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Abstract——The component aging has become a significant con‐
cern worldwide, and the frequent failures pose a serious threat 
to the reliability of modern power systems. In light of this issue, 
this paper presents a power system reliability evaluation meth‐
od based on sequential Monte Carlo simulation (SMCS) to 
quantify system reliability considering multiple failure modes of 
components. First, a three-state component reliability model is 
established to explicitly describe the state transition process of 
the component subject to both aging failure and random failure 
modes. In this model, the impact of each failure mode is decou‐
pled and characterized as the combination of two state duration 
variables, which are separately modeled using specific probabili‐
ty distributions. Subsequently, SMCS is used to integrate the 
three-state component reliability model for state transition se‐
quence generation and system reliability evaluation. Therefore, 
various reliability metrics, including the probability of load cur‐
tailment (PLC), expected frequency of load curtailment 
(EFLC), and expected energy not supplied (EENS), can be esti‐
mated. To ensure the applicability of the proposed method, 
Hash table grouping and the maximum feasible load level judg‐
ment techniques are jointly adopted to enhance its computation‐
al performance. Case studies are conducted on different aging 
scenarios to illustrate and validate the effectiveness and practi‐
cality of the proposed method.

Index Terms——Power system, reliability evaluation, aging fail‐
ure, sequential Monte Carlo simulation.

I. INTRODUCTION

THE power system is recognized as one of the greatest 
engineering achievements of the 20th century, given its 

critical role in supplying continuous electricity to modern so‐
ciety [1]. However, as the system components installed de‐
cades ago have entered their wear-out stage, these systems 
have become less reliable [2], [3]. In recent years, blackouts 
caused by component aging failures have occurred frequent‐
ly, posing a serious threat to economic development and 
quality of life. In 2023, an aging-induced blackout accident 
occurred in Pakistan, plunging 220 million users into dark‐
ness [4]. Furthermore, component aging can also present a 
significant threat to the transmission and full utilization of re‐
newable energy. Therefore, improving the reliability of aged 
power systems and reducing their outage risk has become an 
essential task for power utilities [5], [6].

Thus, there is a pressing need to develop the methods that 
can accurately evaluate system reliability considering compo‐
nent aging failures. These methods could enable system plan‐
ners to make appropriate reliability-centered maintenance 
plans to mitigate the adverse impacts of component aging 
failures on system reliability [7]. Some pioneering studies 
have been conducted in this regard.

Reference [8] proposes the first available method based 
on the non-sequential Monte Carlo simulation (NSMCS) 
method. In this method, equivalent unavailability (EU) is in‐
troduced to quantify the component reliability, representing 
the average probability of the component being available 
due to both random and aging failure modes. Similarly, an 
efficient mathematical quantification model is presented in 
[9] to evaluate the unavailability of the components by repre‐
senting the bathtub curve as a Markov process [10]. Subse‐
quently, NSMCS method is adopted for system reliability 
evaluation, where the operation states of components are ran‐
domly sampled based on their EUs. Although this method 
has been widely used due to its simplicity, it cannot capture 
the chronological property inherent in the aging failure char‐
acteristics of the components and the associated state transi‐
tion process [11], [12]. As a result, the evaluated results may 
significantly deviate from reality [13].

To overcome the above limitations, several recent studies 
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have developed system reliability evaluation methods based 
on sequential Monte Carlo simulation (SMCS) (hereafter 
called SMCS-based system reliability evaluation method) to 
consider the time-related characteristics of the component ag‐
ing failure mode [14]. In these studies, SMCS is used to se‐
quentially sample the component operation states and the as‐
sociated state duration from the component reliability model, 
simulating the chronology of the component state transition 
process. In this regard, the non-homogeneous poisson pro‐
cess (NHPP)-based two-state component reliability model is 
most widely used for describing and simulating the compo‐
nent state transition process considering aging failures [15]. 
In this model, the component state transition process is de‐
scribed as an interleaved sequence combination of the nor‐
mal running and aging failure states. It assumes that the 
failed component can be as good as it is immediately before 
failure after applying repair activities. However, there are 
two deficiencies in this two-state component reliability mod‐
el. First, component aging failures are generally non-repair‐
able and once such failures occur, the failed component 
should be replaced with a new component [11]. Thus, the ag‐
ing process fully stops in the failed components. Second, the 
aged components also transition from the normal running 
state to the failure state due to repairable random failures 
[16]. Nevertheless, this failure mode and its associated im‐
pact are obscured by the aging failure mode and are there‐
fore not included in the two-state component reliability mod‐
el. Therefore, applying this model for component state transi‐
tion sequence generation (CSTSG) and subsequent system re‐
liability will inevitably lead to erroneous results.

Consequently, it is necessary to develop a component reli‐
ability model that can accurately describe the state transition 
process of components considering non-repairable aging fail‐
ure mode, while preserving the effects of the repairable ran‐
dom failure mode. However, this issue has not been investi‐
gated systematically.

There is another practical issue when using SMCS to in‐
corporate the component aging failure mode in system reli‐
ability evaluation. Specifically, a significant number of repet‐
itive simulations are generally required to adequately capture 
the stochastic behavior of component aging failures and ob‐
tain reliable reliability evaluation results [17]. During each 
simulation process, a large number of system states are gen‐
erated, each of which must undergo minimum load-shedding 
calculations via the optimal power flow (OPF). This require‐
ment inevitably leads to a heavy computational burden, 
thereby limiting the practical applicability of SMCS. This 
challenge will become more pronounced when evaluating 
power systems with a large number of aged components (po‐
tentially having more aging failures and requiring more simu‐
lations). Traditionally, various methods have been proposed 
to accelerate the SMCS process while maintaining desirable 
accuracy, including cross entropy-importance sampling (CE-
IS) [18] and neural network based methods [19]. However, 
the time-varying nature of the reliability parameters of aged 
components makes it infeasible to use the CE-IS method to 
construct the optimal probability density function for effi‐
cient state sampling. Similarly, due to this constraint, it be‐

comes unrealistic to build extensive training samples for the 
neural network to attain satisfactory specificity and sensitivi‐
ty. In general, acceleration methods that are suitable for 
SMCSs considering component aging failures have been sel‐
dom investigated.

To address the aforementioned problems and difficulties, a 
systematic method is proposed to incorporate component ag‐
ing failures in system reliability evaluation. At the compo‐
nent level, a three-state component reliability model is de‐
signed to refine the differentiated impacts of aging failures 
and random failures on the component state transition pro‐
cess. In this model, the impact of each failure mode is de‐
coupled and characterized as the combination of two differ‐
ent state duration variables, which are clearly defined and 
modeled using suitable probability distributions. In this way, 
the state transition processes of the aged components can be 
efficiently simulated. At the system level, a general system 
reliability evaluation method considering component aging 
failures is established. This method employs SMCS for CST‐
SG and considers other chronological factors such as system 
load curves and spare components. To improve the computa‐
tional performance of the proposed method, a two-step accel‐
eration method is further developed. This method integrates 
Hash table (HT) grouping and maximum feasible load level 
(MFLL) judgment techniques to efficiently filter out the suc‐
cessful system state sampled in the SMCS process, thereby 
reducing the number of OPF solutions. Notably, this pro‐
posed method is also suitable for the reliability analysis of 
power systems with renewable energy integration.

Following the previous works in this field, this paper 
makes the following contributions.

1) A three-state component reliability model is designed to 
depict and simulate the component state transition process 
subject to repairable random failures and non-repairable ag‐
ing failures. The involved four state duration variables are 
clearly defined and modeled using various probability distri‐
butions. Additionally, the impact of updated component re‐
placement is also considered.

2) A general SMCS-based system reliability evaluation 
method is proposed to integrate the proposed three-state com‐
ponent reliability model for system reliability evaluation. It 
can generate various kinds of reliability indices, including 
probability, frequency, and expectation measures, for compre‐
hensively quantifying the impact of multiple failure modes 
of the component. This model can also accommodate the re‐
newable energy integration.

3) A two-step acceleration method is developed to im‐
prove the reliability evaluation efficiency by reducing the 
number of system states that require OPF analysis, which  
can enhance the computational performance of the proposed 
method, thus ensuring practical applicability and scalability.

The rest of the paper is organized as follows. Section II 
outlines the three-state component reliability model consider‐
ing aging failures. Section III introduces the SMCS-based 
system reliability evaluation method. Section IV presents the 
proposed two-step acceleration method. Section V presents 
the case studies. Section VI discusses the work, and conclu‐
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sions are given in Section VII.

II. THREE-STATE COMPONENT RELIABILITY MODEL 
CONSIDERING AGING FAILURES 

A. Conventional NHPP-based Two-state Component Reliabil‐
ity Model

The conventional NHPP-based two-state component reli‐
ability model is illustrated in Fig. 1, where t1 is the time 
when the component is put back into operation; t2 is the oc‐
currence time of random failures; t3 is the re-running time of 
repaired component; t4 is the occurrence time of aging failures; 
t5 is the commission time of new component; and TTFran and 
TTRran are the uptime and repair time, respectively.

The aging failures are assumed to be repairable; thus, the 
component state transition process is characterized by TTFran 
followed by TTRran [20]. Moreover, the duration of TTFran is 
assumed to follow the NHPP distribution, which tends to de‐
crease over time considering the continuous increase in com‐
ponent aging degree [15]. However, this model cannot reflect 
the actual state transition process of the aged component due 
to the incorrect consideration of the aging failure characteris‐
tics and the neglect of the impact on random failures [11].

B. Design of a Three-state Component Reliability Model 
Based on Failure Mode Analysis

To construct a model that can describe the chronological 
state transition process of aged components subject to both 
random failure and aging failure modes, the characteristics 
of these two independent failure modes are analyzed and 
compared, as shown in Table I.

TABLE I
CHARACTERISTICS OF AGING FAILURE AND RANDOM FAILURE MODES

Factor

Cause

Feature

Aging failure mode

It is mainly caused by the 
irreversible deterioration of 
component strength due to 

the long-term effects of 
multiple destructive stress

It exhibits a growth trend 
over running time

It occurs only once during 
a component life cycle

The failed component must 
be replaced by a new one

Random failure mode

It is mainly caused by random 
operational mistakes or short-time 
incidents arising from unexpected 
operation and weather conditions

It is independent of component 
running time.

It can repeatedly occur during a 
component life cycle

The failed component can be 
restored by a sample repair

According to Table I, random failures are generally repair‐
able and time-dependent, whereas aging failures are time-de‐
pendent, catastrophic, and non-repairable [16]. When aging 
failures occur, the failed component reaches the end of its 
life cycle and needs to be replaced by a new component [7]. 
Thus, the component aging process is fully stopped [21]. Be‐
fore this, the aged component alternatively transitions be‐
tween random failure and normal running states.

Thus, the actual component state transition process, which 
takes into account both aging and random failure modes, is 
shown in Fig. 2, where t6 is the occurrence time of random 
failures; and t7 is the re-running time of repaired component.

According to Fig. 2, the component state transition pro‐
cess can be decomposed into two different working cycles 
that correspond to non-repairable aging and repairable ran‐
dom failure modes.

1) Cycle 1: a random failure occurs, transitioning the com‐
ponent from the running state to the random failure state. Af‐
ter being repaired, the component returns to its running state 
while continuing to age. This cycle includes two duration 
variables: TTFran and TTRran.

2) Cycle 2: aging failure occurs, forcing the component 
from the running state to the aging failure state. After being 
replaced, the component returns to the running state as a 
new component (the previous aging process stops). This cy‐
cle is characterized by two duration variables: TTFaging (time 
to the aging failures) and TFRaging (time to replacement).

Accordingly, a three-state component reliability model is 
designed to describe the state transition process of an aged 
component, as illustrated in Fig. 3.

In this model, the random variables TTFran, TTRran, and 
TFRaging typically adhere to time-independent probability dis‐
tributions, as aging is not a concern for them (i.e., they are 
memoryless). In comparison, TTFaging adheres to time-depen‐
dent probability distributions, considering the time-depen‐
dent characteristic of aging failures. Thus, different probabili‐
ty distributions are selected to model these four types of 
state duration variables in this paper, which are detailed in 
the following subsection.

Random
 failures

Normal 
running

TTF
ran

TTR
ran

Running

t2

TTF
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TTR
ran

Time
Failure

Running

State

RepairRunning

t1 t3 t4
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Fig. 1.　Conventional NHPP-based two-state component reliability model.
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Fig. 3.　Diagram of three-state component reliability model.
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C. Distribution Modeling of Four State Duration Variables

1)　Modeling of TTFran

Random failures are aging-independent events caused by 
unexpected factors without memory, resulting in no relation 
to each failure event [16]. Thus, the exponential distribution 
is adopted here to model the TTFran, with its cumulative dis‐
tribution function (CDF) given by:

FTTFran
= 1 - exp(-λran × TTFran )    TTFran > 0 (1)

where λran is the parameter representing the constant random 
failure rate observed over historical statistical years.
2)　Modeling of TTRran

The repair time, independent of the running time, may ex‐
hibit certain variability due to the efficiency of on-site work 
by repair personnel [22]. Therefore, the lognormal distribu‐
tion, which has been verified across various power compo‐
nent types, is adopted here to characterize TTRran [23]. Its 
CDF is expressed as:

FTTRran
=Φ ( )In TTRran - μran

σran

    TTRran > 0 (2)

μran = In(E(TTRran ))-
1
2

In ( )1 +
V (TTRran )

E(TTRran )2 (3)

σ 2
ran = In ( )V (TTRran )+E(TTRran )2

E(TTRran )2 (4)

where Φ(·) is the CDF of the standard normal distribution; 
μran and σran are the location and scale parameters of FTTRran

, 

respectively; and E(TTRran ) and V (TTRran ) are the historical 
mean and variance of the component repair time, respectively.
3)　Modeling of TFRaging

The complete component replacement process consists of 
two time-consuming independent stages: order creation and 
component production, followed by transportation and instal‐
lation [24]. Nevertheless, in cases where spare components 
are available, the replacement time can be reduced to the du‐
ration of the second stage exclusively. For this issue, two 
lognormal distributions are employed to model the time dura‐
tion of these two stages separately, with their respective 
CDFs as follows:

F
TFRs1

aging

=Φ ( )In (TFRs1

aging )- μs1

aging

σ s1

aging

    TFRs1

aging > 0 (5)

F
TFRs2

aging

=Φ ( )In (TFRs2

aging )- μs2

aging

σ s2

aging

    TFRs2

aging > 0 (6)

where superscripts s1 and s2 denote the component order cre‐
ation and production stage and the transportation and installa‐
tion stage, respectively; and μs1

aging, σ
s1

aging, μ
s2

aging, and σ s2

aging can 

be estimated according to the historical replacement records 
of the component.
4)　Modeling of TTFaging

Unlike TTFran, TTRran, or TFRaging, TTFaging is dependent 
on the running time (asset age) of the component, as it repre‐
sents the remaining lifetime of a component under its cur‐

rent asset ages [25]. As a result, TTFaging of a component 
will follow time-dependent remaining lifetime distributions 
at different asset ages, reflecting the evolving likelihood of 
aging failures as the component ages.

In this case, it is necessary to first model the component 
lifetime distribution. Considering that aging failures occur 
with an extremely low probability (which can be assumed to 
be zero in engineering practice) before components enter 
their wear-out stage, an advanced three-parameter Weibull 
model is adopted to model the component lifetime distribu‐
tion  [26]. This model is defined here as Tlife, and its CDF is 
given as:

FTlife
=

ì

í

î

ï
ïï
ï

ï
ïï
ï

1 - exp ( )- ( )Tlife - ηaging

αaging

βaging

Tlife ³ ηaging

0 Tlife < ηaging

(7)

where αaging, βaging, and ηaging are the Weibull scale, shape, 
and threshold parameters estimated from historical aging fail‐
ure data of the component, respectively. It is worth noting 
that the parameter ηaging has a clear physical meaning, as it 
represents the start time point of the wear-out stage of the 
component [27].

Based on (7), the remaining lifetime distribution for a 
component that is known to have survived until its current 
asset age Tser, FTTFaging|Tser

, can be derived as:

FTTFaging|Tser
=P(Tlife £ Tser + TTFaging|Tlife > Tser )=

P(Tlife £ Tser + TTFaging )-P(Tlife £ Tser )

1 -P(Tlife £ Tser )
=

FTlife
(Tser + TTFaging )-FTlife

(Tser )

1 -FTlife
(Tser )

    TTFaging > 0 (8)

where P(×) denotes the corresponding probability.

Substituting (7) into (8), the analytical expression of 
FTTFaging|Tser

 can be obtained as:

FTTFaging|Tser
=

ì

í

î

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï
ïïï
ï

ï

ï

1-

exp ( )- ( )Tser+TTFaging- ηaging

αaging

βaging

exp ( )- ( )Tser- ηaging

αaging

βaging

    Tser³ ηaging

1- exp ( )- ( )Tser+TTFaging- ηaging

αaging

βaging

    Tser< ηaging

(9)

D. State Duration Sampling Based on Inverse Transforma‐
tion

In the process of generating subsequent component state 
transition sequences, it is necessary to use random values 
sampled from the above distribution model. Hence, analyti‐
cal expressions of the sampling values for the TTFran, 
TTRran, TTFaging, and TFRaging state durations are further de‐
rived via inverse transformation sampling [28] as follows.
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1) Sampling Value of TTFran

TTFransam =-
-In(U)
λran

(10)

where U is the random variable.
2) Sampling Value of TTRran

TTRransam = exp(μran + σranΦ
-1 (U)) (11)

where Φ-1 (U) denotes a random variable following a stan‐
dard normal distribution.
3) Sampling Value of TFRaging

Considering the impact of the spare component, the sam‐
pled TFRaging is formulated under two different cases, which 
are given as follows.

When no spare components are available:

TFRagingsam = exp(μs1

aging + σ
s1

agingΦ
-1 (U))+

exp(μs2

aging + σ
s2

agingΦ
-1 (U1 )) (12)

Alternatively, if a spare component is available, we can 
obtain:

TFRagingsam = exp(μs2

aging + σ
s2

agingΦ
-1 (U1 )) (13)

where the random variable U1 is also uniformly distributed 
in the interval (0,1).
4) Sampling Value of TTFaging

Let the current asset age of the component be Tser 
(Tser⩾0); therefore, TTFagingsam can be expressed as:

TTFagingsam = αaging (-In((1 -Á)U))
1

βaging + ηaging - Tser
(14)

Á=FTlife
(Tser )=

ì

í

î

ï
ïï
ï

ï
ïï
ï

1 - exp ( )- ( )Tser - ηaging

αaging

βaging

Tser ³ ηaging

0 Tser < ηaging

(15)

The aforementioned three-state component reliability mod‐
el is applicable to various types of power components, in‐
cluding generating units, transformers, and transmission 
lines. However, each component type should have an individ‐
ual set of model parameters, which requires the estimation 
from the respective historical data. Note that this model as‐
sumes that one component that is in aging failure mode 
needs to be completely replaced.

Furthermore, in practical engineering scenarios, infrastruc‐
ture managers of aging power system might replace aging-
failed components with updated ones, which could have dif‐
ferent reliability parameters from the original components. 
Regarding this issue, a random based component type selec‐
tion method can be employed to determine the specific com‐
ponent type for replacement (whether original or updated). 
Subsequently, the parameters used in three-state component 
reliability model will be updated accordingly for the subse‐
quent state duration sampling.

III. GENERAL SMCS-BASED SYSTEM RELIABILITY 
EVALUATION METHOD

The proposed method is based on the SMCS and includes 
four parts: component state sequence generation, system 
state sequence generation, system state analysis, and process 
of proposed SMCS-based system reliability evaluation meth‐

od. These parts are introduced in detail as follows.

A. Component State Sequence Generation

Considering the competitive relationship between aging 
failure and random failure modes during the component oper‐
ation process, it is crucial to determine the next cycle (fail‐
ure mode) before conducting chronological state sequence 
sampling. Here, the failure event with the earliest arrival 
time is selected as the next failure. Specifically, if 
TTFagingsam is smaller than TTFransam, the next failure event is 
identified as an aging failure and random failures will not oc‐
cur before this failure [29]. The detailed procedure for gener‐
ating the component state sequence using SMCS is outlined 
in Procedure I. Note that the impact of sharing component 
spares and updated component replacement is also consid‐
ered in this procedure.

B. System State Sequence Generation

During the operation of power systems, changes in either 
the component state sequence or system load level will trig‐
ger system state transitions. Consequently, the following two 
steps are employed to generate the chronological system 
state sequence.

Step 1: generate and combine the state sequences of all 
components on the same time basis using Procedure I.

Step 2: extract all the system states and partition those 
with multiple load levels into several contiguous states.

The process of generating the system state sequence for 
three components (C1-C3) and three load levels (Ls: L1-L3) 
based on the SMCS is illustrated, as shown in Fig. 4. Curve 
S1 represents the obtained system state sequences after imple‐
menting Step 1. Curve S2 represents the required system 
state sequences considering both changes in the component 

Procedure I: component state sequence generation

Input: component reliability parameters (Dtotal is the predefined simulation 
horizon).

Output: generated component state sequence.

Step 1: initialization. Assume that the component is in the normal running 
state at the initial time; let the simulation time TLsim = 0.

Step 2: calculate/update the remaining lifetime distribution of a component 
at its current asset age according to (8).

Step 3: determine the time duration to the next state transition of the com‐
ponent, dsim, according to the following step.

1) Sample the uptime if the next state is a failure state.
  Determine the next failure mode and value dsim using (10), (14), and    

(16). Then, go to Step 4.

dsim =
ì
í
î

ïï
ïï

TTFaging,sam    TTFran,sam > TTFaging,sam

TTFran,sam      TTFran,sam⩽TTFaging,sam

(16)

2) Sample the downtime if the next state is a normal running state.
a) Check if the current failure is a random failure. If so, sample dsim us‐

ing (11); otherwise, go to b)-d).
b) Determine the component type that is used for replacement.
c) Update the component reliability parameters, including λran, μran, σran, 

 μs1
aging, σ

s1
aging, μ

s2
aging, σ

s2
aging, αaging, βaging, and ηaging.

d) Check if there is a spare component available at present. If there is, 
sample dsim using (13); otherwise, use (12).

Step 4: accumulate the simulation time:
TLsim = TLsim + dsim (17)

Step 5: check whether TLsim reaches Dtotal. If not, update Tser and return to 
Step 3 (note that Tser will be redefined as 0 after the component is re‐
placed); otherwise, go to Step 6.

Step 6: output the generated component state sequence.
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state sequence and system load level. Indices 1-15 corre‐
spond to 15 individual system states.

C. System State Analysis

Following the system state sequence generation, this sub‐
section focuses on the analysis and evaluation of the adequa‐
cy of each system state within the sequence. To this end, an 
OPF model is formulated to minimize load curtailment by re‐
adjusting generation outputs to maintain system/bus power 
balance, alleviate line/transformer overloads, and prevent 
load shedding if feasible. In this paper, bus loads are as‐
sumed to be fully correlated with the total system load [30]. 
Therefore, for a given system state s, let its corresponding 
component state vector and time duration be υs and ds, re‐
spectively. This model can be expressed as:

min LCs = ∑
iÎΨbus

Psi (18)

s.t.

   ∑
gÎΨgi

Psg + ∑
rÎΨiin

PLsr - ∑
rÎΨiout

PLsr = Lsi Pipeak -Psi    iÎΨbus

(19)

where Ψbus, Ps,i, and LCs are the set of system buses, the 
load-shedding value on bus i, and the total system load-shed‐
ding value under system state s, respectively; Pi,peak is the 
peak load demand on bus i; Ps,g and PLs,r are the outputs of 
generator g and the power flow on branch r, respectively; 
Lsi is the load ratio of bus i; and Ψg,i, Ψi,in, and Ψi,out are the 
sets of generators (traditional generators or wind/solar gener‐
ators) connected to bus i, the sets of branches flowing into 
bus i, and the sets of branches flowing out of bus i, respec‐
tively. ∑

gÎΨg

Psg + ∑
iÎΨbus

Psi = Lsi∑
iÎΨbus

Pipeak (20)

PLsr = br (θsi - θsj )    rÎΨbranch (21)

where θs,i and θsj are the voltage angles of bus i and bus j, 
respectively; br is the admittance of branch; and Ψbranch is the 
set of branches.

0 £Psi £ Lsi Pipeak    iÎΨbus (22)

-υsr ×
- -----
PLr £PLsr £ υsr ×

- -----
PLr     rÎΨbranchυsrÎ{01} (23)

0 £PGsg £ υsg ×
- -------
PGg     gÎΨgυsgÎ{01} (24)

where υsr and υsg are the indicator variables for a compo‐
nent (if one component is in the failure state, the indicator 
variable equals 0; otherwise, the indicator variable equals 1); 
and 

- -----
PLr and 

- -------
PGg are the maximum available capacities of 

branch r and generator g, respectively.
Constraint (19) is the power balance equation for each 

bus. Constraint (20) states the system power balance. The 
DC power flow model is expressed as (21) in terms of the 
bus angles and reactance. Constraint (22) represents the load-
shedding limits on each bus. Constraint (23) states the pow‐
er limits of branches. Constraint (24) is the available capaci‐
ty range of the generators.

LSs > 0 indicates that system state s has a load loss. There‐
fore, its label indicator Js is set to be 1; otherwise, Js is set 
to be 0. Throughout every SMCS process, the calculation re‐
sults for each system state are recorded for the following re‐
liability index calculations.

To comprehensively quantify the system reliability perfor‐
mance, three reliability indices suitable for composite genera‐
tion and transmission systems are employed in this paper 
[31]. Assuming that the evaluation horizon is Dtotal and the 
total number of simulations is Ksam, these indices can be ex‐
pressed as follows.

1) Probability of load curtailment (PLC): this index is 
used to measure the probability of system failure.

PLC =
∑
k = 1

Ksam

PLCk

Ksam

=
∑
k = 1

Ksam( )1
Dtotal
∑
sÎΘk

Jsdks

Ksam

(25)

where dk,s is the duration of system state s in the k th simulation; 
and Θk is the set of system states obtained from the k th simula‐
tion.

2) Expected frequency of load curtailment (EFLC): this in‐
dex is used to measure the number of occurrences of transi‐
tion from a success state to a failure state in the system state 
sequence.

EFLC =
∑
k = 1

Ksam

EFLCk

Ksam

=
∑
k = 1

Ksam( )∑
sÎΘk

Iks

Ksam

(26)

where Ik,s is an indicator variable. If the system state s is a 
state with load loss and its predecessor is a state without 
load loss, Ik,s = 1; otherwise, Ik,s = 0.

3) Expected energy not supplied (EENS): this index is 
used to measure the expected amount of load shedding.

EENS =
∑
k = 1

Ksam

EENSk

Ksam

=
∑
k = 1

Ksam( )∑
sÎΘk

Jsdks × LSs

Ksam

(27)

Note that the other indices such as the expected duration 
of load curtailment (EDLC) and average duration of load 
curtailment (ADLC) can be derived from (25) - (27) without 
any additional difficulty [32].

D. Process of Proposed SMCS-based System Reliability 
Evaluation Method

Procedure II summarizes the workflow of the proposed 
method. The stopping criterion is when the coefficient of 
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Fig. 4.　Illustration of state sequence generation process based on SMCS.
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variance (COV) of EENS βEENS is less than a preset val‐
ue βmax.

As shown in the Procedure II, this method necessitates re‐
peated OPF calculations for each system state sampled in ev‐
ery SMCS process. For an old power system with a large 
number of aged components, this requirement may lead to 
prohibitively high computational costs [3]. Consequently, the 
following section concentrates on developing efficient two-
step acceleration method and integrating it into this proce‐
dure.

IV. TWO-STEP ACCELERATION METHOD FOR SYSTEM 
RELIABILITY EVALUATION 

During the iterative SMCS process, most sampled system 
states belong to the success category (no load curtailments); 
therefore, they do not contribute to the computation of sys‐
tem reliability indices. Therefore, this section introduces a 
two-step acceleration method to quickly identify successful 
system states in every SMCS process, consequently reducing 
the number of system states requiring OPF computations. 
The basic structure of this two-step acceleration method is 
shown in Fig. 5, which includes the following two steps.

Classifying

 all sampled 

system states

System stage without load loss

Step 1

Remaining system 

stage groups

System stage with load loss

Step 2
Model I

PLC

EFLC

EENS

Reliability

indices

Fig. 5.　Basic structure of proposed two-step acceleration method.

Step 1: system state grouping. This step focuses on classi‐
fying the sampled system states with identical component 
state vectors into corresponding groups using an HT tech‐
nique.

Step 2: system state filtering. This step focuses on rapidly 
filtering out system states within each group that do not re‐
sult in load loss by employing the MFLL.

By implementing these two steps, only the remaining sys‐
tem states require OPF solutions, which greatly reduces the 
required evaluation time.

As explained in Section III, a system state includes two 
features: the component state vector and the system load lev‐
el vector. Due to the characteristics of chronological simula‐
tion, numerous system states sampled in each SMCS process 
share identical component state vectors but differ only in 
their system load levels [17]. Each component state vector is 
associated with a unique MFLL value, which represents the 
highest load level that the system can sustain without trigger‐
ing load shedding. Inspired by this, this subsection utilizes 
the MFLL values to judge whether system states with the 
same component state vector would result in load loss with‐
out requiring individual OPF analyses. Specifically, system 
states with load levels lower than their corresponding MFLL 
values can be directly identified as successful system states.

To achieve this, an HT-based system state grouping is 
used to categorize the sampled system states with the same 
component state vectors into the same groups. The involved 
steps are summarized, as shown in Procedure III.

After grouping the sampled system states, the next step is 
to determine the value of the MFLL, i. e., LTsyst, related to 
each system state group. For this purpose, an optimization 
model formulated in [33] is adopted. Let LTsyst|υsg

 denote the 

MFLL value corresponding to group sg with component 
state vector υsg. The optimization model is expressed, as 
shown in Model I.

Procedure II: SMCS-based system reliability evaluation

Input: system data include topology information, load data, component re‐
liability parameters Dtotal and βmax.

Output: system reliability indices PLC, EFLC, EENS.

1) SMCS-based system state sequence generation
Step 1: input all the system data, assume that all the components are in      
running states initially, and let k = 1.

Step 2: start the kth simulation. The state sequences of all the components 
are simulated over the evaluation horizon on the same time basis (refer 
to Section III-A).

Step 3: construct the chronological system state sequence by combining 
the state sequences of all components and the chronological load (refer 
to Section III-B).

2) System state analysis
Step 4: extract all system states within the generated system state se‐
quence and save them in set Θk.

Step 5: calculate the load curtailment of each system state based on (18)-
(24) (refer to Section III-C).

3) Calculation and updating of reliability index
Step 6: update the system reliability indices after k simulations according 
to (25)-(27) (refer to Section III-D).

Step 7: calculate βEENS and judge whether the evaluation results are accept‐
able [17].

βEENS =
1

EENS
1

k(k - 1)∑h = 1

k

(EENSh -EENS)2 ) (28)

If βEENS > βmax, let k = k + 1 and restore all the input data; repeat Step 2 to 
Step 5. Otherwise, terminate the evaluation process and output the final 
system reliability indices.

Procedure III: HT-based system state grouping

Input: sampled system states in the k th SMCS process.
Output: the system state grouping results.

Step 1: initialization. An empty HT χht is created to store the system state 
grouping results.

Step 2: generate the hash key of each system state based on its component 
state vector υ using the Hash key function.

Step 3: insert each system state into χht. Place the system states with the 
same Hash key in the same linked list in χht.

Step 4: output the system state groups in the order of the generated Hash 
keys.

Model I: determination of MFLL

max LTsyst|υsg
(29)

s.t.∑
gÎΨgi

Pg|υsg
+ ∑

rÎΨiin

PLr|υsg
- ∑

rÎΨiout

PLr|υsg
= LTsyst|υsg

×Pipeak    iÎΨbus (30)

∑
gÎΨg

Pg|υsg
= LTsyst|υsg

∑
iÎΨbus

Pipeak (31)

br (θi|υsg
- θj|υsg

)£ || υr|υsg × - -----
PLr     rÎΨbranchυr|υsg

Î{01} (32)

0 £PGg|υsg
£ υg|υsg

× - -------
PGg     gÎΨgυg|υsg

Î{01} (33)

-υr|υsg
× - -----

PLr £PLr|υsg
£ υr|υsg

× - -----
PLr     rÎΨbranchυr|υsg

Î{01} (34)
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Equations (29) - (34) represent the power balance, power 
generator output, and line flow constraints, respectively. 
Once the value of LTsyst|υsg

 is obtained, the successful system 

states within the system state group sg can be filtered out.
Finally, Fig. 6 gives the overall flowchart of the proposed 

SMCS-based system reliability evaluation method with the 
two-step acceleration method.

V. CASE STUDIES 

In this paper, various case studies are performed to vali‐
date the accuracy and efficiency of the proposed SMCS- 
based system reliability evaluation method.

A. Basic Test System Description and Simulation Setting

The modified RTS-79 system (MRTS-79) includes 24 bus‐
es, 32 generating units, 33 transmission lines, and 5 trans‐
formers, with a total generating capacity of 3405 MW and a 
peak load of 2850 MW. This system is geographically divid‐
ed into three regions, R1, R2, and R3, as shown in Fig. 7.

For all cases, the evaluation horizon is set to be one year. 
βmax for SMCS is set to be 0.05, which has been demonstrat‐
ed to ensure reasonable accuracy [34]. The parameters for 
the state duration distributions of each power component 
type are summarized in Supplementary Material A. These pa‐
rameters are mainly derived from the statistical data provid‐
ed in [6], [35], [36] using the maximum likelihood estima‐
tion, which has been proven to have greater precision than 
other parameter estimation methods [26]. It is worth noting 
that the time required for power transformers, generating 
units, and ordering and production of transmission line is as‐
sumed to be 75% of their total replacement time [37], [38]. 
As discussed in Section III-A, different reliability parameters 
can also be used in the proposed method without adding dif‐
ficulty in practical engineering.

B. Reliability Analysis of Basic Test System

This subsection focuses on evaluating the system reliabili‐
ty under various aging degrees using the proposed method. 
For simplicity, the annualized system reliability indices are 
calculated for analysis, i.e., the system load level remains at 
2850 MW [32]. The most widely used NSMCS method pre‐
sented in [8] is adopted for comparison. This method does 
not consider the chronological operation process of aged 
components when evaluating system reliability indices. Note 
that the spare component strategy is also ignored to ensure a 
fair comparison.

Considering the increase in the system aging degree over 
time, ten scenarios with different aging regions and compo‐
nent asset ages are specifically designed for comprehensive 
analysis, as detailed in Table II. It is assumed that compo‐
nents of the same type within the same region have identical 
asset ages. The asset ages of all components within nonaged 
regions are set to be 10 years. Note that scenario 1 is specifi‐
cally designed to simulate a system without aging effects.

Table III provides the annualized PLC and EENS indices 
for the 10 scenarios obtained from the proposed method and 
the NSMCS method.

According to Table III, the following key observations can 
be made.

1) The system reliability indices exhibit a significant in‐
crease as both the number and asset ages of aged compo‐
nents increase. For example, the annualized PLC in aging 

Y
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Output system reliability indices
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Extract all sampled system states

N

Acceleration module evaluation 

Calculate load curtailment of each failed system state

Calculate MFLL value corresponding to each group
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Fig. 6.　Overall flowchart of proposed SMCS-based system reliability eval‐
uation method with two-step acceleration method.
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scenarios 6 and 9 increases by 51.613% and 109.67%, re‐
spectively, compared with the value obtained from basic sce‐
nario 1. Similarly, the annualized EENS indices in these two 
scenarios also increase by 63.375% and 137.023%, respec‐
tively. These observations are expected, as the occurrence of 
component aging failures tends to increase as the system ag‐
ing degree increases. These findings provide quantitative evi‐
dence of the significant influence of component aging fail‐
ures, indicating that they are the dominant factor contribut‐
ing to the unreliability of aged power systems.

2) Across scenarios 2 to 10, the NSMCS generally yields 
larger PLC and EENS indices than the proposed method. 
Moreover, the discrepancy between these two methods tends 
to increase as the system aging degree becomes more pro‐
nounced. For example, in scenario 10, the PLC and EENS 
indices obtained from the NSMCS are 2.836 times and 
4.089 times greater, respectively, than those of the proposed 
method. The main reason behind this is that the NSMCS dis‐
regards the sequential operation behaviors of the component 
and makes the erroneous assumption that aging-failed com‐
ponents will be completely unavailable during the remaining 
evaluation horizon. Accordingly, if power utilities still use 
NSMCS, there is a great risk of underestimating the actual 
system reliability level.

Since the NSMCS is unable to accurately estimate the an‐
nualized EFLC indices, only the EFLC results obtained from 
the proposed method are provided, as shown in Table IV.

One notable observation from Table III and Table IV is 
the greater growth rate in the PLC and EENS indices com‐
pared with the EFLC index as the system aging degree in‐
creases. For instance, the PLC and EENS indices of scenario 
7 increase by 151.613% and 174.474%, respectively, while 
the EFLC index increases by only 42.514% compared with 
the value in basic scenario 1. Similar trends can be observed 
in other aging scenarios. These findings are reasonable since 
component aging failures will lead to a longer system outage 
duration and greater load losses than random failures. Conse‐
quently, it can be inferred that using the two-state compo‐
nent reliability model established in [15] for system reliabili‐
ty evaluation is inadequate. This is because the two-state 
component model fails to describe and distinguish the differ‐
entiated impacts of component aging and random failure 
modes.

In summary, the above observations reveal the significant 
impact of component aging failures on system reliability. It 
is also evident that incorporating the proposed three-state 
component reliability model in the system reliability evalua‐
tion is crucial for realizing a more reliable and accurate eval‐
uation of the system reliability level.

C. Efficiency Analysis of Proposed Method with Two-step 
Acceleration Method

The computational performance of the proposed method 
with the two-step acceleration method is crucial for its practi‐
cal implementation in real systems. This subsection focuses 
on the verification of the computational efficiency of the pro‐
posed method with the two-step acceleration method by con‐
ducting an annual reliability analysis on scenarios 9 and 10. 
The RTS 8736-hour load data are used as the annual system 
load curve. The crude sequential Monte Carlo simulation 
(CSMCS) method is implemented for comparison. The con‐
vergence criterion of the CSMCS is set to be 4000 simula‐
tions [33]. Detailed results are provided, as shown in Ta‐
ble V.

As Table V shows, the annual reliability indices yielded 
by these two methods are relatively close. The average rela‐
tive errors of the annual PLC, EFLC, and EENS indices be‐
tween these two methods are only 1.470%, 0.885%, and 
1.589%, respectively, which can be attributed to the stochas‐
tic characteristics of the simulations. This observation proves 
that the two-step acceleration method will not harm the accu‐

TABLE IV
ANNUALIZED EFLC RESULTS OF MRTS-79 IN DIFFERENT AGING 

SCENARIOS

Scenario No.

1

2

3

4

5

EFLC 
(occurrence/year)

6.145

6.158

6.270

6.535

6.160

Scenario No.

6

7

8

9

10

EFLC
(occurrence/year)

7.592

9.683

7.063

8.776

10.958

TABLE II
DESCRIPTION OF TEN SYSTEM SCENARIOS

Scenario 
No.

1

2

3

4

5

6

7

8

9

10

Aging
region

R1

R1

R1

R1, R2

R1, R2

R1, R2

R1, R2, R3

R1, R2, R3

R1, R2, R3

Current asset age of aged component (year)

Generating
unit

10

48

51

54

48

51

54

48

51

54

Power 
transformer

10

42

47

52

42

47

52

42

47

52

Transmission
line

10

45

50

55

45

50

55

45

50

55

TABLE III
ANNUALIZED PLC AND EENS INDICES FOR TEN SCENARIOS

Scenario No.

1

2

3

4

5

6

7

8

9

10

PLC

NSMCS

0.031

0.036

0.047

0.084

0.045

0.093

0.217

0.056

0.146

0.363

Proposed

0.031

0.032

0.034

0.037

0.033

0.047

0.078

0.040

0.065

0.128

EENS (MWh/year)

NSMCS

3.514×104

4.013×104

5.037×104

9.401×104

5.130×104

1.151×105

3.303×105

6.609×104

2.176×105

7.691×105

Proposed

3.512×104

3.627×104

4.025×104

4.459×104

3.728×104

5.741×104

9.645×104

4.715×104

8.329×104

1.881×105
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racy of the system reliability evaluation results.

In terms of computation time, the proposed HT- and 
MFLL-based method exhibits a remarkable advantage. Com‐
pared with CSMCS, the average computational cost can be 
reduced by 75.334%. The proposed HT- and MFLL-based 
method is also applied to MRTS-96 to further validate its ef‐
ficiency and scalability for large systems [39] (detailed re‐
sults are provided in Supplementary Material B). The results 
demonstrate that the proposed HT- and MFLL-based method 
can achieve satisfactory accuracy, which is nearly equivalent 
to that of CSMCS while maintaining acceptable computation 
time. This high computational efficiency allows for the pro‐
posed HT- and MFLL-based method to capture the effects of 
random components and aging failures, making it well-suit‐
ed for practical applications.

D. Accuracy Analysis of Simulated Component State Se‐
quences

This case study verifies the accuracy of the simulated 
component state sequences. To achieve this, the failure inver‐
sion method proposed in [40] is employed, whose fundamen‐
tal concept is to compare the aging-related failure rates of 
components derived from the simulation results with the sta‐
tistical values (treated as true values). The inversion times 
for each component type are set to be 500. Detailed compari‐
son results of the three component types are given in Table 
VI.

It can be observed from Table VI that there is a negligible 
discrepancy between the aging-related failure rates (calculat‐
ed value) and the statistical results (true value) for all three 

component types. The average relative errors across the 
three asset ages are only 3.502%, 2.338%, and 1.735%, re‐
spectively, which validates the accuracy of the proposed 
three-state component reliability model in simulating the 
state transition process and failure behavior of aged compo‐
nents.

E. Application in System Reliability Analysis with Renew‐
able Energy Resource Integration

Renewable energy resources are becoming increasingly 
prevalent in modern power systems. Nevertheless, compo‐
nent aging, such as transmission network aging, may signifi‐
cantly impede the transmission and full utilization of renew‐
able energy resources, thereby posing a threat to the system 
reliability [41]. Because the transmission network of the 
MRTS-79 is too reliable, this subsection uses a modified 
IEEE Roy Billinton test system with wind power integration 
(defined as MRBTS) to analyze the impact of component ag‐
ing failures on system reliability.

The original Roy Billinton test system (RBTS) includes 6 
buses and 11 generating units. The total installed capacity is 
240 MW, with a system peak load of 185 MW [42]. In the 
MRBTS, both bus 1 and bus 2 have one 40 MW generating 
unit replaced by wind turbines. The RTS 8736-hour load da‐
ta are still used as the annual system load data. The wind 
speed of a provincial system in China is used to obtain the 
annual output curve of the wind turbines [42]. In the reliabil‐
ity evaluation process, system states with the same compo‐
nent state vectors may result in different MFLL values due 
to variations in renewable energy output. To maintain the ef‐
fectiveness of the two-step acceleration method, an MFLL 
correction step is introduced to determine the individual 
MFLL values associated with system states having the same 
component states but varying renewable energy outputs [43]. 
Details can be found in Supplementary Material C.

For comparison purposes, the following two scenarios are 
provided. In scenario 1, the system is assumed to be free 
from aging failure effects, while in scenario 2, the asset ages 
of the generating units and transmission lines are set to be 
54 and 55 years, respectively. To ensure a fair comparison, it 
is assumed that the two wind turbines do not experience any 
failures in the two scenarios. The detailed results are provid‐
ed in Table VII.

As indicated in Table VII, compared with those in scenar‐
io 1, the PLC, EFLC, and EENS indices in scenario 2 in‐
crease by 2.664, 2.739, and 2.716 times, respectively. This 
observation highlights the negative impact of component ag‐
ing on the reliability of power systems integrated with re‐
newable energy resources.

TABLE VI
COMPARISON RESULTS OF THREE COMPONENT TYPES

Component type

Generating
unit

Power
transformer

Transformer
line

Asset age
(year)

48

51

54

42

47

55

45

50

55

Aging-related failure rate (time/year)

Calculated value

0.020

0.072

0.180

0.185

0.271

0.358

0.041

0.084

0.149

True value

0.019

0.072

0.171

0.190

0.277

0.364

0.040

0.083

0.146

TABLE VII
ANNUAL RELIABILITY INDICES FOR TWO SCENARIOS

Scenario No.

1

2

PLC

1.338×10-3

4.903×10-3

EFLC
(occurrence/year)

0.4362

1.6310

EENS
(MWh/year)

145.304

539.928

TABLE V
ANNUAL RELIABILITY INDICES FOR DIFFERENT SCENARIOS

Scenario 
No.

9

10

Method

CSMCS

Proposed

CSMCS

Proposed

PLC

7.253×10-4

7.369×10-4

2.088×10-3

2.116×10-3

EFLC
(occurrence/

year)

1.265

1.271

3.243

3.285

EENS
(MWh/year)

714.424

726.380

2452.769

2489.686

CPU time
(min)

4451.447

1089.335

4642.571

1153.805
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F. Application in Spare Component Analysis

Given the critical role of generating units in power sys‐
tems [44], this subsection describes the investigation and 
quantification of the impact of the number of generating 
units on system reliability using the proposed SMCS-based  
system reliability evaluation method. To ensure a fair com‐
parison, the asset ages of the power transformers and trans‐
mission lines are fixed at 52 and 55 years, respectively. It is 
assumed that spare generating units could replace any failed 
unit within the system. The annualized PLC and EENS indi‐
ces under different asset ages of aging generating units and 
varying numbers of spare generating units are provided, as 
shown in Figs. 8 and 9.

According to Fig. 8 and Fig. 9, it can be concluded that 
both the PLC and EENS indices greatly decrease as the num‐
ber of spare generating units increases. For example, when 
the spare generating units are 54 years old, the implementa‐
tion of five spare generating units can lead to notable reduc‐
tions of 59.197% and 50.762% in the PLC and EENS indi‐
ces, respectively. This is because the application of spare 
generating units can substantially shorten the time required 
for replacing the aging-failed generating units, thereby reduc‐
ing the system outage duration. This observation proves that 
the implementation of spare component planning is a signifi‐
cant measure for mitigating the negative impact of compo‐
nent aging failures on system reliability. The results also 
demonstrate the capacity of the proposed SMCS-based sys‐

tem reliability evaluation method as a reliability quantifica‐
tion tool for system reliability optimization.

VI. DISCUSSION 

As illustrated in Table I, there are obvious differences in 
causal factors between random failure and aging failure 
modes of a component. The specific causal factors of these 
two failure modes depend on the type and structure of the 
studied component. For instance, random failures in transmis‐
sion lines are caused mainly by external factors such as tree 
contact, bird contact, lightning, and rainstorms, while aging 
failures typically result from the corrosion of metal parts, in‐
sulation damage, and partial discharge. For transformers, ran‐
dom failures often include lightning strikes, tap changer fail‐
ures, and external short circuits, whereas aging failures are 
primarily due to the irreversible degradation of insulating pa‐
per. Detailed discussions on this topic can be found in [45], 
[46]. Moreover, it is worth emphasizing that this paper focus‐
es on the whole asset when modeling component non-repair‐
able aging failures. Specifically, it follows the assumption 
that the assets experiencing aging failures need to be com‐
pletely replaced with new assets. However, aging failures 
may render certain subcomponents of an asset unrepairable, 
necessitating their replacement while allowing for the re‐
maining subcomponents to be used. In response, a potential 
future solution is to independently build a three-state compo‐
nent reliability model of subcomponents. Additionally, the 
failure basis for the proposed three-state component reliabili‐
ty model needs to be further enhanced in the future to sup‐
port more robust model justification.

Furthermore, in practical situations, many power assets 
are scrapped due to preventive management across utilities, 
which increases the difficulty in collecting enough failure 
statistics data to construct an accurate lifetime distribution 
for a given component type. This may limit the practical ap‐
plication of the proposed three-state component reliability 
model in engineering. To overcome this issue, two feasible 
solutions, namely, aging failure data restoration and all-infor‐
mation methods, have been proposed in previous studies 
[47], [48]. The first method focuses on converting the col‐
lected scrapping age data of power components into their ag‐
ing-related lifetime through remaining useful lifetime fore‐
casting. The second method is used to construct a lifetime 
distribution based on all the information in a component 
group, including both failed and surviving components. 
Since the proposed three-state component reliability model is 
completely decoupled from these distribution acquisition 
methods, both methods can be used in practice.

VII. CONCLUSION 

In this paper, an SMCS-based system reliability evaluation 
method for incorporating multiple component failure modes 
in a system reliability evaluation is presented. Compared 
with previous works, we can conclude:

1) The proposed method can efficiently quantify the com‐
prehensive impact of random failures and non-repairable ag‐
ing failures on component system reliability, providing more 
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Fig. 8.　Annualized PLC indices under different asset ages of aging generat‐
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credible estimations of system reliability indices compared 
with conventional methods.

2) The proposed three-state component reliability model 
can describe and distinguish the impacts of the random and 
aging failure behaviors of a component, making the compo‐
nent state sequence generations more consistent with their ac‐
tual operation process.

3) The developed two-step acceleration method can en‐
hance the computational performance of the proposed meth‐
od, making the proposed method more practical and promis‐
ing for real-world applications, particularly for the systems 
with a large number of aged components and renewable en‐
ergy.

4) The proposed method can serve as a valuable reliability 
quantification tool for planners to support decision-making 
and the implementation of reliability-centered system mainte‐
nance strategies, e.g., spare component optimization.

Future studies can concentrate on developing effective reli‐
ability-centered asset management strategies that are based 
on the established method to enhance the reliability of aged 
power systems.
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