment.

B. State Space

The grid state information in the model includes the wind 
turbine output, traditional unit output, load demand, voltage 
distribution, branch power distribution, reactive power out‐
put of dynamic reactive power compensation device, and ad‐
jacency matrix. The state space St is as follows:

St ={P W
t Q

W
t P

G
t Q

G
t P

L
t Q

L
t UtS

B
t Q

D
t Z t } (1)
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where P W
t  and QW

t  are the sets of active and reactive power 
outputs of all wind turbines at time t, respectively; P G

t  and 
QG

t  are the sets of active and reactive power outputs of tradi‐
tional units at time t, respectively; P L

t  and QL
t  are the sets of 

active and reactive power demands of all loads at time t, re‐
spectively; Ut is the set of voltage amplitudes of all nodes at 
time t; S B

t  is the set of apparent power amplitudes of all 
branches at time t; QD

t  is the set of reactive power outputs of 
all dynamic reactive power compensation devices at time t; 
and Z t is the adjacency matrix of the system at time t.

C. Action Space

The action space represents the solution space. In this pa‐
per, the following VVC measures are considered: reactive 
power regulation of each static var generator (SVG) config‐
ured in the wind farm and reactive power regulation of each 
static var compensator (SVC). The action space At is defined 
as:

At ={DQS
t DQC

t } (2)

where DQS
t  is the set of reactive power variations of all 

SVGs at time t; and DQC
t  is the set of reactive power varia‐

tions of all SVCs at time t.

D. Reward Function

The reward is crucial in guiding the learning direction of 
the agent. In the study, a reward function construction meth‐
od based on the constraints first and objective later is de‐
signed in the paper. The main idea is to divide the reward 
function according to the constraint conditions and the objec‐
tive function. The objective function is considered only 
when the states satisfy the constraints. Otherwise, a penalty 
value is returned.

In this paper, the reward is designed based on the network 
loss, and the network loss is the objective function of the 
model. The smaller the network loss, the larger the reward. 
The mathematical expression is:

Rrt = ( P ref
losst -Plosst

SB

+ er ) ´ 100% (3)

where P ref
losst is the preset network loss at time t; Plosst is the 

actual network loss at time t; SB is the base capacity, typical‐

ly 100 MVA; and er = 0.25 is the reward adjustment coeffi‐
cient.

In this paper, the penalty is designed based on system se‐
curity and stability constraints. The constraints consist of 
four parts: branch power constraints, node voltage con‐
straints, generator reactive power constraints, and generator 
active power constraints. To ensure the safe and stable opera‐
tion of the power system, the values of these variables need 
to be within specified ranges. When designing the penalty, 
the more serious the violation, the larger the penalty. In‐
spired by [20], the mathematical expression of the designed 
penalty is given as:

Rft = λPB∑
i = 1

b ( )SBit - S max
Bi

S max
Bi

+ λU∑
i = 1

n |

|

|
||
|
|
||

|

|
||
|
|
| 2Uit -U max

i -U min
i

U max
i -U min

i

+

λP∑
i = 1

k |

|

|
||
|
|
||

|

|
||
|
|
| 2PGit -P max

Gi -P min
Gi

P max
Gi -P min

Gi

+ λQ∑
i = 1

k |

|

|
||
|
|
||

|

|
||
|
|
| 2QGit -Qmax

Gi -Qmin
Gi

Qmax
Gi -Qmin

Gi

(4)

where λPB, λU, λP and λQ are the penalty factors of branch 
power violation, node voltage violation, unit active power vi‐
olation, and unit reactive power violation, respectively; b is 
the number of branches; n is the number of nodes; k is the 
number of generators; SBit is the apparent power of branch i 
at time t; S max

Bi  is the maximum apparent power allowed by 
branch i; Uit is the voltage of node i at time t; U max

i  and 
U min

i  are the maximum and minimum voltages of node i, re‐
spectively; PGit is the active power of generator i at time t; 
P max

Gi  and P min
Gi  are the maximum and minimum active power 

of generator i, respectively; QGit is the reactive power of 
generator i at time t; and Qmax

Gi  and Qmin
Gi  are the maximum 

and minimum reactive power of generator i, respectively. 
Each item in (4) is normalized to eliminate the inconsistency 
problem of dimension and magnitude, the values of which 
range from 0 to 1. Through multiple tests with different cas‐
es, the values of all four penalty factors are set to be 0.25 in 
the paper.

According to the designed reward and penalty, the mathe‐
matical expression of the total reward function is given as:

Rt =
ì
í
î

ïï-Rft      stÏ Scons

Rrt -Rft stÎ Scons

(5)

where Scons is the set of state constraints; Rft is the penalty 
given for violation of constraints, and its purpose is to en‐
able the agent to make decisions within constraints; and Rrt 
is the reward given when all constraints are satisfied, en‐
abling the agent to find the optimal decision based on the 
feasible decisions.

According to the mathematical expression of the total re‐
ward function, it can be observed that when any constraint 
is violated, the agent gets a negative reward according to 
(4). The purpose of this setting is to guide the agent to give 
an action that satisfies all constraints. When all constraints 
are not violated, it can be observed from (4) and (5) that the 
closer the node voltage is to 1 p.u., the larger the positive re‐
ward value the agent receives under the same other con‐
straints. The purpose of this setting is to guide the agent to 
learn an action that can obtain an ideal voltage distribution.
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Fig. 1.　Concise schematic diagram of proposed GAT-PPO algorithm.
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III. PHYSICS-INFORMED GAT

A. GAT

The GAT introduces the attention mechanism into the 
graph neural network, which obtains the overall information 
of the network from the local information by calculating the 
importance of adjacent nodes to the central node. The advan‐
tage of the GAT is that it does not require any kind of costly 
matrix operation or depends on knowing the graph structure 
upfront, making it directly applicable to inductive learning is‐
sues [21]. Therefore, GAT has a strong transfer learning per‐
formance, which is conducive to being applied to voltage 
control in various grid topologies.

The expression of the attention coefficient is given as [21]:

αij = soft max
j

(eij )=
exp(LeakyReLU(aT [Whi||Whj ]))∑

kÎMi

exp(LeakyReLU(aT [Whi||Whk ])) (6)

where eij is the importance of node j to node i; W is the 
weight matrix; a is the parameter of a single-layer feedfor‐
ward neural network; LeakyReLU is the activation function; 
Mi is the set of neighbor nodes of node i ( jÎMi ); hi, hj, and 
hk are the characteristics of nodes i, j, and k, respectively;
and || represents the concatenation operation.

B. Improvement of GAT

Extensive physical knowledge has been developed in pow‐
er systems, and the application of the GAT in the field of 
electric power should be combined with the actual situation 
in the field. In power systems, the wind turbine nodes and 
load nodes are the key ones that affect voltage safety and 
stability in the power system with the integration of wind 
power. The higher the active power of these nodes, the more 
likely voltage safety and stability issues are to occur [22]. 
Therefore, the larger the active power of these nodes, the 
more attention should be paid during voltage regulation. In 
the paper, the attention to these nodes in the voltage regula‐
tion process is enhanced by assigning them larger weights in 
the attention coefficients. The improved GAT is called the 
physics-informed GAT.

The weight coefficients of wind turbine and load nodes 
are defined as:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïïï
ï

ï

ï

βW
it =

P W
it

P W
min t

        P W
it ¹ 0  or  P L

it ¹ 0

β L
it =

P L
it

P L
min t

        P W
it ¹ 0  or  P L

it ¹ 0

βW
it = β

L
it = 0.9     P W

it =P L
it = 0

(7)

where superscripts W and L denote the sets of wind turbine 
nodes and load nodes, respectively; βW

it and β L
it are the 

weight coefficients of wind turbine node i and load node i at 
time t, respectively; P W

it and P L
it are the active power of wind 

turbine node i and load node i at time t, respectively; and 
P W

mint and P L
mint are the minimum active power of all wind 

turbines and the minimum active power of all loads at time 
t, respectively.

According to the above calculation method of weight coef‐

ficient, it can be observed that the larger the active power of 
node i, the larger its weight coefficient value. For each load 
or wind turbine node whose active power is not equal to 0, 
the weight coefficient is multiplied by the corresponding at‐
tention coefficient eij. For other nodes, eij is multiplied by 
0.9. Therefore, the key wind turbine and load nodes can be 
paid more attention through the improved GAT.

IV. STATE SPACE REDUCTION BASED ON RELIEFF-S 
ALGORITHM 

One of the important causes for slow training and non-
convergence of reinforcement learning is that the dimension 
of its state space or action space is too large. To solve the 
problem, a state space reduction strategy is proposed. The 
key features that have a great influence on voltage stability 
are obtained through the method of key feature extraction, 
and then these key features are taken as state variables of re‐
inforcement learning. The method can reduce the state space 
dimension and accelerate the convergence of the model.

The ReliefF algorithm is an efficient feature extraction al‐
gorithm that assigns weights to features based on their corre‐
lation with the labels. The feature whose weight is less than 
the setting threshold value will be removed, and then the op‐
timal feature subset can be obtained [23]. Since the algo‐
rithm does not consider the correlation among samples when 
determining the homogeneous and heterogeneous samples, it 
may lead to inaccurate judgment of the homogeneous and 
heterogeneous samples, ultimately affecting the identification 
of key features. Furthermore, the correlation between two 
samples is not considered when calculating the weight.

To address the above problems, the Spearman correlation 
coefficient is adopted to improve the ReliefF algorithm as 
the ReliefF-S algorithm. The reason for using the Spearman 
correlation coefficient is that it does not require a specific 
distribution between variables. The specific methods of the 
improvement are described as follows.

Firstly, the Spearman correlation coefficient ρ [24], as 
shown in (8), is used to replace the original sample category 
judgment formula of the ReliefF algorithm, thereby helping 
accurately identify homogeneous and heterogeneous samples. 
Secondly, (8) is multiplied by the sample distance d(×) [23], 
so the overall correlation among samples is considered when 
calculating the weight contribution. The expression of im‐
proved weight is shown in (9).

ρ =
∑
i = 1

nρ

(xi - x̄)(yi - ȳ)

∑
i = 1

nρ

(xi - x̄)2 (yi - ȳ)2

(8)

w'fi
=w'fi

-∑
j = 1

g ρd(xiHjfi )

mk
+∑

lÏ lxi 

∑
j = 1

g P(l)
1 -P(lxi

)

ρd(xiMjfi )

mg

(9)

where xi and yi represent two samples, respectively; x̄ and ȳ 
represent the average values of the two samples, respective‐
ly; nρ is the total number of features in the sample; fi is the 
feature; w'fi

 is the weight of fi; Hj and Mj are the j th near-
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neighbor homogeneous samples and heterogeneous samples 
of sample xi, respectively; d (xiHjfi ) or d (xiMjfi ) repre‐
sents the distance between samples xi and Hj or Mj on fi, re‐
spectively; m is the number of iterations of the algorithm; g 
is the number of near-neighbor homogeneous samples; P(l) 
is the probability of label l; lxi

 is the label of sample xi; 

P(lxi
) is the probability that sample xi belongs to some kind 

of label; ∑
j = 1

g d(xiHjfi )

mk
 is the weight contribution of sample 

xi and g near-neighbor homogeneous samples on fi; and 

∑
lÏ lxi  

∑
j = 1

g P(l)
1 -P(lxi

)

d(xiMjfi )

mg
 is the weight contribution of 

sample xi and all near-neighbor heterogeneous samples on fi.
Finally, the key factors affecting the system voltage stabili‐

ty are screened out based on the proposed ReliefF-S algo‐
rithm. These key factors are the state variables used in DRL 
training.

V. INTRADAY VVC BASED ON GAT-PPO ALGORITHM 

A. Design of Experience Buffer

A lack of effective reward information will lead to slow 
learning or even failure to learn the optimal strategy. To miti‐
gate the sparse reward problem, the samples retained in the 
experience buffer are improved in this paper. The designed 
experience buffer retains both samples with a large temporal 
difference error and a small number of samples that violate 
voltage constraints. The former is used as a positive experi‐
ence to guide the agent to train in the right direction, while 
the latter is used as a negative experience to warn the agent 
to avoid action strategies that violate constraints.

B. GAT-PPO Algorithm for Intraday VVC

This subsection introduces the structure and the training 
process of the proposed GAT-PPO algorithm.

The structure of the proposed GAT-PPO algorithm is 
shown in Fig. 2. It mainly includes three parts: the improved 
GAT, policy network, and value network. Unlike the tradi‐
tional PPO algorithm, the state information of the proposed 
GAT-PPO algorithm needs to output node features through 
the GAT. The GAT contains l layers. The policy network 
and value network are constructed by the deep neural net‐
work, and their detailed structures are as follows. The policy 
network is responsible for the sequential decisions of VVC, 
which consists of two parts: the policy layer and the action 
layer. During training, the observed power system state vari‐
ables are first input into the GAT to generate the node fea‐
ture set. Then, the node feature set is input into the policy 
layer for training. Finally, the output of the policy layer is in‐
put to the action layer, and the action layer outputs action.

The value network maps the system state St to the expect‐
ed future cumulative rewards, which contains a state value 
layer. During training, the observed power system state vari‐
ables are first input into the GAT to generate the node fea‐
ture set. Then, the node feature set is input into the state val‐
ue layer for training. Finally, the state value layer outputs 
the state value function.

The objective function of conventional policy gradient 
based DRL optimization is given as [19]:

LP (θ)= Ê[log2 πθ (at|st )Ât ] (10)

where θ is the policy parameter; Ê[×] represents the empirical 
average over finite samples; st and at are the state and action 
at time t, respectively; πθ is a stochastic policy; and Ât is an 
estimator of the advantage function at time t.

The objective function of the value function LV (×) can be 
formulated as:

LV (ϕ)= Ê[V̂ target
ϕ (st )-Vϕ (st )] (11)

V̂ target
ϕ (st )= rt + 1 + γVϕ (st + 1 ) (12)

where ϕ is the value function parameter; γÎ[0,1] is the dis‐
count factor; Vϕ (st ) is the state value function at time st; rt + 1 
is the reward at time t + 1; and V̂ target

ϕ (×) is the target value of 
TD error, and the parameter can be updated by the stochas‐
tic gradient descent algorithm according to the gradient 
ÑLV (ϕ).

The training process of the proposed GAT-PPO algorithm 
is shown in Fig. 3, where rt (θ)= πθ (at|st )/πθold

(at|st ) denotes 

the ratio of probability of action at under the new policy and 
old policy; and LCLIP (θ) indicates that the clipping mecha‐
nism in [19] is used to constrain the variation range of rt (θ). 
The training of the improved GAT is an end-to-end process. 
The improved GAT and the FCN are trained at the same 
time, and the error is transmitted and optimized through the 
backpropagation in the entire model. During training, the pol‐
icy network continuously interacts with the VVC training en‐
vironment, and the environment sends the experience tuples 
statrt + 1st + 1  to the experience buffer to form finite sam‐

ples. Then, the samples are transmitted to the policy network 
and the value network. The update processes of the policy 
network and the value network are described as follows.
1) Policy Network

The sequences of power system state variables are sepa‐
rately input into two action networks, resulting in two policy 
distributions. Among them, one is for the new policy and the 
other is for the old policy. According to the new and old pol‐
icy distributions, the probabilities for selecting each action 
under both policies are computed separately. Then, the proba‐
bility of the new policy is divided by the probability of the 
old policy to obtain the ratio of policy probability rt (θ). The 
objective function value of the improved GAT-PPO algo‐

Layer 1 Layer l

Policy network

Input

state

Action

FCN

Improved GAT

Value network

State value

function

FCN

…

…

Fig. 2.　Structure of proposed GAT-PPO algorithm.
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rithm is calculated using the advantage function and the ra‐
tio of policy probability. Subsequently, the negative of the 
objective function is taken as the loss function of the neural 
network. The parameters of the policy network are updated 
through backpropagation using the loss function. Finally, a 
new policy satisfying the clipping requirements is obtained.

2) Value Network
The observed power system state variables are input into 

the value network to obtain the corresponding value func‐
tion. The discounted reward is computed based on the dis‐
count reward calculation formula Gt =∑γurt + u + 1 (u = 0 
1¥). Then, the advantage function is calculated. The val‐
ue network parameters are updated by computing gradient 
with respect to the function in (11) and performing back‐
ward propagation.

When the loss function values of both the policy network 
and the value network are stable and close to a small value, 
and the moving average reward is positive and tends to stabi‐
lize, it indicates that the algorithm has converged.

VI. CASE STUDIES 

A. Case Overview

In the paper, the modified IEEE 39-bus system and an ac‐
tual power grid are analyzed as cases. The single-line dia‐
gram of the modified IEEE 39-bus system is shown in Fig. 
4, and the symbol “W” and “G” represent the wind turbine 
and traditional generator, respectively. The modifications of 
the IEEE 39-bus system are described as follows. The tradi‐
tional generators at buses 32, 35, 37, 38, and 39 are replaced 
by wind turbines. After replacement, the penetration rate of 
wind power is 70%, which means that the system is a power 
system with high proportion of wind power. The SVGs are 
configured at each wind turbine bus with a capacity range of 
±20% of the total active power of wind turbines at each bus. 
The SVCs are configured at buses 2, 3, 9, 12, 25, 27, and 
29 with a capacity range of ±150 Mvar. Loads on buses 31 
and 39 are removed. The normal voltage ranges of the load 
bus and the traditional generator bus are set to be 0.95-1.05 
p.u. and 0.9-1.1 p.u., respectively. Considering the situation 

that the wind turbine bus should have a certain voltage sta‐
bility margin, its normal voltage range is set to be 0.99-1.06 
p.u.. The actual power grid is a power system with the inte‐
gration of wind power comprising 222 bus nodes. The input 
dimensions of the GAT are 39×6 and 222×6 in the modified 
IEEE 39-bus system and the actual power grid, respectively. 
The hidden layer dimension is 8, and the activation function 
is LeakyReLU. The number of heads in the GAT is 8. The 
output dimensions of the GAT are 39×2 and 222×2 in the 
modified IEEE 39-bus system and the actual power grid, re‐
spectively. The state space dimensions of the two systems 
are 220 and 1102, respectively. The action space dimensions 
of the two systems are 12 and 40, respectively.

The simulation environment of power systems is provided 
by PSSE software in the paper. The annual operation data of 
an actual power system with the integration of wind power 
are scaled to the modified IEEE 39-bus system, generating 
numerous operation data. Meanwhile, the forecasting data of 
load and wind power are processed as follows. The sample 
data are generated by setting the forecasting errors from the 
operation data of the modified IEEE 39-bus system, with a 
maximum forecasting error of 20% for wind power and 15% 
for load power. To change the operation conditions during al‐
gorithm training, different grid topologies are selected in the 
two systems. The grid topology changes are achieved by dis‐
connecting the following transmission lines one at a time. In 
the modified IEEE 39-bus system, four different grid topolo‐
gies are selected: ① no disconnecting; ② the line between 
bus 5 and bus 6; ③ the line between bus 16 and bus 24; 
and ④ the line between bus 22 and bus 23. In the actual 
power grid, eight different grid topologies are randomly se‐
lected in the same way. Then, the DRL algorithm is trained 
based on these data.
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Fig. 4.　Single-line diagram of modified IEEE 39-bus system.

Experience

 buffer

Experience tuple

st, at, rt+1, st+1

Policy network

Value network

Samples (length: c)

s0, a0, r1, s1  ,  s1, a1, r2, 

s2  , …,   sc�1, ac�1, rc, sc

Improved GAT-PPO 

Update Vϕ with gradient

 ÑLV(ϕ) by stochastic

 gradient descent

Vϕ(st)

Vϕ(st+1)
LV(ϕ)

At

‹

πθ(at|st)

πθold(at|st)
rt(θ) LCLIP(θ)

Update πθ with gradient 

ÑLCLIP(θ) by stochastic 

gradient descentVVC training 

environment

Action at

Fig. 3.　Training process of proposed GAT-PPO algorithm.

220



LIU et al.: GRAPH ATTENTION NETWORK BASED DEEP REINFORCEMENT LEARNING FOR VOLTAGE/VAR CONTROL OF...

B. Screening of State Variables Based on ReliefF-S Algorithm

The modified IEEE 39-bus system is used as a case to il‐
lustrate the screening of state variables. To obtain the sample 
data, the active power margin of the system is calculated by 
using the annual operation data in the modified IEEE 39-bus 
system. When the active power margin of the sample is larg‐
er than 10%, the sample is a voltage-stable sample. Other‐
wise, the sample is a voltage-unstable sample. In this paper, 
16529 voltage-stable samples and 15951 voltage-unstable 
samples are obtained. Since the branch power is allowed to 
exceed the limit to a certain extent without affecting the volt‐
age stability, the branch power can be screened. The weights 
of 34 branches are shown in Table I.

It can be observed from Table I that the weight values of 
the 34 branches vary greatly, with the maximum value being 
5.2 times the minimum value. It indicates that different 
branches contribute differently to voltage stability. The aver‐
age weight of 34 branches is 0.1299. Meanwhile, it is notice‐
able that the weight values are mostly concentrated above 
0.1. Therefore, 0.1014 is selected as the weight threshold. Fi‐
nally, the apparent power of 24 branches is retained as the 
state variables based on the weight threshold. Through the 
above processing, the state space dimension of DRL can be 
reduced by ten dimensions.

C. GAT Output Under Grid Topology Change

To illustrate the impact of grid topology changes on DRL 
training, meanwhile, in view of the issues studied in the pa‐
per, to identify the topological boundary that the GAT-PPO 
algorithm can handle, the output features of GAT in the mod‐
ified IEEE 39-bus system are extracted for comparison.

In the paper, the grid topology is changed by disconnect‐
ing branches, and the GAT output under different grid topol‐
ogies is shown in the matrix scatterplot in Fig. 5. An exam‐

ple is shown to illustrate the new grid topologies formed by 
disconnecting branches of bus 3-bus 18, bus 4-bus 5, bus 5-
bus 6, as well as simultaneously disconnecting branches of  
bus 3-bus 18 and bus 10-bus 11. Among them, Fig. 5(b) is a 
locally enlarged graph of the two graphs in the lower left 
corner of Fig. 5(a). Note that the confidence ellipse formed 
by disconnecting branch of bus 5-bus 6 is the farthest from 
the confidence ellipse formed by the original system. The 
grid topology formed by simultaneously disconnecting 
branches of bus 3-bus 18 and bus 10-bus 11 is a topology 
that the proposed GAT-PPO algorithm cannot handle. Mean‐
while, the confidence ellipse formed by the topology is clos‐
est in distance to the confidence ellipse formed by discon‐
necting branch of bus 5-bus 6.

According to Fig. 5(a), the following two conclusions can 
be drawn: ① the GAT output changes after the grid topolo‐
gy is changed; and ② after the grid topology is changed, if 
the numerical values of the features output by GAT are on 
the left side of the numerical values of the original system 
features, there may be a grid topology that the proposed 
GAT-PPO algorithm cannot handle.

According to Fig. 5(b), it can be observed that the inter‐
section points of the two topologies are A and B with the 
corresponding two-dimensional coordinates of [-1.0578, 
-0.6063] and [-0.7499, -1.0730], respectively. In a certain 
grid topology, if the numerical values of GAT features are 
primarily concentrated to the left of the line AB, the pro‐
posed GAT-PPO algorithm will not be able to handle the sit‐
uation.

D. Comparative Analysis of Algorithm Performance in Modi‐
fied IEEE 39-bus System

To verify the effectiveness of the proposed GAT-PPO algo‐
rithm, the comparative analyses are carried out from the per‐
spectives of different algorithms and different voltage scenar‐
ios. In terms of algorithm comparison, the proposed GAT-
PPO algorithm is compared with the PPO algorithm, TD3 al‐
gorithm, particle swarm optimization (PSO) -based SP algo‐
rithm, and genetic algorithm (GA) -based SP algorithm. Re‐
garding voltage scenarios, the branch of bus 3-bus 18 is dis‐
connected in the paper, which indicates that the grid topolo‐
gy is changed. Then, two scenarios of high voltage and low 
voltage are selected for comparison. In these two scenarios, 
the prediction data of wind power output and load demand 
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are randomly generated according to their fluctuation range. 
The VVC based on the prediction data is applied to the cor‐
responding actual scenario without random processing, there‐
by comparing the performance of the proposed algorithm un‐
der the uncertainties of wind power output and load demand. 
The comparative analyses include the following four aspects: 
training speed, importance features of nodes, VVC perfor‐
mance, and control performance under different grid topolo‐
gies.
1) Training Speed

Training speed is an important index to measure the supe‐
riority of the proposed GAT-PPO algorithm. The faster the 
training speed, the more conducive to the online application 
of the proposed GAT-PPO algorithm. In the paper, the pro‐
posed GAT-PPO algorithm is compared with PPO algorithm 
and TD3 algorithm. Meanwhile, to verify the effectiveness 
of the dimension reduction strategy, the proposed GAT-PPO 
algorithm is compared with the GAT-PPO algorithm without 
dimension reduction (referred to as “GAT-PPO-wdr”).

The information entropy is used to measure the training 
speed of four kinds of DRL algorithms [25]. The informa‐
tion entropy curves of each algorithm are shown in Fig. 6(a). 
In addition, the reward curves of four kinds of DRL algo‐
rithms during training are shown in Fig. 6(b), where the re‐
ward function of four DRL algorithms adopts the construc‐
tion method proposed in the paper.

As depicted in Fig. 6(a), the information entropy curve of 
the proposed GAT-PPO algorithm drops the fastest, followed 
by the PPO algorithm and TD3 algorithm, and the GAT-PPO-
wdr algorithm drops the slowest. Meanwhile, the proposed 
GAT-PPO algorithm achieves the lowest entropy value at the 
end of training. The above results show that: ① the training 
speed of the proposed GAT-PPO algorithm is higher than 
those of the other three DRL algorithms; and ② the training 
speed of the GAT-PPO-wdr algorithm is significantly lower 
than those of the other three DRL algorithms with dimension 
reduction. The reasons for these phenomena are as follows: 
① the proposed GAT-PPO algorithm improves the experi‐
ence buffer, which can guide the agent to accelerate the 
training; and ② reducing the state space dimension can ef‐
fectively improve the training efficiency. Therefore, the train‐
ing speed and convergence performance of the proposed 
GAT-PPO algorithm are better than those of other three DRL 

algorithms, and it has better online application value.
According to Fig. 6(b), the reward value of the proposed 

GAT-PPO algorithm is larger than those of other algorithms. 
It shows that the proposed GAT-PPO algorithm can better 
guide the agent training. Meanwhile, the reward curve of the 
GAT-PPO-wdr algorithm rises at the slowest rate. The phe‐
nomenon also indicates that when the dimensionality of the 
state space is not reduced, and the training speed of the algo‐
rithm is affected. In addition, during the training process, 
both the PPO algorithm and the TD3 algorithm exhibit situa‐
tions where their reward values surpass those of the other, 
which indicates that both algorithms can achieve better con‐
trol results than the other at different time. However, regard‐
ing the issue studied in the paper, the final reward values of 
the two algorithms do not differ significantly.
2) Importance Features of Nodes

Combined with the VVC problem in the paper, the nodes 
with larger active power in the wind turbine nodes and load 
nodes are more important. These nodes should be given high‐
er priority during voltage regulation. Meanwhile, the higher-
priority nodes also represent the primary nodes in the graph. 
To compare the importance features of the nodes in the 
graph, the low-voltage scenario is taken as a case, and the 
GCN-based PPO (GCN-PPO) algorithm is added for compar‐
ison. The first six load nodes with larger active power and 
the first three wind turbine nodes are selected for analysis in 
the adopted case. The comparison of node voltages under dif‐
ferent algorithms is shown in Table II, where the load nodes 
and the wind turbine nodes are arranged in descending order 
according to the active power.

According to Table II, compared with other algorithms, 
the proposed GAT-PPO algorithm can make the voltages of 
the primary nodes closer to 1 p. u., which indicates better 
voltage distribution. The GCN-PPO algorithm does not en‐
sure that the voltage of all primary nodes is closer to 1 p.u. 
than those of the PPO and TD3 algorithms. The reason for 
this phenomenon is that the proposed GAT-PPO algorithm in‐
tegrates the physical knowledge of power systems in voltage 
regulation, which gives higher priority to the primary nodes 
during voltage regulation. Therefore, the voltage of primary 
nodes is prioritized to be restored to normal.
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Fig. 6.　Information entropy and reward curves of each algorithm in modi‐
fied IEEE 39-bus system. (a) Information entropy curves. (b) Reward curves.

TABLE Ⅱ
COMPARISON OF NODE VOLTAGES UNDER DIFFERENT ALGORITHMS

Node 
type

Load 
node

Wind
turbine 

node

Bus

7

8

20

4

16

3

37

39

38

Active 
power 
(MW)

833.8

822.0

680.0

600.0

329.0

322.0

1395.0

1000.0

830.0

Voltage (p.u.)

GAT-
PPO

1.0092

1.0038

1.0012

1.0068

0.9965

1.0006

1.0208

1.0250

1.0019

PPO

1.0181

1.0184

0.9982

1.0166

0.9893

1.0319

1.0329

1.0438

1.0110

TD3

1.0336

1.0309

0.9792

1.0103

0.9879

1.0028

1.0439

1.0326

1.0452

GCN-
PPO

1.0163

1.0132

0.9901

1.0120

0.9897

1.0169

1.0392

1.0403

1.0104
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3) VVC Performance
The comparison of network loss for each algorithm is 

shown in Table III. The comparison diagrams of node voltag‐
es and voltage violation nodes for each algorithm are shown 
in Figs. 7 and 8, respectively. Moreover, the effectiveness of 
the continuous 6-hour VVC is validated using bus 4 as a 
case, as shown in Fig. 9. The time interval is 15 min. To ob‐
serve whether the voltage has returned to the normal range, 
the boundary lines representing the upper and lower limits 
of the voltage according to the actual needs are marked. As 
shown by the dotted line in Figs. 7 and 8, the blue, orange, 
and green dotted lines represent 1.06 p. u., 1.05 p. u., and 
0.99 p.u., respectively.

It can be observed from Fig. 7(a) that each algorithm can 
restore the voltage of each node to the normal range. Mean‐
while, for the node voltages optimized by each algorithm, 
there will be a situation where some node voltages obtained 
by one algorithm are closer to 1 p.u. than those obtained by 
other algorithms. However, in terms of the voltage recovery 
of the high-voltage nodes shown in Fig. 8(a), most of the 
node voltages obtained by the proposed GAT-PPO algorithm 

are much closer to 1 p.u. than those obtained by the PPO al‐
gorithm, indicating better voltage control performance. Mean‐
while, although the TD3 algorithm obtains more nodes with 
voltage values close to 1 p.u. than the GAT-PPO algorithm, 
the proposed GAT-PPO algorithm achieves a 5.2% lower net‐
work loss than the TD3 algorithm. This indicates that the 
proposed GAT-PPO algorithm has better economy. Further‐
more, the VVC performance based on the PSO algorithm 
and GA algorithm is similar, with their performance falling 
between the PPO algorithm and TD3 algorithm. However, 
they require excessively long computation time to obtain 
VVC strategy. For example, both PPO and TD3 algorithms 
take more than 150 s, while the proposed GAT-PPO algo‐
rithm takes less than 1 s. Additionally, it can be observed 
from Table III that the proposed GAT-PPO algorithm 
achieves the lowest network loss, which is 6.9% lower than 
that of the original system. Therefore, in terms of voltage 
control performance and economy, the overall VVC perfor‐
mance of the proposed GAT-PPO algorithm is superior under 
high-voltage condition.

It can be observed from Fig. 7(b) that each algorithm can 
restore the voltage of each node to the normal range. Mean‐
while, the node voltage optimized by each algorithm also 
presents the same situation, as shown in Fig. 7(a). However, 
it can be observed from Fig. 8(b) that the proposed GAT-
PPO algorithm obtains more nodes with voltage values close 
to 1 p. u. than the PPO algorithm and the TD3 algorithm, 
which indicates that the proposed GAT-PPO algorithm has 
better voltage control performance. Meanwhile, the VVC per‐
formance based on the PSO algorithm and the GA algorithm 
is inferior to that of the PPO algorithm, and they require ex‐
cessively long computation time to obtain the VVC strategy. 

TABLE Ⅲ
COMPARISON OF NETWORK LOSS FOR EACH ALGORITHM

Algorithm

Original system

GAT-PPO

PPO

TD3

PSO
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Network loss (MW)
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78.127

72.702
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Low-voltage case
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157.496
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The solution time based on the PSO algorithm and the GA 
algorithm also exceeds 150 s. Furthermore, it can be ob‐
served from Table III that the proposed GAT-PPO algorithm 
achieves the lowest network loss, which is 10.8% lower than 
the network loss of the original system. Compared with oth‐
er algorithms, the proposed GAT-PPO algorithm has a range 
of 2.6% to 4% lower network loss, indicating its economic 
efficiency. Therefore, the overall VVC performance of the 
proposed GAT-PPO algorithm is superior under low-voltage 
condition.

It can be observed from Fig. 9 that each algorithm can re‐
store the voltage to the normal range. Meanwhile, within the 
continuous time period, the voltage distribution of bus 4 ob‐
tained by the proposed GAT-PPO algorithm is more ideal, 
which indicates that the VVC performance of the proposed 
GAT-PPO algorithm is better.

Moreover, it can be observed that the proposed GAT-PPO 
algorithm can effectively cope with the uncertainty of the 
power system. The primary reason is that the agent has 
learned the patterns of changes in load demand and wind 
power output during the training process, and has mastered 
their probability distribution. Thus, the agent gives optimal 
control from the perspective of expectation.
4) Control Performance Under Different Grid Topologies

To further verify the transfer learning capability of the pro‐
posed GAT-PPO algorithm under different grid topologies, 
the remaining alternating current (AC) branches are discon‐
nected in turn, resulting in a total of 30 new grid topologies. 
In each grid topology, two cases involving high voltage and 
low voltage are selected first, and then the VVC perfor‐
mance of the proposed GAT-PPO algorithm and the PPO al‐
gorithm is compared. Since the power flow will not con‐
verge when branches of bus 1-bus 39, bus 2-bus 3, bus 3-
bus 4, bus 2-bus 25, bus 8-bus 9, bus 9-bus 39, bus 15-bus 
16, bus 16-bus 19, and bus 28-bus 29 are disconnected, 21×
2 test scenarios are generated finally. The comparison of net‐
work loss difference under different grid topologies is shown 
in Fig. 10. Note that the red column represents the case that 
the PPO algorithm cannot achieve VVC, and it does not rep‐
resent the network loss difference.

According to Fig. 10, the proposed GAT-PPO algorithm 
can realize VVC under different new grid topologies, while 
the PPO algorithm fails to achieve VVC under four new 

grid topologies. The results prove that the proposed GAT-
PPO algorithm has better transfer learning capability and 
adaptability to different grid topologies.

E. Comparative Analysis of Algorithm Performance in Ac‐
tual Power Grid

An actual power grid is adopted to verify the effective‐
ness of the proposed GAT-PPO algorithm in the large scale 
system. The actual power grid contains 222 bus nodes and 
285 AC branches. The analyses will be conducted from three 
aspects: training speed, VVC performance, and control per‐
formance under different grid topologies.
1) Training Speed

For the actual power grid, the ReliefF-S algorithm is ad‐
opted to remove a total of 61 branches. As a result, the di‐
mension of the state space has been reduced by 61 dimen‐
sions. The information entropy and reward curves of each al‐
gorithm in actual power grid are shown in Fig. 11.

It can be observed from Fig. 11(a) that the information en‐
tropy curve of the proposed GAT-PPO algorithm decreases 
the fastest, followed by the TD3 algorithm and the PPO algo‐
rithm, while the entropy curve of the GAT-PPO-wdr algo‐
rithm decreases the slowest. At the end of training, the pro‐
posed GAT-PPO algorithm has the smallest entropy value. 
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Fig. 11.　Information entropy and reward curves of each algorithm in actu‐
al power grid. (a) Information entropy. (b) Reward.
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The reason is that the proposed GAT-PPO algorithm has im‐
proved the experience buffer, which can effectively guide 
the agent to accelerate training. Therefore, the training speed 
and convergence of the proposed GAT-PPO algorithm are su‐
perior to other DRL algorithms, offering better value for on‐
line applications.

According to Fig. 11(b), it can be observed that both the 
PPO algorithm and the TD3 algorithm have higher reward 
values during the training process. Therefore, the perfor‐
mance of the two algorithms in guiding agent training is sim‐
ilar. However, the reward value of the proposed GAT-PPO al‐
gorithm is higher than those of the PPO and TD3 algo‐
rithms, indicating that the proposed GAT-PPO algorithm can 
better guide agent training.
2) VVC Performance

A high-voltage case is used for comparison and analysis. 
In this case, one branch is disconnected, indicating the grid 
topology is changed. The comparison of node voltage ob‐
tained by each algorithm is shown in Fig. 12, and the com‐
parison of network loss for each algorithm is presented in 
Table IV.

According to Fig. 12, it can be observed that the proposed 
GAT-PPO algorithm obtains more nodes with voltage values 
close to 1 p. u. than the PPO algorithm and the TD3 algo‐
rithm, which indicates better voltage control performance of 
the proposed GAT-PPO algorithm. Furthermore, the voltage 
control performance based on the GA algorithm is the poor‐
est.

According to Table IV, it can be observed that the pro‐
posed GAT-PPO algorithm achieves the lowest network loss, 
which is 7.7% lower than that of the original system. This 
indicates that the proposed GAT-PPO algorithm has better 

economic efficiency. Therefore, the comprehensive perfor‐
mance of the VVC of the proposed GAT-PPO algorithm is 
superior.
3) Control Performance Under Different Grid Topologies

To further validate the adaptability of the proposed GAT-
PPO algorithm, the remaining AC branches are sequentially 
disconnected, and a total of 173 new grid topologies is even‐
tually formed. Under each grid topology, high-voltage cases 
are selected, and then the VVC performance of the proposed 
GAT-PPO algorithm and the PPO algorithm is compared. 
The comparison of network loss difference under different 
grid topologies is shown in Fig. 13. Note that the blank spac‐
es on the horizontal axis indicate the scenarios where the 
PPO algorithm cannot achieve VVC.

According to Fig. 13, the proposed GAT-PPO algorithm 
can achieve VVC under all new grid topologies, while the 
PPO algorithm fails to achieve VVC under 24 new grid to‐
pologies. Therefore, the proposed GAT-PPO algorithm dem‐
onstrates better adaptability to different grid topologies.

F. Influence of DRL Algorithm Parameters on Result

The performance of the DRL algorithm in this paper is af‐
fected by hyperparameters such as the discount factor γ and 
the number of neurons in the neural network. The value 
range of γ is usually 0.9-1. The larger the value of γ the 
more the longer-term considerations of the agent, and the 
training difficulty of the proposed GAT-PPO algorithm also 
increases. The smaller the value of γ, the more the agent fo‐
cuses on immediate gains, and the training difficulty of the 
proposed GAT-PPO algorithm decreases. Therefore, it is im‐
portant to choose an appropriate γ when training the agent. 
The reward curves of different discount factors are shown in 
Fig. 14.

It can be observed from Fig. 14 that the final reward val‐
ue is the largest when the discount factor γ= 0.95, indicating 
the best training performance. The training performance is 
poorer when the γ= 0.92, while a training failure occurs 
when γ = 0.98. The reason is that the larger the value of γ, 

0 20 40 60 80 100 120 140 160 180

3

6

9

N
et

w
o
rk

 l
o
ss

 d
if

fe
re

n
ce

 (
M

W
)

Number of grid topology

Fig. 13.　Comparison of network loss difference under different grid topolo‐
gies in actual power grid.
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TABLE Ⅳ
COMPARISON OF NETWORK LOSS FOR EACH ALGORITHM IN ACTUAL POWER 

GRID

Algorithm

Original system

GAT-PPO

PPO

TD3

PSO

GA

Network loss (MW)

56.199

51.847

53.596

54.055

55.388

54.163
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the harder it is to train. The discount factor γ= 0.95 is also 
that ultimately used in the paper after extensive testing.

In addition, the paper sets the number of neurons in the 
neural network to be 64 based on extensive testing. The 
number of neurons is also crucial for algorithm training. If 
the number of neurons is too small, such as 16, it may pre‐
vent the neural network from learning correctly. Conversely, 
if the number of neurons is too large, such as 256, it may 
lead to an excessive number of parameters that the neural 
network needs to train, thus increasing the learning difficulty 
and affecting the network generalization ability.

VII. CONCLUSION AND FUTURE WORK 

This paper proposes GAT-based deep reinforcement learn‐
ing for VVC of topologically variable power system, which 
incorporates voltage stability characteristics of system nodes 
into the attention mechanism, prioritizing essential nodes dur‐
ing voltage regulation. Furthermore, the challenges of slow 
training and sparse reward in DRL are effectively mitigated 
through the ReliefF-S algorithm and the optimization of the 
experience buffer, respectively.

According to the results of case studies, it can be ob‐
served that the proposed GAT-PPO algorithm not only has 
rapid convergence speed and good adaptability to different 
grid topologies but also possesses a strong ability to cope 
with uncertainties. The proposed GAT-PPO algorithm reduc‐
es the network loss by 6.9%, 10.8%, and 7.7%, respectively, 
demonstrating favorable economic outcomes. The proposed 
GAT-PPO algorithm can obtain an agent with strong transfer 
learning capability using a small amount of grid topology da‐
ta, without the need for data from all different grid topolo‐
gies. Meanwhile, the design of the reward function, prioritiz‐
ing constraints first and objective later, closely aligns with 
practical VVC challenges. Additionally, the proposed GAT-
PPO algorithm showcases an expanded boundary in terms of 
manageable grid topologies. In summary, the proposed GAT-
PPO algorithm has better VVC performance, which strongly 
supports engineering applications.

The proposed GAT-PPO algorithm encounters two limita‐
tions: the curse of dimensionality when facing large-scale 
power grids, and the performance degradation due to the da‐
ta quality of sensors. To overcome the above-mentioned 
flaws, the future research directions include: ① the multi-
agent DRL algorithms will be explored to tackle the exten‐
sive and complex power grids; and ② during algorithm train‐
ing, the data missing situations should be considered. Meth‐

ods to mitigate the impact of data missing will be adopted to 
improve the proposed GAT-PPO algorithm, thereby continu‐
ously enhancing its robustness. Additionally, measures such 
as enhancing signal reception strength and improving trans‐
mission methods can be adopted to alleviate transmission is‐
sues with sensors.
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