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Abstract——With the increase of the renewable energy genera‐
tor capacity, the requirements of the power system for grid-con‐
nected converters are evolve, which leads to diverse control 
schemes and increased complexity of systematic stability analy‐
sis. Although various frequency-domain models are developed 
to identify oscillation causes, the discrepancies between them 
are rarely studied. This study aims to clarify these discrepan‐
cies and provide circuit insights for stability analysis by using 
different frequency-domain models. This study emphasizes the 
limitations of assuming that the transfer function of the self-sta‐
ble converter does not have right half-plane (RHP) poles. To en‐
sure that the self-stable converters are represented by a fre‐
quency-domain model without RHP poles, the applicability of 
this model of grid-following (GFL) and grid-forming (GFM) 
converters is discussed. This study recommends that the GFM 
converters with ideal sources should be represented in parallel 
with the P/Q-θ/V admittance model rather than the V-I imped‐
ance model. Two cases are conducted to illustrate the rationali‐
ty of the P/Q-θ/V admittance model. Additionally, a hybrid fre‐
quency-domain modeling framework and stability criteria are 
proposed for the power system with several GFL and GFM con‐
verters. The stability criteria eliminates the need to check the 
RHP pole numbers in the non-passive subsystem when applying 
the Nyquist stability criterion, thereby reducing the complexity 
of stability analysis. Simulations are carried out to validate the 
correctness of the frequency-domain model and the stability cri‐
teria.

Index Terms——Converter, grid-forming (GFM), grid-following 
(GFL) impedance, renewable energy, stability analysis, frequen‐
cy-domain model.

I. INTRODUCTION 

THE global pursuit of a sustainable and low-carbon fu‐
ture places significant emphasis on renewable energy 

generation, driving consequential modifications in the opera‐
tion, structure, and dynamics of power systems. A notable 
manifestation of these changes is the transition from synchro‐
nous generator-dominated dynamics to converter-dominated 
dynamics in power systems [1]. Regrettably, this change en‐
genders the emergence of several unexpected power system 
oscillations in practical engineering for the converter-domi‐
nated power systems [2]. Consequently, the small-signal sta‐
bility analysis of converter-dominated power system emerges 
as a critical research area. It is worth mentioning that the sta‐
bility analysis mentioned below is all small-signal stability 
analysis.

Impedance analysis methods play a crucial role in identify‐
ing the underlying causes of oscillations in converter-domi‐
nated power systems, which effectively explore the intricate 
dynamics and interactions between converters and the grid, 
enabling the formulation of impedance models in various 
forms [3]. A classical and widely used impedance model is 
the dq-domain impedance/admittance model (abbreviated as 
V-I impedance/admittance model in the following), which of‐
fers a more intuitive representation of the equipment control 
characteristics [3]. However, it is advised that these advan‐
tages of dq-domain impedance model do not extend to the 
stability analysis for grid-forming (GFM) converters, espe‐
cially those with a single-loop structure [4]. The distinction 
arises from the fact that grid-following (GFL) converters di‐
rectly control the DC component of voltage or current sig‐
nals in the dq frame while GFM converters regulate phasor 
quantities such as bus voltage magnitude and frequency. 
From a control structure perspective, the modeling of the 
GFM converter benefits from choosing the magnitude and 
phase of the voltage as the input signals and the active and 
reactive power as the output signals [5], [6]. The derivate 
transfer function matrix model is defined as the P/Q-θ/V 
model [6], referred to as the power-domain model in [7] and 
as the amplitude-phase model in [8]. Consequently, both the 
V-I model [3], [9] and the P/Q-θ/V model [8] become valu‐
able tools for evaluating the stability of grid-connected con‐
verters with equivalent results, including both GFL and 
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GFM converters.
Originally concentrated on single-converter grid-connected 

systems, the frequency-domain models based on impedance 
or transfer function models extend their applicability to sys‐
tems with several converters in GFL and GFM control. 
Therefore, the circuit representation of the converters is de‐
termined by the current and voltage characteristics of the ter‐
minal [10]. GFL converters are typically modeled as current 
sources in parallel with V-I admittances, while converters 
with constant frequency and constant voltage control are 
commonly represented as voltage sources in series with V-I 
impedance [11]. To facilitate analysis, the whole system is 
divided into two subsystems at the selected node, following 
the equivalent circuit model. Then, the impedance of each 
subsystem is obtained by aggregating the impedance of indi‐
vidual components according to the circuit principle [12], 
[13]. It should be noted that the aggregation process may ex‐
hibit right-half-plane (RHP) poles, particularly when combin‐
ing the GFL and GFM impedances.

The Bode plots and generalized Nyquist criterion (GNC) 
are used in [14]. The stability analysis for interconnected sys‐
tems with RHP poles requires checking the open-loop RHP 
pole numbers in the subsystem, as discussed in [15] and 
[16]. One commonly used method is plotting the pole-zero 
map of the impedance transfer function. However, there are 
two major disadvantages. The process of solving the poles 
involves an initial conversion into Smith-McMillan form, 
adding an additional layer of complexity to the calculation 
[15], [16]. Moreover, if the transfer function is the measure‐
ment model/spectrum, the parameters of measurement model 
need to be confirmed through fitting. Although the RHP pole 
and zero numbers can be determined based on the magni‐
tude slope change and the phase change in the Bode plots, 
the method in [14] only applies to single-input single-output 
nonminimum-phase systems. A sequential stability analysis 
is developed to avoid the emergence of RHP poles during 
the impedance aggregation process, which is started from 
low-level nodes [12]. An alternative method involves divid‐
ing the system into a non-passive subsystem and a passive 
subsystem. By embedding the impedance model of non-pas‐
sive modules (e. g., converters) as diagonal elements in the 
transfer function matrices of a non-passive system, this meth‐
od avoids the emergence of RHP poles induced by the im‐
pedance aggregation process [17], [18]. However, a crucial 
assumption in this method, which asserts the absence of 
RHP poles in their V-I models when each converter main‐
tains self-stability, is not rigorously demonstrated in the cur‐
rent studies.

The GFL and GFM converters can be represented as 
equivalent power sources connected in series with P/Q-θ/V 
impedance or in parallel with P/Q-θ/V admittance [5], [8]. 
Currently, two stability analysis techniques are applied by 
utilizing these equivalent power sources: torque theoretical 
analysis [19], [20] and impedance-ratio stability criteria [6], 
[8]. The former aligns with the principles employed in mod‐
eling synchronous generators, only focusing on the grid syn‐
chronization dynamics under disturbances. In contrast, the 
latter aligns with the frequency-domain analysis theory, en‐

abling more precise conclusions regarding stability assess‐
ment. However, based on the authors’ knowledge, the appli‐
cation scope of the P/Q-θ/V modeling framework proposed 
in [6] is confined to multi-GFM grid-connected systems. The 
impedance modeling in [17] and [18] seems to be easily ex‐
tendable to power systems with GFL and GFM converters. 
However, the method in [17] and [18] raises a similar ques‐
tion, as previously discussed, concerning the presence of 
RHP poles in the P/Q-θ/V model of the self-stable converter. 
In fact, as illustrated in [8], the V-I model of a stable GFL 
converter does not have RHP poles, whereas the P/Q-θ/V 
model has one RHP pole. Consequently, it becomes impera‐
tive to verify the existence of RHP poles in the non-passive 
subsystem when applying the P/Q-θ/V modeling framework 
to power systems with GFL and GFM converters.

To eliminate the need to check the RHP pole numbers in 
the non-passive subsystem, this study revisits the presence 
of RHP poles in self-stable converter as well as the adapt‐
ability of the frequency-domain model, and explores the hy‐
brid frequency-domain modeling framework for the power 
system with GFL and GFM converters. The main contribu‐
tions of this study can be summarized as follows.

1) This study contributes to clarifying the discrepancies 
between the V-I and P/Q-θ/V models in stability analysis, 
particularly rectifying the vague understanding regarding the 
pole numbers of the frequency-domain model of a self-stable 
equipment.

2) This study investigates the appropriate model selection, 
either the V-I or the P/Q-θ/V impedance/admittance model, 
for the stability analysis of converters in different control 
modes.

3) This study introduces a hybrid frequency-domain mod‐
eling framework and stability criteria for power systems 
with GFL and GFM converters. The frequency-domain mod‐
el simplifies the stability analysis process by eliminating the 
need to check the RHP pole numbers in the non-passive sub‐
system.

The rest of this paper is organized as follows. Section II 
briefly introduces the system configuration and the frequen‐
cy-domain models. Then, the circuit insights and discrepan‐
cy of frequency-domain models are discussed in Section III. 
Afterward, Section IV discusses the frequency-domain mod‐
el applicability for converters with different control strate‐
gies. Section V presents the multi-converter parallel system. 
Finally, Section VI outlines the main conclusions.

II. SYSTEM CONFIGURATION AND FREQUENCY-DOMAIN 
MODELS 

A. System Configuration

Figure 1 illustrates the studied system with GFL and GFM 
converters, where PCC is short for the point of common cou‐
pling. These converters utilize a three-phase full-bridge in‐
verter circuit, featuring a DC-side capacitor and an AC-side 
L filter, which serve to maintain a stable DC-link voltage 
and filter out the switching harmonics, respectively. Given 
that the GFL converter directly regulates its DC-side voltage 
and the GFM converter controls the output power, the DC-
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side circuits of the GFL and GFM converters can be simpli‐
fied as an ideal current source in parallel with an admittance 
and ideal voltage source in series with an impedance, respec‐

tively. The converter is connected to the series-compensated 
grid with the equivalent resistance Rg, the equivalent induc‐
tance Lg, and the equivalent capacitance Cg [21].

It is worth mentioning that all the converters mentioned in 
this study are grid-connected voltage-source converters 
(VSCs). The common control structures of GFL and GFM 
converters are shown in Fig. 2, where PLL is short for the 
phase-locked loop. A GFL converter is designed to follow 
the grid voltage and frequency, adjusting the output power in 
response to changes in the grid voltage and frequency. The 
common control structure of a GFL converter is the two-
loop cascaded control, as shown in Fig. 2(a). In contrast, the 
GFM converter does not require an external grid voltage ref‐
erence, as it generates a stable voltage and frequency wave‐
form that is synchronized with the grid. Figure 2(b) displays 
a common control structure of a GFM converter, where the 
power-based synchronization loop controller and the Q-V 
droop controller generate the phase angle and magnitude of 
the terminal voltage of the GFM converter, respectively.

Figure 3 gives the control diagram of GFM converters. To 
suppress power resonance at approximately 50 Hz, a virtual 
resistance Ha =Ra s/(s +ωb ) is added to the output signal of 
Q-V droop controller, where Ra is the resistance; and ωb is 
the cut-off frequency. The Q-V droop controller consists of a 
proportional gain and a high-pass filter, with the high-pass 
filter typically set in the range of 0.1-0.2 p.u. for its cut-off 
frequency ωb, and the resistance Ra chosen around 0.2 p.u. 
[22]. Notably, all GFM control structures aim to regulate the 
voltage amplitude and phase. The essential differences 
among these control structures are the voltage control at dif‐
ferent positions (e.g., the GFM converter depicted in Fig. 3 
controls the voltages at the converter switching bridge, while 
the GFM converter with multiple loops [9] regulates the volt‐
ages at the PCC) and the simulation of different reactive 
voltage equations. 

Thus, although this study analyzes only two typical con‐
figurations, the presented tool can be adapted for other op‐
tions of converter control implementation in different appli‐
cations.

The 1th GFL
converter

The 2th GFL
converter

The kth GFL
converter

The M1
th GFL

converter

… …

1

ac
B

Cg Rg Lg

vg
Is,1
dc Znet,1

dc

Ztrans,1

Vpcc,1Ðθpcc,1

Vb1Ðθb1

Is,2
dc Znet,2

dc

Ztrans,2

Vpcc,2Ðθpcc,2

Is,k
dc Znet,k

dc

Ztrans,k

Vpcc,kÐθpcc,k

…

Is,M1

dc Znet,M1

dc

Ztrans,M1

Vpcc,M1
Ðθpcc,M1

The (M1+1)th GFM
converter

The (M1+1)th

PCC

The 1th

PCC

The 2th

PCC

The kth

PCC

The M1
th

PCC

Znet,M1+1
dc

Vs,M1+1
dc

Ztrans,M1+1

Vpcc,M1+1Ðθpcc,M1+1

+
-

The (M1+k)th GFM
converter

The (M1+k)th

PCC

Znet,M1+k
dc

Vs,M1+k
dc

Ztrans,M1+k

Vpcc,M1+k
Ðθpcc,M1+k

+
-

…

The M th GFM
converter

The M th

PCC

Znet,M
dc

Vs,M
dc

Ztrans,M

Vpcc,MÐθpcc,M

+
-

(a)

Controller

Pulse width

modulation

vabc

mabc

Rc Lc
Cdc

Vdc

Idc

evt

ZlPCC

Idc¢

dabc

iabc

i
Transformer

v

(b)

Renewable energy power plant 2Renewable energy power plant 1
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B. Frequency-domain Models

1)　V-I Impedance Model
To analyze the interaction between the converters and the 

grid, the existing studies usually use Didq and Dvdq as the in‐
put and output signals of the frequency-domain model, re‐
spectively, deriving a V-I impedance or admittance model of 
the converter. The V-I impedance model of the converter can 
accordingly be expressed as [3]:

Dvdq =
    

é
ë
êêêê ù

û
úúúúZ dd Z dq

Z qd Z qq

Z dq

Di dq

(1)

where the superscripts d and q denote the d-axis and q-axis 
parameters, respectively; Z is the impedance;  and D denotes 
the small disturbance component of the signal.
2)　P/Q-θ/V Impedance Model

To analyze the power-frequency dynamic characteristics 
and their interaction of the converters, the output active pow‐
er Pe and reactive power Qe are usually used as input sig‐
nals. The amplitude Vac and phase (frequency) θac of the volt‐
age at converter switching bridge or PCC voltages are used 
as output signals [6], [8]. The P/Q-θ/V impedance model of 
the converter can be expressed as:


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where Gθp, Gθq, Gep, and Geq are the elements of the equiva‐
lent impedance Z pq.

III. CIRCUIT INSIGHTS AND DISCREPANCY OF 
FREQUENCY-DOMAIN MODELS 

This section introduces the circuit insights and stability cri‐
teria based on different frequency-domain models. This sec‐
tion also studies the discrepancy of frequency-domain mod‐
els of the converters and transmission lines.

A. Circuit Insights and Stability Criteria

The relationship between the output power and the PCC 
voltage/current, as well as the relationship between the dq-
axis voltage and the amplitude and phase of the voltage at 
the converter switching bridge, is given as [8]:
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where the subscript 0 denotes the steady-state value; and I 
and V denote the current and voltage, respectively.

Substituting (3) and (4) into (2), the mathematical equiva‐
lence of the converter and the two subsystems using the P/Q-
θ/V model can be expressed as [6]:

ì
í
î

Z dq
vsc =T -1

θe [AV -AI (Z dq
vsc )-1 ]-1

Z dq
g =T -1

θe [AV +AI (Z dq
g )-1 ]-1 (5)

where the subscripts “vsc” and “g” denote the parameters as‐
sociated with the converter and the grid, respectively. Simi‐
larly, if the converter employs GFL or GFM control, the sub‐
script will change from “vsc” to “gfl” or “gfm”.

Figure 4(a) shows the Norton equivalent model based on 
the V-I model of the grid-connected converter system. The 
PCC voltage based on the Norton equivalent model vdq is de‐
rived as [23]:

vdq =
vdq

g Z dq
vsc -G dq

vscv
dq
rvsc Z dq

g

E +Z dq
vscY

dq
g

1
Z dq

g

=
Y dq

g vdq
g -Y dq

vscG
dq
vscv

dq
rvsc

Y dq
vsc +Y dq

g

   (6)

where vdq
rvsc and G dq

vsc are the reference voltage vector and 
closed-loop reference-to-output frequency-domain model of 
the converter, respectively; Y dq is the equivalent admittance; 
and E is the identity matrix.

Following the Norton equivalent model and Ohm’s law, 
Fig. 4(b) shows the Thevenin equivalent model 1 of the grid-
connected converter system, where the controlled current 
source amplitude and admittance values are multiplied by a 
coefficient matrix AI. The PCC voltage based on the Theve‐
nin equivalent model 1 can be expressed as:

vdq =
AIY

dq
g vdq

g - (AIG
dq
vscY

dq
vscv

dq
rvsc )

AI (Y dq
g +Y dq

vsc )
=

I dq
rg - I dq

rvsc

AI (Y dq
g +Y dq

vsc )
(7)

where I dq
rg =AIY

dq
g vdq

g  and I dq
rvsc =AIG

dq
vscY

dq
vscv

dq
rvsc are the refer‐

ence amplitude vectors of the equivalent current sources on 
grid and converter sides, respectively.

Subsequently, the Thevenin equivalent model 2 is ob‐
tained by adjusting the equivalent admittance of two subsys‐
tems with a coefficient matrix AV, as shown in Fig. 4(c). 
The PCC voltage based on the Thevenin equivalent model 2 
can be expressed as:

vdq =
I dq

rg - I dq
rvsc

(AIY
dq

g +AV )- (AV -AIY
dq

vsc )
(8)

Then, the P/Q-θ/V model of the two subsystems can be 
calculated from the derived impedance models and frequen‐
cy sweep models. By multiplying the left and right sides of 
(8) by the inverse matrix T -1

θe  and substituting it into the P/Q-
θ/V model, the PCC voltage can be calculated as:

V θe =
vθe

rg - S pq
rvsc Z pq

g

E -Z pq
g Y pq

vsc

(9)

where vθe
rg =T -1

θe vdq
rg; and S pq

rvsc =Avv
dq
rg + I dq

rvsc.
Figure 4(d) shows the simplified equivalent circuit based 

on the P/Q-θ/V model. Notably, the PCC voltage dynamics 
and the stability of the grid-connected converter system 
based on these four equivalent circuits remain consistent. 
Since measurement data from the model can be used directly 
in the GNC, this criterion serves as a powerful and efficient 
tool in the stability analysis for the power systems [1]. On 
the basis of (6), (9), and GNC, it is straightforward to con‐
sider that the stability of the grid-connected converter sys‐
tem can be determined by examining the number of clock‐
wise encirclements of the open-loop gain Ldq

sys =Z dq
vscY

dq
g  or 

Lpq
sys =-Z pq

g Y pq
vsc around the point (−1, j0) [3]. However, it is es‐
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sential to assume that frequency-domain models for appara‐
tus do not exhibit RHP poles. This assumption results in dis‐
crepancies when using the GNC based on P/Q- θ/V models 
compared to impedance models. These discrepancies are il‐
lustrated later.

B. Discrepancy Between Frequency-domain Models

1)　Frequency-domain Models of Converters
Generally, the mathematical description of the converter 

typically comprises two components: the controller and the 
filter circuit. Neglecting the DC-side dynamics and switch‐
ing losses of the converter, the output pulse width modula‐
tion signals of the control system can be approximately 
equal to the voltage at the switching bridge of the converter 
edq

vt . That is to say,, the output signal of the control system is 
edq

vt , which must be one of the input signals of the converter 
filter circuit. The state-space models of the two components 
can be expressed as:

{ẋctrl =Fctrl xctrl +Hctrlactrl

Dedq
vt = Jctrl xctrl +Kctrlactrl

(10)

{ẋ filter =Ffilter x filter +Hfilterafilter

b filter = J filter x filter +Kfilterafilter

(11)

where F, H, J, and K are the diagonal parameter matrices in 
the state-space representation of modules; x, a, and b are the 
state variables, input signals, and output signals, respective‐
ly; and the subscripts ctrl and filter represent the controller 
module and filter circuit module, respectively.

Moreover, the interconnection between the input signal 
and output signal of the composite system and the input/out‐
put signals of each module can be expressed by the algebra‐
ic equations as:

é
ë
êêêê ù

û
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=L1
é
ë
êêêê ù
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b filter
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where uvsc and yvsc are the input and output signals for the 
converters of the composite system, respectively; and L1, L2, 
L3, and L4 are the parameter matrices that map the intercon‐
nection relationships among different components.

Then, according to the component connection-based modu‐
lar state-space modeling method in [24] and the relationship 
between the state-space model and the frequency-domain 
model, the overall state-space model and frequency-domain 
model of the converter can be expressed as:

{ẋvsc =Avsc xvsc +Bvscuvsc

yvsc =Cvsc xvsc +Dvscuvsc
(14)

Gvsc =
yvsc

uvsc

=Cvsc (sE -Avsc )-1 Bvsc +Dvsc (15)

where Avsc =Fvsc +Hvsc L1 (E -Kvsc L1 )-1 Jvsc is the parameter 
matrix, and Fvsc, Hvsc, and Jvsc are the diagonal matrices with 
parameter matrices F, H, and J of submodule (control sys‐
tem and filter) as the diagonal elements; and Bvsc, Cvsc, and 
Dvsc are the the parameter matrices of the overall state-space 
model of the converter.

Equations (12) and (13) show that selecting different input 
or output signals of the composite system can result in 
changes to L1-L4. For P/Q-θ/V frequency-domain modeling, 
(12) can be rewritten as (16), where the parameter matrices 
are labeled with the superscripts “pq” and “dq”. The former 
refers to selecting the output power DSpq and the amplitude 
and phase of the voltage DV θe as input and output signals, re‐
spectively, while the latter refers to selecting the correspond‐
ing dq-axis voltage vdq and dq-axis current idq as input and 
output signals, respectively.
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=Lpq
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ë
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2

Lpq
2

é
ë
êêêê

ù
û
úúúú

DPe

DQe (16)

Then, substituting (3) into (16) yields:
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é
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û
úúúúDedq

vt
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(17)

Selecting the input signal in V-I model as the voltage vdq, 
the output signal idq can be expressed in a linear form relat‐
ed to b filter, namely idq =Lbbfilter. Then, the relationship be‐
tween Ldq

1  in the V-I model and Lpq
1  in the P/Q-θ/V model is:

Ldq
1 =Lpq

1 +        [ ]0 Lpq
2 AI Lb

DLmv

(18)

It is worth noting that the matrices Ldq
1  and Lpq

1  may not 
be equal, as indicated by (18). This implies that the parame‐
ter matrix Adq

vsc is not necessarily equal to the parameter ma‐
trix Apq

vsc, because the matrices Fvsc, Hvsc, Kvsc, and Jvsc are the 
same. This suggests that the absence of an RHP pole in one 
frequency-domain model does not guarantee the absence of 
an RHP pole in others, as zero-pole cancellation can occur 
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Fig. 4.　Equivalent circuit model of grid-connected converter system. (a) 
Norton equivalent model based on V-I model. (b) Thevenin equivalent mod‐
el 1. (c) Thevenin equivalent model 2. (d) Simplified equivalent circuit 
based on P/Q-θ/V model.
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in the frequency-domain model.
2)　Frequency-domain Models of Grid

The dynamic equations of the grid with inductor Lg and re‐
sistance Rg in dq frame can be given as:

Dvdq
g =Dvdq -

           

é
ë
êêêê ù

û
úúúúRg + sLg ω0 Lg

-ω0 Lg Rg + sLg

Z dq
g

Di dq

(19)

where ω0 is the rated angular velocity of the grid.
Substituting (19) and (4) into (3) to eliminate the vari‐

ables Dvdq and Didq, the relationship among the transmission 
power and the voltages at two ends can be given as:
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(21)
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F1

F5

F1

(22)

where Kg = (Rg + sLg )2 + (ω0 Lg )2; F1 = K 2
g (P 2

e0 + Q2
e0 ) + V 4

ac0 ×
[4.5sLg Rg - 2.25R2

g + L2
g (-2.25s2 - 2.25ω2

0 )]; and the coeffi‐
cients F2, F3, F4, and F5 are given in Appendix A.

From (19), (21), and (22), the frequency-domain models 
Z dq

g , Y dq
g , and Y pq

g  do not exhibit RHP poles as the poles of  
Y dq

g  and Y pq
g  are -Rg /Lg. The RHP poles of Z pq

g  can be ob‐
tained by solving F1 = 0. From (A6)-(A9) in Appendix A, it 
is observed that the P/Q-θ/V impedance model exhibits one 
RHP pole when 9V 4

0 - 4X 2
g P 2

e0 - 4X 2
g Q2

e0 - 4P 2
e0 R2

g0 > 0. The 
steady-state operating point is set with V0 = 1 p.u., Pe0 = 1 
p.u., Qe0 = 0 p.u., and Xg and Rg are usually less than 1 p.u., 
which is easily satisfied in practice. Therefore, the P/Q-θ/V 
impedance model Z pq

g  of the grid has one RHP pole, which 
highlights that different model forms of the grid may have 
discrepancies in their RHP poles. Even for a stable equip‐
ment, one model may have RHP poles, whereas the other 
models may not.

To conclude, both the V-I model and the P/Q-θ/V model 
are utilized in the stability analysis for grid-connected con‐
verter systems. While the utilization of these models for as‐
sessing the stability of the entire closed loop yields consis‐
tent results, there may be discrepancies in how accurately 
different frequency-domain models describe the physical 
properties of a system. It is crucial to recognize that not all 
models can accurately reflect the self-stability nature of the 
apparatus. Improper choice of the model results in an addi‐
tional step in the stability analysis, requiring the examination 
of RHP poles of the open-loop gain matrices.

IV. FREQUENCY-DOMAIN MODEL APPLICABILITY FOR 
CONVERTERS WITH DIFFERENT CONTROL STRATEGIES 

This section focuses on the selection of the appropriate 

frequency-domain model of the converter in stability analy‐
sis based on its design model. Two cases are given to illus‐
trate the rationality of the frequency-domain model.

A. Frequency-domain Model Applicability of GFL Convert‐
ers in Stability Analysis

By using the current decoupling control and neglecting 
the dynamics of PLL, the d-axis closed-loop frequency-do‐
main model of GFL converters with a proportional-integral 
(PI) inner controller Gvcc (s)= kpc + kpi /s and a filter circuit 
Gfilter (s)= 1/(Lc s) is given as [25]:

Did =
       

kpc s + kpi

Lc s2 + kpc s + kpi

Gd
inner (s)

Did
ref +

       

s
Lc s2 + kpc s + kpi

Y dd
inner (s)

Dvd

(23)

where id
ref is the d-axis component of the desired current; and 

Lc is the filter inductance.
Similarly, the q-axis frequency-domain model Y qq

inner (s) can 
be obtained. Obviously, the design model of GFL converter 
involves a frequency-domain model with current as the input 
signal and voltage as the output signal. Furthermore, during 
the design process of the converter, both frequency-domain 
models Y dd

inner and Y qq
inner are ensured to be free of RHP poles 

and exhibit a certain stability margin. Considering that the 
design model can be considered as a V-I admittance model 
that neglects the dynamics of PLL, it is anticipated that the 
V-I admittance model Y dq

gfl  of the GFL converter does not pos‐
sess any RHP poles. However, it is worth mentioning that 
there is no absolute guarantee that the V-I admittance model 
Y dq

gfl  of the converter is completely free of RHP poles, espe‐
cially under non-unity power factor conditions. Fortunately, 
the converter parameters are optimized through a trial-and-er‐
ror process to ensure the self-stability of the converter. In 
contrast to the P/Q-θ/V model, which is not involved during 
the design process of the converter, it is more reasonable 
that the self-stability of the converter implies the absence of 
RHP poles in the V-I admittance model of the GFL convert‐
ers.

Thus, a more appropriate approach for assessing the stabil‐
ity is to model the GFL converter as an ideal current source 
in parallel with the V-I admittance model. The stability analy‐
sis cases for GFL converters in [8] provide proof. The calcu‐
lation results in [8] illustrate that the impedance model of a 
stable GFL converter does not have RHP poles, but the P/Q-
θ/V model may have RHP poles.

B. Frequency-domain Model Applicability of GFM Convert‐
ers in Stability Analysis

The converter under the GFM control is given as:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

Pref -Pe +Dp (ω0 -ω)= Jvt

dω
dt

Dq (Qref -Qe )+Vac -Vacref =Kvt

dEvt

dt

θvt = ∫ω dt

(24)

where Jvt and Kvt are the inertias of active power loop and re‐
active power loop, respectively; Dp and Dq are the active 
droop coefficient and the reactive droop coefficient, respec‐
tively; EvtÐθvt is the PCC voltage phasor; and Pref, Qref, and 
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Vacref are the active power reference, the reactive power refer‐
ence, and the rated root mean square value of the PCC volt‐
age, respectively.

Assuming that the grid is inductive, the inductive compo‐
nent Xt =ω0 (Lc + Lg ) of the converter filter and grid inductor 
is significantly larger than the resistance component Rc +Rg. 
Thus, we can neglect the resistance component. Disregarding 
the transmission line dynamics and the power coupling term 
[26], the model of the GFM converters can be obtained by 
substituting (24) into (20).
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ïïï
ï

ï

ï

ï

ï
ïïï
ï

ï
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           

3Vg Evt
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1
Jvt s +Dp

1
s
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(DPref -DPe )-
3Vgδvt0

Xt

DVg

DQe =
       

3Evt

Xt

Dq

Kvt s + 1
Gqopen (s)

(DQref -DQe )-
3Evt

Xt

DVg

(25)

where δvt0 is the power angle between the converter voltage 
and the grid voltage.

Therefore, the closed-loop transfer functions of the active 
power loop Gpclose (s) and reactive power loop Gqclose (s) can 
be easily expressed as:
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DPe =
Gpopen (s)

1 +Gpopen (s)
DPref -

3Vgδvt

Xt

1 +Gpopen (s)
DVg

DQe =
Gqopen (s)

1 +Gqopen (s)
DQref -

3Evt

Xt

1 +Gqopen (s)
DVg

(26)

In contrast to the GFL converter, the parameter tuning 
model (26) of the GFM converters does choose output pow‐
er and the magnitude/phase of the PCC voltage as input/out‐
put signals [26]. During the design process of the GFM con‐
verter, the zeros of 1+Gpopen (s) and 1+Gqopen (s) are placed in 
the left-half plane by analyzing the Bode diagrams of the 
open-loop transfer functions Gpopen (s) and Gqopen (s), respec‐
tively. Thus, the design model of GFM converters can be 
considered as a P/Q-θ/V model that ignores the dynamics of 
inductance, transmission line resistance, filter resistance, and 
power coupling. Furthermore, the design model of GFM con‐
verters considers grid impedance, but it is not presented in 
the P/Q-θ/V model. With the consideration of the stability 
margin and trial-and-error process in parameter tuning, it is 
reasonable to assume that the P/Q-θ/V model of GFM con‐
verters does not have RHP poles. In contrast, the RHP pole 
numbers in the V-I model are uncertain since they are not in‐
volved in the design process of the GFM converter. One sta‐
ble case and one unstable case are provided in the next sub‐
section, which also prove this inference.

C. Cases Analysis for GFM Converters

Figure 5 shows the Bode diagram of Gqopen (s) and 
Gpopen (s) of the GFM converter, utilizing the simulation pa‐
rameters provided in Table I.

For an active power loop, the crossover frequency is 14.6 
Hz, the phase margin is 28.5°, and the magnitude of the ac‐
tive power loop gain at 100 Hz is −32.4 dB (which corre‐
sponds to 0.0239). 

In addition, the magnitude of the reactive power loop gain 
at 100 Hz is −22.5 dB (which corresponds to 0.0749). There‐
fore, the amplitude margin and the phase margin of the ac‐
tive power loop and the reactive power loop satisfy the re‐
quired specifications, and the GFM converter is deemed self-
stable [26]. To validate the above-mentioned conclusion, the 
stability of GFM converter is assessed by employing Ldq

sys 
and Lpq

sys, considering the transition of the grid condition from 
an inductive grid to a series-compensated grid. The V-I mod‐
el and P/Q-θ/V model of the converter are previously estab‐
lished in [27] and [5], respectively, and are not reiterated 
here.
1)　V-I Impedance Model

Set the series compensation level (SCL) SCL = 1/(ω2
0 LgCg ) 

as 36% and 60%, respectively. In Fig. 6, λ1 and λ2 are the ei‐
genvalues of Ldq

sys. In both Fig. 6(a) and (b), the blue Nyquist 
curves do not encircle the point (-1j0). However, in Fig. 6
(a) and (b), the red Nyquist curves encircle the point (-1j0) 
once in clockwise and counterclockwise directions, respec‐
tively. This indicates that the encirclement number Nsys of the 
point (-1j0) for two cases is 1 and -1, respectively. With 
the common assumption that Z dq

gfm, Y dq
g , and Z dq

g  do not have 
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Fig. 5.　Bode diagram of Gpopen (s) and Gqopen (s).

TABLE I
SIMULATION PARAMETERS

Module

Filter 
circuit

Controller

Parameter

Rated power

Rated frequency

Transformer ratio

Equivalent inductance and 
resistance of grid

Filter inductance, capacitance, 
and resistance

Vector current controller

Direct-voltage controller

PLL

Inertia of active power loop 
and active droop coefficient

Inertia of reactive power loop 
and reactive droop coefficient

Symbol

Sgfl Sgfm

f0

Krans

Lg Rg

Lc Cc Rc

kpcg kicg

kpdcg kidcg

kppllg kipllg

Jvt Dp

Kvt Dq

Value

2 MW, 2 MW

50 Hz

66 kV/690 V

0.2 p.u., 0.02 p.u.

26.3 mH, 40 μF,
0.5 mΩ

0.33, 0.6283

1.47, 132

40, 800

0.02, 0.02

0.02, 0.20
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RHP poles, as illustrated in Section III-B, the grid-connected 
converter system has instability, while the grid-connected 

converter system with SCL = 60% loses stability with one 
RHP pole.

However, by examining the eigenvalue distribution of the 
closed-loop system shown in Fig. 6(c), it is evident that the 
closed-loop system remains stable when SCL = 36%, whereas 
the closed-loop system exhibits instability with two RHP 
poles when SCL increases to 60%. The conflicting conclu‐
sions arise from the assumption that the V-I model of a self-
stable converter does not have any RHP pole, whereas there 
is actually one pole present in two cases, as observed from 
the pole distribution of the V-I model Z dq

gfm of the GFM con‐
verter in Fig. 6(d). Taking into account the existence of one 
RHP pole in the converter, the conclusions obtained from 
GNC align with the eigenvalue distribution, as shown in Fig. 
6(c). It should be noted that the discrepancy in the stability 
analysis conclusions arises because the encirclement number 
of the point (-1j0) in the two cases is one with positive and 
negative directions, respectively. In conclusion, it can be stat‐
ed that the V-I model of a self-stable GFM converter cannot 
guarantee the absence of an RHP pole.
2)　P/Q-θ/V Admittance Model

Figure 6(d) also gives the pole distribution of the P/Q-θ/V 
admittance model Y pq

gfm of the GFM converter. It can be ob‐
served that whether SCL=36% or SCL=60%, the poles of the 

P/Q-θ/V admittance model for the GFM converter are locat‐
ed in the left-half plane. However, it should be noted that 
there is an RHP pole in the P/Q-θ/V impedance model Z pq

g  
of the transmission grid, as mentioned in Section III-B. 
Thus, the open-loop gain Y pq

gfm Z pq
g  has one RHP pole.

Figure 6(e) and (f) shows the Nyquist curves of the two 
cases based on Lpq

sys, respectively. In Fig. 6(e), the blue Ny‐
quist curve encircles the point (-1j0) in counterclockwise di‐
rection once, which indicates stability. Figure 6(b) shows 
that the red Nyquist curve encircles the point (-1j0) in 
clockwise direction twice, while the blue Nyquist curve en‐
circles the point (-1j0) in counterclockwise direction once. 
This indicates that the system loses stability with two RHP 
poles when SCL = 60%. The conclusion is consistent with 
that of the eigenvalue distribution shown in Fig. 6(c). Thus, 
it is essential to acknowledge the limitations of assuming 
that frequency-domain model of self-stable equipment does 
not have RHP poles. A more appropriate approach to assess‐
ing the grid-connected stability issues is to model the GFM 
converter as an ideal power source in parallel with the P/Q-
θ/V admittance model.

To validate the stability analysis conclusion, the nonlinear 
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Fig. 6.　Nyquist curves using V-I model Z dq
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model of a single-converter grid-connected system is built 
on the MATLAB/Simulink platform.

Figure 7 shows the three-phase output current and active 
power waveforms of the converter when SCL = 36% and 
SCL = 60%, as well as the fast Fourier transform (FFT) re‐
sults from the output current when SCL = 60%. The 35 Hz 
and 65 Hz oscillation components are observed in Fig. 7(c), 
which correspond to the oscillation frequency of 2π ´(50 -

35)= 94.2 rad/s and 2π ´(65 - 50)= 94.2 rad/s. This is consis‐
tent with the eigenvalue distribution in Fig. 6(c), where the 
two unstable poles of the closed-loop system are both 4.084 ±
j98.6. Additionally, Fig. 6(c) confirms that the eigenvalue 
distribution of the closed-loop system, derived from both the 
V-I model and the P/Q-θ/V model, exhibits substantial consis‐
tency, corroborating the findings in [8].

In summary, the utilization of different models during the 
design process of GFL and GFM converters leads to differ‐
ent interpretations of self-stability. For the GFL converter, 
self-stability implies the absence of RHP poles in the V-I ad‐
mittance model, whereas the RHP pole number in the P/Q-
θ/V model remains uncertain. Conversely, the self-stability in 
the GFM converter denotes the absence of an RHP pole in 
the P/Q-θ/V admittance model, while the pole in the V-I 
model may not possess this attribute. To reduce the complex‐
ity of the stability analysis, it is recommended that GFL con‐
verters are modeled as an ideal current source in parallel 
with the V-I admittance model, while GFM converters are 
modeled as an ideal power source in parallel with the P/Q-
θ/V admittance model.

V. MULTI-CONVERTER PARALLEL SYSTEM 

This section presents a hybrid frequency-domain modeling 
framework and stability criteria for multi-converter parallel 
systems with the frequency-domain models of GFL and 
GFM converters built in the V-I and P/Q-θ/V models, respec‐
tively. The stability criteria are validated through a simula‐
tion case involving a studied system with both GFL and 
GFM converters.

A. Modeling Framework and Stability Criteria

The assessment of the RPH pole number of the high-order 
transfer function matrix can be challenging, given the com‐
plexity involved in both calculating the poles of this matrix 
and identifying the parameters of the measurement model. 
The potential existence of RHP poles in the frequency-do‐
main model of converter and the impedance aggregation pro‐
cess contribute to the emergence of RHP poles in the subsys‐

tem model. From the analysis in Section IV, it is evident 
that the V-I model of the GFM converter may exhibit RHP 
poles, resulting in an inaccurate conclusion. To address this, 
it is recommended to set the GFM converters as an ideal 
power source in parallel with the P/Q-θ/V admittance model. 
Subsequently, the V-I admittance of the GFL converter, the 
P/Q-θ/V admittance of the GFM converter, and the V-I im‐
pedance of the equivalent grid are embedded as diagonal ele‐
ments in the transfer function matrices of the non-passive 
subsystem. In this modeling approach, each component in 
the non-passive system operates independently as an individ‐
ual subsystem without interacting with other components. 
This ensures that the poles of the system models are the 
union of the poles of each submodule, thereby preventing 
the emergence of RHP poles during the impedance aggrega‐
tion process.

Assuming each power plant shares the same control struc‐
ture and parameters, each power plant is simplified and rep‐
resented as a single equivalent source converter (ESC) using 
the capacity-weighted average method [28]. According to 
Fig. 4(a) and (b), the small-signal representation of the non-
passive subsystem (including M1 equivalent GFL converters, 
M -M1 equivalent GFM converters, and the main grid) are 
expressed as:
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where subscripts cs and vs denote the collective vectors or 
matrices of the equivalent GFL converter and the equivalent 
GFM converter, respectively; vdq

b1 is the dq component of the 
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Fig. 7.　Time-domain analysis results of single-converter grid-connected system. (a) Three-phase output current and active power waveforms of converter 
when SCL = 36%. (b) Three-phase output current and active power waveforms of converter when SCL = 60%. (c) FFT results from output current when 
SCL = 60%.
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voltage at the point Bac
1 ; and G HM

sld  is the transfer function ma‐
trix, which is a diagonal matrix with equipment admittances or 
impedances as diagonal elements, G HM

sld = diag(Y dq
gfl1Y

dq
gfl2 

Y dq
gflM1

Y pq
gfm1Y

pq
gfm2Y pq

gfmM -M1
-Z dq

g ).

According to (20), the small-signal representation of trans‐
mission line from the kth equivalent GFM converter to the 
point Bac

1  can be written as:

DV θe
transk =Z pq

transkDS pq
transk +G pq

transkDvdq
b1 (28)

where DS pq
transk and DV θe

transk are the output vectors and distur‐
bance vectors of the kth equivalent GFM converter, respec‐
tively; Z pq

transk is the P/Q-θ/V model of the transmission line, 
which is given in (21); and G pq

transk =Z pq
transk AIY

dq
transk.

Substituting (19) into (3) to eliminate the variable vdq, the 
transmission line current from the kth equivalent GFM con‐
verter to the point Bac

1  can be written as:

Di dq
transk =          (AV Z dq

transk +AI )-1

G ip
transk

(DS pq
transk -AVDvdq

b1 )
(29)

With respect to the topology shown in Fig. 1, the frequen‐
cy-domain model of the passive subsystem (transmission 
line) can be reorganized as:
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where G iv
vs is the parameter matrix, which is obtained by sum‐

ming -G iv
transk AV for k ranging from M1 + 1 to M, namely 

G iv
vs =- ∑

k =M1 + 1

M

G iv
transk AV; and other parameters are given as:
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Z dq
cs = diag(Z dq

trans1Z
dq
trans2Z dq

transM1
)

Z pq
vs = diag(Z pq

transM1 + 1Z
pq
transM1 + 2Z pq

transM )

G b
vs =[G b

transM1 + 1G
b
transM1 + 2G b

transM ]T

EM1
=[E2 ´ 2E2 ´ 2E2 ´ 2 ]T

G ip
vs =[G ip

transM1 + 1G
ip
transM1 + 2G ip

transM ]T

(31)

Substituting (30) to (27), the closed-loop transfer function 
of the overall system can be written as:

Xy =
Xr

E +G HM
sld G HM

il
(32)

where G HM
il  is the transfer function matrix representing the 

small-signal dynamics of the interlinking line.
With the assumption that the converters remain self-

stability without considering the grid dynamics, the transfer 
function matrix G HM

sld  is assumed to be free of RHP poles. 
However, the impedance matrix G HM

il  may contain RHP 
poles, as discussed in Section III-C. Therefore, the pole num‐
bers of the system open-loop gain LHM

sys =G HM
sld G HM

il  equal the 
pole numbers P HM

il  of G HM
il . If the encirclement number Nsys 

of the system open-loop gain around the (-1j0) point satis‐
fies Nsys−P HM

il > 0, the system loses stability according to the 
GNC.

In Table II, the existence of RHP poles in the system 
open-loop gain is compared using the impedance aggrega‐

tion model [13], the V-I model [17], and the hybrid frequen‐
cy-domain model proposed in this study. In contrast to the 
other two models, the hybrid frequency-domain model elimi‐
nates the requirements to check the RHP pole numbers in 
the model of the non-passive subsystem by ensuring that this 
model does not exhibit any RHP pole. Although the hybrid 
frequency-domain model still requires to check the presence 
of RHP poles in the passive system, it is considerably sim‐
pler than determining the RHP poles of the converter model. 
This can be attributed to the ease of obtaining line parame‐
ters and the lower order of the line model compared with 
the converter model.

B. Verification and Comparison

To verify the effectiveness and merit of the frequency-do‐
main model, the stability analysis methods based on imped‐
ance aggregation model [13], the V-I model [17], and hybrid 
frequency-domain model is utilized to assess the system sta‐
bility, as illustrated in Fig. 1. The system configuration in‐
cludes 50 GFL converter units and 50 GFM converter units, 
which are aggregated into a GFL converter and a GFM con‐
verter, respectively. The circuit and control parameters of the 
converter remain the same as those in Section IV-C. The re‐
sistance and inductance of the transmission line from ESC to 
point Bac

1  are set to be 8.4 Ω and 2.6 mH, respectively.
Referring to [13], [17], and (27), the studied system can 

be evaluated by the system open-loop gains LAgg
sys =Y DQ

Agg Z dq
g , 

LDQ
sys =G DQ

sld G DQ
il , and LHM

sys =G HM
sld G HM

il , where the aggregate im‐
pedance Y DQ

Agg, the V-I model G DQ
sld , and the hybrid model of 

the subsystem G HM
sld  are represented as:

Y DQ
Agg =Y dq

cs +Z dq
vs (33)

G DQ
sld = diag(Y dq

gfl1Z
dq
gfm1-Z dq

g ) (34)

G HM
sld = diag(Y dq

gfl1Y
dq

gfm1-Z dq
g ) (35)

Therefore, Y dq
cs , Y dq

vs , and hybrid models G DQ
il  and G HM

il  of 
the transmission line can be written as:

Y dq
cs = (Z dq

gfl1 +Z dq
trans )-1 (36)

Y dq
vs = (Z dq

gfm1 +Z dq
trans )-1 (37)

TABLE II
COMPARISON OF THREE STABILITY ASSESSMENT MODELS

Model

Impedance 
aggregation 
model [13]

V-I model 
[17]

Hybrid 
frequency-

domain model

RPH pole in system open-loop gain

Existence of RPH poles in system open-loop gain can 
stem from either converter itself or impedance aggrega‐
tion process. RPH pole number in both subsystems must 
be checked before evaluating stability of power system.

Emergence of RHP poles in system open-loop gain may 
arise from converter itself. Before evaluating stability of 
power system with GFL and GFM converters, it is essen‐
tial to check RHP pole number in the model of non-pas‐
sive subsystem. Such checks are not required for power 
systems exclusively employing GFL converters.

There has no requirement to check presence of RPH poles 
in model of non-passive subsystem. For power system 
with GFL and GFM converters, it is crucial to check 
RPH pole number in model of passive subsystem.
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G DQ
il =
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trans 02 ´ 2 E2 ´ 2
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trans G b
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E2 ´ 2 G ip
trans -G ip

trans AV

(39)

Figure 8(a) illustrates the pole distribution in the V-I mod‐
el of equivalent GFL converter and equivalent GFM convert‐
er, as well as the P/Q-θ/V model of equivalent GFM convert‐
er. Only the pole of the V-I impedance model of the equiva‐
lent GFM converter is observed in the RHP, which aligns 
with the conclusion in Section IV. The pole distribution of 
the two subsystems is presented in Fig. 8(b), where Y DQ

Agg, 
G DQ

sld , and G HM
il  all have one RHP pole. It is evident that the 

pole of G DQ
sld  is introduced by the V-I model of equivalent 

GFM converter, while the pole of G HM
il  is introduced by the 

transmission line from equivalent GFM converter to point 
Bac

1 . It should be noted that, in these cases, the RHP pole in 
Y DQ

Agg may be introduced by the impedance aggregation pro‐
cess or the RHP poles in the V-I model of the GFM convert‐
ers. The case where the aggregation of GFL and GFM con‐
verters introduces RHP poles can be found in [15]. In addi‐
tion, the results confirm that the P/Q-θ/V model of the non-
passive subsystem does not exhibit RHP poles, while the V-I 
model does contain such poles.

Figure 9 shows the crucial Nyquist curves of LAgg
sys , LDQ

sys , 
and LHM

sys  when the grid switches from an inductive grid to a 
series-compensated grid with SCL = 63%. In Fig. 9, λ3 and λ4 
are the eigenvalues of LAgg

sys . It should be reminded that this 
study omits the other Nyquist curves in Fig. 9(b) and (c) 
since none of them encircle the point (-1j0). In Fig. 9(a) 
and (c), the Nyquist curve encircles the point (-1j0) in 
clockwise direction once. Similarly, the Nyquist curve encir‐
cles the point (-1j0) three times, twice clockwise and once 
counterclockwise in Fig. 9(b).

As each of the models Y DQ
Agg, G DQ

sld , and G HM
il  has one RHP 

pole, three models reach the same conclusion that the system 
loses stability with two RHP poles. 
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The analysis conclusion aligns with the eigenvalue distri‐
bution, as well as the waveforms of the output current and 
active power at the point Bac

1  depicted in Fig. 10(a) and (b), 
respectively. From Fig. 10(a), the unstable poles of the 

closed-loop system, obtained by solving E +LAgg
sys , E +LDQ

sys , 
and E +LHM

sys  are consistent with the value of 3.019 ± j95.36. 
This observation demonstrates that the hybrid frequency-do‐
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main model yields the same conclusion as the V-I model, in‐
dicating that both models effectively evaluate the stability of 
power system. This conclusion is further supported by the 

FFT results from the output current at the point Bac
1 , which 

exhibits oscillation components at frequencies of 35 Hz and 
65 Hz.

C. Discussion on System-level Stability Analysis Methods

To assess the stability of power-electronics-based power 
systems, the frequency-domain analysis methods have 
emerged as a crucial analytical tool widely employed [17], 
[18], [29] - [31]. Based on the frequency-domain model of 
equipment, the system model is organized in various forms, 
including the nodal admittance matrix, the loop impedance 
matrix, the whole system closed-loop matrix, and the whole 
system open-loop gain matrix [30], [31]. By calculating the 
poles or zeros of these models, the system eigenvalues are 
obtained, subsequently determining the system stability and 
sensitivity. In contrast to the eigenvalue analysis methods 
based on the state space model, these methods do not neces‐
sitate a white box model of the system but only a gray box 
model or a back box model. However, these methods still en‐
tail a substantial computational burden when calculating ei‐
genvalues, especially using measurement data [29].

Another commonly used stability analysis method in‐
volves employing the Nyquist criterion and the phase and 
gain margins from the Bode diagrams [17], [18], [29]. This 
method can give engineers intuitive results by graphical rep‐
resentation and impose less computational burdens, particu‐
larly in simulations or when utilizing measurement data 
[29], [32]. It should be emphasized that while our conclu‐
sions are derived from a mathematical model, they provide 
significant guidance for utilizing the GNC method based on 
a measurement model to assess system stability. In light of 
the finding that the V-I model of a self-stable GFM convert‐
er may exhibit potential RHP poles, employing impedance 
sweep data directly from the GFM converter to evaluate sys‐
tem stability could result in errors. The more suitable ap‐
proach involves utilizing the measurement data of the P/Q-
θ/V model, which can be converted from the impedance 

sweep data by (5).
Regrettably, unlike in single-input single-output (SISO) 

systems, obtaining system stability margin information 
through Bode diagrams is not feasible when analyzing multi-
input multi-output (MIMO) systems using this method. Actu‐
ally, the current research does not clearly define the stability 
margin of MIMO systems unless the MIMO system is decou‐
pled into multiple SISO systems [33]. Neither the eigenval‐
ue-based method nor the GNC-based method can determine 
the stability margin of the system. A potential solution could 
involve focusing the dominant Nyquist diagram in the appli‐
cation of GNC-based methods, akin to the focus of the tradi‐
tional power system on the dominant eigenvalue. Further re‐
search is required to investigate the dominant Nyquist curve 
under varying working conditions and parameter designs.

VI. CONCLUSION 

This study highlights that there is no definitive guarantee 
that the poles of both the V-I model and the P/Q-θ/V model 
of a stable equipment reside exclusively in the left-half 
plane. To guarantee a frequency-domain model without an 
RHP pole, the applicability of frequency-domain models of 
self-stable converters is discussed. Following the design 
model, this study suggests that GFL converters are more suit‐
ably represented by an ideal current source in parallel with 
V-I admittance model, while GFM converters are more suit‐
ably represented by an ideal power source in parallel with 
P/Q-θ/V admittance model. According to the principle of 
equivalence, this paper proposes a hybrid frequency-domain 
modeling framework and stability criteria for grid-connected 
converter system with the frequency-domain models of GFL 
and GFM converters built in the V-I and P/Q-θ/V frame‐
work, respectively, which eliminates the requirements for 
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Fig. 10.　Time-domain analysis results of multi-converter parallel system. (a) Eigenvalue distribution of closed-loop system. (b) Three-phase output current 
and active power waveforms at point Bac

1 . (c) FFT results from output current at point Bac
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checking RHP poles in the non-passive subsystem model 
when applying the Nyquist criterion. By avoiding this step, 
the complexity of modeling and stability analysis for com‐
plex systems is reduced.

APPENDIX A 

F2 =Kg (KgQe0 + 1.5LgV
2

ac0ω0 ) (A1)

F3 =Kg [Kg Pe0 + (1.5sLg + 1.5Rg )V 2
ac0 ] (A2)

F4 =KgVac0 [Kg Pe0 + (-1.5sLg - 1.5Rg )V 2
ac0 ] (A3)

F5 =KgVac0 (KgQe0 - 1.5LgV
2

ac0ω0 ) (A4)

z12 =-
Rg

Lg

± jω0 (A5)

z34 =
0.5(F12 ± F13 )

F11

(A6)

F11 = L2
g P 2

e0 + L2
gQ2

e0 (A7)

F12 =-2Lg P 2
e0 Rg - 2LgQ2

e0 Rg (A8)

F13 = 9L2
g P 2

e0V
4

ac0 + 9L2
gQ2

e0V
4

ac0 - 4L4
g P 4

e0ω
2
0 -

8L4
g P 2

e0Q2
e0ω

2
0 - 4L4

gQ4
e0ω

2
0 (A9)

where z12 and z34 are the zeros of F1.
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