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Abstract——With the goal of low-carbon energy utilization, elec‐
tric vehicles (EVs) and EV charging stations (EVCSs) are be‐
coming increasingly popular. The economical operation strategy 
is always a primary concern for EVCSs, while users’ behavior 
and operating data leakage problems in EVCSs have not been 
taken seriously. Herein, federated deep reinforcement learning, 
a privacy-preserving method, is applied to learn the optimal 
strategy for multiple EVCSs. However, it is prone to Byzantine 
attacks. It is urgent to achieve an economical operation strategy 
while preserving data privacy and defending against Byzantine 
attacks. Therefore, this paper proposes a Byzantine-resilient fed‐
erated deep reinforcement learning (BR-FDRL) method to ad‐
dress these problems. First, the distributed EVCS data are uti‐
lized by the federated deep reinforcement learning to train an 
economical operation strategy while preserving privacy by only 
transmitting gradients. The sampling efficiency is enhanced by 
both federated learning and stochastically controlled stochastic 
gradient. Then, the Byzantine-resilient gradient filter (BRGF) 
designs two distance rules to keep malicious gradients out. The 
case study verifies the effectiveness of the proposed BRGF in re‐
sisting Byzantine attacks and the effectiveness of federated deep 
reinforcement learning in improving convergence speed and re‐
ward and preserving privacy. The resluts show that the BR-
FDRL method minimizes the operation cost by an average of 
35% compared with the rule-based method while meeting the 
state of charge demand as much as possible.

Index Terms——Byzantine resilience, federated learning, deep 
reinforcement learning, electric vehicle, privacy-preserving, eco‐
nomical operation.

I. INTRODUCTION 

ELECTRIC vehicles (EVs) help reduce oil consumption 
to achieve carbon neutrality. EV charging stations 

(EVCSs) own several charging points and provide battery 
charging services to EVs [1]. According to the global EV 
outlook 2022 by the International Energy Agency [2], public‐
ly accessible charging points worldwide approached 1.8 mil‐
lion in 2021 and will be 12.9 million in 2030. EVCSs must 
choose suitable charging and discharging strategies to ensure 
that all EV charging needs are met while reducing operation 
costs. As the EV energy storage device is the battery, it can 
also discharge electricity to the grid, also known as vehicle 
to grid (V2G). V2G can effectively balance the peak-valley 
load demand to save operation costs.

The simplest operation strategy for EVCS is rule-based 
method, with a charging and discharging rule designed in ad‐
vance based on expert experience. Although the rule-based 
method is more explainable, it is hard to apply in complex 
systems and is not adaptable to unseen situations. Further, 
the operation strategy for EVCS has been modeled as model-
based optimization problems. Reference [3] considers the op‐
eration strategy for EVCS under microgrid integration/island 
operation to minimize charging costs and maximize energy 
storage benefits. Reference [4] uses the cognitive stochastic 
approximation-based optimization to realize EV charging at 
the lowest cost. Reference [5] considers the costs of charg‐
ing, unit start/stop, power generation, pollution, and wind 
curtailment, then uses multi-objective collaborative optimiza‐
tion to achieve the lowest total cost. However, all of these 
methods have huge computational burdens and cannot give a 
real-time result when the exogenous environment changes. 
The uncertainty inherent in renewable energy and users’  be‐
havior makes the economical operation strategy more chal‐
lenging [6], [7].

Data-driven methods such as deep reinforcement learning 
(DRL) [8] have lower computational demands enabling real-
time computation, which have been used in virtual power 
plant management [9] and voltage control [10]. Reference 
[11] uses deep Q-learning to train the charging and discharg‐
ing strategy. However, it discretizes continuous actions, re‐
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sulting in a loss of some action space. Reference [12] uses a 
gradient ascent method combined with safety constraints for 
the EV charging management, which provides a continuous 
action space while ensuring that the EV is fully charged as 
much as possible before leaving. Reference [13] uses DRL 
to minimize charging costs and form an optimal driving path 
considering the transportation network.

However, [11] - [13] train the operation strategy only by 
one EVCS, which leads to an inefficient data collection effi‐
ciency, a slow training process, and a low-quality policy. 
Therefore, it is necessary to collect data from more EVCSs 
simultaneously to train a high-quality operation strategy. Dis‐
tributed machine learning (DML) [14] is an effective method 
for learning from data that are scattered across EVCSs. Ref‐
erence [15] uses the rooftop wind energy of different build‐
ings to realize EV charging control through DML. However, 
DML has high communication requirements and construction 
costs for communication facilities. Further, the central node 
of DML has complete control over the data of distributed 
nodes. While due to business competition and users’  privacy 
concerns, different EVCSs are reluctant to share their opera‐
tion data, which leads to privacy-preserving issues in DML.

To solve the privacy leakage and communication issues, 
federated learning (FL), a collaborative machine learning, 
was first proposed by Google in 2016 [16]. The FL training 
process is overseen by a trusted third-party global server that 
aggregates information from different local nodes. The data 
transmitted by FL are usually neural network gradients or pa‐
rameters, rather than original data, so that the privacy of 
each local node is preserved. Excessive communication re‐
quirements are also avoided by transmitting only the neural 
network gradients or parameters. FL is used to predict the 
load of EVCSs while preserving the privacy of each EVCS 
as well [17]. With the combination of DRL, federated deep 
reinforcement learning (FDRL) [18] has been proposed to en‐
hance the effectiveness of DRL while preserving data priva‐
cy. FDRL has been utilized to address issues in multi-home 
energy management [19] and cloud robotic systems [20].

The Byzantine general problem was proposed by Landlord 
in 1982 [21]. Several divisions of the Byzantine Empire’s ar‐
my are stationed outside the enemy city, each commanded 
by its own general. The generals can only communicate with 
each other through messengers. After observing the situation 
of the enemy, they must formulate a common action plan 
such as an attack or a retreat. Victory can only be achieved 
when more than half of the generals jointly launch an attack. 
However, the Byzantine general problem arises when some 
of these generals may be traitors, attempting to prevent loyal 
generals from reaching an agreement on the action plan. The 
problem is how to achieve a consistent agreement on the at‐
tack when traitors are present.

The Byzantine general problem in the distributed system 
and DML is also known as the Byzantine attack problem, 
which means that Byzantine nodes may submit malicious in‐
formation. The Byzantine attack caused by the Byzantine 
nodes compromise normal training or message-sending pro‐
cesses. Some researchers have focused on the Byzantine 
fault-tolerant blockchain in electricity trading pricing [22], as 

well as secure charging services for EVs through the execu‐
tion of smart contracts [23]. In FDRL, the global server can‐
not directly obtain the user’s local training data to verify its 
correctness, so the aggregating process is highly vulnerable 
to attacks from malicious users, which results in the reduced 
convergence speed and the difficulty in achieving the best re‐
ward or even divergence.

Therefore, it is necessary to protect the FDRL training 
from Byzantine attacks. This approach is expected to 
achieve rapid training convergence with Byzantine resilience 
while preserving data privacy. Herein, this paper proposes a 
Byzantine-resilient federated deep reinforcement learning 
(BR-FDRL) method for charging strategy of multiple EVC‐
Ss, aiming to reduce charging costs while meeting EV charg‐
ing needs as much as possible. First, the Byzantine attack 
problem in FDRL training is illustrated, and the EVCS 
charging strategy is modeled as a Markov decision process 
(MDP). Then, the policy-based DRL is used to train the eco‐
nomical operation strategy of EVCS. In the FDRL training 
process, the global server only aggregates the gradient from 
the local EVCS to preserve the privacy of different EVCSs 
and prevent user data leakage. Further, a double-loop sto‐
chastically controlled stochastic gradient (SCSG) algorithm 
is introduced to improve the sampling efficiency and reduce 
the variance of gradients. However, since the local EVCS on‐
ly transmits gradients, which cannot be verified by the glob‐
al server, it is vulnerable to malicious attacks. Hence, to de‐
fend against Byzantine attacks, the mean of gradient medi‐
ans is used to design the Byzantine-resilient gradient filter 
(BRGF), which excludes malicious gradients. The case study 
demonstrates that the proposed BR-FDRL method is effec‐
tive in defending against various Byzantine attacks while pre‐
serving the privacy of local EVCS through FL by only trans‐
mitting gradients. The SCSG algorithm and FL can improve 
the sampling efficiency and expedite the convergence speed. 
The test results show that the proposed method can reduce 
the operation cost of EVCS and ensure the charging demand 
of EVs.

The main contributions of this paper are listed as follows.
1) Comprehensive modeling of EVCS operation. The eco‐

nomical operation strategy of EVCS is modeled as an MDP 
considering Byzantine attacks. To fully use the data scattered 
in each EVCS, FDRL is used to realize the economical oper‐
ation of EVCS and meet the charging demand.

2) Novelty in Byzantine-resilient mechanism. To the best 
of our knowledge, the Byzantine attack on the energy man‐
agement problem during the FDRL training has not been 
studied. A BRGF is designed to resist the malicious Byzan‐
tine gradient attack.

3) Improvement of sampling efficiency through SCSG. 
The SCSG algorithm is adopted to improve the convergence 
speed and sampling efficiency of FDRL. In addition, the 
sampling efficiency can also be effectively improved by FL.

The remainder of this paper is organized as follows. In 
Section II, the problem formulation is presented, which con‐
structs the Byzantine attack problem and models the econom‐
ical operation strategy of EVCS as an MDP. Section III elab‐
orates on the proposed BR-FDRL method, including policy-
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based DRL, FDRL, SCSG algorithm, and BRGF. Section IV 
analyzes the convergence curve of the training process and 
the test results in the case study. Finally, Section V draws 
the conclusion.

II. PROBLEM FORMULATION 

A. Byzantine Attack Problem

The Byzantine attack problem in FDRL is derived from 
the Byzantine general problem. In FDRL, Byzantine nodes 
are attackers that take control of some distributed nodes. 
These Byzantine nodes send malicious or arbitrary messages 
to the global server of FDRL, thereby slowing down or even 
disrupting the training process. We assume that Byzantine 
nodes have random noise (RN), random action (RA), and 
sign flipping (SF) attacks, which will be explained in detail 
in Section IV-A.

B. Economical Operation Strategy of EVCS

The FDRL training process is overseen by the global serv‐
er. The local client nodes act as controllers and are distribut‐
ed at local EVCSs. These controllers collect local EV and 
exogenous environment data and then make economical 
(dis)charging decisions based on the local DRL model.

We take a single local EVCS as an example. As shown in 
Fig. 1, each local EVCS has some charging points, and it in‐
cludes a photovoltaic power generation system to provide re‐
newable energy. When the EVCS has insufficient renewable 
energy, it must purchase electricity from the grid. EVs arrive 
and leave EVCSs randomly throughout the day. EVs can pro‐
vide power to EVCSs, a process known as V2G, which re‐
duces operation costs. The controller in the EVCS deter‐
mines the charging and discharging rate of each charging 
point based on current charging demand, renewable energy 
generation, grid electricity price, etc. The economical opera‐
tion strategy of EVCS aims to achieve the lowest cost while 
meeting the charging demands.

C. MDP

MDP is the mathematical basis of DRL, in which com‐
mon elements include the agent, environment, state, action, 
and reward. After executing the action under the current 
state, the agent receives a certain reward, and the state 
changes according to the action. The goal of DRL is to maxi‐
mize the cumulative reward calculated based on the reward 
in each step.

Action a is determined by the policy function π ( )a | s . Af‐
ter state transition, the next state s′ is determined by the state 

transition function p ( )|s′ sa . The policy and state transition 
functions are conditional probability distribution functions 
P ( )× . In the process of interaction between the agent and en‐
vironment, the uncertainty of action a and state s′ causes the 
randomness of MDP.

π ( )a | s =P ( )A = a | S = s (1)

p ( )|s′ sa =P ( )|S = s′ S = sA = a (2)

where A and S are the possible actions that the agent can 
take and the possible states that the agent can encounter in 
the environment, respectively.

Starting from an initial state s0, the agent executes an ac‐
tion a0 with reward r0 until the done signal. The agent goes 
through a complete episode that fits the Markov hypothesis, 
i.e., (s0a0r0s1a1r1statrt). After period t, the re‐

ward Rt with reward decay factor γÎ[01] is used to express 
the cumulative reward Ut:

Ut =Rt + γRt + 1 + =∑
k = 0

¥

γk Rt + k (3)

The action-value function Qπ is the conditional expecta‐
tion of the reward. For a given policy π, Qπ describes the 
quality of action at in the current state st.

Qπ(stat ) =E (Ut| St = stAt = at ) (4)

where E (Ut| St = stAt = at ) is the expected value of the re‐

ward, given that the agent is in state st and takes action at.
The state-value function Vπ is the expectation of the ac‐

tion-value function Qπ for the action set A. It is only related 
to policy π and state st, and describes how good or bad the 
policy function π is in a given state st.

Vπ(st ) =EA(Qπ(stA) ) (5)

where EA(Qπ(stA) ) is the expected value of the action-val‐

ue function Qπ over all possible actions A under a given poli‐
cy π, while the agent is in state st.

Therefore, the state-value function Vπ can guide the agent 
to choose the optimal policy π* in the current state st.

The action-value function and the state-value function 
obey the Bellman equation, which calculates the previous 
variable from the subsequent variable. For the current state 
st, the environment receives an action at to obtain the next 
state st + 1, and the return of this action is denoted as 
r ( )statst + 1 . The Bellman equation for the action value 

function and the state value function is:

Qπ( )stat =

E
st + 1  p ( )st + 1| stat (r (statst + 1 ) + γEat + 1  π ( )at + 1| st + 1

Qπ(st + 1at + 1 ) )
(6)

Vπ( )st =E
at  π ( )at| st

E
st  p ( )st| stat

( )r ( )statst + 1 + γVπ( )st + 1 (7)

where E
at  π ( )at| st

 and E
st  p ( )st| stat

 are the expected value when 

choosing an action at at state st according to the probability 
distribution defined by the policy π and the expected value 
given the current state st and the action at taken, respectively.

EVCS1

EVCS2 EVCSn…
Grid …

Global

server

Fig. 1.　Illustration of multiple EVCS.
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For clarity, we first focus on explaining the model for a 
single EVCS. The FDRL facilitates its extension to a multi-
EVCS context. In this framework, each EVCS operates as a 
distinct agent, optimizing its own state and actions autono‐
mously. Through FDRL, coordinated functionality among 
these agents is achieved, allowing for a common policy to 
be learned while upholding data confidentiality, thereby accu‐
rately representing the complex multi-EVCS environment.

Figure 2 shows the MDP model of the economical opera‐
tion strategy for EVCS. The state st includes the solar radia‐
tion and electricity price for the current moment and the 
next three hours, the state of charge (SOC) information for 
the EV at the charging point, and the remaining time the EV 
stays at the EVCS.

Action at is the (dis)charging rate at the moment t, which 
is a continuous variable ranging from -1 to 1. at greater 
than 0 indicates charging the EV and less than 0 indicates 
discharging the EV or V2G.

P i
tmax =

ì
í
î

ïï
ïï

Emax( )1 - SOC i
t     ai

t ³ 0

Emax × SOC i
t              a

i
t < 0

(8)

P i
tmax £ ηPmax (9)

P i
t = ai

t P
i
tmax (10)

where P i
tmax is the maximum (dis)charging power of the EV 

at the ith charging point at the moment t; SOC i
t  is the SOC 

value of the EV at the ith charging point at the moment t; 
Emax is the maximum capacity of the EV battery; η is the 
(dis)charging efficiency; Pmax is the maximum charging pow‐
er; P i

t is the actual (dis)charging power of the ith charging 
point at the moment t; and ai

t is the (dis)charging rate at the 
ith charging point at the moment t.

When action ai is executed, the main changes in the envi‐
ronment are the SOC of the EV:

SOC i
t + 1 =

æ

è

ç

ç

ç

ç
ç
çç
ç

ç

ç

ç

ç SOC i
t +

P i
t

Emax

ai > 0

SOC i
t -

P i
t

Emax

ai < 0

(11)

The reward at the moment t is set as:

rt( )stat =-∑
i

ct P i
t -∑

i
[ ]2 ( )1 - SOC i

t

2

(12)

where ct is the electricity price at the moment t. The first 
item of (12) is the cost of purchasing electricity from the 
grid by the EVCS. The second item is the penalty for not be‐
ing fully charged. The weight parameter 2 in the second 
term serves as a typical setting for our experiments to bal‐
ance the two objectives effectively. Besides, the central con‐

troller and the local agents share the same reward.

III. PROPOSED BR-FDRL METHOD 

In Section III-A, the policy-based DRL is used to solve 
MDP. To preserve the privacy of EVCSs, Section III-B elab‐
orates on FL and FDRL. In Section III-C, FDRL requires 
each agent to train while collecting episodes. However, the 
interaction between DRL and the real environment is usually 
slow, expensive, and fragile. Hence, the choice of a sample-
efficient gradient update algorithm is important. In Section 
III-D, the fundamental requirement of FDRL not to transmit 
sample data poses threats to the credibility of agents, so it is 
necessary to design an aggregation mechanism for stochastic 
gradients to eliminate gradients subject to Byzantine attacks. 
An overview of the proposed BR-FDRL method is given in 
Section III-E.

A. Policy-based DRL

Policy-based DRL directly optimizes the policy through 
gradient ascent for the expected reward, also known as the 
policy gradient method.

The policy network π ( )a | s; w  is used to approximate the 

policy function π ( )a | s , where w is the policy network pa‐
rameter. Policy learning aims at training a policy network 
with a near-optimal policy to control the agent. The training 
objective function is J ( )w =ES( )Vπ( )S , where ES( )×  is the ex‐
pected value in the state S. Clearly, the greater the value of 
the objective function, the better the policy. To increase the 
value of the objective function J ( )w , the DRL model of the 
policy gradient, specifically the reinforce model [24], is used 
to update w. After the gradient derivation, the policy gradi‐
ent Ñw J ( )w  is:

Ñw J ( )w =ES(E
A  π ( )× | S ; w (g ( )SA ; w ) ) (13)

g ( )sa ; w Qπ( )sa Ñw ln π ( )a | s; w (14)

where E
A  π ( )× | S ; w ( )×  is the the expected value in the action 

space A, given the state S and policy network parameter w.
Given that the action-value function Qπ( )sa  is typically 

unknown, the reinforce model employs Monte Carlo simula‐
tion to approximate Qπ( )sa  through the actual cumulative 
reward. Consequently, the stochastic gradient g ( )sa ; w  
serves as an unbiased estimator of Ñw J ( )w .

It can be observed that the policy gradient method learns 
the parameterized policy πw directly. The advantage is that 
there is no need to solve Q-value-maximizing optimization 
problems in the action space, which makes it more suitable 
for solving problems with high-dimensional or continuous ac‐
tion space. And it is more natural for modeling stochastic 
strategies.

B. FDRL

FDRL combines FL with DRL, which is a distributed 
DRL method that considers data privacy security [25]. The 
purpose of FL is to address data silos while preserving priva‐
cy. FL establishes a learning model based on multiple device 
datasets to ensure user privacy and security. However, the 

Agent:

EVCS controller

EVCS environment
r
t+1

s
t+1

r
t

s
t

Action a
t

Fig. 2.　MDP model of economical operation strategy for EVCS.
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main bottleneck of FL is the unstable communication be‐
tween the local client and the global server. To this end, fed‐
erated averaging (FedAvg) is proposed [26]. By increasing 
the computational load at local clients, the communication 
frequency is limited, and the communication load is reduced.

As shown in Fig. 3, policy gradient combined with Fe‐
dAvg can be formulated as a distributed learning method 
that allows multiple agents to train a DRL model simultane‐
ously. The global server does not require any private epi‐
sode. During the training process, the central global server 
distributes an initial parameter of the policy function. The lo‐
cal agents interact with the local environment and train the 
local agent models simultaneously according to the collected 
episodes. The central global server aggregates the local poli‐
cy network gradients or parameters to obtain the global mod‐
el. After multiple iterations, a model similar to the central‐
ized DRL model is well-trained. Policy gradient with Fe‐
dAvg can effectively mitigate many privacy risks of tradi‐
tional distributed DRL. With the use of FedAvg, FDRL per‐
forms multiple iterations of the local policy network and up‐
dates the global model once, which requires less communica‐
tion frequency and solves the communication problem of FL.

C. SCSG Algorithm

Machine learning trains the optimal model by minimizing 
the expected risk. However, the expected risk cannot be cal‐
culated, so it is often modeled as an empirical risk minimiza‐
tion problem [27]:

min
w

F ( )w =E ( )f ( )wξ =
1
n∑i = 1

n

f ( )wξi (15)

where wÎRd; ξ is the dataset; n is the the number of input-
output pairs in the dataset; E ( )×  is the expectation function; 
ξi = ( xiyi ) denote the ith input-output pair; F ( )· : Rd®R is a 
function that is strongly convex, and its gradient is L-Lip‐
schitz continuous; and f ( )×  is the loss function. In the con‐
trol problem of EVCS, f ( )wξ  can be expressed as f ( )wξ =

(rt( )stat -Q ( )stat ; w ) 2
.

Traditional gradient descent methods include full gradient 
descent and stochastic gradient descent (SGD) [28]. The gra‐
dient in SGD is an unbiased estimation of the gradient for 
the entire sample. However, the gradient variance increases 

with iteration, so SGD can only guarantee the sub-linear con‐
vergence speed, not the linear convergence speed [29]. A 
class of stochastic variance reduced gradient (SVRG) [30] is 
proposed to deal with the problem of excessive variance of 
SGD, which accelerates the convergence speed and reduces 
the computational burden.

The SVRG is a double-loop iteration method. The underly‐
ing idea is to calculate a batch gradient ÑF (wl ) =
1
n∑i = 1

n

Ñfi( )wl  in each outer loop, and the single iteration in 

the inner loop adopts g j¬Ñfik(w͂k ) - (Ñfik(wk ) -ÑF (wk ) ) 
to update the current parameters. wl is the parameter at the 
l th iteration of the outer loop; wk is the parameter at the k th it‐
eration of the inner loop; w͂k is the snapshot of the parame‐
ters taken periodically during the optimization process at the 
k th iteration, used as a reference point for variance reduction; 
ikÎ { }12n ; and Ñfi( )×  is the the gradient of the loss 
function. In the convergence analysis of SGD, the variance 
of the sample gradient is assumed to have a constant upper 
bound, which results in non-linear convergence. Instead of 
simply selecting gk =Ñfik(w͂k ), SVRG uses the special update 

term Ñfik(w͂k ) - (Ñfik(wk ) -ÑF (wk ) ) to make the variance 

have a continuously reduced upper bound, so that the vari‐
ance is much smaller than the expected value. Therefore, the 
linear convergence can be achieved [30].

The procedure for solving (15) with the SVRG are as fol‐
lows.

Step 1: input the start point w1ÎRd, learning rate α > 0, 
loop period L, and step number of SGD m.

Step 2: initialize w͂1 =wl and calculate the batch gradient 

ÑF ( )wl =
1
n∑i = 1

n

Ñfi( )wl .

Step 3: randomly select ikÎ {12n}, and let g͂k =
Ñfik(w͂k ) - (Ñfik(wk ) -ÑF (wk ) ) and w͂k + 1 = w͂k - αg͂k. Let k =
k + 1. Loop until k =m + 1 is reached, and then turn to Step 2.

Step 4: let l = l + 1, and loop until l = L + 1 is reached.

Step 5: output wl + 1 = w͂L + 1 or wl + 1 =
1
L∑i = 1

L

w͂i + 1.

In the above procedure, Ñfik(wk ) -ÑF (wk ) is the biased 

estimation of gradient Ñfik(wk ).
To further reduce the computational burden, [31] proposed 

the SCSG algorithm. SCSG algorithm improves upon SVRG 
by utilizing variance reduction methods for enhanced learn‐
ing and offers superior computational efficiency, making it 
better suited for large-scale and complex learning environ‐
ments. SCSG algorithm calculates stochastical batch gradi‐
ents instead of full gradients in each outer loop, while the 
number of inner loops follows a geometric distribution Pg. 
The procedure of SCSG algorithm is as follows.

Step 1: input the initial point w1ÎRd, learning rate α > 0, 
loop period L, and batch size B.

Step 2: sample a batch IlÎ {12n} evenly.
Step 3: calculate the batch gradient ÑF (wl ) =

1
B∑iÎ Il

Ñfi( )wl . Let w͂1 =wl. Generate inner-loop count NlµPg.

EVCS1 EVCS2 EVCSn

…

…
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Fig. 3.　Policy gradient combined with FedAvg.
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Step 4: randomly select ikÎ Il. Let g͂k¬Ñfik(w͂k ) -
(Ñfik(wk ) -ÑF (wk ) ) and w͂k + 1 = w͂k - αg͂k. Let k = k + 1. Loop 

until k =Nl is reached, output wl + 1 = w͂Nl
, and turn to Step 2.

Step 5: let l = l + 1, and loop until l = L + 1 is reached.

Step 6: output wl + 1 = w͂L + 1 or wl + 1 =
1
L∑i = 1

L

w͂i + 1.

SCSG algorithm calculates a random batch gradient in 
each outer loop, where a single iteration in the inner loop 

takes Ñfik(w͂k ) - (Ñfik(wk ) -ÑF (wk ) ) to update the current 

parameters, and the number of inner-loop iterations Nt obeys 
a geometric distribution P, which effectively reduces the 

computational burden. Note that, Ñfik(w͂k ) - (Ñfik(wk ) -
ÑF (wk ) ) is an unbiased estimation of gradient Ñfik(wk ), 
whose variance is smaller than that of Ñfi(wl ) (the proof can 

be found in [32]). Therefore, SCSG algorithm has a smaller 
gradient update variance than SGD and has better conver‐
gence, which means that the number of samples required for 
convergence is less.

D. BRGF

If the training process of FDRL contains Byzantine nodes, 
random failures or malicious gradient attacks will cause the 
system to be difficult to converge. If these Byzantine nodes 
send incorrect gradients during aggregation, it will slow 
down the training convergence speed and even lead to diver‐
gence, further increasing the sampling and computational 
burden of DRL.

As shown in Fig. 4, to filter out Byzantine gradients and 
only aggregate good gradients, the BRGF is added for gradi‐
ents calculated by each local agent. The gradient difference 
of each episode can be bounded in stochastic non-convex op‐
timization [33]. Besides, suppose that the Byzantine node 
rate does not exceed β at any time, where β is less than 50% 
due to the settings of the Byzantine general problem.

The Byzantine gradients are filtered out according to the 
following rules.

BRGF rule 1: according to Pinelis’  inequality [34], all 
good gradients have a high probability of occurrence in a 
small region:

P ( ) μ( )m'
t - μ(m)

t £ Tμ ³ 1 - δ (16)

where μ(m)
t  is the estimated gradient from the mth agent in out‐

er loop round t; Tμ = 2σ V/Bt  is the filtering threshold, σ is 

the variance bound, Bt is the batch size, V = 2lg (2M/δ), and 
M is number of agents; and δÎ(01).

The following three points outline the steps involved in 
BRGF.

1) Construct multiple sets of gradient samples S1, where 
the distance between any two gradients in one set should be 
less than Tμ. The number of gradients in these sets should be 
more than half of M.

2) Calculate the median of each gradient set and then ob‐
tain the mean of the medians to obtain μmom

t .
3) Select all agent gradients whose distances from μmom

t  
are less than or equal to Tμ into a good gradient set.

If the number of gradients filtered by rule 1 is less than 
M ( )1 - β , rule 1 is too conservative and filters out the good 
gradients. Hence, rule 2 is required to ensure that all good 
gradients are included.

BRGF rule 2 is similar to rule 1, which only needs to re‐
place Tμ with 2σ.

The two rules guarantee that all non-attacked gradients are 
retained. Even if Byzantine gradients are not filtered out, 
they have limited convergence effects on the FDRL, since 
their distance from ÑJ (w l

0 ) is limited to 3σ. w l
0 is the snap‐

shot of the parameters taken periodically at the l th iteration.
After good gradients are filtered out by rules 1 and 2, 

their average value is the stochastic batch gradient needed 
for the outer loop in SCGC.

E. Overview of Proposed BR-FDRL Method

The algorithm pseudocode of the proposed BR-FDRL 
method is shown in Algorithm 1. The algorithm using SCSG 
can effectively reduce the variance of gradient updates, im‐
proving its convergence speed and sampling efficiency. The 
details of Algorithm 1 are as follows.

First, initialize the policy network parameter of global 
server w͂0. In each outer loop (lines 1-9), the neural network 

Algorithm 1: BR-FDRL

Input: w͂0, outer-loop count T and its batch size B, and inner-loop count Nl 

and its batch size b

1. for l = 12L do

2. w l
0¬ w͂l - 1

3. for k = 12K do

4. Calculate w (k)
l =

1
B∑i = 1

B

g (siai ; w l
0 ) for good EVCS, where w (k)

l  is the av‐

erage gradient of good gradients at the k th iteration

5. Obtain wl

6. for h = 12Nl - 1 do

7. Calculate ul
h =

1
b∑j = 1

b ( )g ( )sjaj ; w l
h - φg ( )sjaj ; w l

0 +wl, where ul
h is the 

gradient used for updating, and w l
h is the parameter at the hth itera‐

tion of the inner loop

8. Calculate w l
h + 1 =w l

h + αul
h

9. w͂l¬w l
Nl

Output: w͂L

Good EVCS; Byzantine EVCS

Global

BRGF

server

…

Fig. 4.　Byzantine gradient identification using BRGF.
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parameters wt - 1 in the global server are sent to the local 
EVCS (line 2). If it is a good EVCS, the gradient will be 
calculated based on (14); otherwise, a malicious gradient is 
emitted, which is also picked up by the global server (line 
4). Malicious gradients are excluded by BRGF, and then the 
average of the filtered gradients is obtained as the parameter 
wl required for the inner-loop update (line 5). In the inner 
loop (lines 6-8), the server independently samples b samples 
to update the gradient of the policy function according to the 
SCSG algorithm. φ is an importance weight used for the un‐
biased gradient estimation (line 7). Finally, the output of the 
inner loop w l

Nl
 is sent to w͂l (line 9). The output of the outer 

loop is well-trained policy network parameter w͂L.

IV. CASE STUDY 

A. Environment Settings

1)　Byzantine Attack Settings
According to the assumption of Byzantine attack problem, 

Byzantine nodes generally make up less than half of the to‐
tal nodes. We assume that Byzantine nodes have the follow‐
ing three model types.

1) RN model. In the RN model, each Byzantine node in‐
troduces a stochastic component by transmitting a vector 
comprised of RN to the global server. The vector simulates 
the gradient data, representing the inaccuracies that common‐
ly arise during data transmission in distributed networks. 
This random perturbation may lead to non-convergent behav‐
ior in the optimization algorithm, affecting the training stabil‐
ity of the model.

2) RA model. In the RA model, each Byzantine node ig‐
nores the prescribed method of the global server and instead 
takes actions randomly selected from a predefined action 
space. It simulates instances of system failures such as hard‐
ware malfunction, resulting in miscalculations in the gradi‐
ent update steps. The model under this failure can exhibit di‐
minished performance and decreased convergence rate.

3) SF model. In this adversarial failure model, Byzantine 
nodes compute the gradient accurately, but intentionally in‐
vert the sign and apply a scaling factor before transmitting it 
to the global server. This perturbation distorts the direction 
and magnitude of the gradient, adversely influencing the gra‐
dient descent optimization. This can result in a deviation of 
model parameters from their optimal values, thereby imped‐
ing learning efficacy.
2)　EV Charging Environment Settings

We assume that each EVCS contains ten charging points 
and a group of photovoltaic power generation systems. The 
SOC of EVs arriving at the EVCS is ranged from 10% to 
80%. The arrival time is distributed from 0 to 22 hours, the 
minimum departure time is 2 hours after arrival, and the 
maximum duration of stay can be until the following day. 
The battery characteristics of all EVs are consistent. The 
charging/discharging efficiency η of all EV batteries is 91%, 
and battery capacity Emax is 30 kWh. The maximum charg‐
ing power of the charging point Pmax is 11 kW. Each charg‐
ing and discharging decision determines the power of the 
next hour. The cost of EVCS purchasing electricity from the 

grid is determined by the fixed peak-valley time-of-use elec‐
tricity price, and the cost of V2G is also determined by the 
purchase price. The peak-valley electricity price is set to be 
0.05 €/kWh during 0-7 hours, 0.1 €/kWh during 8-20 hours, 
and 0.05 €/kWh during 21-24 hours. The environment simu‐
lation platform is modified from ChargGym [35] using Py‐
torch on the Linux server.

B. Experiment Settings

The training hyperparameter settings are as follows. The 
episode of each training session is set to be 24, i.e., the train‐
ing is performed in a day. The reward decay factor γ is 0.99. 
The learning rate of the neural network is 2 ´ 10-5, the num‐
bers of hidden layer units of the actor and critic neural net‐
works are 400 and 300, respectively, the inner activation 
function is ReLU, and the activation function of the output 
layer is tanh. The chosen variance bound σ is determined 
based on initial experiments and statistical evaluation of gra‐
dient dispersion, which is set to be 3.

C. Training Phase

To achieve more convincing convergence curves, each ex‐
periment is repeated 10 times, and the average reward in the 
validation dataset is displayed.
1)　Effectiveness of Byzantine Resilience

To verify the effectiveness of the proposed method against 
Byzantine attacks, the training convergence results of the 
proposed method, stochastic variance reduced policy gradi‐
ent (SVRPG), and simple policy gradient (SimplePG) in the 
scenario of ten EVCSs (three of which are Byzantine nodes 
that emit SF/RA/RN attacks maliciously) are compared, 
which are denoted as BR-W10B3-SF/RA/RN, SVRPG-
W10B3-SF/RA/RN, and SimplePG-W10B3-SF/RA/RN, re‐
spectively. To establish control groups for comparison, the 
training convergence outcomes of the proposed method, 
SVRPG, and SimplePG are also evaluated in a scenario in‐
volving ten EVCSs without any Byzantine nodes. These con‐
trol groups are labeled as BR-W10, SVRPG-W10, and Sim‐
plePG-W10, respectively.

As shown in Fig. 5, the proposed method can effectively 
defend against various types of Byzantine attacks with the 
help of BRGF. The final training reward of the proposed 
method in the W10B3 setting containing three Byzantine 
nodes is the same as that in the W10 setting without Byzan‐
tine nodes, indicating that the BRGF can defend against vari‐
ous attacks without affecting the convergence performance.

All three types of Byzantine attacks have a severe impact 
on SVRPG and SimplePG. RN usually slows down the con‐
vergence speed of SVRPG and SimplePG. SF causes the 
agent to send large negative gradients to the global server, 
so that the training turns to an undesirable direction, leading 
to a gradual decrease in reward and ultimately causing the 
training to fail. RA attacks have the severest impact, result‐
ing in a serious unlearnable training process and the lowest 
reward. This is because, in the actual economical operation 
of EVCS, the trained agent should be charged most of the 
time. However, the Byzantine node ignores the policy 
trained by the global server and randomly executes the ac‐
tion. This results in more discharging actions, which further 
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causes lots of invalid learning gradients to return to the glob‐
al server, seriously hindering the training convergence.

As shown in Fig. 6, the number of filtered gradients se‐
lected by the proposed method is plotted to verify the effec‐
tiveness of BRGF in filtering Byzantine gradients. Based on 
experiment settings, BRGF needs to filter out seven good 
gradients as there are only three malicious Byzantine gradi‐
ents.

The proposed method can filter the malicious Byzantine 
gradients well for all three attacks. Under SF attacks, there 
may be instances where the number of filtered gradients ex‐
ceeds seven, meaning that the Byzantine gradients are includ‐
ed. As shown in Fig. 5, the convergence speed of BR-
W10B3-SF is relatively slow among all the BR-W10B3 set‐
tings, and the BRGF and proposed method can still ensure 
the convergence of the final training. Even if Byzantine gra‐
dients are included, the distance between the filtered gradi‐
ents is less than 3σ. Hence, the impact of Byzantine gradi‐
ents on training is small and the training convergence can 
still be guaranteed.

The filter accuracy metric quantifies the ability of the 
model to correctly filter out Byzantine gradients while retain‐
ing good ones. The value of this metric falls between 0 and 
1, with values closer to 1 indicating higher filter accuracy.

The filter accuracy is the sum of gradients that are correctly 
filtered out and retained, divided by the total number of gra‐
dients.

The filter accuracies achieved under RN, SF, and RA at‐
tacks are 94.8%, 92.5%, and 96.1%, respectively, which 
means that the BRGF exhibits a robust accuracy of 94.8% 
for the RN attack, 92.5% for the SF attack, and a commend‐
able 96.1% for the RA attack. The results underscore the ro‐
bustness of BRGF against Byzantine attacks.
2)　Effectiveness of FL and SCSG Algorithm

To further validate the role of FL, comparisons between 
W10 setting and W1 setting (single EVCS) are conducted. 
During the training process, each local EVCS agent only 
sends gradients to the global server to ensure that the private 
data of each EVCS are not leaked, which preserves privacy.

As shown in Fig. 7, regardless of the method used, the 
fast convergence speed of W10 setting proves that FL can 
improve the training sampling efficiency, and multiple 
agents sharing the training experience obtained from differ‐
ent environments can accelerate the convergence speed. The 
rewards of FL training are higher than those of the single 
training, proving that FL can fully explore various environ‐
ments and increase the reward in low-probability unseen sce‐
narios.

By comparing BR-W10, SVRPG-W10, and SimplePG-
W10, it can be observed that the proposed method has the 
fastest convergence speed, followed by SVRPG, while Sim‐
plePG has the slowest convergence speed. This verifies the 
superiority of the proposed method in sampling efficiency. 
In the non-FL training of W1 setting, the advantages of the 
high sampling efficiency of the proposed method can also be 
reflected.

D. Testing Phase

The effectiveness of FDRL under Byzantine attacks in the 
EVCS environment is empirically validated. Different meth‐
ods are tested on ten different days, and their average test re‐
sults are shown in Table I. At the charging station, a central‐
ized controller verifies each charging point and records the 
departure time of every connected EV. If an EV departs with‐
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in the next t hours, then the power station will fully charge 
that specific EV; otherwise, the power station uses the cur‐
rent solar power to charge the EV, where t =Emax /(Pmaxη). 
The electricity price and solar power in one test day are 
shown in Fig. 8.

In Table I, the reward rt is calculated based on (12) and 
the cost is the first item of (12), which measures the average 
cost of purchasing electricity for EVCS from the grid per 
day. The SOC deviation is calculated by the average of (1 -
SOC i

t ) 2
.

The rule-based method adjusts the charging and discharg‐
ing only based on the departure time, without considering 
the electricity price. Although rule-based method can effec‐
tively ensure that the EV is charged as much as possible, it 
is the most expensive. The reward of the DRL (SimplePG-
W1, SVRPG-W1, BR-W1) is better than the rule-based 
method. Although there is a small amount of dissatisfaction 
with the SOC in the DRL, the charging cost of EVCS is sig‐
nificantly reduced. Moreover, the overall test reward of W10 
is better than W1, which also verifies the fact that FL can 
improve the reliability of the model and avoid the problem 
of insufficient training of a single agent in low-probability 

scenarios.
Further comparing the impact of the Byzantine attack, RA 

and SF attacks can seriously affect the training process of 
SimplePG, causing a serious lack of SOC with a deviation 
of 80.38% and 90.79%, respectively. Meanwhile, the serious 
lack of SOC results in low costs for purchasing power from 
the grid. Other non-Byzantine-resilient methods also cause a 
large amount of dissatisfaction with the SOC when exposed 
to Byzantine attacks, which makes it challenging to meet the 
primary charging demand. Byzantine attacks in FDRL can 
lead to a worse method than rule-based method. The pro‐
posed method uses BRGF to effectively defend against vari‐
ous Byzantine attacks, ensuring that the unsatisfied SOC lev‐
el is around 5% and the power purchasing cost is reduced 
by about 35% compared with that of the rule-based method.

As shown in Figs. 9 and 10, BR-W10B3-RN (the stron‐
gest method against Byzantine attacks), SimplePG-W10B3-
RN, and rule-based method are selected for comparison.

Figure 9 shows the charging power in one EVCS with dif‐
ferent methods. The BR-W10B3-RN can transfer the charg‐
ing demand more effectively, which can make the EV charge 
less or even make the EV discharge during the period with 
high electricity prices (8th-20th hours) and charge more dur‐
ing the period with low electricity prices. The rule-based 
method only judges the charging or discharging action based 
on the rules. Although it can make EVs charge more, it can 
neither make decisions based on electricity prices, nor make 
EV discharge during the period with peak electricity prices. 
Therefore, the rule-based method has the highest cost. The 

TABLE I
AVERAGE TEST RESULTS OF DIFFERENT METHODS

Method

Rule-based

SimplePG-W1

SVRPG-W1

BR-W1

SimplePG-W10

SVRPG-W10

BR-W10

SimplePG-W10B3-SF

SVRPG-W10B3-SF

BR-W10B3-SF

SimplePG-W10B3-RA

SVRPG-W10B3-RA

BR-W10B3-RA

SimplePG-W10B3-RN

SVRPG-W10B3-RN

BR-W10B3-RN

Reward

-40.2

-33.3

-31.8

-33.8

-27.9

-27.3

-27.2

-51.5

-52.2

-27.9

-56.5

-55.4

-27.5

-42.3

-36.9

-27.4

Cost

39.8

28.8

29.1

30.0

24.9

24.9

25.2

19.3

23.4

25.6

20.2

26.0

25.9

19.9

16.6

25.5

SOC deviation (%)

1.02

11.23

9.32

9.34

7.48

6.07

5.10

80.38

72.70

5.73

90.79

73.66

4.44

56.02

50.98

4.72
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SimplePG-W10B3-RN shows a more disordered charging re‐
sult, indicating that Byzantine attacks severely affect the 
FDRL.

Further in Fig. 10, one charging point of EVCS is select‐
ed to analyze the impact of the three methods on EV SOC. 
The BR-W10B3-RN and rule-based method can successfully 
meet the charging demand. The SimplePG-W10B3-RN 
makes illogical decisions at some moments, resulting in poor 
SOC satisfaction. The analysis of SOC between the 17th and 
20th hour shows that the BR-W10B3-RN can effectively ac‐
quire the discharging strategy when the EV has just arrived 
and is not in a rush to depart, or during periods with high 
electricity prices, to reduce the cost. From the 1st to 7th hour, 
the BR-W10B3-RN can make the EV charge as much as 
possible to avoid the period with high electricity price from 
the 7th hour. This intelligent charging-discharging decision 
can effectively reduce charging costs while meeting SOC de‐
mands.

V. CONCLUSION 

This paper proposes a Byzantine-resilient economical oper‐
ation strategy based on FDRL for multiple EVCSs.

1) The proposed BR-FDRL method fulfils SOC demand 
and minimizes charging costs by shifting the charging de‐
mand from high-cost to low-cost intervals, even when facing 
severe Byzantine attacks.

2) The proposed BR-FDRL method improves the sam‐
pling efficiency via the SCSG algorithm.

3) Specialized gradient filtering rules are utilized by 
BRGF to distinguish between malicious and benign gradi‐
ents, and distance metrics are utilized as the distinguishing 
criterion.

4) FDRL augments data privacy across individual EVCS 
through FL.

In summary, the proposed BR-FDRL method provides a 
robust, efficient, and privacy-preserving solution for manag‐
ing multi-EVCS systems even under unfavorable conditions. 
Additionally, it should be noted that like any other privacy-
preserving technique, FL is not completely foolproof in pre‐
serving privacy. Privacy could still be revealed by re-engi‐
neering the original data from the gradient or other attack 
methods. Further enhancing the privacy-preserving capabili‐
ties of the proposed method could be investigated in future 
work.
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