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Integrated Load and Energy Management in Active 
Distribution Networks Featuring Prosumers Based 

on PV and Energy Storage Systems
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Abstract——This study introduces a mixed-integer second-order 
conic programming (MISOCP) model for the effective manage‐
ment of load and energy in active distribution networks featur‐
ing prosumers. A multi-objective function is devised to concur‐
rently minimize various costs, including prosumer electricity 
costs, network energy loss costs, load shedding costs, and costs 
associated with renewable energy resource outages. The method‐
ology involves determining optimal active power adjustment 
points for photovoltaic (PV) resources and integrated energy 
storage systems (ESSs) within network buildings, in conjunction 
with a demand-side management program. To achieve the opti‐
mal solution for the proposed MISOCP model, a robust hybrid 
algorithm is presented, integrating the modified particle swarm 
optimization (MPSO) algorithm and the genetic algorithm 
(GA). This algorithm demonstrates a heightened capability for 
efficiently converging on challenging problems. The proposed 
model is evaluated using a distribution network comprising 33 
buses, a practical distribution network, and a distribution net‐
work comprising 118 buses. Through comprehensive simula‐
tions in diverse cases, the results highlight the innovative contri‐
butions of the model. Specifically, it achieves a noteworthy re‐
duction of 26.2% in energy losses and a 17.72% decrease in 
voltage deviation. Additionally, the model proves effective in 
augmenting prosumer electricity sales, showcasing its potential 
to improve the overall efficiency and sustainability of active dis‐
tribution networks.

Index Terms——Distribution network, energy storage system, 
renewable energy resource, prosumer, evolutionary algorithm.
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I. INTRODUCTION 

THE contemporary climate and energy strategy outlined 
by the European Commission underscores a pivotal fo‐

cus on the integration of photovoltaic (PV) systems into the 
power grid, aligning with the goal of achieving complete de‐
carbonization of the European energy supply by 2050. This 
study proposes integrating energy storage systems (ESSs) 
with PV systems to manage intermittent PV production. The 
ESS optimizes energy management by reducing peak loads, 
balancing levels, and cutting electricity costs. It also creates 
new market opportunities for prosumers, who can manage 
energy consumption, generation, storage, and sales. Coordi‐
nated efforts between distribution system operators and sell‐
ers are essential. This approach aims to enhance prosumer 
benefits and ensure grid safety, reliability, and cost-effective‐
ness.

Foundational works [1] - [3] establish energy management 
strategies for prosumer communities. Reference [1] suggests 
coordinated energy management to reduce costs and improve 
reliability, [2] presents a smart power system for economic 
profit, and [3] offers a real-time framework for cooperative 
energy management. Later, studies [4], [5] introduce models 
for prosumer engagement, with [4] using a multi-agent 
framework for balancing premiums and [5] proposing a sto‐
chastic model for island microgrids. Further, [6] and [7] ad‐
dress operational constraints and optimization, with [6] fo‐
cusing on medium-voltage/low-voltage (MV/LV) network in‐
tegrity and [7] using particle swarm optimization (PSO) algo‐
rithms for energy management. Lastly, [8]-[10] provide opti‐
mization models to enhance network efficiency and prosum‐
er profitability. Reference [8] uses a stochastic game for volt‐
age regulation with PV prosumers. Reference [9] offers an 
optimization model to reduce network losses and boost pro‐
sumer profits. Reference [10] addresses voltage imbalances 
for household satisfaction. Reference [11] presents a two-
stage system for balancing the network based on prosumer 
behavior. Reference [12] introduces a model to cut costs for 

thermal prosumers using thermal storage. Reference [13] pro‐
poses a two-level optimization framework for reactive power 
distribution. Reference [14] introduces optimal volt/var con‐
trol to reduce power losses. Reference [15] presents a carbon 
emission model for grids with renewables and storage. Refer‐
ence [16] uses a Markov model to optimize heating system 
reliability. Reference [17] offers a framework for dynamic 
PQ operational envelopes. Reference [18] uses alternating di‐
rection method of multipliers (ADMM) for robust multi-
agent scheduling. Reference [19] proposes an AC-DC hybrid 
energy management approach with fuzzy logic. Reference 
[20] suggests a home-area energy management strategy for 
demand response. Reference [21] offers a two-stage method 
for congestion management in active distribution networks 
with various energy resources. Reference [22] introduces a 
real-time control system for integrated transmission and dis‐
tribution networks using geographic information system 
(GIS). Reference [23] proposes a prosumer-based energy 
sharing mechanism to maximize social welfare. Reference 
[24] uses time-series simulations for autonomous network 
management. Reference [25] presents an artificial electric 
field algorithm (AEFA) for cost-effective PV-wind-battery 
systems. Reference [26] proposes a whale optimization algo‐
rithm (WOA) for economic emission dispatch in microgrids. 
Reference [27] introduces a distributed management ap‐
proach for prosumers’  energy operations with storage. Refer‐
ence [28] offers an optimal dispatch approach using location‐
al marginal prices. Reference [29] introduces an evolutionary 
method for optimizing distribution systems. Reference [30] 
presents a stochastic model for coordinating electricity and 
gas networks. Reference [31] introduces a probabilistic 
framework for managing transmission congestion. Reference 
[32] offers a comprehensive approach to congestion manage‐
ment using renewable energy sources (RESs) and ESSs. Ref‐
erence [33] presents a neural network for home energy man‐
agement in solar houses. Reference [34] proposes an energy 
management framework for coordinating electric vehicle 
(EV) charging with distribution systems using improved arti‐
ficial cell swarm optimization and marine predator algorithm 
(IACSO-MPA).

Existing studies on load and energy management in active 
distribution networks with prosumers often lack a compre‐
hensive model considering multi-objective functions and hy‐
brid optimization algorithms. Most focus on individual as‐
pects with simpler techniques. This paper fills the gap by in‐
troducing a mixed-integer second-order conic programming 
(MISOCP) model with multi-objective functions for address‐
ing prosumer electricity costs, network energy loss costs, 
load shedding costs, and costs associated with renewable en‐
ergy resource outages, using a hybrid algorithm combining 
modified particle swarm optimization (MPSO) and genetic 
algorithm (GA) to leverage their complementary strengths 
for multi-objective optimization. MPSO excels in exploring 
large solution spaces and rapid convergence, while GA is ef‐
fective in handling multiple objectives and maintaining di‐
verse solutions. This combination aims to improve perfor‐
mance and convergence to Pareto-optimal solutions, address‐
ing the complexities of our optimization problem more effec‐
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tively than using either algorithm alone.
This hybrid algorithm offers a more robust solution for 

complex challenges, as shown in Table I, highlighting its 

unique consideration of demand-side management, resource 
uncertainty, and prosumers based on PV and ESSs.

The contributions of this study are as follows.
1) A novel hybrid algorithm integrating MPSO and GA is 

introduced for better and faster problem-solving.
2) An MISOCP model is developed for the effective man‐

agement of load and energy in active distribution networks, 
considering network objectives, prosumers based on PV and 
ESSs, demand-side management, and renewable energy re‐
source uncertainty.

The remainder of this paper is structured as follows. In 
Section II, we present and fully explain the proposed formu‐
lation. Afterwards, in Section III, we analyze the results ob‐
tained from simulations. Finally, in Section IV, we provide 
our concluding remarks along with some suggestions for fu‐
ture research.

II. PROPOSED FORMULATION 

In this section, the proposed model and algorithm are pre‐

sented. Also, the uncertainty of PV resources based on the 
discrete scenario method is presented.

A. Proposed Optimization Model

The multi-objective function in this study optimizes the 
load and energy management in active distribution networks 
featuring prosumers, which aims to minimize the prosumer 
electricity costs, network energy loss costs, costs associated 
with PV power curtailment, and load shedding costs to im‐
prove system performance, efficiency, and sustainability.

The first objective function (1) is to reduce the cost of 
purchasing and selling energy for prosumers.

F1(P b
ntP

s
nt ) =∑

nÎN
∑
tÎ T

( )cb
t P b

nt - cs
t P s

nt DT (1)

The second objective function (2) is to minimize the net‐
work energy loss costs.

TABLE I
COMPARISON OF THIS STUDY WITH SIMILAR REFERENCES

Reference

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

This study

Algorithm

Sub-gradient methods

GA

Simplex

Unknown

Simplex

Simplex

PSO

Simplex

Simplex

Heuristic

Newton’s method

Newton’s method

Simplex

Evolutionary algorithm

Unknown

Heuristic

Newton’s method

ADMM

Fuzzy

Unknown

Simplex

Unknown

Simplex

Unknown

AEFA

WOA

Simplex

Simplex

MPSO-GA

Model

Linear

Non-linear

MILP

Non-linear

MILP

MILP

Non-linear

MILP

SOCP

Non-linear

Non-linear

Non-linear

MILP

Non-linear

Non-linear

Markov

Non-linear

SOCP

Non-linear

Non-linear

SOCP

Non-linear

MILP

Linear

Non-linear

Non-linear

MILP

MIQP

MISOCP

Grid model

-

-

-

√
-

√
√
√
√
√
√
-

√
√
√
-

√
√
√
√
√
√
-

√
√
√
√
√
√

Prosumer

√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
-

-

-

-

-

√
-

-

-

√
√
√

ESS

√
-

-

-

√
√
-

-

√
√
√
-

-

√
√
-

√
√
√
√
√
√
√
-

√
√
√
-

√

PV

√
√
√
-

√
√
√
√
√
√
√
-

-

√
√
-

√
√
√
-

√
√
√
√
√
√
√
-

√

Multi-objective

√
-

√
√
-

-

-

-

√
-

-

-

√
√
√
√
-

√
-

√
√
-

-

√
√
√
√
√
√

Stochastic

√
√
√
-

√
-

-

√
-

-

-

-

√
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

√

Demand response

-

-

√
-

√
-

-

-

-

-

-

-

-

-

-

-

-

-

-

√
√
-

√
-

-

√
-

√
√

Note: MILP stands for mixed-integer linear programming; SOCP stands for second-order conic programming; MIQP stands for mixed-integer quadratic pro‐
gramming; √ represents that the item is considered; and - represents that the item is not considered.
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The third objective function (3) is to reduce the costs asso‐
ciated with PV power curtailment
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The fourth objective function (4) is to reduce load shed‐
ding costs.
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Thus, the multi-objective function of the proposed model 
can be expressed as (5), and the related constraints are pre‐
sented in (6)-(24).
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Constraint (6) demonstrates that the purchased or sold 
power is greater than or equal to zero. Constraint (7) indi‐
cates that the energy purchase cost must be greater than or 
equal to the energy sale cost. Constraint (8) demonstrates the 
balance of purchasing and selling energy between the build‐
ing in bus n and the network. Constraints (9) and (10) show 

the balance of active and reactive power in the network, re‐
spectively. Constraint (11) displays the definition of the 
square voltage of the network bus. Constraint (12) relates 
power flow with bus voltages and line current. Constraint 
(13) illustrates the network bus voltage limit, where v̄n = 1.12 
and -v n = 0.92 are the upper and lower limits of the square of 
the network bus voltage, respectively. Constraint (14) shows 
the power balance in the building with a prosumer. Con‐
straint (15) shows the limit of using PV power. Constraint 
(16) demonstrates the remaining energy in the battery. Con‐
straints (17) and (18) display the charging and discharging 
power of the battery, respectively. Constraint (19) shows the 
limit of energy stored in the battery. Constraint (20) illus‐
trates the initial state of energy in the battery. Constraints 
(21) and (22) demonstrate the changes in the real flexible 
load and its range in the demand response program, respec‐
tively. Similarly, constraints (23) and (24) are for changes in 
the reactive flexible load and its range in the demand re‐
sponse program, respectively.

Figure 1 shows the proposed model for load and energy 
management in the active distribution network featuring pro‐
sumers based on PV and ESS and flexible loads.

B. Proposed Hybrid Algorithm

This paper introduces a new hybrid algorithm combining 
MPSO and GA to solve the proposed model. MPSO, simulat‐
ing bird hunting behavior, searches for optimal solutions by 
dynamically adjusting particle velocities in d-dimensional 
space. The MPSO identifies and avoids bad positions, en‐
hancing convergence speed and achieving global optimal re‐

sults. This is expressed by cb
1r2( X k

ij -Bk
ij ) in the update func‐

tion of the PSO. Besides, unlike the classic model of the 
PSO, where the weighting coefficients and training factors 
are considered fixed, in this paper, these coefficients are up‐
dated every time the PSO algorithm is repeated to prevent 
the movement of collective and individual particles toward 
the local optimal positions.

The weighting mechanism possesses the capability to dy‐
namically adjust both the global and local search functional‐
ities of the algorithm. In contrast to the conventional PSO, 
where the inertia weight decreases steadily, providing robust 
global exploration early and potent local search capabilities 
later, it often succumbs to premature convergence. To tackle 
this issue, we have devised a technique to attenuate the iner‐
tia weight factor. In the initial exploration phase, the inertia 
weight factor declines in a non-linear fashion, enriching the 

Clean energy
system

PV

ESS

Power grid

Bus

Pn,t
P

Pn,t
B

Pn,t
G , Qn,t

G

Pn,t
DR, Qn,t

DR

Flexible loads

Fig. 1.　Proposed model for load and energy management in active distribu‐
tion network.

1872



ALAMOLHODA et al.: INTEGRATED LOAD AND ENERGY MANAGEMENT IN ACTIVE DISTRIBUTION NETWORKS FEATURING...

capacity of the algorithm for thorough exploration during 
this stage, thus facilitating an early transition to local search. 
Following this, after k iterations, the inertia weight factor 
shifts to linear decrement, ensuring the stability of the PSO 
algorithm in uncovering optimal solutions. Equations (25) -
(27) show the standard form of the PSO algorithm. The ad‐
justment procedure of the proposed hybrid algorithm is delin‐
eated as (28). Equation (28) means that the algorithm does 
not get stuck searching for local positions, but can perform a 
global search according to individual and collective compo‐
nents. The updates of inertia weight and training factor are 
defined by relations (28) to (32).

ì
í
î

ïï
ïï

F k
ij = 0

X k
ij = rand { }ss

(25)

F k + 1
ij =wF k

ij + cg
1r1(Ak

ij -X k
ij ) + cb

1r2( X k
ij -Bk

ij ) + c2r3(Dk
ij -X k

ij )
(26)

X k + 1
ij =X k

ij +F k + 1
ij (27)

w =
ì
í
î

ïï

ïï

wmin + ( )wmax -wmin l1( )k     k < kmax

2wmin + 2 ( )d -wmin l2( )k      k ³ kmax

(28)

l1(k ) = e
-30 ( )k kmax

15

(29)

l2(k ) =- k
kmax

(30)

cg
1(k ) = (cg

1start - cg
1end ) tan (0.875(1 - ( k

kmax ) 0.6 ) ) + cg
1end (31)

c2(k ) = (c2start - c2end )arctan (2.8 (1 - ( k
kmax ) 0.4 ) ) + c2end (32)

Equation (25) demonstrates the initial value of particle i 
and dimension j at iteration k. For k = 1, the initial velocity 
is zero and the initial position is randomly selected from the 
search space. Equation (26) is the velocity update relation at 
iteration k + 1. Equation (27) shows the new position of parti‐
cles at iteration k + 1. The inertial weight w is calculated 
from (28) and nonlinear relationships (29) and (30). The pa‐
rameters cg

1(k ) and c2(k ) are dynamically adjusted using the 
tangent function (31) and (32) to establish a better balance 
between global and local searches. However, related studies 
illustrate that as the number of PSO iterations increases, the 
diversity of the particle population is easily lost and situated  
in a local optimum.

In this paper, the concept of integrating GA and MPSO is 
explored to solve the proposed model, aiming to enhance the 
population by performing crossover and mutation operations. 
The optimal ability of particles is useful in MPSO and 
causes the algorithm to leave the local optimal point. The 
GA encodes the problem to be solved in a chromosome and 
obtains the optimal solution by optimizing the operations of 
selection, crossover, and mutation of the chromosome.

Crossover combines genetic information from parent solu‐
tions to generate offspring. Mutation introduces random 

changes to maintain diversity. Thus, crossover and mutation 
methods, rates, and parameters should be detailed.

To overcome local optima, we propose a PSO modifica‐
tion inspired by GA mutation. It randomly alters one dimen‐
sion of the position of each particle, expanding exploration 
scope and enhancing the global solution discovery [35]:

ρij = 5·rs    x > 0.95 (33)

A change is triggered when a randomly generated number 
x falls above 0.95, with rs representing a randomly selected 
value between 0 and 1.

The proposed hybrid algorithm merges the randomness of 
GA with the strengths of MPSO for global optimization. Its 
flowchart is shown in Fig. 2. This algorithm is promising for 
the load and energy management in active distribution net‐
works.

III. SIMULATION RESULTS 

A. 33-bus Test Network

In this subsection, we analyze simulation results in a 33-
bus distribution network using a Julia-based algorithmic 
code. The simulations run on a laptop with 16 GB RAM and 
an Intel Core i7 CPU, ensuring efficient execution. Prosum‐
ers are strategically placed at specific locations, each com‐
prising self-load, PV resources, and batteries. Figure 3 visual‐
ly depicts the network layout and prosumer locations, aiding 
in understanding the simulation dynamics.

Load and PV uncertainties are addressed using a scenario-
based stochastic method, with ±20% variations from baseline 
levels. Nodal loads have uniform probability distributions, 
generating 50 equiprobable scenarios. PV uncertainty is treat‐
ed similarly, creating scenarios for unpredictable variations 
[30]. In this paper, equal probabilities (σs) are assigned to 

k=k+1

k=kmax?

Execute mutation operation

Start

End

Set parameters and generate initial

population and velocity randomly (25)

Calculate objective function of problem (5)
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Fig. 2.　Flowchart of proposed hybrid algorithm.
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each scenario. For instance, if 50 scenarios are considered, 
then the probability associated with each scenario will be 
1/50.

The parameter values are configured as follows: 
cg

1end = 0.5, cg
1start = 2.5, c2start = 1, c2end = 3, wmin = 0.5, wmax = 1, 

and kmax = 100.
The simulation results are examined and compared in sev‐

eral different cases, which are as follows.
Case 1: without considering the demand-side management.
Case 2: considering demand-side management with a 5% 

load change.
Case 3: considering demand-side management with a 10% 

load change.

Table II serves as a comprehensive showcase of the out‐
comes derived from the various cases explored within this 
study. The impact of demand-side management on critical 
metrics, including energy losses, voltage levels, peak load, 
and the overall optimization objective function, is unmistak‐
ably evident. The table illuminates the notable improvements 
achieved in these indicators when demand-side management 
strategies are incorporated into the model. One noteworthy 

observation is the discernible enhancement in network indica‐
tors with the progressive increase in variable loads. As vari‐
able loads escalate, there is a consistent trend of improve‐
ment in both the network performance and the behavior of 
prosumers. A compelling example lies in the comparison of 
energy exchange differentials among prosumers across the 
cases. In Case 1, the contrast between energy purchasing 
and selling by prosumers amounts to 17.81 MW, a figure 
that diminishes to 17.05 MW in Case 3. This reduction indi‐
cates a more balanced and efficient energy utilization among 
prosumers, a positive outcome of demand-side management. 
The impact of variable loads on energy losses is also palpa‐
ble. For instance, the energy loss over a 24-hour period in 
Case 1 stands at 194.9 kW, whereas this value decreases to 
167 kW and 143 kW in Cases 2 and 3, respectively. The cor‐
relation between load variations and the reduction of energy 
losses underscores the effectiveness of demand-side manage‐
ment in mitigating energy wastage within the system. Fur‐
ther examination of voltage deviation reinforces the benefi‐
cial effects of demand-side management. In Case 1, the volt‐
age deviation is 0.0632 p. u, and in Case 2, it decreases to 
0.058 p.u.. The trend continues in Case 3, resulting in a fur‐
ther reduction to 0.052 p.u.. This indicates that demand-side 
management plays a pivotal role in maintaining voltage sta‐
bility, which is a crucial aspect of network performance. A 
key achievement highlighted in the results is the absence of 
load shedding in any of the cases. This is attributed to the in‐
clusion of the load shedding cost function in the optimiza‐
tion objective, demonstrating the efficacy of the proposed 
model in adeptly managing load and energy without resort‐
ing to load shedding. This finding underscores the success of 
the demand-side management program in achieving its in‐
tended goals in the context of load and energy management.

Another point that can be expressed in this table is that 
the peak load of the network is also reduced by considering 
the demand-side management. As can be observed, the peak 
load of the network in Case 1 is equal to 420 kW, while that 
in Cases 2 and 3 is equal to 398 kW and 378 kW. The ob‐
tained results demonstrate the optimal performance of the 
proposed model and algorithm in the optimal load and ener‐
gy management in active distribution networks, considering 
prosumers based on PV and ESSs.

Figure 4 compares the battery charging and discharging 
patterns of prosumers across cases, revealing strategic ener‐
gy management. Prosumers charge batteries during off-peak 
periods and discharge batteries during peak periods for eco‐
nomic optimization. This strategy may vary based on individ‐

ual consumption patterns. Some prosumers with excess ca‐
pacity may sell stored energy during high-demand periods, 
but costs must be carefully considered. Overall, Fig. 4 offers 
insights into economic implications and strategic energy 
management.

Figure 5 compares the total load demands of distribution 
network over 24 hours, highlighting a substantial reduction 
in peak load with a 10% load change due to demand-side 
management. Figure 6 compares the average voltages of the 
distribution network, indicating optimal regulation in Case 3. 
Figure 7 illustrates the energy transactions of prosumers, 
with sales during high-demand periods and purchases during 
low-demand periods. Figures 5-7 demonstrate the positive ef‐
fects of demand-side management on network performance, 
voltage regulation, and prosumer transactions.
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262728
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Fig. 3.　Topology of 33-bus distribution network.

TABLE II
COMPARISON OF OPTIMAL 24-HOUR OPERATION RESULTS OF EACH CASE IN 33-BUS DISTRIBUTION NETWORK

Case

1

2

3

Energy loss 
(MWh)

0.1430

0.1670

0.1949

The minimum 
voltage (p.u)

0.9800

0.9780

0.9768

The maximum 
voltage (p.u)

1.032

1.036

1.040

Load shedding 
(MW)

0

0

0

Total electricity sale of 
prosumers (MW)

19.59

19.95

20.30

Total electricity purchase 
of prosumers (MW)

2.534

2.530

2.490

Peak load 
(MW)

0.378

0.398

0.420

CPU 
time (s)

8.0

7.5

5.0
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The simulation results offer a precise evaluation of the 
proposed model and algorithm, revealing the significant im‐
pact of flexible loads on energy transactions of prosumers 
and battery management. Flexible loads optimize energy uti‐
lization and influence network metrics such as peak loads 
and voltage stability. They play a vital role in achieving a 

balanced and efficient distribution network, highlighting the 
effectiveness of the proposed model in enhancing energy effi‐
ciency, cost-effectiveness, and network resilience through de‐
mand-side management.

B. Practical Test Network

In this study, a segment of the Tehran distribution net‐
work, representing an actual and tangible system, serves as 
the focal point for the analysis of the proposed model and al‐
gorithm [29]. The chosen segment is a 13-bus distribution 
network, mirroring the complexities and intricacies of a real-
world distribution network. The network comprises 12 
branches, with the slack bus strategically positioned at bus 1 
and a base voltage set at 20 kV.

This carefully selected configuration provides a realistic 
foundation for evaluating the efficacy of the proposed algo‐
rithm in managing the dynamic interactions within a distribu‐
tion network. The active and reactive peak loads within this 
distribution network are specified at 5.5 MW and 2.8 Mvar, 
respectively, encapsulating the operational characteristics of 
the system under consideration. Distributed generation re‐
sources are strategically embedded within the network, spe‐
cifically at buses 5 and 11. These resources contribute to the 
complexity of the system, introducing variables that demand 
sophisticated management strategies to optimize their integra‐
tion into the network. Crucially, prosumers are strategically 
positioned at buses 3, 6, 9, 12, and 13, representing key 
nodes in the distribution network. Prosumers in this context 
are multifaceted entities, embodying self-load components, 
PV resources, and battery ESS. This diverse composition of 
prosumers encapsulates the evolving landscape of energy 
consumers who actively engage in both consumption and 
production, contributing to the overall dynamism of the dis‐
tribution network.

The simulation results generated through the proposed 
model and algorithm have undergone meticulous examina‐
tion and comparison across various cases. These cases en‐
compass a spectrum of conditions and factors, allowing for a 
comprehensive evaluation of the performance and adaptabili‐
ty of the proposed model. The diverse cases considered in 
the analysis include variations in prosumer behavior, chang‐
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Fig. 4.　Comparison of battery charging and discharging patterns of prosum‐
ers across cases. (a) Case 1. (b) Case 2. (c) Case 3.
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es in distributed generation dynamics, and impacts of differ‐
ent load scenarios on network performance. By scrutinizing 
and comparing these simulation results across multiple cas‐
es, this study aims to provide nuanced insights into the 
adaptability and robustness of the proposed model in address‐
ing the intricacies of a real-world distribution network. The 
choice of the Tehran distribution network as the testbed for 

these analyses enhances the practical relevance of the study, 
ensuring that the findings are grounded in the challenges and 
dynamics encountered in actual urban power distribution sys‐
tems.

Table III systematically details the results derived from an 
in-depth analysis of diverse cases.

The central theme of this study revolves around the trans‐
formative effects of integrating demand-side management in‐
to the studied model, with a pronounced positive impact ob‐
served across key network performance metrics such as ener‐
gy losses, voltage stability, peak load, and the overarching 
objective function. A prominent trend emerges from the tabu‐
lated results, emphasizing the incremental improvements in 
network performance metrics with the progression of vari‐
able loads. This trend applies not only to the broader net‐
work, but also to individual prosumers. For instance, Case 1 
manifests a significant difference of 82.6 MW between ener‐
gy purchase and sale for prosumers. This disparity diminish‐
es to 82.5 MW in Case 3. This reduction reflects more bal‐
anced and optimized energy exchange dynamics among pro‐
sumers, a direct consequence of the implemented demand-
side management strategies. Examining energy losses over a 
24-hour period further underscores the impact of load varia‐
tions. In Case 1, energy losses amount to 260 kWh, but 
those of Cases 2 and 3 decrease to 240 kWh and 210 kWh, 
respectively. This trend highlights a clear correlation be‐
tween load variations and the reduction in energy losses, em‐
phasizing the effectiveness of demand-side management in 
minimizing energy wastage within the network. Voltage devi‐
ation, a critical indicator of network stability, showcases a 
similar pattern. In Case 1, voltage deviation is measured at 
0.094 p.u., while in Cases 2 and 3, it diminishes to 0.083 p.u. 
and 0.07 p.u., respectively. This systematic reduction in volt‐
age deviation illustrates the stabilizing influence of demand-

side management, promoting optimal voltage levels within 
the network. Crucially, the integration of the load shedding 
cost function into the objective function of the demand-side 
management stands out as a significant aspect of the analy‐
sis. This strategic inclusion acts as a safeguard, ensuring that 
load shedding is avoided across all cases. This outcome not 
only aligns with the broader goals of minimizing disruptions 
but also serves as a testament to the efficacy of the proposed 
model in managing energy distribution, network load, and 
prosumer participation in a cohesive and harmonious man‐
ner. The findings from Table III collectively affirm the effec‐
tiveness of demand-side management strategies in achieving 
the intended objectives within the intricate dynamics of the 
modeled energy system.

C. 118-bus System

This subsection presents and analyzes simulation results 
for a distribution network consisting of 118 buses. It focuses 
on prosumers located strategically at various points within 
this network, specifically at buses 12, 18, 24, 31, 38, 45, 57, 
59, 64, 69, 74, 79, 84, 88, 92, 93, 99, 105, 110, 115, and 
117. These prosumers contribute to the network with diverse 
energy components including self-load, PV resources, and 
battery ESS. Incorporating these elements adds complexity 
to the simulation, enabling a more realistic portrayal of a dis‐
tributed energy network [36].

Table IV provides a comprehensive overview of the trans‐
formative influence of integrating demand-side management 
into the proposed model.

It systematically presents outcomes across various cases, 
emphasizing positive effects on key network performance 
metrics such as energy losses, voltage stability, peak load, 

and the overarching objective function. A notable trend 
emerges, highlighting incremental improvements in network 
performance metrics with variable loads, evident both across 

TABLE III
COMPARISON OF OPTIMAL 24-HOUR OPERATION RESULTS OF EACH CASE IN PRACTICAL DISTRIBUTION NETWORK

Case

1

2

3

Energy loss 
(MWh)

0.26

0.24

0.21

The minimum 
voltage (p.u)

0.95

0.95

0.95

The maximum 
voltage (p.u)

1.044

1.033

1.020

Load shedding 
(MW)

0

0

0

Total electricity sale of 
prosumers (MW)

96.0

95.0

94.5

Total electricity purchase 
of prosumers (MW)

13.4

12.5

12.0

Peak load 
(MW)

1.00

0.95

0.90

CPU 
time (s)

4.66

4.91

4.94

TABLE IV
COMPARISON OF OPTIMAL 24-HOUR OPERATION RESULTS OF EACH CASE IN 118-BUS DISTRIBUTION NETWORK

Case

1

2

3

Energy loss 
(MWh)

1.200

1.040

0.887

The minimum 
voltage (p.u)

0.9701

0.9713

0.9732

The maximum 
voltage (p.u)

1.031

1.024

1.020

Load shedding 
(MW)

0

0

0

Total electricity sale of 
prosumers (MW)

148.2

145.6

143.0

Total electricity purchase 
of prosumers (MW)

18.20

18.22

18.50

Peak load 
(MW)

22.71

21.57

20.49

CPU 
time (s)

58

67

81
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the network and at individual prosumers. For example, ener‐
gy purchase and sale differentials decrease from 130 MW to 
124.5 MW with a 10% load change, reflecting optimized en‐
ergy exchange dynamics among prosumers due to demand-
side management strategies implemented. Analysis of energy 
losses over a 24-hour period further underscores the impact 
of load variations, with reductions from 1200 kWh in Case 
1 to 1040 kWh in Case 2 and 887 kWh in Case 3, respec‐
tively, indicating the effectiveness of demand-side manage‐
ment in minimizing energy wastage. Besides, the voltage de‐
viation exhibits a similar pattern, showcasing systematic re‐
ductions with load variations. The integration of the load 
shedding cost function into the objective function of the de‐
mand-side management emerges as a significant aspect, en‐
suring load shedding avoidance across all cases and promot‐
ing cohesive energy distribution management. Overall, the 
findings from Table IV collectively confirm the effectiveness 
of demand-side management strategies in achieving intended 
objectives within the intricate dynamics of the modeled ener‐
gy system.

D. Comparison

In this subsection, we systematically illustrate and substan‐
tiate the superior performance of the proposed algorithm 
when compared with various existing optimization algorithms. 
Through a comprehensive set of empirical analyses and bench‐
mark evaluations, we aim to provide a nuanced understanding 
of how our algorithm outperforms its counterparts in terms of 
efficiency, convergence speed, and solution quality.

In order to validate the comparison with other selected al‐
gorithms, we ensure that equal conditions are maintained 
across the board, which includes using identical network da‐
ta for all algorithms and utilizing the same computer system 
for execution. We also limit the number of iterations at a 
maximum of 100 for each algorithm to maintain consistency. 
Besides, we meticulously select optimal parameters for each 
algorithm. This task is accomplished through multiple itera‐
tions of execution for each algorithm, allowing us to fine-
tune the parameters for optimal performance.

Table V is a comparison of the proposed algorithm with 
the GA, PSO, teaching-learning-based optimization (TLBO), 
Jaya, and gray wolf optimization (GWO) in 33-bus distribu‐
tion network in Case 3.

TABLE V
COMPARISON OF PROPOSED ALGORITHM WITH OTHER ALGORITHM IN 

33-BUS DISTRIBUTION NETWORK IN CASE 3

Algorithm

Proposed

GA

PSO

TLBO

Jaya

GWO

Convergence speed 
(number of iterations)

9

58

36

22

17

29

Energy loss 
(MWh)

0.143

0.163

0.161

0.159

0.157

0.155

CPU time (s)

8

79

56

35

16

25

As can be observed from Table V, the proposed algorithm 
shows a convergence in only nine iterations, which is signifi‐

cantly lower than the other algorithms. This indicates that 
the proposed algorithm reaches a solution much faster than 
the other algorithms. Besides, it can be observed that the pro‐
posed algorithm achieves the lowest energy loss of 0.143 
MWh among all algorithms. This demonstrates the ability of 
the proposed algorithm to find a more efficient solution in 
terms of minimizing energy losses. The CPU time indicates 
how long the algorithm takes to run and produce results. 
The proposed algorithm completes its run in only 8 s, which 
is the fastest among all algorithms. This suggests that the 
proposed algorithm is not only faster in terms of conver‐
gence speed but also more efficiency in terms of computa‐
tional time. In conclusion, the proposed algorithm demon‐
strates superiority over the other algorithms in all three com‐
pared metrics.

Figure 8 illustrates a comparison of convergence speed 
among five algorithms in the 33-bus distribution network. 
As can be observed, the proposed algorithm exhibits the 
most favorable convergence speed, achieving convergence 
within nine iterations while also minimizing energy loss to 
the greatest extent. Overall, Fig. 8 illustrates the superior ef‐
ficacy of the proposed algorithm in minimizing energy loss‐
es within the 33-bus distribution network, requiring the few‐
est iterations to achieve this optimization.

E. Analysis of Scenario-based Uncertainty

A comprehensive analysis of the impact of scenario-based 
uncertainty on energy losses and CPU time across different 
test networks in Case 3 is provided in Table VI.

In terms of energy losses, varying the number of scenarios 
yields mixed results. For the 33-bus distribution network, en‐
ergy losses fluctuate slightly. For the practical distribution 
network, energy losses remain relatively consistent. For the 
118-bus distribution network, energy losses decrease as the 
number of scenarios decreases, indicating that fewer scenari‐
os result in more efficient energy management, with the low‐
est energy losses observed in the case of one scenario.

Regarding CPU time, the trend is more consistent across 
all test networks. As the number of scenarios decreases, the 
CPU time required to solve the optimization problem de‐
creases significantly. This suggests that reducing scenario 
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Fig. 8.　Comparison of convergence speed of different algorithms in 33-bus 
distribution network.
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complexity facilitates faster problem-solving and higher com‐
putational efficiency. This pattern is particularly evident in 
the 118-bus distribution network, where the CPU time de‐
creases dramatically from 214 s in the case of 100 scenarios 
to 45 s in the case of one scenario.

Overall, the analysis underscores the importance of consid‐
ering scenario-based uncertainty in energy management opti‐

mization. While the impact of scenario complexity on ener‐
gy losses may vary depending on the network configuration, 
reducing scenario complexity consistently leads to improved 
computational efficiency. This highlights the necessity for 
careful consideration of scenario selection in energy manage‐
ment decision-making processes to balance accuracy with 
computational resources.

IV. CONCLUSION 

In this paper, an MISOCP model is proposed for optimal 
load and energy management in active distribution networks 
by considering prosumers. A multi-objective function is de‐
signed to improve grid performance and the profitability of 
prosumers, taking into account grid constraints and the un‐
certainty of PV resources along with ESSs. To solve the pro‐
posed model, a powerful hybrid algorithm called MPSO-GA 
is chosen, which has a high convergence capability for solv‐
ing difficult problems. Different distribution networks are 
used for the analysis of the proposed model and algorithm in 
different cases. The simulation results demonstrate that the 
proposed model can reduce energy losses by up to 26.2% 
and reduce the voltage deviation by up to 17.72%, while al‐
so increasing the profit of prosumers based on PV and ESS. 
For future research, the following aspects are suggested.

1) Modeling a multi-level model to reduce costs and in‐
crease network flexibility so that distribution network objec‐
tives are formulated at one level and prosumer objectives are 
formulated at another level.

2) Modeling power-to-gas systems to convert excess ener‐
gy from prosumers into natural gas and sell it to the gas util‐
ity.

3) Modeling of distributed flexible AC transmission sys‐
tem (D-FACTS) devices to improve network indicators in 
the presence of prosumer power changes in the presence of 
renewable energy resources.
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