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Abstract——With good adaptability to weak power grids, the 
grid-forming inverter becomes the foundation of future power 
grids with high-proportion renewable energy. Moreover, the vir‐
tual synchronous generator (VSG) control is recognized as the 
mainstream control strategy for grid-forming inverters. For per‐
manent magnet synchronous generator (PMSG) based wind gen‐
eration systems connected to power grid via VSG-controlled 
grid-forming inverters, some novel impacts on the low-frequen‐
cy oscillations (LFOs) emerge in power grids. The first impact 
involves the negative/positive damping effect on LFOs. In this 
paper, the small-signal torque model of VSG-controlled PMSG-
based wind generation systems is established based on the 
damping torque analysis method, revealing the influence mecha‐
nism of machine-side dynamics on LFOs and proving the neces‐
sity of the double-mass model for accurate stability analysis. 
The second impact is the resonance effect between torsional os‐
cillation and LFOs. Subsequently, this paper uses the open-loop 
resonance analysis method to study the resonance mechanism 
and to predict the root trajectory. Then, a damping enhance‐
ment strategy is proposed to weaken and eliminate the negative 
damping effect of machine-side dynamics on LFOs and the reso‐
nance effect between torsional oscillation and LFOs. Finally, the 
analysis result is validated through a case study involving the 
connection of the VSG-controlled PMSG-based wind generation 
system to the IEEE 39-bus AC grid, supporting the industrial 
application and stable operation of VSG-controlled PMSG-
based wind generation systems.

Index Terms——Grid-forming inverter, low-frequency oscilla‐
tion (LFO), modal resonance, permanent magnet synchronous 
generator (PMSG), torsional oscillation, virtual synchronous 
generator (VSG).

I. INTRODUCTION 

IN recent years, the global initiative to achieve carbon neu‐
trality has accelerated the development of renewable ener‐

gy, leading to a rapid increase in its penetration rate [1]. Cur‐
rently, most renewable energy systems utilize grid-following 
control, which is inadequate for meeting the requirements of 
grid frequency, inertia, and voltage support as the renewable 
energy penetration increases [2]. Therefore, there is a need 
to enhance the active support capability of renewable energy. 
The renewable energy systems with grid-forming inverters 
controlled by virtual synchronous generator (VSG) can simu‐
late voltage source characteristics while supporting voltage 
and frequency. In the future, it is crucial to gradually in‐
crease the deployment of VSG-controlled renewable energy 
systems for stable operation in weak grids [3], [4]. However, 
the VSG-controlled renewable energy systems may encoun‐
ter low-frequency oscillations (LFOs) similar to synchronous 
generators (SGs) when simulating rotor dynamics on the 
grid side. Unlike SGs, the behavior of LFOs in VSG-con‐
trolled renewable energy systems is more complex and pri‐
marily related to control sections. The research in this field 
is still in progress and requires further refinement [5], [6].

Most research on the stability of VSG-controlled systems 
under LFOs focuses on grid-connected inverters employing 
the constant DC-link voltage control [7]-[12]. Reference [7] 
investigates the influence mechanism of VSG-controlled volt‐
age source converters (VSCs) on LFOs using damping 
torque analysis method and identifies that the introduction of 
phase-locked loops (PLLs) can exert a negative damping ef‐
fect on LFOs. References [8] and [9] establish small-signal 
state-space models for VSG-controlled inverters considering 
outer voltage loops, where it can be observed that increasing 
the virtual impedance and active damping coefficient is ad‐
vantageous for enhancing the stability in low-frequency 
range. Reference [10] examines the LFOs in a system com‐
prising grid-following and grid-forming VSCs and finds that 
the damping coefficients and the proportional coefficient of 
the proportional-integral (PI) controller of PLL primarily in‐
fluence the damping of LFOs. In [11], a small-signal model 
of VSG considering the governor is developed to investigate 
the influence mechanism of VSG on inter-area LFOs based 
on the participation factor analysis, elucidating the influence 
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patterns of various parameters. Reference [12] suggests an 
active damping approach for multiple grid-connected VSGs 
in power grid to mitigate LFOs. There is limited research on 
the impact of VSG-controlled renewable energy resource 
such as permanent magnet synchronous generator (PMSG) 
on the system stability under LFOs.

The PMSG-based wind generation systems have rapidly 
evolved and emerged as a prominent power source. Besides, 
the VSG control is one of the mainstream grid-forming con‐
trol methods [13]. In this method, the DC-link voltage is reg‐
ulated in the machine-side control (MSC) section, and the ac‐
tive power is controlled via the maximum power point track‐
ing (MPPT), while the rotor motion equation of SGs is simu‐
lated in the grid-side control (GSC) section. The VSG con‐
trol harnesses the kinetic energy stored in the wind turbine 
(WT) rotor to provide the voltage/frequency support to pow‐
er grids. This control method inevitably causes the machine-
side dynamics of PMSG to affect LFOs in power systems 
through the MPPT on the GSC.

Only a few studies have explored the impact of integrat‐
ing VSG-controlled PMSG-based wind generation systems 
on LFOs in power systems [14]-[17]. Reference [14] analyz‐
es the small-signal stability of a VSG-controlled PMSG-
based wind farm (WF) under weak grid conditions. This 
study illustrates that WFs equipped with VSGs remain stable 
even under weak grid conditions, with VSG parameters pos‐
ing no risk of instability. References [15] and 16] investigate 
the influence of WT dynamics on the stability of grid-con‐
nected wind generation systems using VSG control through 
the damping torque analysis method. However, this study 
makes several simplifications and does not quantitatively 
demonstrate the damping effect of machine-side dynamics 
on LFOs. Reference [17] introduces a unified damping 
torque model for PMSG, indicating that the negative damp‐
ing torque generated by the drive train is the primary cause 
of LFOs in WTs. Besides, [17] makes a simplification by 
adopting the single-mass model to describe the shaft system 
dynamics. However, due to the flexibility of shaft systems in 
PMSG-based wind generation systems, the double-mass mod‐
el should be employed in the shaft system, which will inevi‐
tably introduce more complex stability issues than using the 
single-mass model.

Furthermore, the flexible shaft system in PMSG-based 
wind generation systems induces torsional oscillation within 
the frequency range of 0.1-10 Hz [18], while LFOs in power 
systems typically occur within 0.1-2 Hz [12]. Under the 
VSG control, the coupling arises between machine-side and 
grid-side dynamics due to the alignment of torsional oscilla‐
tion frequency with that of LFOs. Consequently, the reso‐
nance effects between torsional oscillation and LFOs may 
arise, presenting potential risks to system stability. Referenc‐
es [19] - [21] discuss the dynamic interactions between 
PMSG-based wind generation systems and power system us‐
ing the open-loop resonance analysis method, which consid‐
ers the closed-loop system as a combination of two open-
loop subsystems. The resonance occurs when the two open-
loop subsystems approach with each other on the complex 

plane. This method accurately computes the damping of os‐
cillation modes during resonance and can determine whether 
the system is stable. Therefore, this method offers an advan‐
tage for addressing potential resonance between torsional os‐
cillation and LFOs.

To fill the identified research gap, this paper develops a 
small-signal torque model for VSG-controlled PMSG-based 
wind generation systems, incorporating machine-side dynam‐
ics using the double-mass model, as well as considering the 
DC-link and grid-side dynamics based on the damping 
torque analysis method. Then, this paper elucidates the influ‐
ence mechanism of machine-side dynamics on LFOs and 
compares the effects of single-mass and double-mass models 
on LFOs, demonstrating the necessity of the double-mass 
model for precise stability analysis and enabling the quantita‐
tive assessment of damping effects of each torque compo‐
nent on LFOs. Subsequently, this paper employs the open-
loop resonance analysis method to examine the resonance 
mechanism between torsional oscillations and LFOs, and uti‐
lizes the residue method to predict the root locus accurately. 
Then, a damping enhancement strategy is proposed to weak‐
en and eliminate the negative damping effect of machine-
side dynamics and resonance. Finally, a time-domain simula‐
tion model for VSG-controlled PMSG-based wind genera‐
tion systems connected to the IEEE 39-bus AC grid is devel‐
oped in MATLAB/Simulink to validate the accuracy of theo‐
retical analysis and the effectiveness of the proposed damp‐
ing enhancement strategy.

The remainder of this paper is structured as follows. Sec‐
tion II discusses the modeling and control of VSG-controlled 
PMSG-based wind generation systems. Section III examines 
the damping effect of machine-side dynamics of PMSG on 
LFOs and the resonance effect between torsional oscillation 
and LFOs, and presents a damping enhancement strategy. 
Section IV presents the time-domain simulation results. Fi‐
nally, Section V provides the conclusions.

II. MODELING AND CONTROL OF VSG-CONTROLLED PMSG-
BASED WIND GENERATION SYSTEMS

The typical topology of the VSG-controlled PMSG-based 
wind generation system, as depicted in Fig. 1, comprises var‐
ious components: WT, shaft system, PMSG, back-to-back 
full-power converter, transformers, GSC control section, 
MSC control section, LCL filter, and grid-connected line. 
This section introduces a mathematical model of the studied 
system in Fig. 1 using the per-unit system, where PWM is 
short for pulse width modulation.

A. PMSG Model

The PMSG is controlled in dq rotating coordinates, align‐
ing the d-axis with the magnetic flux linkage of the rotor  ψf. 
The stator voltage is expressed as [22]:

ì

í

î

ï
ïï
ï

ï
ïï
ï

usd =-Rsisd -
Ld

ωeb

disd

dt
+ωg Lqisq

usq =-Rsisq -
Ld

ωeb

disq

dt
-ωg Ldisd +ωgψf

(1)
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where usd and usq are the d- and q-axis stator terminal voltag‐
es, respectively; isd and isq are the d- and q-axis stator cur‐
rents, respectively; Rs is the resistance of PMSG stator; ωeb 
is the base value of stator angular frequency; ωg is the angu‐
lar velocity of generator rotor; and Ld and Lq are the d- and 
q-axis self-inductances of PMSG stator, respectively.

The megawatt-level PMSGs have relatively low speeds 
and mostly are mounted with non-salient surface (Ld = Lq). 
Therefore, the electromagnetic torque of PMSG Te can be ex‐
pressed as:

Te =ψfisq (2)

B. Shaft System Model

The double-mass model [23] and single-mass model [16] 
can be represented as (3) and (4), respectively.

ì
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ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

2Ht

dωt

dt
= Tm - Tsh

2Hg

dωg

dt
= Tsh - Te

dθsh

dt
=ωeb (ωt -ωg )

Tsh =Kshθsh +Dsh (ωt -ωg )

(3)

2(Ht +Hg )
dωg

dt
= Tm - Te (4)

where Ht and Hg are the inertial time constants of WT and 
PMSG mass blocks, respectively; ωt is the WT speed of gen‐
erator rotor; θsh is the torsion angle of WT relative to genera‐
tor rotor; Ksh is the stiffness coefficient of shaft system; Dsh 
is the damping coefficient of shaft system; and Tm and Tsh 
are the mechanical torque and shaft system torque, respec‐
tively.

C. Model of MSC Control Section

The MSC regulates the DC-link voltage, expressed as:

ì
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ïïï

ï

ï

ï

Vdcm =
ωfu

ωfu + s
Vdc

iref
sq = ( )Kp1 +

Ki1

s
(V ref

dc -Vdcm )

usq =- ( )Kp2 +
Ki2

s
(iref

sq - isq )-ωg Lsdisd -Rsisd +ωgψf

usd =- ( )Kp2 +
Ki2

s
(iref

sd - isd )+ωg Lsqisq -Rsisq

(5)

where Vdc is the DC-link voltage; Vdcm is the output of Vdc af‐
ter passing through the low-pass filter (LPF); ωfu is the band‐
width of MSC LPF; Kp1 and Ki1 are the proportional and inte‐
gral coefficients of voltage outer loop in MSC, respectively; 
Kp2 and Ki2 are the proportional and integral coefficients of 
current inner loop in MSC, respectively; and the superscript 
ref represents the reference values.

D. LCL Filter and Grid-connected Line Model

The VSG-controlled PMSG-based wind generation system 
is connected to the grid through an LCL filter and grid-con‐
nected line model, which can be formulated in the dq frame 
of GSC as:

U ref =V +ZLf (s)I (6)

where U ref =[U ref
d     U ref

q ]T is the vector of modulation voltage 
references for GSC; V =[Vd    Vq ]T is the vector of capacitor 
voltages; I =[Id    Iq ]T is the vector of GSC currents; and 

ZLf (s)= é
ë
êêêê ù

û
úúúúLf s/ωb -ωgrid Lf

ωgrid Lf Lf s/ωb

, Lf is the converter-side induc‐

tance of LCL filter, ωb is the base value of grid angular ve‐
locity, and ωgrid is the reference frequency of power grid.

I = Ig +ZCf (s)V (7)

where Ig =[Igd    Igq ]T is the vector of grid-side currents; and 

ZCf (s)= é
ë
êêêê ù

û
úúúúCf s/ωb -ωgridCf

ωgridCf Cf s/ωb 

, and Cf is the capacitance of 

LCL filter.
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Fig. 1.　Typical topological structure of grid-connected VSG-controlled PMSG-based wind generation system.
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V =ZG (s)Ig +U (8)

where U =[Ud    Uq ]T is the vector of grid voltages, Ud =
Ucos δ, Uq =-U sin δ, δ is the virtual phase angle of dq 
frame of GSC, and U is the magnitude of the grid voltage; 

and ZG (s)= é
ë
êêêê ù

û
úúúúLg s/ωb + Rg -ωgrid Lg

ωgrid Lg Lg s/ωb + Rg 

, and Rg and Lg are 

the grid-side resistance and inductance, respectively.

E. Model of GSC Control Section

As shown in Fig. 1, the GSC control section includes six 
parts: swing equation, Q-V droop control, virtual impedance 
control, voltage control, current control, and PLL.
1)　Swing Equation

VSG realizes the frequency self-synchronization based on 
the swing equation, which represents the characteristics of 
the inertia and damping of SGs and can be expressed as:

ì
í
î

ïï
ïï

Jsωvsg =Pref -P - kd (ωvsg -ωpll )- kw (ωvsg -ωgrid )

sδ =ωb (ωvsg -ωgrid )
(9)

where J is the virtual inertia time constant; kd and kw are the 
damping and droop coefficients of VSG, respectively; Pref is 
the active power reference of GSC; P is the active power 
output of GSC; ωvsg is the virtual angular frequency; and ωpll 
is the grid frequency detected by PLL.

Pref can be expressed as:

Pref =
ì
í
î

ïïkoptω
3
g    vin < v < vr

1              vr < v < vout

(10)

where kopt is the MPPT curve coefficient; v is the actual 
wind speed; vr is the rated wind speed; and vin and vout are 
the cut-in and cut-out wind speeds, respectively.
2)　Q-V Droop Control

The Q-V droop control is used for supporting the grid volt‐
age and generating the voltage magnitude reference V ref

d :

V ref
d =V ref + kq (Qref -Q) (11)

where V ref is the external voltage magnitude reference; Qref 
is the reactive power reference of GSC; Q is the reactive 
power output of GSC; and kq is the Q-V droop coefficient.
3)　Virtual Impedance Control

The virtual impedance control is described as [13]:

V ref
v =V ref

d -Zv (s)Ig (12)

where V ref
v =[V ref

vd     V ref
vq ]T is the vector of voltage references 

from the virtual impedance control section; V ref
d =[V ref

d     0]T; 

and Zv (s)= é
ë
êêêê ù

û
úúúúRv -ωgrid Lv

ωgrid Lv Rv

, and Rv and Lv are the virtual 

resistance and inductance, respectively.
4)　Voltage Control

The current references for the current control are pro‐
duced from the voltage control, whose dynamic equation in 
the dq frame is expressed as:

I ref =PIVCL (s)×(V ref
v -V )+ é

ë
êêêê ù

û
úúúú0 -ωgirdCf

ωgirdCf 0
V + kfi Ig (13)

where I ref =[I ref
d     I ref

q ]T is the vector of current references pro‐
duced from the voltage control; PIVCL (s)= Kvp + Kvi /s is the 
PI controller of voltage control; and kfi is the current feedfor‐
ward coefficient.

5)　Current Control
The modulation voltage references of the GSC are pro‐

duced from the current control loop, whose dynamic equa‐
tion in the dq frame of current control is expressed as:

U ref =PICCL (s)×(I ref - I)+ é
ë
êêêê ù

û
úúúú0 -ωgird Lf

ωgird L 0
I +KVf (s)V (14)

where PICCL (s)= Kip + Kii /s is the PI controller of current con‐
trol; and KVf  (s)= kVf /(s +ωVf ) is the LPF gain, ωVf is the 
bandwidth, and kVf is the gain coefficient.
6)　PLL

The structure of PLL can be expressed as:

ì

í

î

ïïïï

ï
ïï
ï

Vqpll = Im((Vd + jVq )ej(δ- θpll ) )

ωpll =PIpll (s)×Vqpll +ωgrid

θpll =ωbωpll /s

(15)

where PIpll (s)= Kppll + Kipll /s is the PI controller of PLL; Vqpll 
is the q-axis component of V in the dq frame of PLL; and 
θpll is the phase of V in the dq frame of PLL.

F. Model of DC-link

The voltage dynamic of the back-to-back full-power con‐
verter is modeled by:

CdcVdc

dVdc

dt
=Pe -Pg (16)

ì
í
î

ïï
ïï

Pe = usdisd + usqisq

Pg =U ref
d Id +U ref

q Iq

(17)

where Pg is the active power delivered to the grid; and Cdc is 
the DC-link capacitance.

III. STABILITY ANALYSIS AND DAMPING ENHANCEMENT 
STRATEGY 

Based on the mathematical model provided in Section II, 
this section aims to achieve the following objectives.

1) Derive each damping component of the swing equation 
based on the damping torque analysis method and analyze 
the mechanism and regularity of machine-side dynamics of 
PMSG on LFOs, and compare different shaft system models.

2) Utilize the open-loop resonance analysis method to in‐
vestigate the resonance mechanism between torsional oscilla‐
tion and LFOs, and predict their root trajectory.

3) Propose a damping enhancement strategy to mitigate 
and eliminate the negative damping effect of machine-side 
dynamics and resonance effect.

A. Derivation of Damping Torque of VSG

According to (9), it is observed that the components affect‐
ing LFOs include Pref, P, ωpll, and ωvsg. Based on the damp‐
ing torque analysis method, we need to derive the transfer 
functions between these components and δ.
1)　Transfer Function Between ΔP and Δδ

Combining (6)-(8) and (12)-(14), we can obtain:

Ig =Y ref
V (s)V ref +YUdq (s)U (18)

where Y ref
V (s) and YUdq (s) are the transfer functions of the 

equivalent admittance.
Linearizing (6), (7), and (18), we can obtain:
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DV =GV1 (s)Dδ +GV2 (s)DV ref (19)

DI =GI1 (s)Dδ +GI2 (s)DV ref (20)

where GV1 (s)=[G1
V1 (s)    G2

V1 (s)]T =-(ZG (s)YUdq (s)+ E)U0, E =
é
ë
êêêê ù

û
úúúú1 0

0 1
, and U0 is the steady-state value of U; GI1 (s)=

[G1
I1 (s)    G2

I1 (s)]T =-(ZCf (s)ZG (s)YUdq (s) +  YUdq (s) +  ZCf (s))U0;

GV2 (s)=
é

ë
ê
êê
ê ù

û
ú
úú
úG1

V2 (s) G2
V2 (s)

G3
V2 (s) G4

V2 (s)
=ZG (s)Y ref

V (s);  and GI2 (s)=

é

ë
ê
êê
ê ù

û
ú
úú
úG1

I2 (s) G2
I2 (s)

G3
I2 (s) G4

I2 (s)
=ZCf (s)ZG (s)+E.

The active power and reactive power of GSC can be cal‐
culated as:

ì
í
î

ïïP =Vd Id +Vq Iq

Q=Vq Id -Vd Iq

(21)

Formula (21) is linearized as:

é
ë
êêêê ù

û
úúúú

DP
DQ

= é
ë
êêêê ù

û
úúúúVd0 Id0

Vq0 -Iq0

é

ë
ê
êê
ê ù

û
ú
úú
úDId

DVd

+ é
ë
êêêê ù

û
úúúúVq0 Iq0

-Vd0 Id0

é

ë

ê
êê
ê ù

û

ú
úú
úDIq

DVq

(22)

where the subscript 0 represents the steady-state value.

Substituting (19) and (20) into (22) yields:
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DP
DQ

= S(s) é
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êêêê ù

û
úúúúDδ

DV ref
d

S(s)=
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ë
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êê
ê ù

û
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úS11 (s) S12 (s)

S21 (s) S22 (s)
= é

ë
êêêê ù

û
úúúúVd0 Id0

Vq0 -Iq0

é

ë
ê
êê
ê ù

û
ú
úú
úG1

I1 (s) G1
I2 (s)

G1
V1 (s) G1

V2 (s)
+

            é
ë
êêêê ù

û
úúúúVq0 Iq0

-Vd0 Id0

é

ë
ê
êê
ê ù

û
ú
úú
úG2

I1 (s) G3
I2 (s)

G2
V1 (s) G3

V2 (s)

(23)

Linearizing (11), we can obtain:

DV ref
d =-kqDQ (24)

Combining (23) with (24), the transfer function between 
ΔP and Δδ, i.e., GP (s), is obtained to describe the influence 
of a perturbation of Δδ on the active power of the swing 
equation:

DP = (S11 (s)-
kqS21 (s)S12 (s)

1 + kqS22 (s) )Dδ =GP (s)Dδ (25)

The detailed derivation of (25) is shown in Supplementary 
Material B.
2)　Transfer Function Between Dωpll and Δδ

In this part, we derive the transfer function between Δωpll 
and Dδ, i.e., Gpll (s), to reflect the impact of PLL on LFOs.

Linearizing (15), we can obtain:

ì
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î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

DVqpll =DVq cos(δ0 - θpll0 )-Vq0 sin(δ0 - θpll0 )(Dδ -Dθpll )+

          DVd sin(δ0 - θpll0 )+Vd0 cos(δ0 - θpll0 )(Dδ -Dθpll )

Dωpll =PIpll (s)× DVqpll

Dθpll =ωbDωpll /s

(26)

Combining (26) with (19), (20), (22), and (23), we can ob‐
tain:

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

Dωpll =
é

ë

ê
êê
ê ù

û

ú
úú
úP1 (s)

P3 (s)
-

P2 (s)kqS21 (s)

P3 (s)(1 + kqS22 (s))
Dδ =Gwpll (s)Dδ

P1 (s)=G2
V1 (s)cos(δ0 - θpll0 )+G1

V1 (s)sin(δ0 - θpll0 )+m

P2 (s)=G3
V2 (s)cos(δ0 - θpll0 )+G1

V2 (s)sin(δ0 - θpll0 )

P3 (s)=mωb /s + 1/(PIpll (s))

m =Vd0 cos(δ0 - θpll0 )-Vq0 sin(δ0 - θpll0 )

(27)

The detailed derivation of (27) is shown in Supplementary 
Material C.
3)　Transfer Function Between Dωg and Dδ

Based on (9) and (10), it is apparent that the VSG-con‐
trolled PMSG-based wind generation system predominantly 
operates in the MPPT mode, where the active power refer‐
ence Pref = kopt ω

3
g. Consequently, the machine-side dynamics 

of PMSG invariably influence LFOs on the grid side.
The transfer function between Dωg and Dδ captures the in‐

fluence of machine-side dynamics of PMSG on LFOs.
By linearizing (1), we derive the transfer function between 

Dωg and Dωt, i.e., Gwt (s), as:

Dωt =
Dsh s +Kshωeb

2Ht s
2 +Dsh s +Kshωeb

Dωg =Gwt (s)Dωg (28)

Linearizing (2)-(4), the transfer function between Dωg and 
Disq is derived as:

Disq=
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ú2(Ht+Hg )ωg0 s+ψfisq0

ψfωg0

Dωg=Gwgsingle (s)Dωg

                                          under single - mass model

(29)

where Gwgdouble (s) and Gwgsingle (s) are the transfer functions 
between Dωg and Disq under the double-mass and single-
mass models, respectively.

By linearizing (1) and (5), the transfer function between 
Disq and DVdc, i.e., GVdc (s), is obtained as:

DVdc =-
(ωfu + s)(Lsq s +ωeb ×PI2 (s))

sωeb ×PI1 (s)×PI2 (s)
Disq =GVdc (s)Disq (30)

where PI1 (s)=Kp1 +Ki1 /s; and PI2 (s)=Kp2 +Ki2 /s.
Linearizing (16), we can yield:

CdcVdc0DVdc s/ωb = usq0Disq + isq0Dusq -DPg (31)

Combining (29)-(31), we can obtain:

DP »DPg =GPg (s)Dωg (32)

where GPg (s) is the transfer function between ΔP and ωg .
The detailed derivation of (32) is shown in Supplementary 

Material D.
Combining (25) and (32), we can obtain:

Dωg =
GP (s)
GPg (s)

Dδ =Gwg (s)Dδ (33)

Linearizing (8) and combining the transfer functions in 
(25), (27), and (33), the linearized swing equation can be 
represented by the closed-loop block diagram in Fig. 2 
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based on the damping torque analysis method, which reflects 
the damping dynamic of LFOs considering machine-side dy‐
namics. As depicted in Fig. 2, four feedback loops are identi‐
fied: machine-side, active power, damping, and PLL feed‐
back loops. According to the damping torque analysis meth‐
od, four equivalent torques DTwg, DTP, DTpll, and DTd influ‐
ence LFOs, where DTwg represents the impact of machine-
side dynamics; DTP represents the impact of active power; 
DTpll represents the impact of PLL; and DTd represents the 
impact of kd. The transfer functions between the four equiva‐
lent torques and Dδ are fwg (s), fP (s), fpll (s) and fd (s), respec‐
tively.

The linearized swing equation can be formulated as:

JDδ =-DTwg -DTP -DTd -DTpll (34)

where DTwg =-3koptω
2
g0Dω g =  fwg (s)Dδ; DTP = DP = f P (s)Dδ; 

DTd =-kdDωvsg = (-kd s/ωb )Dδ = fd (s)Dδ; and DTpll =-kdDωpll =
fpll (s)Dδ.

According to the damping torque analysis method, the 
torque DTΣ can be decomposed into two components: ① 
damping torque ΔTΣD, which determines the damping of 
LFOs, and ② synchronizing torque ΔTΣS, which affects the 
synchronizing ability of rotor and the frequency of LFOs 
[24]. The damping torque aligns positively with virtual angu‐
lar frequency Dωvsg and the synchronizing torque aligns posi‐
tively with the angle Dδ. Furthermore, the system is stable if 
DTΣ is decomposed into positive damping and synchronizing 
torques across all frequencies. The negative damping torque 
leads to LFOs in active power and rotor speed. Conversely, 
the negative synchronizing torque results in loss of phase 
synchronization with the power grid, indicated by the rotor 
angle continuously deviating from the grid voltage angle in‐
stead of oscillations [7].

Because the synchronizing torque does not affect the sys‐
tem damping, only the damping torque determines the damp‐
ing magnitude. To this end, it is necessary to ensure that the 
synchronizing torque remains positive when studying the ef‐
fect of damping torque on stability. The composite damping 
torque can be calculated using:

DTΣD =DTwgD +DTPD +DTdD +DTpllD = |DTwg |sin δwg +

|DTP |sin δP + |DTd |sin δd + |DTpll |sin δpll (35)

where the subscript D represents the damping torque compo‐

nents; and δwg, δP, δd, and δpll are the angles between ΔTwg, 
ΔTP, ΔTd, ΔTpll and the positive direction of Δδ, respectively.

The Bode diagram of each transfer function are depicted 
in Fig. 3.

Since the frequency of LFOs typically ranges from 0.1 to 
2 Hz, our analysis focuses on examining the damping charac‐
teristics within this frequency range. Within 0.1-2 Hz, the 
phase characteristics of the transfer functions are as follows. 
fP(s) spans a phase range between -7° - 0°, mainly contribut‐
ing to positive synchronizing torque with a minor negative 
damping component. The phase of fpll (s) is approximately 
-90° , primarily indicating negative damping. The phase of 
fd (s) is approximately 90° , indicating positive damping. 
When using the single-mass model, the phase of fwg (s) is ap‐
proximately 90° , primarily indicating negative damping. 
However, when using the double-mass model, although the 
phase of fwg (s) is also around 90°, two resonance points ex‐
ist at frequencies of f1 = 0.94 Hz and f2 = 2.54 Hz. Within 
0.94-2.54 Hz, the phase of fwg (s) shifts to -90° . This phe‐
nomenon can be explained as follows. According to (33), the 
magnitude and phase of fwg(s) depend on GP(s) and GPg(s), 
where GP (s)= fP (s). GPg(s) is primarily influenced by the 
shaft system parameters, PMSG parameters, control parame‐
ters, and DC-link voltage loop. Additionally, based on Fig. 
4, there is a clear distinction between ΔTΣDd, DTΣDs, and 
DT VSG

ΣDs, where the subscripts d and s represent that the dou‐
ble-mass model and single-mass model are considered, and 
the superscript VSG represents the machine-side dynamics 
are not considered. The double-mass model is crucial for ac‐
curately evaluating the LFOs due to the presence of reso‐
nance points. As shown in Fig. 5, when considering the dou‐
ble-mass model and the frequency of LFOs being outside 
the range of [ f1 f2 ], ΔTwgD is less than 0, providing negative 
damping for LFOs. Conversely, when the frequency of LFOs 
falls within the range of [ f1, f2 ], ΔTwgD is greater than 0, of‐
fering positive damping for LFOs.

The conclusions drawn from Figs. 3-5 are as follows.
1) When the double-mass model is adopted for the shaft 

system and the frequency of LFOs is outside the range of 
[ f1, f2 ], the phase of fwg (s) aligns approximately at -90°, con‐
sistent with the single-mass model. As the frequency of 
LFOs approaches f1, the double-mass model exhibits a small‐
er magnitude of fwg (s) than the single-mass model due to res‐
onance points, resulting in weaker negative damping effects. 
Conversely, when approaching f1 from the right side, the 
double-mass model exhibits a greater magnitude of  fwg (s), 
leading to stronger negative damping effects.

2) When the frequency of LFOs falls within the range of 
[ f1, f2 ], the phase of fwg (s) approaches approximately 90°, in‐
dicating that the machine side provides positive damping to 
LFOs.

Therefore, by examining Fig. 3(a) and (c) with the expres‐
sion of GPg (s), it finds that two resonance points in fwg (s) 
are derived from (29). The frequencies corresponding to 
these resonance points can be determined as:

ΔPg Δωg Δωt

ΔTP

ΔTdΔTpll

1
Js

Damping feedback loop;

PLL feedback loop

s

 

Active power feedback loop;

Δδ Δωωb

Machine-side dynamics

Machine-side feedback loop

fpll(s)

fd(s)

fP(s)

+
�

�

�

ΔTwg

GPg(s)

fwg(s)

Double-mass
 model

Gwt(s)

�

Fig. 2.　Closed-loop transfer block diagram and equivalent torque of VSG-
controlled PMSG-based wind generation systems.
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f1 =
1

2π
ωeb Ksh

2Ht

f2 =
1

2π
ωeb Ksh( )1

2Hg

+
1

2Ht

(36)

Using the values in Supplementary Material A Table SAI 
and substituting them into (36), we can obtain f1 = 0.94 Hz 
and f2 = 1.54 Hz, which are consistent with the resonance fre‐
quencies of fwg (s). It can be observed that: ① f2 is always 
greater than f1. ② f2 represents the torsional oscillation fre‐
quency, determined by Ksh, Hg, and Ht. ③ f1 is determined 
by Ksh and Ht. ④ The bandwidth of f1 and f2 is determined 
by Hg and Ht.

B. Influence Mechanisms of Parameters on LFOs

After the derivation of the damping torque of VSG, this 
subsection focuses on investigating the influence mecha‐
nisms of parameters on LFOs. As discussed in [7], the phase 
of fP(s) remains approximately 90° within the frequency 
range of LFOs despite variations in grid-side parameters 
such as kd, Lf, Lg, and Lv. Modifying Lg alters the magnitude 
of fP(s), consequently impacting fwg(s). Besides, the influence 
of machine-side dynamics on LFOs primarily hinges on ma‐
chine-side parameters, encompassing Hg, Ht, Ksh, Dsh, and 
Cdc. The Bode diagrams of fwg(s) and damping torque compo‐
nents DTΣD, DTwg, DTP, DTpll, and DTd with different values 
of Lg, Hg, Ht, H=Hg+Ht, Ksh, Dsh, and Cdc are depicted in Sup‐
plementary Material E Figs. SE1 and SE2. 
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Fig. 3.　Bode diagram of each transfer function. (a) 1/GPg(s) of double-mass model. (b) 1/GPg(s) of single-mass model. (c) fwg(s) of double-mass model. (d) 
fwg (s) of single-mass model. (e) fP(s). (f) fpll(s). (g) fd(s).
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In Figs. SE1(a)-(d) and SE2(a)-(d), with an increase in Lg, 
the magnitude of fwg(s) decreases, DTwg increases, and DTpll 
decreases. When the frequency of LFO is outside [f1, f2], 
ΔTΣD increases, while ΔTΣD decreases. Additionally, with an 
increase in Hg, f2 decreases, leading to a narrower resonance 
bandwidth. The magnitude of fwg(s) within (0, f1) decreases, 
but increases within [f1, f2], resulting in an increase in ΔTΣD. 
Similarly, an increase in Ht causes f1 and f2 to decrease si‐
multaneously, widening the resonance bandwidth. The magni‐
tude of fwg (s) within (0, f1) decreases, while ΔTΣD increases. 
Furthermore, an increase in H results in a simultaneous de‐
crease in f1 and f2, widening the resonance bandwidth. The 
magnitude of fwg (s) within (0, f1) decreases, leading to an in‐
crease in DTΣD.

In Figs. SE1(e)-(g) and SE2(e)-(g), an increase in Ksh re‐
sults in simultaneous increases in f1 and f2, widening the res‐
onance bandwidth. The magnitude of fwg(s) within (0, f1) in‐
creases, while DTΣD decreases. Conversely, f1, f2, and the res‐
onance bandwidth remain unchanged with an increase in Dsh. 
The magnitude of fwg (s) within the resonance bandwidth also 
remains unchanged, but the phase decreases, weakening the 
positive damping effect and reducing the resonance peak. Ad‐
ditionally, an increase in Cdc does not affect f1, f2, or the reso‐
nance bandwidth. The magnitude within the resonance band‐
width remains unchanged, and the phase remains constant. 
However, the resonance peak frequency of the DC-link volt‐
age loop decreases, approaching f2. It is observed that when 
Ht and Hg are difficult to change, increasing Ksh, J, and Lg 
can place the frequency of LFOs within the resonance band‐
width, approaching f2 to increase the magnitude and positive 
damping effect. However, the frequency of LFOs should not 

approach f2 too closely because the resonance may occur, 
leading to decreased system stability. After determining the 
resonance frequency range and ensuring the shaft damping, a 
moderate decrease in Dsh can improve the stability in low-fre‐
quency range. Cdc should not be too large, as it may cause 
the two resonance peaks to approach each other. Supplemen‐
tary Material E Table SEI shows the summary of influence 
laws.

C. Resonance Analysis Between Torsional Oscillation and 
LFOs

Define Xm as the column vector encompassing all state 
variables on the machine side. The state-space model for the 
machine-side system can be derived as:

ì

í

î

ïïïï

ïïïï

sDXm =AmDXm + bmDPg

Dωg =CmDXm + dmDPg

Dωg =Gm (s)DPg

(37)

where Am is the open-loop state matrix of the machine-side 
system; bm, Cm, and dm are the input vector, output vector, 
and control coefficients of the machine-side system, respec‐
tively; and Gm (s)=Cm (sE -Am )-1bm + dm = 1/GPg (s).

Define Xg as the column vector comprising all state vari‐
ables on the grid side. The state-space model for the grid-
side subsystem can be derived as follows:
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î

ïïïï

ïïïï

sDXg =AgDXg + bgDωg

DPg =CgDXg + dgDωg

DPg =Gg (s)Dωg

(38)

where Ag is the open-loop state matrix of the grid-side sys‐
tem; bg, Cg, and dg are the input vector, output vector, and 
control coefficients of the grid-side system, respectively; and 
Gg (s)=Cg (sE -Ag )-1bg + dg.

Based on the open-loop resonance analysis method, the 
VSG-controlled PMSG-based wind generation system can be 
divided into machine-side and grid-side systems [19].

Figure 6 illustrates the derivation of (7), i. e., the closed-
loop state-space model for the VSG-controlled PMSG-based 
wind generation system, as given in (39).
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Fig. 6.　 Closed-loop state-space model of VSG-controlled PMSG-based 
wind generation system.
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λm and λg are defined as the open-loop modes of machine-
side and grid-side systems, respectively. When the distance 
between λm and λg is close, the strong dynamic interaction 
between the machine-side and grid-side systems may occur. 
Since λm is the pole of the transfer function Gm (s) on the 
complex plane, |Gm(λm)| is large. Therefore, Gg (λg ) will also 
be large when λm ≈ λg, resulting in a strong dynamic interac‐
tion between the two systems. Based on the residue method 
[25], (40) can characterize the influence of dynamic interac‐
tions.
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Dλm = λ
Ù

m - λm

Dλg = λ
Ù

g - λg

(40)

Under the condition of open-loop resonance mode, i. e., 

λm » λg, the root loci corresponding to λ
Ù

m and λ
Ù

g in the 
closed-loop mode will be distributed on both sides of those 
in the open-loop mode.
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λ
Ù

m = λm ±Dλm = λm ± Rms Rgs

λ
Ù

g = λg ±Dλg = λg ± Rms Rgs

(41)

where Rms and Rgs are the residues of the machine-side and 
grid-side systems, respectively. 

If Re( Rms Rgs) exceeds the real part of either λm or λg, it 

indicates the negative damping in the oscillation mode of 
closed-loop system and the loss of stability. Re( Rms Rgs ) 

serves as an estimator for the open-loop mode coupling and 
closed-loop mode.

An analysis of the potential resonance phenomenon be‐
tween torsional oscillation and LFOs is undertaken. The iner‐
tia time constant H = Hg +Ht systematically varies from 0.5 
to 40 s with an increment of 0.5 s. The root loci and damp‐
ing ratios of open-loop and closed-loop LFOs and torsional 
oscillations are obtained under both single-mass and double-
mass models, as shown in Figs. 7 and 8, respectively. Note 
that the torsional oscillation does not exist under the single-
mass model. The corresponding normalized participation fac‐
tors (NPFs) of the states associated with shaft system and 
VSG are delineated in Fig. 9.

As shown in Fig. 7, with the increase in H under the sin‐
gle-mass model, it can be observed that the closed-loop LFO 
gradually approaches the open-loop LFO. The damping ratio 
of closed-loop LFO increases gradually, approaching that of 

the open-loop LFO, while the negative damping effect of ma‐
chine-side dynamics on the LFOs diminishes gradually, 
which is consistent with the previous theoretical analysis.

As depicted in Figs. 8 and 9, when employing the double-
mass model, with the increase in H, the closed-loop LFO 
gradually approaches the open-loop LFO, with the damping 
ratio increasing and the negative damping effect decreasing 
gradually.

When H increases to 6 s, the damping ratio of closed-loop 
LFO exceeds that of the open-loop LFO, resulting in the 
transition of negative damping effect to positive damping ef‐
fect of the machine-side dynamics on the LFOs. Further‐
more, as H continues to increase, the resonance gradually oc‐
curs between LFO and torsional oscillation. When H = 10 s, 
where λm and λg are relatively distant, the interaction be‐
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tween LFO and torsional oscillation is limited, with the 
NPFs of the states associated with the shaft system contribut‐

ing only 4% to LFO. However, when H = 30 s, where λ
Ù

m 

and λ
Ù

g are closer, a strong interaction occurs between them, 
with the NPFs of the states associated with the shaft system 
contributing 22.8% to LFO, while the NPFs of the states as‐
sociated with the VSG contributing 41.4% to torsional oscil‐
lation. Additionally, utilizing the residue method at this point 
yields Rm Rg = 0.303 + j0.0394, indicating a close approxi‐

mation between the predicted and actual positions.

D. Damping Enhancement Strategy of LFOs

When the frequency of LFOs falls outside [f1, f2], the 
phase compensation method can mitigate the negative damp‐
ing effect on the machine side. This method focuses on alter‐
ing the phase of fwg(s) in the low-frequency range using the 
phase compensation controller Hi (s), whose transfer function 
is expressed as:

Hi (s)= ( 1 + sT1

1 + sT2 ) 2

(42)

where T1 and T2 are the lead and lag correction time con‐
stants, respectively.

The structure of GSC control section with Hi (s) added is 
illustrated in Fig. 10(a). This addition alters the closed-loop 
transfer block diagram accordingly. The inclusion of Hi (s) in 
Pref of the swing equation compensates for the negative 
damping impact of fwg (s) on the frequency of LFOs by ad‐
justing the phase to approach 0°.

Figure 10(b) depicts the Bode diagram of Hi (s) with vari‐
ous compensation angles θcon. An increase in θcon results in a 
decrease in magnitude, diminishing the system active re‐
sponse. Therefore, it is crucial to find a balance between θcon 
and system active response. Figure 11 shows the closed-loop 
transfer block diagram of the VSG-controlled PMSG-based 
wind generation systems with Hi (s) added. Figure 12 dis‐
plays the damping torque components with different θcon of 
Hi (s). Notably, ΔTwg and ΔTΣD rise with θcon, mitigating the 
negative damping effect of the machine-side dynamics and 
bolstering the damping of LFOs, thereby improving the sys‐
tem stability.
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Fig. 11.　 Closed-loop transfer block diagram of VSG-controlled PMSG-
based wind generation systems with Hi (s) added.
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Based on the above analysis, a damping enhancement 
strategy of LFOs in VSG-controlled PMSG-based wind gen‐
eration systems is proposed.

Step 1: establish the small-signal model of the system and 
calculate the frequencies of torsional oscillation and LFO us‐
ing eigenvalue analysis. Compute f1 and f2 based on (36).

Step 2: plot the Bode diagrams of fwg (s), fP (s), fpll (s), and 
fd (s) based on (34), and predict the root locus of LFO and 
torsional oscillation using the residue method, obtaining 

Re( Rm Rg ).

Step 3: check if the frequency of LFOs is within [ f1, f2 ]. 

If it is within this range and Re( Rm Rg ) is relatively large, 

adjust the values of Lg and J within a reasonable range to 

make the frequency of LFOs close to f1 and Re( Rm Rg ) rel‐

atively small; else, go to Step 4.
Step 4: add Hi (s) to the VSG and calculate T1 and T2 

based on fwg (s), and solve (27) and (28) to determine the 
time constants of the lead-lag compensator with a desired 
phase lag at the frequency of LFOs.

Ⅳ. SIMULINK RESULTS AND DISCUSSION

This section aims to validate the prior theoretical analyses 
concerning damping torque and damping enhancement strate‐
gies of LFOs and to study the dynamic performance of the 
VSG-controlled PMSG-based wind generation system. A 
VSG-controlled PMSG-based wind generation system con‐
nected to the IEEE 39-bus AC grid, as depicted in Fig. 13, 
is implemented using the MATLAB/Simulink platform. 
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Fig. 13.　A VSG-controlled PMSG-based wind generation system connect‐
ed to IEEE 39-bus AC grid.

The base active power of the VSG-controlled PMSG-
based wind generation system is 400 MW. The parameters 

for the VSG-controlled PMSG-based wind generation system 
and SGs are provided in Supplementary Material A Table 
SAI and Supplementary Material F Table SFI, respectively, 
with Dsh modified to 2 p.u.. A constant wind speed of 12.1 
m/s, corresponding to the rated wind speed, is maintained 
throughout the simulation. At t = 120 s of the simulation, a 
temporary three-phase short-circuit fault occurs at bus B40, 
which is cleared within 0.1 s.

A. Verification of Necessity of Double-mass Model

This subsection aims to validate the necessity of employ‐
ing the double-mass model and investigate the resonant ef‐
fects of torsional oscillation and LFOs. The transient re‐
sponse curves of the system under different values of H us‐
ing the single-mass model are shown in Supplementary Ma‐
terial G Fig. SG1. It is observed that with the increase in H, 
Udc, P, U, ωvsg, Pline, and δ8 - 9 transition from divergence to 
convergence when employing the single-mass model, accom‐
panied by a decrease in oscillation magnitude and an in‐
crease in damping rate, which indicates a gradual weakening 
of the negative damping effect of machine-side dynamics on 
LFOs.

The transient response curves of the system under differ‐
ent values of H using the double-mass model are shown in 
Supplementary Material G Fig. SG2. When using the double-
mass model, as H increases, Udc, P, U, ωvsg, Pline, and δ8 - 9 
first transition from divergence to convergence, accompanied 
by a decrease in oscillation magnitude and an increase in 
damping rate, which indicates a gradual weakening of the 
negative damping effect of machine-side dynamics on LFOs. 
As H continues to increase at 5 s, it is observed that the os‐
cillation magnitudes of Udc, P, U, ωvsg, Pline, and δ8 - 9 increase 
while the damping rate decreases. When H reaches 15 s, the 
system becomes unstable. This phenomenon indicates an en‐
hancement in the resonant effects of torsional oscillation and 
LFOs, consistent with previous theoretical analyses, thus 
demonstrating the necessity of employing the double-mass 
model.

B. Verification of Proposed Damping Enhancement Strategy

This subsection verifies the effectiveness of the proposed 
damping enhancement strategy in two scenarios: ① the reso‐
nance between torsional oscillation and LFOs is weak and 
the negative damping is strong (H = 5 s), and ② the reso‐
nance between torsional oscillation and LFOs is strong, and 
the frequency of LFOs lies within [ f1, f2 ] (H = 15 s). As 
shown in Supplementary Material H Fig. SH1, when H = 5 s, 
increasing θcon of Hi (s) results in a reduction in the oscilla‐
tion magnitude of Udc, P, U, ωvsg, Pline, and δ8 - 9, along with 
an increase in damping rate, demonstrating the effectiveness 
of Hi (s) in suppressing the negative damping and the benefi‐
cial effect of increasing θcon.

Using the residue method, we vary J and Lg. When J = 8 
and Lg = 0.05 p. u., Re( Rm Rg ) decreases the most from 

0.256 to 0.07, indicating a weakening of the resonance. The 
transient responses with different values of J and Lg are de‐
picted in Supplementary Material H Fig. SH2. It is observed 
that when J = 8 and Lg = 0.05 p.u., the oscillation magnitudes 
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of Udc, P, U, ωvsg, Pline, and δ8 - 9 are minimized, while the 
damping rate is maximized, leading to system re-stabiliza‐
tion. This decrease in Lg results in the torsional oscillation 
and LFO modes moving further apart in the complex plane, 
thereby reducing Re( Rm Rg ), diminishing their coupling ef‐

fect, and enhancing the system stability.

V. CONCLUSION 

This paper elucidates the influence of machine-side dy‐
namics on LFOs and compares the effects of single-mass 
and double-mass models on LFOs. It enables quantitative as‐
sessment of the damping effects of each torque component 
on LFOs and reveals the impact of different parameters on 
them based on the damping torque analysis method. It is 
found that employing double-mass models results not only 
in negative damping but also in positive damping within [f1, 
f2] due to the resonance points, demonstrating the necessity 
of the double-mass model for precise stability analysis.

Next, this paper employs the open-loop resonance analysis 
method to explore the resonance mechanism between torsion‐
al oscillation and LFOs. It is noted that improper parameter 
selection can induce the resonance due to their close root lo‐
ci on the complex plane. Moreover, the residue method is 
used to predict the root loci accurately. Subsequently, a cor‐
responding damping enhancement strategy is proposed to al‐
leviate the machine-side negative damping effects and avert 
strong resonance between torsional oscillation and LFOs.

Finally, a time-domain simulation model for VSG-con‐
trolled PMSG-based wind generation systems connected to 
the IEEE 39-bus AC grid is developed in MATLAB/Simu‐
link to validate the accuracy of the theoretical analysis and 
the effectiveness of the proposed damping enhancement strat‐
egy.
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