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Abstract——This study investigates a safe reinforcement learn‐
ing algorithm for grid-forming (GFM) inverter based frequency 
regulation. To guarantee the stability of the inverter-based re‐
source (IBR) system under the learned control policy, a model-
based reinforcement learning (MBRL) algorithm is combined 
with Lyapunov approach, which determines the safe region of 
states and actions. To obtain near optimal control policy, the 
control performance is safely improved by approximate dynam‐
ic programming (ADP) using data sampled from the region of 
attraction (ROA). Moreover, to enhance the control robustness 
against parameter uncertainty in the inverter, a Gaussian pro‐
cess (GP) model is adopted by the proposed algorithm to effec‐
tively learn system dynamics from measurements. Numerical 
simulations validate the effectiveness of the proposed algorithm.

Index Terms——Inverter-based resource (IBR), virtual synchro‐
nous generator (VSG), safe reinforcement learning, Lyapunov 
function, frequency regulation, grid-forming inverter.

I. INTRODUCTION 

POWER system frequency control is critical for maintain‐
ing grid stability when imbalance between generation 

and load occurs. As the penetration of inverter-based resourc‐
es (IBRs) such as renewable energy and battery storage con‐
tinues to increase, modern power systems are facing signifi‐
cant challenges due to reduced mechanical inertia and in‐
creased disturbances. Therefore, power system stability con‐
trol has recently spurred much interest from both academia 
and industry [1], [2].

Various control methods have been proposed for IBRs to 
provide frequency regulation services [1], [3], [4]. For in‐
stance, both conventional synchronous generators (SGs) and 
IBR employ the frequency droop control strategy, which ad‐
justs the active power output in response to frequency devia‐

tions. Droop-control-based inverters barely provide inertia 
support to the grid. Consequently, a droop-control-based net‐
work is typically characterized by a lack of inertia and being 
sensitive to faults [5]. In the event of a disturbance, the sys‐
tem frequency may undergo abrupt changes, potentially lead‐
ing to the tripping of generators or the unnecessary shedding 
of loads. To alleviate the negative impact of low inertia, the 
virtual synchronous generator (VSG) [6], [7] control was de‐
veloped. This control strategy emulates the frequency re‐
sponse characteristics of SGs, augmenting the system with 
virtual inertia and damping properties. Additionally, the val‐
ues of inertia and damping in VSGs are more flexible than 
those in SGs, which are not limited by physical conditions 
such as rotating mass. Therefore, IBRs can adjust the inertia 
adaptively to obtain faster and more stable power output [8]-
[10]. However, traditional frequency regulation strategies for 
IBRs were usually designed based on linearized small-signal 
models [8], [9], [11], which makes the control performance 
deteriorate quickly when frequency deviations are large. Due 
to the challenges posed by the low inertia and nonlinearity 
of IBRs, advanced controls are needed to ensure grid stabili‐
ty.

To deal with the challenges, various advanced frequency 
controllers are developed recently [12] - [14]. Among these 
methods, reinforcement learning (RL) technique is one of 
the most promising approaches. In [13], a model-free deep 
reinforcement learning (DRL) based load frequency control 
method was designed. The challenge of designing DRL-
based power system stability controller lies in guaranteeing 
the control strategy won’t lead to unstable condition after 
disturbances. However, the conventional model-free RL-
based controllers mentioned above do not yield any stability 
guarantees. Therefore, [15] proposed a Lyapunov-based mod‐
el-free RL strategy for primary frequency control of the pow‐
er system, which can guarantee that the system frequency 
reaches stable equilibrium after disturbances. In [15] and 
[16], Lyapunov stability theory was utilized to design the ar‐
chitecture of recurrent neural network (RNN) controllers for 
power networks. However, the system parameters (e.g., iner‐
tia of SGs) need to be known in prior in order to train the 
neural Lyapunov function [16], and whether the learned func‐
tion satisfies the Lyapunov conditions for all points in a re‐
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gion needs further investigation. Given the frequent adjust‐
ments of virtual inertia and damping parameters in IBRs, the 
development of a robust DRL-based frequency regulation 
controller for IBRs could enhance their integration into the 
power system.

The primary contribution of this work is the development 
of a safe model-based reinforcement learning (MBRL) algo‐
rithm for grid-forming (GFM) inverter based frequency regu‐
lation. Inspired by [17], this algorithm addresses the chal‐
lenges of ensuring controller stability and effectively dealing 
with system parameter uncertainty. In the proposed algo‐
rithm, a Gaussian process (GP) model is adopted to learn 
the unknown nonlinear dynamics of the inverter system, and 
approximate dynamic programming (ADP) [18], [19] is used 
to improve the control performance of the algorithm. More‐
over, to guarantee the system stability under the learned con‐
trol policy, Lyapunov function is used to obtain the region of 
attraction (ROA). Different from pre-training a neural Lyapu‐
nov function according to system dynamics in [16], we de‐
sign the Lyapunov function as the value function of the Bell‐
man’s equation in ADP. This allows both the Lyapunov func‐
tion and the control policy to update during training, leading 
to an enlarged ROA and improved control performance si‐
multaneously. In addition, the controller based on the pro‐
posed algorithm is adaptive to the adjustment of inverter pa‐
rameters (i.e., virtual inertia and damping coefficients), which 
means the controller will be more robust to parameter uncer‐
tainty.

This paper is organized as follows. Section II formulates 
the GFM inverter based frequency regulation problem. In 
Section III, the GFM inverter based frequency regulation via 
the safe MBRL controller is designed. The numerical simula‐
tions are presented in Section IV. Section V concludes the 
paper.

II. FORMULATION OF GFM INVERTER BASED FREQUENCY 
REGULATION PROBLEM 

The diagram of GFM inverter based primary frequency 
control is depicted in Fig. 1.

We assume the bus voltage magnitudes to be 1 p.u., and 
neglect the reactive power flows. The frequency dynamics of 
VSG-based power control loop of the GFM inverter can be 
given by the swing equations [5], [16], [20]:

ì

í

î

ïïïï

ï
ïï
ï

dθ
dt

=ω

M
dω
dt

=Pset -Pi -Dω - u(θω)
(1)

where u(×) is the control action function of the battery energy 
storage systems (BESSs), which denotes the active charging 
power (i.e., Pb in Fig. 1) of the BESS; M and D are the vir‐
tual inertia and damping constant of the inverter, respective‐
ly; Pset and Pi are the set point and real-time measurement 
of the active power output of the inverter, respectively; and 
θ and ω are the voltage phase and angular frequency devia‐
tion of the inverter, respectively. More specifically, ω =ωi -
ωn, where ωi is the generated angular frequency of the in‐
verter output voltage, and ωn is the nominal angular frequen‐
cy of the inverter. In Fig. 1, Pi can be calculated as [21]:

Pi = ∑
jÎ{ig}

ViVj (Bijsin(θ i - θj )+Gijcos(θ i - θj )) (2)

where Bij and Gij are the susceptance and conductance com‐
ponents of the (ij) element of the admittance matrix Y, re‐
spectively; Vi and θi are the voltage magnitude and phase of 
node i, respectively; and θg is the voltage phase of the main 
grid. Note that lossy power flow model is adopted in (2).

We aim to propose a control policy to improve the dynam‐
ic performance of VSG after disturbances with the minimal 
cost. The optimal control problem can be formulated as:
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min
u

(uT Ru + xTQx)

s.t. (1)

      -u £ u £ ū

       u is stabilizing

(3)

where x = (θω) is the state of the VSG; Q and R are the pos‐
itive definite matrices; -u and ū are the lower and upper limi‐
tations of the control actions u, respectively, which are deter‐
mined by the maximum charging and discharging capacities 
of BESSs; and u is the vector of u(×). As shown in Fig. 1, 
the control action is optimized using the proposed algorithm.

III. GFM INVERTER BASED FREQUENCY REGULATION VIA 
SAFE MBRL CONTROLLER 

The primary objective of the controller is to safely learn 
about the frequency dynamics of VSG from measurements 
and adapt the control policy π for optimal performance, with‐
out encountering unstable system states. This implies that 
the adjustment of the control policy throughout the learning 
process must be performed in such a way that the system 
state remains within the ROA. The parameter uncertainty 
and nonlinearity of the AC power flow, as described in (2), 
make the design of controllers for (1) challenging. The pro‐
posed controller for GFM inverter based frequency regula‐
tion is depicted in Fig. 2. In the proposed controller, the fre‐
quency dynamics of VSG are learned by the GP model with 
system measurements. The ROA for a fixed policy is deter‐
mined using Lyapunov functions. And the control policy is 
updated by ADP-based RL approach to expand the ROA. 
The details of the proposed policy are presented below.
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Fig. 1.　Diagram of GFM inverter based primary frequency control.
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By discretizing the dynamic model shown in (1) and (2), 
the dynamics can be reformulated as the following nonlinear 
discrete-time system:

ì
í
î

ïï

ïïïï

θk + 1 = θk + hωk

ωk + 1 =ωk +
h
M

(Psetk -Pik -Dωk - uk )
(4a)

where h is the step size for the discrete simulation; and the 
subscript k denotes the discrete time index. 

Equation (4a) can be expressed as:

xk + 1 = f (xkuk )= h(xkuk )+ g(xkuk ) (4b)

where f (×) denotes the true dynamics of the VSG, compris‐
ing two components: a known model represented by h(×), and 
a priori unknown model errors denoted by g(×). In inverters, 
the parameter (e. g., M and D in (1)) can undergo dynamic 
changes, which introduces uncertainties. To ensure the stabil‐
ity and predictability of the system, we assume the dynamic 
of the VSG is Lf -Lipschitz continuous, which means that the 
dynamic does not change too rapidly between any two 
points in its domain. This assumption holds true for the 
VSG system as described in (1), with a supporting proof pro‐
vided in Appendix A.

To enable safe learning, we adopt GP model to learn a re‐
liable statistical system model described by (1) and (2). GP 
model is a powerful method in machine learning and statisti‐
cal modeling. GP consists of random variables, and any fi‐
nite group of them follows a joint Gaussian distribution. In 
system modeling, GP is often used to capture complex rela‐
tionships in data [22]. According to the GP theory [23], 
there exists a parameter βn > 0 such that with probability at 
least 1 - δ it holds for all n ³ 0 that ||f (xu)- μn (xu)||1 £

βnσn (xu). μn (×) and σn (×)= trace ( )∑
n

(×)  are the posterior 

mean and covariance matrix functions of the GP model of 
the VSG dynamics in (4b) conditioned on n measurements, 
respectively. In this way, we can use a GP model to build 
confidence intervals on the inverter dynamics, which can 
cover the true dynamics with probability 1 - δ.

After learning about the inverter dynamics from measure‐
ments, the goal is to safely adapt the optimal control policy 
without leading to unstable system conditions. The safety of 
the controller is characterized by the safe region of states 
and actions, commonly referred to as the ROA [24]. When 
the system state falls within the boundaries of the ROA, the 

dynamics outlined in (1) will remain stable. Conversely, if 
the state ventures outside this region, the system is prone to 
instability. We can use Lyapunov function v to determine 
ROA for a fixed control policy π. Lyapunov function v is a 
continuously differentiable function with v(0)= 0 and v(x)> 0 
for all x ¹ 0 [25]. Therefore, Lyapunov function is Lv-Lip‐
schitz continuous. Based on the Lyapunov stability theory, 
we have the following theorem [23], [25].

Theorem 1  If v( f (xπ(x)))< v(x) for all x within the lev‐
el set Θ(c)={xÎ χ\{0}|v(x)£ c} (χ is the state space, c > 0), 
then Θ(c) is an ROA, so that x0ÎΘ(c) implies xkÎΘ(c) for 
all k > 0 and lim

k®¥
xk = 0.

The theorem indicates that when a fixed policy π is em‐
ployed, applying the dynamics f (×) to the state consistently 
results in decreasing values in the Lyapunov function. Conse‐
quently, the system state is assured to converge inevitably to‐
wards the equilibrium point. Further details can be found in 
[23]. According to the theorem, the determination of the 
ROA Θ(c) is achieved by examining a level set of the Lyapu‐
nov function. To compute ROA, the crucial steps involve 
identifying an appropriate Lyapunov function and determin‐
ing Θ(c) that ensures the condition v( f (xπ(x)))< v(x) holds 
for all xÎΘ(c).

The dynamics of VSG f (×) are uncertain, leading to uncer‐
tainty in v( f (×)). This introduces an additional challenge in 
determining Θ(c) using the above theorem. According to the 
GP model, v( f (xu)) is contained in ϒn (xu): =[v(μn - 1 (xu))±
Lv βnσn - 1 (xu)] with probability higher than 1 - δ. Lv is the 
Lipschitz constant of the Lyapunov function v(×). To ensure 
safe state-actions are always safe, we define the upper bound 
of v( f (xu)) as un (xu): =max Cn (xu), where Cn (xu)=
Cn - 1 (xu)ϒn (xu). Therefore, in accordance with the afore‐
mentioned theorem and considering v( f (xu))£ un (xu), the 
system stability in (1) is assured if un (xu)< v(x) is satisfied 
for all xÎΘ(c). Nevertheless, determining Θ(c) becomes im‐
practical when attempting to identify all states x on the con‐
tinuous domain that satisfy un (xu)< v(x). To address this 
challenge, we can discretize the state space into cells denot‐
ed as χτ, such that ||x -[x]τ||1 £ τ. In this context, [x]τ repre‐
sents the cell with the minimal distance to x. Considering 
the system dynamic is Lf -Lipschitz continuous and the con‐
trol policy is Lπ-Lipschitz continuous, we can get the follow‐
ing theorem [17]. The proof is discussed in Appendix A.

Theorem 2  If un (xu)< v(x)- LDvτ holds for all xÎ 
Θ(c) χτ and for some n ³ 0, then v( f (xπ(x)))< v(x) holds 
for all xÎΘ(c) with probability at least 1 - δ, where LDv =
Lv Lf (Lπ + 1)+ Lv. And Θ(c) is an ROA for the dynamics f un‐
der policy π.

In this way, under a fixed policy π, the ROA can be iden‐
tified within the discretized state space as follows:

Dn ={(xu)|un (xπ(x))- v(x)<-LDvτ} (5)

It should be noted that the ROA is dependent on the poli‐
cy. To get the largest possible ROA, we can optimize the 
policy using (6). The corresponding optimal policy for cn 
is πn.
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Control 
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compute policy π using (7)

Updated GP model 

of GFM inverter Update GP model with 

new measurements
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ROA: {(x,u)|u
n
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n
},
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Fig. 2.　Proposed algorithm for GFM inverter based frequency regulation.
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cn = max
πÎΠPcÎR> 0

c    "xÎΘ(c) χτ(xπ(x))ÎDn (6)

where ΠP is the set of safe policies.
The ROA optimized by (6) is contained in true ROA with 

probability at least 1 - δ for all n > 0. Precisely solving (6) is 
intractable, thus we adopt the ADP [18] technique to im‐
prove the performance of the policy from data, as shown be‐
low:

πn = arg min
πWÎΠP

∑
xÎ χτ

r(xπW (x))+ γJπW
(μn - 1 (xπW (x)))+

λ(un (xπW (x))- v(x)+ LDvτ) (7)

where πW is the policy with parameters W; γ is the discount 
factor; λ is a Lagrange multiplier for the safety constraint; 
r(xπW (x))= uT Ru + xTQx ³ 0 is the cost function; and JπW

(×) 
is the value function of the Bellman’s equation, which is ap‐
proximated using piecewise linear approximations [18] in 
this work, and JπW

(x)= r(xπ(x))+ γJπW
( f (xπ(x))). Consider‐

ing the cost function is strictly positive, we use JπW
(×) as the 

Lyapunov function. In (7), the objective of the optimization 
is to minimize the cost and make sure the safety constraint 
holds, and stochastic gradient descent (SGD) based optimiza‐
tion method can be utilized.

For the proposed algorithm, a safe initial point is essential 
for initiating the learning process. Consequently, an initial 
policy is required, ensuring the asymptotic stability of the 
system origin in (1) within a confined set of states. In this 
work, we utilize a linear-quadratic regulator (LQR) control‐
ler as our initial policy. In addition, to expand the ROA 
throughout the learning process, the agent strategically ex‐
plores the state-action pairs for which the system dynamics 
are most uncertain. To achieve this, we meticulously choose 
measurement data points based on:

(xnun )= arg max
(xu)ÎDn

(un (xu)- ln (xu)) (8)

where ln (xu) is the lower bound of v( f (xu)). 
The proposed algorithm is summarized in Algorithm 1.

IV. SIMULATION RESULTS 

A case study was conducted on a GFM inverter system, 
as shown in Fig. 1, to demonstrate the effectiveness of the 
proposed algorithm for system frequency regulation. The 
step size of the discrete simulation of the system was set to 
be 0.01 s and the total simulation time horizon was 15 s. We 
used GP model to learn the frequency dynamics of the VSG. 
The mean dynamics of the VSG were characterized by a lin‐
earized model of the true dynamics, as shown in (B1) in Ap‐
pendix B, accounting for inaccuracies in the values of M and 
D. Consequently, the optimal policy designed for the mean 
dynamics exhibited suboptimal performance with a limited 
ROA, primarily due to underactuation of the system. We ad‐
opted a hybrid approach employing both linear and Matérn 
kernels (refer to Appendix C) [22], [26]. This combination 
enabled us to effectively capture model errors stemming 
from inaccuracies in parameters. As for the policy network, 
a neural network featuring two hidden layers was implement‐
ed, each comprising 32 neurons with rectified linear unit 
(ReLU) activation functions. The states θ and ω were dis‐
cretized into 2000 and 1500 intervals, respectively. The ac‐
tion space was discretized into 55 intervals. R and Q in (3) 

were set to be 0.1 and é
ë
êêêê ù

û
úúúú0.1 0

0 2
, respectively.

The case study was conducted on an Intel Core i7-8650U 
@ 1.90 GHz Windows based computer with 16 GB RAM. 
The convergence process of the training for the proposed al‐
gorithm is illustrated in Fig. 3.

The proposed algorithm exhibited remarkable conver‐
gence, typically requiring only a few tens of iterations. Un‐
der the obtained control policy, the ROA is shown in Fig. 4 
by the dark green area, where the light green area denotes 
the state space and the blue cross marks denote the data 
points the agent selected to explore the safe region. From 
the result, the ROA was determined based on the informa‐
tion from multiple measurements.

We investigated the frequency control performance of the 
proposed algorithm, as depicted in Fig. 5, where the frequen‐
cy deviation f is derived from the angular frequency devia‐
tion ω, with the relationship expressed as f =ω/(2π), so in 
Fig. 5(a) - (c), the values of ωt® 0+ are -1, -2, and -3 rad/s, 
respectively. From Fig. 5, it is evident that when the inverter 
experiences frequency deviation, the proposed algorithm effi‐
ciently restores the system to a stable state using BESSs. In 
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Fig. 3.　Convergence process of training for proposed algorithm.
Algorithm 1: safe MBRL algorithm for GFM inverter based frequency 

regulation

Load the power system simulation environment; initialize the LQR-based 
initial policy; initialize the parameters of the policy πW; initialize the 
GP model for VSG dynamics and ADP value functions; set the total 
number of episodes Ne; and set the training step n = 1

Get the initial safe set based on the initial LQR controller and the corre‐
sponding initial Lyapunov function

for n £Ne do

  for i = 12N do

     Based on (8), select a new safe sample of the state-action pair (xu)

     Update the GP model for VSG dynamics based on the actively select‐
ed new data point

  Optimize policy πn by solving (7) using the SGD-based optimization 
method

  Update the Lyapunov function (i.e., value function JπW
(×))

  Using the updated policy, calculate cn in (6) to ensure that "xÎΘ(c) χτ, 
un (xπ(x))- v(x)<-LDvτ holds

  Compute and update the safe set (i.e., ROA)

Return the well-trained policy πW
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contrast, without any control, the system became unstable af‐
ter the disturbance. Additionally, while traditional linear 
droop control can stabilize the system under certain levels of 
disturbance, it fails to maintain stability when the distur‐
bance is significant, as shown in Fig. 5(c). The results also 
indicate that the linearized control policy could lead to a rap‐
id deterioration in control performance in the presence of 
large frequency deviations.

To demonstrate the superiority of the proposed algorithm 
over traditional model-free DRL algorithms (e. g., the deep 
deterministic policy gradient (DDPG) algorithm outlined in 
[14]), we conducted a comparative analysis of the proposed 
algorithm against DDPG and soft actor critic (SAC) algo‐
rithms for frequency regulation. The results are depicted in 
Fig. 6. The analysis reveals that while the DDPG and SAC 
algorithms achieve satisfactory control performance under 
relatively mild disturbances, as shown in Fig. 6(a) and (b), 
managing to stabilize the inverter frequency within several 
seconds after the disturbance, their effectiveness diminishes 
with increasing disturbance magnitude. In contrast, the pro‐
posed algorithm not only restores inverter frequency more 
swiftly than the model-free algorithms in scenarios with rela‐
tively minor disturbances but also maintains robust frequen‐
cy control under more significant disturbances, as shown in 
Fig. 6(c).
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Fig. 5.　BESS charging action of proposed algorithm and frequency control 
performance of proposed algorithm and comparing algorithms. (a) ft® 0+ =
-0.159 Hz. (b) ft® 0+ =-0.318 Hz. (c) ft® 0+ =-0.478 Hz.
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Fig. 6.　Frequency control performance of proposed algorithm and model-
free DRL algorithms. (a) ft® 0+ =-0.159 Hz. (b) ft® 0+ =-0.318 Hz. (c) ft® 0+ =
-0.478 Hz.
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The stable control performance of the proposed algorithm 
can be largely attributed to the integration of Lyapunov sta‐
bility theory into the learning process, which provides a safe‐
ty guarantee characteristic. More specifically, the proposed 
algorithm selects optimal control actions within the ROA, en‐
suring a level of safety that model-free DRL algorithms can‐
not guarantee for the learned policy.

Furthermore, to test the robustness of the proposed algo‐
rithm against inverter parameter variations, such as M and D 
in (1), we evaluated the performance of the well-trained safe 
MBRL controller under different parameter settings. Fig‐
ure 7(a) illustrates the frequency response of the inverter 
with varying D values (70% ×Dbase £D £ 130% ×Dbase) while 
the virtual inertia setting was held constant at Mbase . In 
Fig. 7(b), the frequency response to varying M values, devi‐
ating by ±30% from the base value, was examined, while 
maintaining the damping coefficient steady at Dbase. Observa‐
tions from Fig. 7(a) and (b) indicate that the safe MBRL-
based control policy was able to effectively and safely con‐
trol the BESS to provide frequency regulation, regardless of 
the M and D adjustments. This adaptability underscores the 
capability of the controller to handle dynamic changes and 
uncertainties within the system, affirming its robustness 
against a wide range of operational conditions.

V. CONCLUSION

In this paper, we presented a novel safe MBRL algorithm 
for GFM inverter based frequency regulation with stability 
guarantee. The proposed algorithm ensures stability by learn‐
ing a Lyapunov function and utilizes ADP-based RL to en‐
hance control performance. Additionally, the GP modeling 
was employed to capture VSG dynamics and enhance robust‐
ness to parameter uncertainty. The proposed algorithm offers 
a safe and robust controller for GFM inverter based frequen‐
cy regulation. Simulation results demonstrated that the per‐
formance of the proposed algorithm surpasses that of tradi‐
tional droop control and model-free DRL algorithms. More‐
over, the proposed algorithm only requires the measurements 
of the voltage phase and angular frequency of the inverter, 
which are easily accessible in modern power systems. The 
ease of implementation of the proposed algorithm enhances 
its potential for practical applications.

APPENDIX A 

Lemma 1  The control policy πW is Lipschitz continuous 
with Lipschitz constant Lπ.

Proof 1  In this work, πW =ϕ(x). ϕ(x) is the output of a K- 
layer network, which is given by:

ϕ(x)=ϕK (ϕK - 1 (ϕ1 (x ; W1 ); W2 ); WK ) (A1)

In the hidden layers, ReLU activation functions are used. 
For the kth layer, there exits a constant Lk > 0 such that 
||ϕk (x ; Wk )-ϕk (x + r ; Wk )|| £ Lk||r|| holds for all x and r. Here, 
r is a vector satisfying ||r|| £ ε and ε is a small enough positive 
number. The output layer utilizes tanh activation function, thus 

the network satisfies ||ϕ(x)-ϕ(x + r)|| £ Lπ||r||, with Lπ =∏
k = 1

K

Lk. 

This means the control policy πW is Lipschitz continuous with 
Lipschitz constant Lπ.

Lemma 2  The closed-loop dynamics of the VSG given in 
(4b) are Lipschitz continuous with Lipschitz constant Lf.

Proof 2  From the dynamics given in (1) and Lemma 1, the 
dynamic function of VSG is a continuously differentiable func‐
tion. Any continuously differentiable function is locally Lip‐
schitz. Therefore, the closed-loop dynamics of VSG given in 
(4b) are Lipschitz continuous with Lipschitz constant Lf.

Lemma 3  The Lyapunov function v is Lipschitz continuous 
with Lipschitz constant Lv.

Proof 3  In this work, the Lyapunov function is set as the 
value function JπW

 of the ADP method. The value function is 

approximated using a piecewise linear function that is continu‐
ous. Given that the slopes of this piecewise linear function are 
bounded, the Lyapunov function exhibits Lipschitz continuity 
with a Lipschitz constant denoted by Lv.

Theorem 2 can be proofed as follows. According to Lemma 
1 of [17], v( f (xπ(x)))- v(x)< 0 for all continuous states 
xÎΘ(c) with probability higher than 1 - δ. So, it  can be con‐
cluded based on Theorem 1 that Θ(c) is an ROA for the system.

APPENDIX B 

The LQR-based initial policy is designed based on the lin‐
earized VSG dynamics. According to formulas (1) and (2), the 
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Fig. 7.　Robustness of safe MBRL-based control policy against D and M 
uncertainties with ft® 0+ =-0.478 Hz. (a) Robustness of safe MBRL-based 
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control policy against M uncertainty.
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linearized small-signal model of VSG around an given operat‐
ing point is obtained as:

é
ë
êêêê

ù
û
úúúúDθ̇

Dω̇
=

é

ë

ê
êê
ê
ê
ê ù

û

ú
úú
ú
ú
ú0 1

-
1
M

(Bcos θ -Gsin θ) -
D
M

é
ë
êêêê ù

û
úúúúDθ

Dω
+

é

ë

ê
êê
ê
ê
ê ù

û

ú
úú
ú
ú
ú0

-
1
M

u

(B1)

The eigenvalues of the system are:

λ12 =
-D ± D2 - 4M (Bcos θ -Gsin θ)

2M
(B2)

where G + jB = Yig is the mutual admittance between the IBR 
node and the main grid. As shown in Fig. 1, the mutual admit‐
tance can be calculated using the line parameters as [21]:

Yig =-
1

Rc + jXc

=
-Rc

R2
c +X 2

c

+ j
Xc

R2
c +X 2

c
(B3)

It can be found that the eigenvalues depend on the operating 
point, virtual inertia, and damping coefficients, and line param‐
eters Rc and Xc. In this work, Yig =-0.495 + j4.95. The per unit 
values of M and D are set to be 5 and 1, respectively.

APPENDIX C 

The linear kernel is given by:

kL (xx′ )= xT x′ (C1)

where x and x′ are two distinct states.
The Matérn kernel is given by:

kM (xx′ )=
1

Γ(ν̂)2ν - 1 ( )2ν̂
l

d(xx′ )
ν̂

Kν( )2ν̂
l

d(xx′ ) (C2)

where l is a length-scale parameter; d(×) is the Euclidean dis‐
tance; Kν (×) is a modified Bessel function; Γ(×) is the Gamma 
function; and ν̂ is the parameter that regulates the smoothness 
of the function.
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