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Abstract——High penetration of renewable energy sources 
(RESs) induces sharply-fluctuating feeder power, leading to volt‐
age deviation in active distribution systems. To prevent voltage 
violations, multi-terminal soft open points (M-SOPs) have been 
integrated into the distribution systems to enhance voltage con‐
trol flexibility. However, the M-SOP voltage control recalculated 
in real-time cannot adapt to the rapid fluctuations of photovol‐
taic (PV) power, fundamentally limiting the voltage controllabili‐
ty of M-SOPs. To address this issue, a full-model-free adaptive 
graph deep deterministic policy gradient (FAG-DDPG) model is 
proposed for M-SOP voltage control. Specifically, the attention-
based adaptive graph convolutional network (AGCN) is lever‐
aged to extract the complex correlation features of nodal infor‐
mation to improve the policy learning ability. Then, the AGCN-
based surrogate model is trained to replace the power flow cal‐
culation to achieve model-free control. Furthermore, the deep 
deterministic policy gradient (DDPG) algorithm allows FAG-
DDPG model to learn an optimal control strategy of M-SOP by 
continuous interactions with the AGCN-based surrogate model. 
Numerical tests have been performed on modified IEEE 33-
node, 123-node, and a real 76-node distribution systems, which 
demonstrate the effectiveness and generalization ability of the 
proposed FAG-DDPG model.

Index Terms——Soft open point, graph attention, graph convo‐
lutional network, reinforcement learning, deep deterministic pol‐
icy gradient.

I. INTRODUCTION 

THE increasing deployment of renewable energy sources 
(RESs) has resulted in significant voltage violations in 

distribution systems, since the outputs of photovoltaics 
(PVs) and wind turbine (WT) generators fluctuate rapidly 
[1]. To meet the power quality requirement of the flexible 
operation and management in distribution systems, voltage 
regulation has been receiving increasing academic attentions 
recently.

Various var devices are deployed in distribution systems 
to mitigate the voltage deviations. Traditionally, the on-load 
tap changers (OLTCs) and capacitor banks (CBs) are em‐
ployed to regulate the voltage in a slow-response manner, 
which can hardly cope with fast voltage variations caused by 
the rapid fluctuations of RESs [2]. With the development of 
advanced power electronic devices, the distribution system 
with multi-terminal soft open points (M-SOPs) can provide 
enhanced controllability to achieve better operation flexibili‐
ty [3]. Specifically, the M-SOP bolsters power flow control 
by adeptly redirecting electricity between various feeders, 
thereby offering more accurate voltage control. With the abil‐
ity to manage fluctuating power outputs, M-SOP can also fa‐
cilitate the integration of RESs, particularly beneficial in im‐
proving the renewable energy penetration of distribution sys‐
tems. Besides, M-SOPs introduce operation flexibility, seam‐
lessly integrating with existing infrastructure to optimize the 
network performance. The M-SOP can achieve satisfactory 
voltage regulation via fast and accurate control of the active 
and reactive power flows [4]. Generally, the M-SOP has 
been considered as a promising method to address the volt‐
age issues caused by the high penetration of intermittent 
RESs.

The uncertainty optimization programming methods are in‐
troduced to quantify the uncertainties of PV outputs. Typical 
methods include stochastic optimization [5] and robust opti‐
mization [6]. The stochastic optimization is reported in [7] 
to regulate nodal voltages against PV uncertainties, which de‐
scribes the uncertainty relying on numerous scenarios gener‐
ated by parametered probabilistic distribution function. How‐
ever, the specific information of uncertainty is rarely tracta‐
ble in practice. It also suffers from heavy computational bur‐
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den. To address these issues, robust optimization is em‐
ployed to reduce the reliance on accurate information of the 
probability of distributions [8]. The robust optimization 
achieves solution to the worst-case scenario for immunizing 
against all the variation scenarios generated by the pre‐
defined uncertainty set [9]. A two-time-scale robust optimiza‐
tion method is proposed in [10] for M-SOP scheduling to 
mitigate voltage imbalance. A robust optimization method in‐
volving second-order cone format of distribution system is 
introduced in [11] to achieve the optimal operation of soft 
open point (SOP). The distributionally robust chance-con‐
strained method is introduced in [12] to optimize the SOP 
operation to mitigate the impact of the load altering attack. 
The model-based stochastic and robust optimizations assume 
that accurate parameters of distribution system are available, 
which can be rarely guaranteed in practice [13]. Besides, 
these methods cope with uncertainties of RESs and loads by 
searching a feasible solution with the predefined uncertain in‐
terval. However, RESs may fluctuate frequently caused by 
the quick cloud shadow transitions [14]. Therefore, the prac‐
tice of re-computing the optimization for voltage control 
may not be adaptive to the rapidly changing outputs of PVs. 
A faster response voltage control strategy is required to im‐
munize the violent volatility of PVs.

To address the issue of model parameter dependency, the 
data-driven methods are developed. A data-driven method es‐
tablishing the sensibility related to voltage regulation solu‐
tions and objective is proposed in [15] for operation of SOP, 
which allows changing system operation states. However, 
the optimization calculation is too time-consuming in real-
time implementation to adapt to the RES power fluctuations. 
The historical data of forecasting error are utilized in [16] to 
construct the histograms so as to estimate the true probabili‐
ty distribution functions of the RESs. The exact parameters 
of system are mandatory, which are rarely available in practice.

To alleviate the need for accurate and timely model param‐
eters, model-free methods are proposed in recent years. 
Deep reinforcement learning (DRL) can be trained offline 
with iteration between the simulation model and environ‐
ment, and is finally applied online to the real distribution 
system. Two-stage volt-var control combining the DRL and 
the physical model is proposed in [17]. The DRL is pro‐
posed in [18] to obtain the optimal electric vehicle (EV) 
charging strategy in the distribution system while satisfying 
all the physical constraints. The DRL-based adaptive voltage 
control model is proposed in [19] for M-SOP operation to 
mitigate voltage violations. These methods rely on the mod‐
elling of distribution system to calculate the reward during 
the training process and real-time application, which require 
accurate information of the power system. Besides, the neu‐
ral network utilized by these methods fails to consider the 
distribution system structure, which cannot extract the nodal 
features efficiently. To bridge this gap, graph neural network 
(GNN) with powerful graphical learning representation abili‐
ty is receiving trending attention. It is applied in other areas. 
The unrolled spatiotemporal neural network is proposed to 
achieve real-time state estimation, representing significant 
ability in grid representation [20]. Besides, to fully leverage 

graphical feature extraction merit, the graph convolutional 
network (GCN)-based DRL model is successfully applied in 
distribution system restoration [21] and dispatch [22]. How‐
ever, to the best of the authors’  knowledge, none of the ex‐
isting studies on data-driven optimal operation of SOP con‐
sider the possible spatial associations of nodal features in 
power systems. Actually, RES uncertainties may occur in 
power flow congestion and voltage fluctuation that propa‐
gate to the entire system. Thus, the accurate perception of 
the spatial nodal data can lead to more effective SOP deci‐
sion-making. This motivates the feature extraction of graphi‐
cally correlated nodal data for more effective SOP solutions.

This paper proposes a full-model-free adaptive graph deep 
deterministic policy gradient (FAG-DDPG) model for M-
SOP voltage control in distribution system with high penetra‐
tion of RESs. Traditionally, the fully connected and convolu‐
tional neural networks (CNNs) employed in actor and critic 
functions of reinforcement learning models often overlook 
the graphical structure inherent in power systems, resulting 
in inadequate capture of the complex graph-based features 
emerging from power flow variability. Due to the strong ca‐
pability of GCN in graph feature representation, the atten‐
tion-based adaptive graph convolutional network (AGCN) -
based surrogate model is proposed for graph feature repre‐
sentation in extracting the variations in power flow due to 
RES and M-SOP control, enabling improved policy learning 
and generalization capabilities for network reconfiguration. 
Besides, traditional methods rely on historical data and phys‐
ical model-based calculations to obtain system states during 
the reinforcement learning process, which is computationally 
cumbersome. To address this issue, the AGCN-based surro‐
gate model is learned to rapidly observe states based on mea‐
surements, facilitating the model-free voltage control. Fur‐
thermore, the proposed FAG-DDPG model iteratively learns 
policy through interactions with both the AGCN-based surro‐
gate model and the environment. In this way, the continuous 
control variables of M-SOP can be achieved to mitigate volt‐
age violations in real-time to deal with the rapid fluctuations 
of RESs. The contributions of this paper can be summarized 
as follows.

1) The propsoed FAG-DDPG model is proposed to train a 
model-free M-SOP control strategy, facilitating real-time and 
continuous decision-making based on the latest observations. 
In this way, voltage fluctuations due to rapid fluctuations of 
RESs can be efficiently mitigated.

2) Different from utilizing the topology-unaware neural 
network, the attention-based AGCN is proposed in the deep 
deterministic policy gradient (DDPG) algorithm to extract 
the graphical features representing the interrelations among 
nodes to achieve increased adaptability to new configura‐
tions.

3) Instead of utilizing the perfect physical model parame‐
ters, the AGCN-based surrogate model is coordinated with 
the DDPG to achieve a model-free M-SOP control to en‐
hance the practicality and applicability of the model.

The remainder of this paper is organized as follows. The 
distribution system with M-SOP voltage control is proposed 
in Section II. The proposed FAG-DDPG model for M-SOP 
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voltage control is introduced in Section III. Numerical case 
studies are presented in Section IV. Finally, Section V con‐
cludes this paper.

II. DISTRIBUTION SYSTEM WITH M-SOP VOLTAGE CONTROL

A. Control Objective

Voltage control in distribution systems typically encom‐
passes the deployment of OLTCs, CBs, static var compensa‐
tors (SVCs), etc. OLTCs and CBs, characterized by their 
slower response dynamics, are generally scheduled on a day-
ahead basis to accommodate their operation limitations [23]. 
The SVCs are popular with their fast and continuous re‐
sponse characteristics, but their deployment is often limited 
by high costs and their design is tailored on high-voltage 
power systems with significant reactive power needs. To cir‐
cumvent these constraints, the M-SOP is implemented for in‐
traday voltage regulation. This method facilitates the integra‐
tion of day-ahead dispatch decisions for OLTCs and CBs, 
thereby enhancing the overall efficiency and responsiveness 
of distribution systems.

The control variables of M-SOP are active power and reac‐
tive power. By scheduling the active power transfer, the con‐
verters can alleviate the nearby power congestion on the 
power line. In this way, the local voltage profile near the 
converters can be improved. Thus, the total voltage devia‐
tion of each node is minimized and set as the control objec‐
tive in the model as:

min∑
i = 1

N

|Ui -U0| (1)

where Ui and U0 are the voltage magnitude at node i and the 
rated voltage magnitude, respectively; and N is the total 
number of nodes in the distribution system.

B. Operation Constraints of Distribution System

The DistFlow branch model [24] is introduced to model 
the distribution system operation. The constraints are formu‐
lated as:

P PV
i +P SOP

i -P L
i = ∑

k:j® k

Pjk - ∑
i:i® j

(Pij - rijlij )    "iÎNijÎE (2)

QPV
i +QSOP

i -QL
i = ∑

k:j® k

Qjk - ∑
i:i® j

(Qij - xijlij )    "iÎNijÎE (3)

U 2
j =U 2

i - 2(rij Pij + xijQij )+ (r 2
ij + x2

ij )I
2
ij     "iÎNijÎE (4)

(U min
i )2 £U 2

i £(U max
i )2 (5)

I 2
ij £(I max

ij )2 (6)

where P PV
i  and P L

i  are the active power injected by PV out‐
puts and load demands, respectively; Pij and Qij are the ac‐
tive and reactive power from bus i to bus j, respectively; lij =
|Iij|

2; QPV
i  and QL

i  are the reactive power generated by PV out‐
puts and load demands, respectively; P SOP

i  and QSOP
i  are the 

active and reactive power injections from the ith terminal of 
SOP to the connected points of the network, respectively; rij 
and xij are the resistance and reactance of line ij, respective‐
ly; E is the set of lines; Iij is the current in line ij; U min

i  and 
U max

i  are the lower and upper bounds of voltage magnitudes 

at node i, respectively; and I max
ij  is the maximum limit of cur‐

rent at line ij.

C. Operation Constraints of M-SOP

M-SOP is generally deployed among feeders to alleviate 
power congestion. In comparison to the optimization deci‐
sion based on conventional mechanical switch state [7], M-
SOP controls the active and reactive power flows more accu‐
rately with lower cost due to the avoidance of frequent 
switch actions.

The control variables of M-SOP consist of active power 
and reactive power of multiple converters. The positive direc‐
tion of M-SOP converters is to inject active power into the 
system. The operation constraints in the steady-state model 
of M-SOP can be formulated as [25]:

∑
i = 1

Ns

(P SOP
i +P SOPL

i )= 0 (7)

P SOPL
i =ASOP

i (P SOP
i )2 + (QSOP

i )2 (8)

(P SOP
i )2 + (QSOP

i )2 £ S SOP
i (9)

where Ns is the number of SOP nodes; P SOPL
i  is the power 

loss of converter connected to node i; ASOP
i  is the power loss 

coefficient of converter connected to node i; and S SOP
i  is the 

apparent power capacity of converter connected to node i.

III. PROPOSED FAG-DDPG MODEL FOR M-SOP VOLTAGE 
CONTROL

The proposed FAG-DDPG model for M-SOP voltage con‐
trol is formulated as a Markov decision process (MDP). 
Firstly, the attention-based AGCN is introduced, and then 
the DDPG is described, followed by its training process.

A. Graph Convolutional Operation

Conventionally, due to the strong fitting ability of the 
CNN and the fully connected network (FCN), they are intro‐
duced to the DRL model for voltage regulation in distribu‐
tion system [26]. The distribution system can be abstracted 
as a graph, such that CNN and FCN may not adapt to data 
learning from a graph representation perspective. As a result, 
the approximating performance may be inefficiency. Besides, 
the GNN being applied to power flow solution illustrates its 
superiority in graphical data feature extraction to achieve 
power system representation [27]. Thus, GCN is chosen to 
model the FAG-DDPG functions.

The graphical structure of the distribution system can be 
represented as a graph G = (VE), where V ={v1v2vi 
vN } is the set of all N nodes; and E is the set of branches. 
The graph convolutional operation is defined as:

H = A͂XW (10)

where H is the output; X is the input; W is the matrix of 
learning parameters; and A͂ is the graph operator which is of‐

ten defined by A͂ =D
-

1
2 ÂD

-
1
2, Â =A + IN, A is the adjacent 

matrix, D is the degree matrix with its elements defined as 
Dii =∑

j

Âij, and IN is the identity matrix.
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B. Operation of AGCN-based Surrogate Model

Generally, the adjacency matrix corresponding to the struc‐
ture of the distribution network is introduced to design the 
graph operator A͂ as aforementioned. Such graph operator 
with fixed values as its elements cannot extract the implicit 
dynamic and violently uncertain features hidden in the input 
data, and thus leading to unsatisfying strategy learning per‐
formance. To address this issue, the attention mechanism 
that can achieve dynamic graphical data feature extraction 
motivates the proposal of adaptive graph operator. Specifical‐
ly, the incorporation of an attention mechanism within the 
model facilitates a focused analysis of pivotal nodes and edg‐
es in the system through the automated weighting of node in‐
terconnections. This method significantly augments the capa‐
bility to discern and comprehend essential topological associ‐
ations, which are vital for efficacious voltage regulation. 
Consequently, this enhancement empowers the model to 
adapt more proficiently to alterations in the network configu‐
ration. The attention mechanism can be described as a map‐
ping process, where the embedding is transformed into que‐
ry Q, key K, value V pairs, resulting in an output, which are 
formulated as:

ì

í

î

ïïïï

ïïïï

Q =W Q X

K =W K X
V =W V X

(11)

where W Q, W K, and W V are trainable weights for query Q, 
key K, and value V, respectively.

The softmax of the inner product Q and K represents the 
dependence weights among different nodal information. It 
serves as the score to compute the weighted sum of values 
by performing a linear transformer.

Aatten (QKV )= softmax ( QK T

dk )V (12)

where dk is the dimension of the matrix K.
To extract the observation information from different repre‐

sentation subspaces, multiple-head operation is introduced:

headi =Aatten (W Q
i XW K

i XW V
i X) (13)

Aadp (QKV )=Concat(head1head2headi )Wcon (14)

where W Q
i , W K

i , and W V
i  are the projection parameters; Concat 

is the concatenation operation; Wcon is the trainable parameter; 
and Aadp (QKV ) is the output of concatenation operation.

C. Formulation of MDP

The decision-making process for M-SOP control can be 
formulated as an MDP with finite time steps. The MDP is of‐
ten described by tuples {SATR}, where S is the state 
space, A is the action space, T is the transition space, and R 
is the reward space. The action space A consists of the ac‐
tive and reactive power outputs from converters, i.e., ait =
{P SOP

1t ...P SOP
Ns - 1t QSOP

1t ...Q
SOP
Nst

}"iÎNstÎ T, which are gen‐

erated by the outputs of actor network. The reactive and ac‐
tive power outputs are limited by their minimum and maxi‐
mum bounds, i.e., QSOP

imin £QSOP
i £QSOP

imax, P SOP
imin £P SOP

i £P SOP
imax, to 

ensure that constraint (9) is satisfied, where P SOP
imax and QSOP

imax 

are the maximum active power and reactive power, respec‐
tively; and P SOP

imin and QSOP
imin are the minimum active power and 

reactive power, respectively. Since the SOP loss can be simpli‐
fied to a suitable value [28], the loss value at the ith terminal is 

calculated as P SOPL
i =ASOP

i S SOP
ifix , S SOP

ifix = (P SOP
imax )2 + (QSOP

imax )2 , 

where S SOP
ifix  is the power capacity of converter connected to 

node i. Then, the active power output of the last terminal 

can be determined by P SOP
Ns

=-∑
i = 1

Ns - 1

P SOP
i -∑

i = 1

Ns

P SOPL
i . The state 

space S includes the PV power injections, load demands, 
and voltage profiles, which is defined as: sit ={P L

it -
P PV

it Q
L
it -QPV

it }"iÎNtÎ T, where sit is the state at node i 
and time t.

rt is the reward function at time t, which is defined as:

ì

í

î

ïïïï

ïïïï

rt =-∑
i = 1

N |

|
|
||
||

|
|
||
| Ui -U0

U0

+ ηψ

ψ = |max{0Ui -Umax }| + |min{0Ui -Umin }|

(15)

where ψ is the penalty item representing the extent of volt‐
age limit violation; η is the penalty coefficient; U0 is the 
nominal voltage value usually set to be 1; and Umax and Umin 
are the maximum and minimum voltage limits, respectively.

The proposed FAG-DDPG model for solving the MDP 
consists of two main functions, i.e., the action-value function 
and the policy function. Figure 1 shows the iteration process 
of the proposed FAG-DDPG model.

D. Solution Method of Proposed FAG-DDPG Model

1)　Policy Network
The actor network u is the policy function that maps 

states st to actions at so that the action for control strategy 
can be formulated as:

at = u(st|θ
u )+N (0σt ) (16)

where θu is the parameter of the actor network; N is the 
noise following normal distribution added in the actions gen‐
erated by the actor network to conduct action exploration 
function; and σt is the standard deviation. This stochastic per‐
turbation is critical for ensuring sufficient exploration of the 
action space during the learning process, thereby preventing 
the model from prematurely converging to suboptimal poli‐
cies and enabling it to discover more effective strategies 

Critic network

Actor network

...

Network Q

...

...

Policy network
Target policy

network

... ...

SOP
actions

Trained surrogate model

Randomly sample
transitions

Reply buffer

Target network Q′

Transition: states,
actions, rewards

Fig. 1.　Iteration process of proposed FAG-DDPG model.
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over time. Since the control model is designed to mitigate 
the voltage violation in practice, the action-value function is 
constructed to minimize the control objective Q as:

Q(stat )=∑
t = 1

T

[γtrt|s0a0 ] (17)

where γt is the discounted factor at time t. T = 1440 is the to‐
tal time horizon for each episode. To enhance the stability, at 
each process of action-environment iteration, a transition is 
generated and stored in the memory replay buffer D, which 
is then sampled in batches to train the actor and critic net‐
works. To maximize the expectation value ED of the action-
value function Q, the loss function J is formulated as:

J = max
θu

ED [Q(stat )] (18)

This loss function is optimized by the gradient ascent 
method to update the parameters θu of the actor network. 
The value of J is maximized by giving more fitting actions 
at generated by the actor network. Thus, according to the 
chain rule, the gradient of J with respect to θu can be calcu‐
lated by multiplying the gradient of action value Q with re‐
spect to the actions and the action at with respect to parame‐
ters θu in the actor network.

Ñθu J =
1
m ∑stÎD

Ñθuat (st|θ
u )Ñat

Q(stat|θ
Q ) (19)

where m is the mini-batch sampled in the memory replay 
buffer D; and θQ is the parameter of the critic network.
2)　Value Network

The critic network is the action-value function to calculate 
Q(stat ) that maps (stat ) to a scalar, which is utilized to evalu‐
ate the voltage control effect by implementing the M-SOP con‐
trol strategy at under the environment st. The critic network pa‐
rameters are trained by the defined loss function L as:

L(θQ )=ΕQ [(Q(stat|θ
Q )- yt )

2 ] (20)

yt = r(stat )+ γtQ(st + 1u(st + 1 )|θQ ) (21)

The critic network Q(stat|θ
Q ) is trained to get close to 

the label yt.
3)　Target Network

To improve the stability of learning process, the target ac‐
tor network u′ and target critic network Q′ are introduced. 
They are the copies of the original actor and critic networks 
by storing the earlier trained parameters. In this way, the la‐
bel yt for action-value function can be reformulated by the 
target networks as:

yt = r(stat )+ γQ′ (st + 1u′ (st + 1 )|θQ′ ) (22)

The parameters of target networks θu′, θQ′ are updated by 
slowly tracking the online learned network with weighted co‐
efficient τ.

ì
í
î

θu′¬ τθu + (1 - τ)θu′

θQ′¬ τθQ + (1 - τ)θQ′ (23)

E. AGCN

The state space data are composed of the inputs of net‐
works in the proposed FAG-DDPG model, where the PV 
power represents complex spatial correlations. Therefore, the 

AGCN is introduced to construct the policy function and val‐
ue function networks. In this way, the correlation features 
among PVs can be extracted to facilitate the learning perfor‐
mance. Note that the AGCN and FCN are employed to struc‐
ture these networks to learn the policy and Q value. Specifi‐
cally, the relationship details between the inputs and outputs 
of these networks are introduced as follows.

The inputs of the policy network are the states. The out‐
puts are the SOP dispatch decisions. The AGCN and FCN 
are employed to approximate the policy function at = u(st ). 
The AGCN layers are utilized to embed the correlation fea‐
tures into the latent features that are mapped into the action 
space by the following FCN layers.

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

at = tanh(H u
out )

H ufcn
l =ReLU(H ufcn

l - 1 W ufcn
l + bufcn

l ) lÎΩLfcn

H ugcn
l = σ(Aadp H ugcn

l - 1 W ugcn
l + bugcn

l ) lÎΩLgcn

H u
0 ={st }

(24)

where H u
0 , H ugcn

l , bufcn
l , and H u

out are the outputs of the input 
layer, the AGCN layers, the FCN layers, and the output lay‐
er in the actor network, respectively; W ugcn

l  and W ufcn
l  are 

the parameters of the AGCN layers and the FCN layers, re‐
spectively; bugcn

l  and bufcn
l  are the corresponding bias parame‐

ters; σ(x)= 1/(1 + e-x ) is the sigmoid activation function; 
ReLU(×) is the rectified linear unit function; tanh(x)= (ex -
e-x )/(ex + e-x ) is the activation function, which limits the out‐
put layer values to a specified interval [-11]; and ΩLfcn and 
ΩLgcn are the sets of FCN and AGCN layers, Lfcn and Lgcn de‐
note the numbers of FCN and AGCN layers, respectively. The 
trainable parameters {W ugcn

l W ufcn
l bugcn

l bufcn
l } are grouped in‐

to θu. In this way, the action outputs can be ensured to satisfy 
the specified constraints without exceeding them. Besides, 
the Q network has the same structure of the policy network 
except for the output size of 1.

F. AGCN-based Surrogate Model

The low-voltage distribution system parameters are difficult 
to obtain in practice due to the high complexity to estimate 
them. This problem spurs the motivation to build up an AGCN-
based surrogate model f s (×) of the mapping relationship be‐
tween the power injections and the voltage magnitudes. In this 
way, the proposed AGCN-based surrogate model serves as a 
computationally streamlined substitute for conventional power 
flow simulations, enabling swift reward acquisition throughout 
the training phase. Besides, this AGCN-based surrogate model 
obviates the need for precise network parameters, thereby fa‐
cilitating a model-free method. Since the GNN model applied 
in power flow shows significant advantage on power system 
representation, the operations of AGCN and FCN are lever‐
aged to learn the surrogate mode. By introducing the adaptive 
graph operator, it can extract the high-dimensional features 
from the training data. The inputs of the AGCN-based surro‐
gate model consist of net active power injections Pi =P PV

i -P L
i  

and net reactive power injections Qi =QPV
i -QL

i  at each node. 
The outputs are the voltage magnitudes Ui at each node. The 
formulations of this model are expressed as:
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f s =ReLU(H s
out )

H sfcn
l =ReLU(H sfcn

l - 1 W sfcn
l + bsfcn

l ) lÎΩLfcn

H sgcn
l = σ(Aadp H sgcn

l - 1 W sgcn
l + bsgcn

l ) lÎΩLgcn

H s
0 =[PiQi ]

(25)

where H s
0, H sgcn

l , H sfcn
l , and H s

out are the outputs of the input 
layer, the GCN layers, the FCN layers, and the output layer 
in the AGCN-based surrogate model, respectively; W sgcn

l  
and W sfcn

l  are the parameters of the GCN layers and the 
FCN layers, respectively; and bsgcn

l  and bsfcn
l  are the corre‐

sponding bias parameters. θs ={W sgcn
l W sfcn

l bsgcn
l bsfcn

l } is 
the trainable parameter of AGCN-based surrogate model.

G. Training Procedure

The training procedure of the proposed model composes 
of two stages. The first stage is to train the AGCN-based sur‐
rogate model. The loss function of the surrogate model (L1-
loss) is defined as:

Loss(θs )=
1
Bs
∑
bs = 1

Bs

|Ubs
- f s

bs
| (26)

where Bs is the batch size; Ubs
 is the ground truth voltage 

magnitude; and f s
bs
 is the output of surrogate model. The sec‐

ond stage is the training of proposed FAG-DDPG model, 
which is given in Algorithm 1.

IV. CASE STUDY

The schematic of the modified IEEE 33-node distribution 
system [29] with a three-terminal SOP is shown in Fig. 2. 
Four PVs are integrated into the system at nodes 12, 20, 24, 
and 28. The active power output of each PV is set to be 0.6 
MW. The upper and lower bounds of the voltage are set to 
be 1.05 and 0.95 p. u., respectively. The proposed FAG-
DDPG model consists of an AGCN-based surrogate model 
and a control model. The AGCN-based surrogate model 
learns the mapping from the power injections (input) to the 
nodal voltages (output) in a supervised manner. To achieve 
this goal, the dataset is generated by the following rules. 
The PV outputs are generated following the normal distribu‐

tion with ±10% of the expected values as the standard devia‐
tion. The load demands are generated following the uniform 
distribution with interval [0.81.2]. The curves of WT out‐
puts, PV outputs, and load demand are shown in Fig. 3. 
Then, the AC power flow are calculated under these scenari‐
os via MATPOWER program. After these processes, 50000 
samples are generated, which are randomly divided into two 
parts, i. e., 90% are training data and 10% are testing data. 
The parameters of AGCN-based surrogate model are listed 
in Table I.

For the reinforcement learning based control model, the 
training data consist of 60 days’  and 1 day’  data, respective‐

Algorithm 1: training of proposed FAG-DDPG model

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

Randomly initialize the parameters of the critic network Q(sa|θQ ) 
and actor network u(s|θu ). Initialize target networks Q′ and u′ 
with parameters θQ′¬ θQ, θu′¬ θu. Initialize the memory replay 
buffer D

For episode = 1 to K do

   Initialize a random process for action exploration

   Receive initial observation state s1

   For t = 1 to T do

      Chose control actions at = u(st|θ
u )+N (0σt )

      Apply action at, observe reward rt, and state st + 1

      Store transition (statrtst + 1 ) in D
      Sample a batch for m transitions from D
      Update critic based on (20) and (21)

      Update actor policy based on (19)

      Update target networks based on (23)

   End for

End for

1 2

3 4

5 6 7 8 9 10 11 12 13 14 15 16 17 18

23 24 25

19

20

21 22

26
27

28

29

30 31 32 33

Fig. 2.　Schematic of modified IEEE 33-node distribution system.
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Fig. 3.　Curves of WT outputs, PV outputs, and load demand. (a) WT out‐
puts. (b) PV outputs. (c) Load demand.

TABLE I
PARAMETERS OF AGCN-BASED SURROGATE MODEL

Parameter

Dimension size of matrix K

Neuron numbers of hidden layers

Learning rate

Batch size

The maximum training epochs

Value

10

800/400

0.001

1000

10000
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ly, with 1440 min in each day. The main architecture of ac‐
tor and critic networks are set the same. The parameter set‐
tings of the adaptive graph reinforcement learning are listed 
in Table II. These parameters are set according to the optimi‐
zation results by random searching selection. The experimen‐
tal simulation is conducted by Python/Gurobi on a workstation 
with NVIDIA GeForce GTX 3090 GPU with 24 GB RAM.

A. Performance of AGCN-based Surrogate Model

The AGCN-based surrogate model is trained for 10000 ep‐
ochs. The L1-loss proposed in (26) is to guide the training 
process. The loss values for each epoch during the training 
process is shown in Fig. 4(a). The logarithmic scale is utilized 
for better visualization. It is obvious that the loss gradually de‐
creases with the increase of the epochs. This demonstrates that 
the proposed AGCN-based surrogate model can extract the dy‐
namic graphical features in the measurements and learn the 
mapping from the power injections to the nodal voltages.

Furthermore, to verify the performance of the AGCN-
based surrogate model on testing dataset, the MAE values of 
the testing data are depicted in Fig. 4(b). Notably, MAE =

1
MN∑m = 1

M∑
i = 1

N

|Umi - Ûmi| is utilized as the evaluation index, 

where M is the total number of samples in the testing datas‐
et; and Umi and Ûmi are the actual and predicted voltage 
magnitudes, respectively. MAE can reflect the absolute dis‐
tance between the predicted values and the ground truth val‐

ues. The AGCN-based surrogate model is evaluated on test‐
ing data every 100 epochs. The MAE is 0.22 p.u. at the be‐
ginning, which is relatively high. With the increase of ep‐
ochs, the MAE drops below 0.0003, demonstrating that the 
predicted voltages are every close to the true values. Over‐
all, this curve has the consistent trend with the loss, indicat‐
ing the effectiveness of the AGCN-based surrogate model.

Besides, to intuitively represent the performance of the 
AGCN-based surrogate model, the maximum and minimum 
voltage magnitude profiles calculated by the power flow and 
the AGCN-based surrogate model are depicted in Fig. 5. It 
shows that the voltage profile curves obtained by the power 
flow and the AGCN-based surrogate model are consistent 
with each other, which indicates that the proposed AGCN-
based surrogate model can deliver high accuracy in voltage 
calculation. Therefore, the AGCN-based surrogate model can 
be leveraged to replace the power flow calculation to acceler‐
ate the training process of the FAG-DDPG model.

B. Performance of Proposed FAG-DDPG Model

1)　Comparison with Traditional Optimization Method
To investigate the effectiveness of the proposed FAG-

DRL, the second-order cone programing (SOCP) is conduct‐
ed to optimize the SOP dispatch decision for every minute 
in a day. The objective function of the SOCP is set accord‐
ing to the reward. The absolute format for the objective func‐
tion is transferred into linear format by linearization tech‐
nique, i.e., |X - Y| can be transferred to A = |X - Y|, A ³X - Y, 
and A ³ Y -X. Thus, the SOCP is set as the baseline method. 
Three case settings are set as follows. Note that all the cases 
are based on the testing data.

1) Case I: there is no M-SOP voltage control, where the 
original voltage magnitude profiles are obtained.

2) Case II: the SOCP optimization is employed to achieve 
the optimal voltage control of M-SOP.

3) Case III: the proposed FAG-DDPG model is leveraged 
to obtain control action decisions of M-SOP.

The maximum and minimum voltage magnitudes in differ‐
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Fig. 4.　Curves of loss and mean absolute error (MAE) during training pro‐
cess. (a) Loss of AGCN-based surrogate model. (b) MAE of testing data.

TABLE II
PARAMETER SETTINGS OF ADAPTIVE GRAPH REINFORCEMENT LEARNING

Parameter

Dimension size of matrix K

Neuron numbers of hidden 
layers

Learning rate

Memory replay buffer size

Value

10

400/200

0.001

10000

Parameter

Batch size

Step size of each epi‐
sode

Episode

Discount factor

Value

240

1440

4000

0.9
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Fig. 5.　The maximum and minimum voltage profiles calculated by power 
flow and AGCN-based surrogate model.
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ent cases are depicted in Fig. 6. The specific voltage magni‐
tudes of node 16 during the day in different cases are shown 
in Fig. 7. The voltage profiles of all nodes during the day in 
different cases are shown in Fig. 8. In case I, without any 
control action, the minimum voltages in some minutes are 
below the lower bound limit during the heavy load period. 
On the contrary, with the reactive and active power dispatch 
rescheduled by M-SOP employed in the feeder terminals, 
most of the minimum voltage magnitudes during the day are 
above 0.98 p.u. and below 1.02 p.u.. In Fig. 6, from 1100 to 
1200 min, in comparison to the proposed FAG-DDPG mod‐
el, the minimum voltage obtained by SOCP optimization 
methods fluctuates more violently. Figure 8 shows that all 
voltage profiles are improved in cases II and III. This indi‐
cates that the SOP can alleviate the voltage deviation via re‐
scheduling the line power flow. Besides, in comparison with 
optimization method in case II, the maximum and minimum 
voltage profiles in case III obtained by proposed FAG-
DDPG model have near optimal performance. Therefore, the 
proposed FAG-DDPG model can provide effective dispatch 
decisions to M-SOP to avoid voltage violations.

2)　Comparison with Other Deep Learning Based Models
To investigate the performance of the proposed FAG-

DDPG model, the FCN, GCN, and CNN are utilized to re‐
place the proposed model, which are defined as FCN-
DDPG, GCN-DDPG, and CNN-DDPG, respectively. Then, 
they are employed as the baseline models. Note that the ac‐
tor networks and critic networks are with the same deep 
learning structure. The trained AGCN-based surrogate model 
is shared for all agents. The FCN-DDPG model has three ful‐
ly connected layers with 256, 128, and 64 neurons in each 
layer. The GCN-DDPG model includes a graph convolution‐
al layer and three fully connected layers. The corresponding 
graph operator is the adjacency matrix calculated based on 
the distribution network topology. The two-dimensional (2D) 
CNN consists of three convolutional layers and three fully 
connected layers, where the channels are 16, 32, and 8, and 
the kernel sizes are 5.

The reward convergence curves during the training pro‐
cess for different deep learning based models are represented 
in Fig. 9. It is obvious that the proposed FAG-DDPG model 
achieves better reward than others. Besides, the convergence 
speed of the proposed FAG-DDPG model is faster than oth‐
ers.

The efficacy of the proposed FAG-DDPG model is attrib‐
uted to its adaptive graph operation, which proficiently cap‐
tures latent graphical structure features in power distribution 
environments using its graph representation capabilities. Con‐
sequently, this enables the proposed FAG-DDPG model to ef‐
ficiently learn voltage regulation strategies throughout the 
training process.

The maximum and minimum voltage magnitudes among 
all nodes during the day in every minute for different deep 
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learning based models are depicted in Fig. 10. It shows that 
most of the maximum and minimum voltages are below 
1.04 p. u. and above 0.96 p. u.. However, compared with 
FCN-DDPG, GCN-DDPG, and CNN-DDPG, the maximum 
and minimum voltages obtained by the proposed FAG-
DDPG model are within the interval between 1.02 p.u. and 
0.98 p. u.. The fluctuations of RESs in distribution systems 
create a challenging learning environment due to significant 
fluctuations in nodal power injections. Traditional models 
such as FCN-DDPG, GCN-DDPG, and CNN-DDPG, as evi‐
denced by lower rewards and higher voltage deviations, 
struggle in this complex setting. This is attributed to the lack 
of a graphical learning structure in FCN and CNN, which 
leads to an oversimplified treatment of nodal features with‐
out considering their interrelationships. Besides, while GCN 
can accommodate graphical data structures, its fixed graph 
operator is not well-suited for environments with frequent 
changes. In contrast, the higher rewards and more stable volt‐
age profiles achieved by the proposed FAG-DDPG model in‐
dicate its superior capability in voltage regulation policy. 
This effectiveness stems from the attention mechanism of 
the AGCN-based surrogate model, which adeptly extracts 
and represents complex graphical features, thereby enhanc‐
ing the mapping from environmental variables, characterized 
as power injections, to actionable decisions. Therefore, the 
proposed FAG-DDPG model can achieve graphical feature 
representation of the distribution system to ensure the effec‐
tive voltage regulation policy against rapid fluctuations of 
RESs.

The voltage profiles of node 16 for different deep learning 
based models are shown in Fig. 11. The voltage profiles of 
all nodes for different deep learning based models are char‐
acterized as mesh picture in Fig. 12. It can be observed that 
the voltage profile obtained by the proposed FAG-DDPG is 
closer to the reference voltage value with more moderate de‐

viation. Besides, Table III summarizes the voltage deviations 
for different deep learning based models, which indicates 
that the proposed FAG-DDPG model can achieve the small‐
est mean voltage deviation. These results demonstrate that 
the proposed FAG-DDPG model can effectively learn the 
voltage control against fluctuations of RESs.

C. Application in Real Distribution System

To investigate the performance of the proposed FAG-
DDPG model in real distribution system, a modified real 76-
node distribution system with seven feeders, four WTs, and 
two PV systems is employed. The maximum and minimum 
voltage magnitudes in one episode of testing data with and 
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deep learning based models.
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TABLE III
VOLTAGE DEVIATIONS FOR DIFFERENT DEEP LEARNING BASED MODELS

Type

Mean

The maximum 
drop

The maximum 
rise

Voltage deviation (%)

Original

1.66

5.77

1.15

Optimal

0.18

1.96

1.80

FCN-
DDPG

0.40

2.31

4.49

GCN-
DDPG

0.51

3.01

2.38

CNN-
DDPG

0.32

3.05

2.95

FAG-
DDPG

0.28

2.25

1.72
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without M-SOP voltage control for different deep learning 
based models are depicted in Fig. 13. The lower maximum 
voltages and higher minimum voltages demonstrates that the 
proposed FAG-DDPG model also outperforms other baseline 
models in the real distribution system. To represent the nod‐
al voltage more intuitively, the voltage magnitudes of node 
59 are characterized in Fig. 14. All voltage magnitudes are 
represented in a three-dimensional (3D) format in Fig. 15, 
which shows that the voltages are improved by the proposed 
FAG-DDPG model. Therefore, the proposed FAG-DDPG 
model has significant potential of voltage control by dis‐
patching the SOP to cope with violent fluctuations of RESs.

D. Performance with Network Reconfiguration

Since the distribution system topology may change fre‐
quently, it is necessary to investigate the generalization per‐
formance of the proposed FAG-DDPG model under chang‐
ing topology. As shown in Fig. 2, there are two tie-lines 8-
21 and 25-29. The network reconfiguration may close tie-
lines and open other lines. To this end, firstly, the weights of 
the trained FAG-DDPG model are leveraged to be the initial 
model parameters. Then, for reconfigured network, the 
AGCN-based surrogate model and proposed FAG-DDPG 
model are further trained to adapt to the new topology. Note 
that the AGCN-based surrogate model is trained to adapt to 
new topology using previously trained AGCN model and da‐
tasets corresponding to the reconfiguration. The maximum 
and minimum voltage magnitudes under network reconfigura‐
tion are shown in Fig. 16.

It is shown that the proposed FAG-DDPG model can ob‐
tain the optimal SOP control policy with the maximum volt‐
age of less than 1.01 p.u. and the minimum voltage of more 
than 0.98 p.u. under different topologies. This demonstrates 
that the proposed FAG-DDPG model has high generalized 
ability to different topologies with effective performance.

E. Application in Large Distribution Systems

To assess the efficacy of the proposed FAG-DDPG model 
in large distribution systems, the IEEE 123-node distribution 
system [30] is utilized as the test system. This system in‐
cludes four WTs at nodes 13, 25, 62, and 108, and four PVs 
at nodes 34, 46, 77, and 95, respectively. The M-SOP termi‐
nals are set at 32, 68, and 98, respectively. The variations in 
the maximum and minimum voltage magnitudes, both with 
and without the M-SOP voltage control, are demonstrated in 
Fig. 17. The results indicate a marked improvement in volt‐
age stability due to the implementation of the proposed mod‐
el. Consequently, the propoed FAG-DDPG model exhibits 
considerable capability in regulating voltage by strategically 
dispatching M-SOP with rapid fluctuations of RESs.
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V. CONCLUSION 

This paper proposes a novel FAG-DDPG model for M-
SOP voltage control, which can effectively mitigate the volt‐
age deviation in distribution systems with high penetration 
of RESs. The proposed FAG-DDPG model with the AGCN-
based surrogate model is fully model-free without relying on 
repeated power flow calculation. The results show that the 
proposed FAG-DDPG model can adaptively alleviate the 
voltage deviation caused by the rapid fluctuations of RESs. 
The superior results on reward and voltage profiles show 
that the AGCN operation can capture the dynamic graphical 
nodal features hidden in the environment to facilitate more 
practical trained voltage regulation policy in enhancing volt‐
age profile. The application of the proposed FAG-DDPG 
model in a modified real distribution system also illustrates 
its attractive prospect on M-SOP voltage control against rap‐
id fluctuations of RESs.
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