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High-dimensional Steady-state Security Region
Boundary Approximation in Power Systems
Using Feature Non-linear Converter and
Improved Oblique Decision Tree

Yuxin Dai, Jun Zhang, Peidong Xu, Tianlu Gao, and David Wenzhong Gao

Abstract—The steady-state security region (SSR) offers ro-
bust support for the security assessment and control of new
power systems with high uncertainty and fluctuation. However,
accurately solving the steady-state security region boundary (SS-
RB), which is high-dimensional, non-convex, and non-linear,
presents a significant challenge. To address this problem, this
paper proposes a method for approximating the SSRB in power
systems using the feature non-linear converter and improved
oblique decision tree. First, to better characterize the SSRB,
boundary samples are generated using the proposed sampling
method. These samples are distributed within a limited distance
near the SSRB. Then, to handle the high-dimensionality, non-
convexity and non-linearity of the SSRB, boundary samples are
converted from the original power injection space to a new fea-
ture space using the designed feature non-linear converter. Con-
sequently, in this feature space, boundary samples are linearly
separated using the proposed information gain rate based
weighted oblique decision tree. Finally, the effectiveness and
generality of the proposed sampling method are verified on the
WECC 3-machine 9-bus system and IEEE 118-bus system.

Index Terms—Steady-state security region, boundary sample
generation, feature non-linear conversion, oblique decision tree.

1. INTRODUCTION

ITH the significant increase in the proportion of re-
newable energy and power electronic equipment inte-
grated into the power system, the uncertainty and fluctuation
of the system have risen dramatically, and the operating
mode has become more variable [1]-[3]. As a result, the tra-
ditional pointwise method may no longer be applicable due
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to its high computational demands and low efficiency
(4], [5].

The steady-state security region (SSR), as the set of all op-
erating points on the power injection space that satisfy the
power flow equation and system security constraints, can
provide powerful support for the security assessment and
control of power systems with high uncertainty and fluctua-
tion [6]-[8]. Depending on the security constraints involved,
SSR can be further divided into thermal stability security re-
gion, static voltage security region, and other categories,
each suitable for specific applications [9]. However, due to
the non-linearity of the power flow equation and diverse se-
curity constraints, the steady-state security region boundary
(SSRB) is non-convex and non-linear. Accurately obtaining
the SSRB has become a bottleneck in its application [4].

The theoretical derivation of the SSR is achieved by com-
bining the decoupled power flow equation with the Leray-
Schauder fixed point [10]. In [11], a scalable optimization
framework based on Brouwer’s fixed point is proposed to
estimate the convex inner approximation of the SSR. Addi-
tionally, [12] constructs convex constraints on algebraic sets
defined by equality and inequality constraints and applies
them to power flow feasibility.

The methods mentioned above theoretically derive the
SSR from the power flow equation and its security con-
straints. However, these methods are often conservative and
may fail to include some secure operating points that are of
interest to operators. Therefore, there is a need to develop
SSR solutions with higher accuracy. In [4], SSR is proven to
be uniquely determined, connected, independent of the oper-
ating state, and internally void-free under a given network to-
pology and system component parameters.

Based on the above conclusions, some research works at-
tempt to address the SSRB from a data-driven perspective.
In [13]-[15], the methods for searching critical points and
then utilizing segmented linear approximation to fit the
boundaries are proposed. Additionally, a bootstrap-based
method is proposed for coefficient approximation of the hy-
perplane of the thermal security region boundary [16]. In
[17], a fast method for generating hyperplane expressions for
SSR is proposed and applied to voltage control. All of the

JOURNAL OF MODERN POWER SYSTEMS
AND CLEAN ENERGY



DAI et al.: HIGH-DIMENSIONAL STEADY-STATE SECURITY REGION BOUNDARY APPROXIMATION IN POWER SYSTEMS...

above methods provide boundary expressions by fitting hy-
perplane coefficients. Another idea is to model the boundary
solving problem as a classification problem, thus indirectly
approximating its boundary. Based on this idea, [18] pres-
ents a data-driven method for transient stability assessment.
In [19], a convolutional neural network (CNN) based tran-
sient stability assessment and margin prediction method is
proposed. In other fields, [20] defines the SSR of multi-ener-
gy systems and provides a solving method. A method for
constructing SSR in distribution systems with high penetra-
tion of distributed energy resources is also proposed [21].

Nevertheless, accurately solving the SSRB remains chal-
lenging. This is due to the non-linearity of the power flow
equation in AC systems and the numerous complex security
constraints, making SSRB non-convex and non-linear. With
the increasing size of power systems and the growing num-
ber of power electronic devices connected to the grid, these
problems are further aggravated. As a result, the aforemen-
tioned methods often suffer from significant errors. Mean-
while, the methods proposed above are challenging to be ap-
plied to solve high-dimensional SSRB.

In recent years, deep neural networks (DNNs) [22] have
been widely utilized in various areas of power systems such
as transient stability assessment [23], [24], fault diagnosis
[25]-[28] and load forecasting [29]-[31] due to their power-
ful ability to extract non-linear features. Consequently, we
anticipate that DNNs will also be effective in capturing the
non-linear relationships between variables and boundaries in
the high-dimensional power injection space. However, this
poses new challenges as DNNs are end-to-end models which
cannot present the learned boundary information to humans.
Besides, decision trees (DTs) and their derivative algorithms
have gained significance in the field of power system securi-
ty assessment [32], [33], as they offer an inherent model
mechanism that can be easily converted into boundary ex-
pressions for subsequent security assessment and control.
However, DTs are essentially linear classification models
and may not perform satisfactorily on non-linearly separable
datasets, thereby limiting their application scope.

Based on the analysis presented above, combined with the
SSR property proven by [4], this paper proposes a high-di-
mensional SSRB approximation method using the feature
non-linear converter and improved oblique DT. The contribu-
tions of this paper can be summarized as follows.

1) For the high-dimensional, non-convex, and non-linear
SSRB, a novel SSRB approximation framework via the fea-
ture non-linear converter and information gain rate based
weighted oblique DT (IGR-WODT) is proposed.

2) An improved sampling method is proposed to search
for boundary sample pairs which are distributed near the SS-
RB in order to facilitate the subsequent model to better learn
the characteristics of SSRB.

3) The DNN-based model is designed to address the non-
linearly separable issue within the dataset, and IGR-WODT
is employed to approximate SSRB.

4) The proposed sampling method successfully approxi-
mates the high-dimensional SSRB and reduces the error be-
tween the approximated boundary and the actual one, which
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are verified on the WECC 3-machine 9-bus system and
IEEE 118-bus system.

The remainder of this paper is organized as follows. Sec-
tion II first introduces the SSR model of power systems. Sec-
tion III details high-dimensional SSRB approximation. Sec-
tion IV presents the case study. Finally, Section V summariz-
es the paper.

II. SSR MODEL OF POWER SYSTEMS

The SSR model of power systems is defined as the set of
points satisfying the power flow equation and operating secu-
rity constraints [10]. It can be expressed as:

RNZRUHRPHRQHRP))
¢ :0
Ry= |x #(x.)
Uum<usu™ VieN
gl :0
R - {x #x.) | }
Pg,min,iSPg,iSPg.max,i VZ € Ng (1)
{ $x.9)=0 }
Ry=1x ;
ngmin,iSQgJSQgA,max,i VI € Ng
#(x,y)=0
RP =31X max max ;o
’ —P)N <P, <SP, VijeN

where R, is the static voltage security region satisfying the
voltage constraints; R, is the static generator active output
security region satisfying the generator active output con-
straints; R, is the static generator reactive output security re-
gion satisfying the generator reactive output constraints; R,

is the branch thermal stability security region satisfying the
system branch transmission power constraints; R is the
whole SSR, which shows the intersection of R,, R, R,
and R, ; y is the state variable vector; x is the power injec-

tion vector; @(x,y)=0 is the AC power flow equation in pow-
er systems; N is the set of system buses; N, is the set of sys-
tem generators; U™ and U™ are the lower and upper volt-
age limits of the i™ bus, respectively; Py in; and Py oy are
the lower and upper limits of active output of the i™ genera-
tor, respectively; Q, .., and O, .., are the lower and upper
limits of reactive output of the i™ generator, respectively;
and P77 and P77 are the forward and reverse transmis-
sion power limits of the branch connected buses i and j, re-
spectively.

In the case of approximating local balance of reactive
power, only the SSR under active power injection needs to
be considered.

R, = {x,,\x c RUHRPHRQOR&}

, , 2
xp=|P,.P,] VieN.VjeN

where x= [xp,xQ]; x, is the active power injection at each

bus; x,=c is the reactive power injection at each bus and ¢
denotes a constant vector; P,; is the active power output of
the i" generator; and P,; is the load value of the /" bus.

The SSR in the active power injection space is studied as
the set of operating points at which various security con-
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straints are satisfied by the system unit combinations and
load demands under a specific reactive power configuration.
As proven in [4], the SSR is uniquely determined, con-
nected, and independent of the operating state, and it is inter-
nally void-free under a given network topology and system
component parameters. Consequently, if an operating point
in the active power injection space is situated within the
SSR and it slowly changes its active power injection in a
quasi-steady state form along either direction, it will eventu-
ally reach the security region boundaries. The region en-
closed by these boundaries constitutes the SSR. Therefore, it
is feasible to initiate from certain points within the SSR and
find sufficient boundary points to approximate the boundary.

III. HIGH-DIMENSIONAL SSRB APPROXIMATION

In large-scale power systems, SSRB is high-dimensional,

Boundary sample set generation

LHS with constraints

DNN-based feature non-
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non-convex, and non-linear,

As illustrated in Fig. 1, this paper models the boundary
solving problem as a binary classification problem. If the
classification model can accurately distinguish between se-
cure and insecure samples, it can be regarded as an approxi-
mation of the actual boundary. Subsequently, the proposed
IGR-WODT is transformed into the form of boundary hyper-
planes to accomplish boundary approximation. In Fig. 1,
Conv1D(:) represents a CNN layer; x is the input data; w, is
the weight parameters of CNN; x, is the output of CNN lay-
er; x, , and x, are the outputs of the (i—1)™ and i™ layers, re-
spectively; Ny is the number of secure samples within N,
samples; relu(-) and sofimax(-) are the activation functions of
neural network; z is the vector in the feature space; and y is
the output of the whole neural network.

Obliqued DT-based boundary

linear converter linear approximation

Pg,out,i+Ps,min<PI_,i<Pg,out,i+P:,max 3
Initial sample set .
S={(x,, s xiz[Pg,i’ PL,i]’ ¥70,=1,2, ..., Ny} .

Boundary sample search

x,=Convl1D(w, x)

x=relu(w; x; ;)
z=relu(w;,,, x;), zeR3
y=softmax(z)

i

Resample N, samples while the stop condition
is not reached

l

Boundary sample set

SB={(xs,ia Vs Xup Yui)s =1, 2, ..., Ng}

3 (¢ )=, 0,x,, 5, 1), and [[x, ~x, [P<¢

Fig. 1. Framework of high-dimensional SSRB approximation.

The whole work consists of two parts. () Boundary sam-
ple set generation: the aim of this part is to search for a
large number of boundary sample sets that are distributed
near the SSRB, thereby providing a suitable dataset for the
training and testing of the subsequent classification model.
To address the issue of unbalanced samples and uncontrolled
distances of samples from the boundary in traditional sam-
pling methods, firstly, the generator output and load values
are sampled using the improved Latin hypercube sampling
(LHS) algorithm to form the initial sample set. Then, the
boundary sample search is performed, and a resampling
mechanism that considers sampling gaps is proposed to ulti-
mately form the boundary sample set. 2) High-dimensional
SSRB approximation: this part is based on the generated
boundary sample set, training a classification model, and
then converting the model into the form of boundary hyper-
planes. Given the non-linear separability of the boundary
sample set in high-dimensional SSR, firstly, the original pow-
er injection space is converted into the feature space by the
feature non-linear conversion using DNNs. The samples in

I I ) !
i i
space a |
V(0720 Boundgry ! |
Z3i . V|1 0%z<0 2 trgslatlon ¥
I\f‘"\% e . N p or . k.'l'- : 3
fv Zi|i 1 (0120 L o
Z Vo 03Tz>0 4 v > ! :
Lo 3 !
Co !

the feature space are approximately linearly separable. Sec-
ondly, in the feature space, the security region boundary is
linearly fitted based on the proposed IGR-WODT. Then, the
SSRB is obtained by the trained IGR-WODT and conserva-
tively translated to ensure the security of the boundary. Final-
ly, the fitted SSRB is evaluated and verified on a large num-
ber of randomly generated operating points.

A. Boundary Sample Set Generation for SSR

1) Initial Sample Set Generation

In the initial sample set generation process, the generator
output is first sampled based on the LHS algorithm. Specifi-
cally, we set an N nodal power system containing N, load
nodes and N, generators. The lower and upper limits of the
J™ generator output are shown in (3).

|:Pg,min,j’Pg,max,ji| J=L2 ""Ng 3)

We first define the sampling number of initial sample set
as N,,, and then, we sample the generator output data based

init>

on the LHS, as denoted in (4).
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Pg‘l‘l Pg.,l.Z Pg‘l‘NH
P P o P
22,1 222 g2, N,
P " : “
Pg-,N”,,-l ngN 2 Pg-,Nm,,-NQ

where P, ; is the /" generator output in the i" sample.
Py <Py <Pyne; Virj

& min,j ij & max,j (5)

In this paper, samples located within the security region
are defined as secure samples and labeled as 0. Conversely,
samples outside the security region are defined as insecure
samples and labeled as 1. As the proposed sampling method
in this paper requires searching for boundary samples based
on a significant number of secure samples, it is essential to
increase the proportion of secure samples among N,, sam-
ples. To this end, this part proposes a method for sampling
load values that considers the constraints of the generator

output. Specifically, for the i sample, the total generator
NA’

output is P, ;= ZP&”, and the upper and lower limits of
j=1

the generator output at the slacking bus are set as P
P

s, min and
respectively. The total sampling value of N, load
N,

5, max?

nodes is set to be P, ,= > P, ,, where the P, is the load

j=1
value of ;™ load bus in the i™ sample. To meet the output
constraints of the generator at the slacking bus without con-
sidering the network loss, it is necessary for P, ; to satis-
fy (6).

P, it P <P, <P Pomw VP, 20,j=1,2,..,N,

’ 6)

The constraints in (6) enclose a convex hyper-polyhedron
in the N-dimensional space. To achieve uniform sampling of
load values inside the hyper-polyhedron as above, the prob-
lem is modeled as sampling the N-dimensional vectors in
the hyper-polyhedron, as shown in (7).

g.out,i g out,i +

AP,<b (7)
where A e RY*2N g the hyperplane normal vector;
P, e R"*" represent the variables to be solved; and
b e R™M**i5 a constant vector.

Step I: construct the linear objective function as:
N,
f( /) mln; Li (8)

s.t. AP,<b
The optimal solution P,,, which is the initial value of P,
is obtained using the linear programming method. P, is a
vertex of the hyper-polyhedron represented by (7), as shown
in Fig. 1.
Step 2: solve the center of the hyper-polyhedron with P, .
For this purpose, we construct a non-linear optimization

problem.
N+2

P/,cerz:minH(Ai,:Pl_bi) (9)

s.t. AP,<b
where A, is the i" row vector of matrix 4; and b, is the i"
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feature of b.

Step 3: as shown in Fig. 1, we randomly initialize a sam-
pling direction u e R"™'. Let the line passing through the
center point P, ,, with a line direction vector u € R**' be de-
noted as r(t)=P, ., +tu, u & A. Then, we solve for the inter-
section points between the line r(¢f) and the convex polytope
Ax=b, i.e.

b—AP

O=P,,+ — “"u (10)

where O represents the intersection point of the line »(f) and
the N,+2 hyperplanes represented by Ax=5b. In fact, among
those N,+2 intersection points, only two are on the convex
polytope, denoted as O, and O,.

b _APl,cen
"= Au
w,=w[Au>0] (11)
w,=w[Au<0]

where Au represents the projection of the line direction vec-
tor u onto A; and w[Au>0] and w[Au < 0] represent that the
values of w correspond to the indices in Au where the fea-
tures are less than and greater than 0, respectively. The posi-
tive or negative value of Au indicates whether the intersec-
tion points are located in the direction of u or —u with re-
spect to P, respectively, as shown in Fig. 1. Thus, the
points O, and O, can be calculated as:

olzmax( wn)
02:min(wp)
0,=P
0,=P
Step 4: make uniform sampling among the points O, and

0,, as shown in Fig. 2, i.e., randomly generate x €[0, 1], to
obtain the sampling points as:

Pl,sam:PI,cen+ (01—1—/[(02—01))”

(12)
+o,u
+o,u

Lcen

Lcen

(13)

z

Py,
y

Fig. 2. Sampling process of initial samples.

Following Steps 1-4, the load values in N,, samples are
obtained. The secure samples within N,, samples are select-
ed and formed into the initial sample set, S=

(xi,O),ie 1,2,...,Ng, where x,= [P PLJ.], and P,, is the

&i’
generator output vector of the i sample, and P, is the load
value vector of the i sample.
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2) Boundary Sample Search

As shown in Fig. 3, the problem of SSRB solution is mod-
eled as a binary classification task, which requires a labeled
dataset for supervised learning model training. However, the
dataset generated by traditional sampling methods such as
Monte Carlo sampling (MCS) and LHS is usually unbal-
anced. Moreover, the generated samples are often far away
from SSRB, failing to accurately reflect the real characteris-
tics of SSRB. To address these issues, this part proposes a
boundary sample search algorithm. For each sample x; with-
in the initial sample set S, a secure sample x,, and an inse-
cure sample x,; are searched by Algorithm 1. x ; and x,; sat-
isfy:

‘<¢ (14)

where |-|° denotes the two-norm of vectors; and & is the
boundary distance threshold, which represents the maximum
Euclidean distance of boundary sample pairs. This threshold
can be set according to engineering requirements, as shown
in Fig. 3, where P, and P, represent a two-dimensional pow-
er injection space. Finally, the boundary samples set S, is
generated by Algorithm 1.

" xu.i_xs,i

@ Initial secure sample
P, e Boundary secure sample
s Boundary insecure sample
Large sampling gap
® Resampled boundary secure sample
* Resampled boundary insecure sample

Security region __wm\ X,
P - xs,i
X;

Boundary sample search and resampling mechanism.

Fig. 3.

Algorithm 1: boundary sample search

Input: S, & and initial step size 4,

1: Sample Ng power growth direction vectors based on LHS. Each direc-
tion vector is normalized to form the direction vector matrix
UeR"™

2: for x; in S do

3 ;”r:j'r,m

4:  while x, in the security region do

S: x;=x,+1U,;

6: end while

Tox=x,,-0,U, x, =X,

8:  while [|x,,—x, |I'>& do

9: A,=1/2A,

10: x,,=x,—AU,

11: if x,, is not in the security region then

12: X i =X i Xy i =Xy i

13: else ' '

14: x,,=x,,+LU, x,,=x,,+1,U,

15: end if

16: end while

17: Store (x,,,

18: end for

Output: S,

0), (x,, 1)in S,

u,ir
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As mentioned in Section II, SSR is uniquely determined,
connected, and internally void-free under a given network to-
pology and system component parameters. Therefore, when
starting from a secure sample and slowly increasing the in-
jected power in a quasi-steady state, the SSRB must be en-
countered. Thus, the convergence of the Algorithm 1 is guar-
anteed when the /, is set appropriately.

3) Resampling Mechanism Considering Sampling Gaps

After the boundary sample set is formed, certain security
region boundaries may still have large sampling gaps, which
leads to the situation that subsequent models inaccurately es-
timate the boundaries of these regions [34], as shown in Fig.
2. To this end, this paper proposes a resampling mechanism
that considers the sampling gap based on the boundary sam-
ple set. Specifically, all the secure samples in the boundary
sample set are extracted to form a matrix X, =

T
NgxN, . . .
[xm,x&z, ...,xS.NJ e R™*". The distance matrix D, is then

dist
constructed by calculating the pairwise Euclidean distances
between N samples.

As shown in Fig. 3, for the sample x, ;, we set the mini-
mum value of the distance from the other samples as D
min(Dd[S,’ [_,:) =D
A. When D ;> A, it is necessary to resample N, samples be-
tween the sample x,, and x_ ;. Then, we search for the bound-
ary sample pair according to Algorithm 1 and add them to
S;. Typically, we perform resampling for N, rounds.

min, i —

disei- We set the maximum sampling gap as

B. Feature Non-linear Conversion and Boundary Linear Ap-
proximation

Due to the high-dimensionality, non-convexity, and non-
linearity of the SSRB, the boundary dataset generated above
is non-linearly separable. This poses a challenge to accurate-
ly approximate the boundary using linear classification meth-
ods such as DTs. Therefore, this paper proposes a method to
convert the boundary samples from the original active power
injection space to a 3-dimensional feature space. This is
achieved by designing a non-linear feature converter, which
renders the sample set linearly separable and simultaneously
facilitates visualization. Ultimately, the security region
boundary is linearly fitted in the feature space, and the
boundary conservative translation is performed to enhance
its security. This translation is crucial in achieving a more ac-
curate and reliable SSRB.

1) Feature Non-linear Conversion Using DNNs

DNNSs possess an exceptional ability for non-linear approx-
imation. Through multi-layer non-linear transformations,
DNNs progressively model the original data and map it onto
a space that is nearly linearly separable. In this subsection,
we convert the original power injection space into a 3-dimen-
sional feature space using different types of DNNs. Depend-
ing on the dataset, diverse DNNs can be chosen to achieve
optimal results.

In this subsection, we introduce two types of feature non-
linear converters. (D Type 1: a converter based on fully con-
nected neural networks (FCNs). FCN is a simple type of
neural network that can serve as a feature non-linear convert-
er when dealing with low-dimensional features and a small
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number of samples. @ Type 2: a converter based on 1-di-
mensional CNN (1D-CNN). CNN incorporates convolutional
processing of features into DNNs and is more suitable for
processing higher dimensional data. For the datasets with
higher feature dimensions and larger volumes of data, more
complex neural networks such as transformers [35] can also
be used as feature non-linear converters.

As an illustration, we will use the type 2 converter to
demonstrate the conversion of the power injection space
X e R" into the feature space Z € R>. The feature non-linear
converter based on 1D-CNN is depicted in Fig. 4.

e
9
o

,'/ >.<—
¥

ZER?

Fig. 4. Feature non-linear converter based on 1D-CNN.

2) Boundary Linear Approximation Using IGR-WODT

As mentioned above, DNNs are used as a feature non-lin-
ear converter to enhance the linear separability of the datas-
et. In this part, the boundary linear approximation using IGR-
WODT in the feature space is performed.

IGR-WODT is improved by WODT [36], [37]. The objec-
tive function of WODT is based on weighted information en-
tropy, which can be influenced by the number of samples
and may not be optimal for model training. Therefore, IGR-
WODT uses the information gain rate as its objective func-
tion instead. For a labeled binary classification dataset S, =

{(207)(22092). 220720, ) |, IGR-WODT firstdivides

the training set S_ into two subsets based on a logistic regres-
sion model, and recursively generates child nodes based on
the divided subsets until the terminal condition is satisfied.
Specifically, at each node, IGR-WODT calculates the proba-
bility that the /"™ sample belongs to the left subset p* versus
the right subset p¥, which is expressed as:

pi=o(-07z)=—
l+e

pr=1-0(-0"7)=

0"z,
1
1+e?

(15)

where z, is the i sample of S_; ¢(-) is the sigmoid function;
0 cR*' is the vector of model parameters (including a bi-
as), which needs to be continuously updated during the mod-
el training process. When p~>0.5, the i™ sample is classified
as belonging to the left subset; when pf>0.5, the i" sample
is classified as belonging to the right subset.
The weights of each sample set are defined as:
wi=p;
=p}

” 19
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Therefore, IGR-WODT defines 2 datasets associated with
sample weights as:

.= {(zovowt)|(z.0,) €5.]
o= {2018 (z,,) 5.}

IGR-WODT calculates the empirical entropy H (SZ) of the
dataset S_, and the conditional empirical entropy H (Sz|0) of

(17)

the dataset S, under the division of 0"z.

K
EAPEA
H(S,)== > —log,;—
(8)==2>, 5. °%s.
(18)
m(s10)= S (s) el s,
SZ SZ
where |S, | is the number of samples in the dataset S,, which
is equal to 2N; and |Sk is the number of samples in the da-
taset | S, | with the category £:
Sif= 2w
(x,,y,,wf) €S,
|SR = 2 wi
(xl.y,,w,R) €S,
Kk Wk (19)
H =— > L L
(8.) ;\SJ s,
K Wk Wk
H == =1 =
&)= 2" s
wi= D I(v=k)w
(xn}’,sW:L) €S, (20)
Wi= 1(y=k)wt
(x Y WIR) €S,

where /() is the indicator function; W/ represents the sum of
w’ corresponding to the samples of category k in set S,; and
W represents the sum of w® corresponding to the samples
of category k in set S,.

As shown in (18) and (19), H(S.), H(S]0), H(S,), and
H (S R) are all calculated based on the probabilities of the i
sample belonging to the left or right child node.

IGR-WODT defines the information gain rate as:

H(S,9)
gn(0) = ——=~
7 h(e)

To avoid overfitting of the model under each node, the
regularization term L, is introduced and the final model ob-
jective function expressed as:

_H(sJe) )
L(ﬂ)—iH(Sz) +n @

where 7 is the coefficient of the regularization term L,.

To optimize the objective function L (@), IGR-WODT em-
ploys the improved Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm [37] to obtain the optimal parameters
0,,,=argmin L(@). Thus, the dataset S, is divided into left

o2y

(22)



1792

and right subsets S; and S; using the parameters 8,,,. The
details of IGR-WODT algorithm are shown in Algorithm
SA1 in Supplementary Material A.

Then, we extract the decision parameters, i.e., #, from
IGR-WODT to construct the SSRB hyperplane in the feature
space. Algorithm SA2 in Supplementary Material A provides
a detailed depiction. The essence of the Algorithm SA2 lies
in identifying all decision paths within IGR-WODT that lead
from the root node to the leaf node labeled as 0. These paths
are then transformed into a combination of hyperplanes by
converting @ of all the nodes along these paths.

IV. CASE STUDY

This section validates the effectiveness and generality of
the proposed high-dimensional SSRB approximation model
on the WECC 3-machine 9-bus system and IEEE 118-bus
system using PYPOWER [38]. The system component pa-
rameters and steady-state security constraints, such as the up-
per and lower limits of generator output, are referenced from
[38]. The upper voltage limit is set to be 1.05, and the lower
voltage limit is set to be 0.95. All experiments are imple-
mented on a Linux workstation equipped with an Intel™ Xe-
on™ Gold 6132 2.60 GHz CPU processor.

A. Case 1: WECC 3-machine 9-bus System

As shown in Fig. 5, the WECC 3-machine 9-bus system
contains 3 generators (G1-G3) and 3 load nodes. Bus 1 is
set as the slacking bus. The active power injection space in

WECC 3-machine 9-bus system is [ngz,Pg_VS,P,YS,P,’7,P,’9].

Bus 8
Bus 2 7=0.0085+j0.072 LZ—0.0119+j0.1008‘ Bus 3
@ IZ:]0.0625 B=j0.149 | B=j0.209 7=i0.0586 I @

7=0.032+j0.161 Z=0.039+j0.17
B=j0.306 B=j0.358

Bus 7 Bus 6

Bus 9 — — Bus 5

7=0.014j0.085
B=i0.176

7=0.017+j0.092
B=j0.158

. Bus 4
7=j0.0576

—+—Bus 1

@

WECC 3-machine 9-bus system.

Fig. 5.

1) 2-dimensional Active Power Injection SSRB Analysis
To demonstrate the non-convexity and non-linearity of SS-
RB in power systems intuitively, we first study the SSRB in

the power injection space [P,.S,P,.g}, i.e., we set [Pg.z,Pgﬁ,

PH} as constant values.

The boundary samples are searched according to the meth-
od proposed in Section III and shown in Fig. 6. Figure 6(f)
depicts the whole SSR, which is the intersection of the static
voltage security region, the generator output security region,
and the branch thermal stability security region. This region
is closed, with non-convex and non-linear boundaries, mak-
ing it challenging to directly separate the boundary dataset.
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Fig. 6. 2-dimensional SSRB samples on WECC 3-machine 9-bus system.
(a) Upper boundary samples of node voltages. (b) Lower boundary samples
of node voltages. (c¢) Upper boundary samples of generator outputs. (d)
Lower boundary samples of generator outputs. (¢) Boundary samples of
branch thermal security. (f) Whole SSR.

We further analyze the impact of different setting values
of upper and lower voltage limits on the characteristics of
the SSRB. When the voltage range is set between 0.98 p.u.
and 1.02 p.u., the 2-dimensional SSRB samples is presented,
as shown in Fig. 7.

300
senagpynns
250} Ny,
200} \
= 150} ‘\
=
2100} \
o 4
50+
* Secure sample ?
ol *Insecure sample L
-50 . . . . . )
50 100 150 200 250 300 350
P, s (MW)
Fig. 7. 2-dimensional SSRB samples when voltage range is set between

0.98 p.u. and 1.02 p.u..

Compared with Fig. 6(f), the boundary shape has changed
significantly, with the non-convex and non-linear characteris-
tics further highlighted. This is because the non-linear map-
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ping relationship between the static voltage security region
and the power injection space is more complex than that of
the security region of branch thermal stability and the gener-
ator output security region. Therefore, the stricter the system
requirement for the voltage range is, the more complex the
SSRB characteristics will be.

Therefore, even if the boundary is approximated by seg-
mented linear approximation, the error can still be signifi-
cant, especially in high-dimensional spaces. To address this
issue, the original power injection space needs to be convert-
ed into a new feature space using the feature non-linear con-
verter, and then the linear approximation of the boundary
can be performed.

2) SSRB Approximation for WECC 3-machine 9-bus System
Under Active Power Injection

For the WECC 3-machine 9-bus system, SSRB under ac-

tive power injection is 5-dimensional. The power injection

P P1,57P1,77P1,9]-

We first generate the initial samples using the proposed
sampling method. To validate the efficiency of the proposed
sampling method, we compare it with the LHS, MCS, impor-
tance sampling (IS), and Markov chain Monte Carlo sam-
pling (MCMCS). The proportion of secure samples in the ini-
tially generated samples is used as the benchmark for the
evaluation. The experiments are performed with five differ-
ent random seeds, and the results are presented in Table I.

g2°" g3

space is [P

TABLE I
COMPARISON OF DIFFERENT SAMPLING METHODS IN WECC 3-MACHINE
9-BUS SYSTEM

Proportion of secure

Method Number of secure samples samples (%)
Proposed 17402 £ 61 87.01+0.31
LHS 1885+ 66 9.43+0.33
MCS 1873£26 9.37+0.13
IS 1986 +£46 9.93+0.23
MCMCS 1894+53 9.47+0.26

Table I demonstrates that the proposed sampling method
yields a considerably higher proportion of secure samples in
the sampled dataset compared with traditional LHS, MCS,
IS, and MCMCS methods. After generating the initial datas-
et, Algorithm 1 is used to search for boundary samples. A to-
tal of 17437 pairs of samples are obtained. After 10 rounds
of resampling, additional 5241 sample pairs are added to
form the final boundary sample set.

Since the dimension of the SSRB under active power in-
jection space for the WECC 3-machine 9-bus system is 5, an
FCN with three hidden layers (64, 16, 3 neurons) and one
output layer is chosen as the feature non-linear converter.
The Adam optimization algorithm is selected for training.
The boundary sample pairs are split into training and valida-
tion sets according to 8:2.

After 1000 rounds of training, the optimal model is select-
ed, and feature conversion is performed. Figure 8 shows SS-
RB and sample distribution in 3-dimensional feature space.
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With the dataset in the feature space, the original dataset can
be divided accurately by a finite number of hyperplanes.

20 1.0
+Secure sample; « Insecure sample

Fig. 8. SSRB and sample distribution in 3-dimensional feature space.

Therefore, the training and validation sets are converted
into the feature space by the trained FCN model respective-
ly, and the boundaries are fitted using IGR-WODT. The max-
imum depth of IGR-WODT is set between 1 and 4, and the
L, regularization coefficient 7 is set to be 107

To test the validity of the boundary in a more general
way, 20000 samples (not boundary samples) are generated as
the test set based on the proposed sampling method. The ac-
curacy P, precision P, , and recall rate P, are also intro-
duced to evaluate the model performance, which are calculat-
ed as (23).

p To+T)y
we T+ Ty+Fy+F,
Ty
pre Tp + FP (23)
Ty
Prec_ TP+FN

where T, is the number of samples labeled as secure and
judged as secure; T, is the number of samples labeled as in-
secure and judged as insecure; F is the number of samples
labeled as secure and judged as insecure; F, is the number
of samples labeled as insecure and judged as secure; P, is
the proportion of correctly classified samples in the dataset
and reflects the overall performance of the proposed sam-
pling method; P, is the proportion of samples that are truly
secure among those classified as secure by the model, re-
flecting the security of the fitted boundary; and P, is the
proportion of secure samples that are correctly classified in
the dataset, reflecting the conservativeness of the boundary
to some extent. In this paper, it is crucial to minimize the
number of insecure samples classified as secure samples,
i.e., minimize F,, thus a conservative translation of the fitted
boundary is required.

Table II presents the model performance on WECC 3-ma-
chine 9-bus system, presenting the performance of each mod-
el on the training, validation, and test sets. In Table II, UDT
represents univariate DT. UDT without FNC and IGR-
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WODT without FNC represent that DT models split the orig- ers.
inal dataset directly without using feature non-linear convert-
TABLE 11

MODEL PERFORMANCE ON WECC 3-MACHINE 9-BUS SYSTEM

Model Depth Training set Validation set Test set
P ace P pre P rec P ace P pre P rec P ace P pre P rec
1 0.9907 0.9876 0.9938 0.9881 0.9843 0.9921 0.9957 0.9967 0.9983
2 0.9924 0.9869 0.9982 0.9898 0.9830 0.9967 0.9959 0.9966 0.9987
ubT 3 0.9943 0.9933 0.9953 0.9929 0.9923 0.9936 0.9959 0.9981 0.9972
4 0.9946 0.9947 0.9945 0.9922 0.9929 0.9914 0.9956 0.9986 0.9963
1 0.5637 0.5340 1.0000 0.5648 0.5347 0.9998 0.8717 0.8719 0.9998
UDT without FNC 2 0.6049 0.5586 1.0000 0.6058 0.5592 1.0000 0.8715 0.8719 0.9994
3 0.6412 0.5822 1.0000 0.6438 0.5840 1.0000 0.8715 0.8718 0.9991
4 0.6412 0.5822 1.0000 0.6438 0.5840 1.0000 0.8712 0.8718 0.9991
1 0.9944 0.9936 0.9953 0.9929 0.9927 0.9932 0.9957 0.9985 0.9965
IGR-WODT 2 0.9944 0.9937 0.9951 0.9931 0.9927 0.9934 0.9957 0.9985 0.9965
3 0.9944 0.9924 0.9964 0.9923 0.9938 0.9938 0.9957 0.9985 0.9965
4 0.9946 0.9943 0.9949 0.9926 0.9923 0.9929 0.9957 0.9985 0.9965
1 0.5637 0.5340 1.0000 0.5648 0.5347 1.0000 0.8717 0.8719 0.9998
IGR-WODT without 2 0.6049 0.5586 1.0000 0.6058 0.5592 1.0000 0.8715 0.8719 0.9994
FNC 3 0.6411 0.5821 1.0000 0.6438 0.5840 1.0000 0.8713 0.8718 0.9992
4 0.6638 0.5980 1.0000 0.6642 0.5983 1.0000 0.8713 0.8718 0.9992
Translated boundary 0.9563 0.9998 0.9129 0.9559 0.9993 0.9124 0.9865 0.9999 0.9846
As shown in Table II, DT models using feature non-linear 12.5
converters exhibit significant improvements in performance
compared with DT models that do not use feature non-linear 10.0
converters. The former achieves an accuracy of about 99% o
for the validation set, while the latter only achieves about g 73
66%. The former also shows an accuracy improvement of g 50
about 12% for the test set. These results confirm the superi- =
ority of the proposed sampling method in solving non-con- 25
vex and non-linear SSRB. Moreover, when using feature
non-linearity converters, the proposed IGR-WODT outper- - . -
forms UDT. 0 0.2 '0.4 0.6 0.8
. . T Distance
IGR-WODT achieves high accuracy across all indicators
Fig. 9. Distance distribution of insecure samples within security region

at the depth of 1, with an accuracy exceeding 99.29% in the
training, validation, and test sets. Therefore, IGR-WODT
with the depth of 1 is selected as the boundary approxima-
tion model, and its security region boundary under the fea-
ture space is shown in (24), which is constructed using Algo-
rithm SAII of Supplementary Material A.

—0.5654z, -9.0060z, + 8.7684z, > 0.1745 (24)

To enhance the ability of the model to distinguish inse-
cure samples more accurately, the boundary is conservatively
translated. This means that the insecured samples, currently
designated as security by the existing boundary, are reclassi-
fied as outside the security region.

Specifically, the distance between insecure samples within
the current security region of the training set and the current
SSRB is calculated. There are 117 insecure samples within
this region, and their distances from the current boundary
are presented, as shown in Fig. 9. and the depth color repre-
sents the magnitude of corresponding values.

from boundary for WESS 3-machine 9-bus system.

As shown in Fig. 9, 99% of the insecure samples within
the security region are distributed within the distance of 0.35
from the current SSRB. Therefore, the SSRB is translated by
0.35 towards the non-security region. The new SSRB is
shown in (25) and visualized in Fig. 8. It is evident that the
plane effectively distinguishes the secure samples from the
insecure ones.

—0.5654z,-9.0060z, + 8.7684z,>4.5775 25)

The performance on datasets under the new boundary is
shown in Table II. After applying the aforementioned bound-
ary conservative translation, it is evident that the precision
on the test set has improved significantly, reaching above
99.99%, which indicates an increase in the reliability of the
fitted boundary. Furthermore, the accuracy and recall rate on
the test set also reach 98.65% and 99.26%, respectively, veri-
fying the rationality and effectiveness of the proposed sam-
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pling method.

To further evaluate the computational efficiency of the
proposed sampling method, we compare it with the point-
wise method by calculating the time required for each meth-
od to classify the state of 20000 samples in the test set. The
results shown in Table III indicate that the proposed sam-
pling method is nearly 2600 times faster than the pointwise
method, taking only 0.2 s to classify 20000 samples, which

1795

performed with five different random seeds. The results are
investigated, as shown in Table IV, where the proportion of
secure samples generated by the proposed sampling method
is significantly increased.

TABLE IV
COMPARISON OF DIFFERENT SAMPLING METHODS IN IEEE 118-BUS SYSTEM

Number of secure Proportion of secure

> . R Method 1 les (%
meets the requirements for online applications. sampies samples (%)
Proposed sampling method 87293 £127 87.29+0.13
TABLE I LHS 22990+ 241 22.99+0.24
COMPARISON OF COMPUTATIONAL EFFICIENCY OF DIFFERENT SAMPLING
METHODS ON WECC 3-MACHINE 9-BUS SYSTEM MCS 23025£120 23.03£0.12
IS 23145+ 167 23.14+0.17
Method Time (s) MCMCS 22885+ 124 22.89+0.12
Proposed sampling method 0.20
Pointwise method 524.77

B. Case 2: IEEE 118-bus System

In order to further verify the effectiveness and generality
of the proposed sampling method in the high-dimensional
SSRB approximation of large-scale power systems, the pro-
posed sampling method is verified on the IEEE 118-bus sys-
tem. The IEEE 118-bus system is configured with 54 genera-
tors and 99 load nodes, with bus 69 set as the slacking bus,
whose active power injection space is 152-dimensional.

Similar to the experiments on the WECC 3-machine 9-bus
system, the proposed sampling method is compared with the
LHS, MCS, IS, and MCMCS methods. The experiments are

After completing the search for boundary samples, 87268
pairs of boundary sample pairs are obtained. A 1D-CNN
based feature non-linear converter is designed for the IEEE
118-bus system, containing one layer of 1D-CNN and three
layers of FCN with the number of neurons being 128, 64,
and 3, respectively. The aforementioned boundary sample
pairs are divided into training and validation sets according
to 8:2. Additionally, 100000 samples, which are not bound-
ary samples, are generated as the test set.

After 1000 rounds of training, we select the optimal mod-
el as the feature non-linear converter. The performance of
the SSRB fitted using IGR-WODT in the feature space is
presented in Table V.

TABLE V
MODEL PERFORMANCE ON IEEE 118-BUS SYSTEM

Model Depth Training set Validation set Test set
P, P, P.. P, P,. P, P P,, P..
1 0.9673 0.9705 0.9639 0.9429 0.9438 0.9418 0.9483 0.9770 0.9634
2 0.9747 0.9776 0.9615 0.9469 0.9504 0.9323 0.9483 0.9770 0.9634
upt 3 0.9791 0.9766 0.9819 0.9497 0.9492 0.9503 0.9481 0.9759 0.9643
4 0.9803 0.9717 0.9894 0.9502 0.9426 0.9589 0.9503 0.9702 0.9729
1 0.9807 0.9800 0.9815 0.9511 0.9491 0.9533 0.9490 0.9731 0.9683
IGRAWODT 2 0.9800 0.9755 0.9847 0.9512 0.945 0.9581 0.9495 0.9724 0.9696
3 0.9805 0.9820 0.9792 0.9507 0.9511 0.9503 0.9485 0.9740 0.9667
4 0.9807 0.9803 0.9812 0.9504 0.9507 0.9500 0.9483 0.9742 0.9664
Translated boundary 0.9385 0.9991 0.8771 0.9205 0.9846 0.8543 0.9223 0.9882 0.9219

As shown in Tables II and V, both IGR-WODT and UDT
demonstrate outstanding performance in the feature space.
Additionally, in terms of P, the performance is comparable
to the IGR-WODT with depth of 1 only when the UDT
depth is 4. This trend becomes more evident in large-scale
power systems, as presented in Table V. Thus, IGR-WODT
achieves a balance between high accuracy and low model
complexity.

Given the comparable performance, the model with lower
complexity is chosen as the boundary approximation model,
which is the IGR-WODT model with the depth of 1. Its
boundary expression is shown in (26).

—0.0932z, - 5.8812z,+7.0016z,>—0.7624 (206)

Similar to Case 1, a conservative translation of the afore-
mentioned boundary is performed. One thousand three hun-
dred and ninety nine insecure samples are located within the
current security region. The distances between these samples
and the current SSRB are distributed. As shown in Fig. 10,
the distance of the insecure samples in the current security
region from the SSRB is 95% distributed within 1.0. Thus,
the security region boundary is translated towards the non-se-
curity region by 1.0. Here, the distance of the boundary
translation can be selected according to the requirements in
practical engineering applications. The new security region
boundary is given by:

—0.0932z,-5.8812z,+7.0016z,>8.3819 27)
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Fig. 10. Distance distribution of insecure samples within security region

from boundary for IEEE 118-bus system.

Table V displays the performance of each model on the
training, validation, and test sets. The results show that the
fitted boundary achieves an accuracy and a recall rate of
92.23% and 92.19%, respectively, while maintaining a preci-
sion of 98.82% on the test set. The results in Table V indi-
cate that the proposed sampling method achieves similar per-
formance in solving high-dimensional SSRB with 152 dimen-
sions as in Case 1. This can be attributed to the incorpora-
tion of a CNN layer into the feature non-linear converter de-
signed for Case 2, which can better capture high-dimension-
al feature information. These results confirm the effective-
ness and versatility of the proposed sampling method in
modeling high-dimensional SSRB.

We conduct a further comparison of the computational ef-
ficiency between the proposed sampling method and the
pointwise method in Case 2. Specifically, we analyze the
time required to assess the states of 100000 operating points
for both methods. As illustrated in Table VI, the proposed
sampling method demonstrates several hundred times im-
provement in computational efficiency compared with the
pointwise method, requiring only approximately 10 s. This
demonstrates that the proposed sampling method satisfactori-
ly meets the demands for online applications in large-scale
power systems.

TABLE VI
COMPARISON OF COMPUTATIONAL EFFICIENCY OF DIFFERENT SAMPLING
METHODS IN IEEE 118-BUS SYSTEM

Method Time (s)
Proposed sampling method 10.32
Pointwise method 2677.71

Further, considering the noise interference and data miss-
ing during data measurement and transmission process in re-
al power systems, we conduct experiments to test the pro-
posed sampling method. Specifically, we add Gaussian ran-
dom noise with a range from —1 to 1 to a randomly selected
10% of the dataset and simultaneously nullified 0.1% of the
data to simulate the aforementioned issues. The performance
of the proposed sampling method on the dataset is subjected
to noise interference and data missing, as shown in Fig. 11.

As shown in Fig. 11, while maintaining P, essentially un-
changed, the decline in P, and P, is less than 5%, which
indicates that the proposed sampling method exhibits good
robustness on datasets subjected to noise interference and da-
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Fig. 11. Model performance on dataset subjected to noise interference and
data missing.

V. CONCLUSION AND FUTURE WORK

This paper proposes a novel method to approximate the
high-dimensional SSRB via the feature non-linear converter
and improved oblique DT. The proposed sampling method is
evaluated on the WECC 3-machine 9-bus system and IEEE
118-bus system. The experimental results demonstrate that it
outperforms previous methods by effectively approximating
the high-dimensional boundary and reducing the error be-
tween the approximated and real boundaries. As shown in
Tabels II and V, the accuracy and recall rate are both above
92% while the precision achieves 98% for the tested sys-
tems. Also, the proposed sampling method exhibits good ro-
bustness on datasets subjected to noise interference and data
missing, as can be observed in Fig. 11.

Future research work will mainly focus on: () integrating
renewable energy and load forecasting tools to assess the
system state in real-time within N time steps based on the
proposed sampling method, and guiding the formulation of
real-time dispatch and control strategies for power systems;
and @ data-driven methods for predicting the steady-state se-
curity margin.
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