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High-dimensional Steady-state Security Region 
Boundary Approximation in Power Systems 

Using Feature Non-linear Converter and 
Improved Oblique Decision Tree

Yuxin Dai, Jun Zhang, Peidong Xu, Tianlu Gao, and David Wenzhong Gao

Abstract——The steady-state security region (SSR) offers ro‐
bust support for the security assessment and control of new 
power systems with high uncertainty and fluctuation. However, 
accurately solving the steady-state security region boundary (SS‐
RB), which is high-dimensional, non-convex, and non-linear, 
presents a significant challenge. To address this problem, this 
paper proposes a method for approximating the SSRB in power 
systems using the feature non-linear converter and improved 
oblique decision tree. First, to better characterize the SSRB, 
boundary samples are generated using the proposed sampling 
method. These samples are distributed within a limited distance 
near the SSRB. Then, to handle the high-dimensionality, non-
convexity and non-linearity of the SSRB, boundary samples are 
converted from the original power injection space to a new fea‐
ture space using the designed feature non-linear converter. Con‐
sequently, in this feature space, boundary samples are linearly 
separated using the proposed information gain rate based 
weighted oblique decision tree. Finally, the effectiveness and 
generality of the proposed sampling method are verified on the 
WECC 3-machine 9-bus system and IEEE 118-bus system.

Index Terms——Steady-state security region, boundary sample 
generation, feature non-linear conversion, oblique decision tree.

I. INTRODUCTION 

WITH the significant increase in the proportion of re‐
newable energy and power electronic equipment inte‐

grated into the power system, the uncertainty and fluctuation 
of the system have risen dramatically, and the operating 
mode has become more variable [1]-[3]. As a result, the tra‐
ditional pointwise method may no longer be applicable due 

to its high computational demands and low efficiency 
[4], [5].

The steady-state security region (SSR), as the set of all op‐
erating points on the power injection space that satisfy the 
power flow equation and system security constraints, can 
provide powerful support for the security assessment and 
control of power systems with high uncertainty and fluctua‐
tion [6]-[8]. Depending on the security constraints involved, 
SSR can be further divided into thermal stability security re‐
gion, static voltage security region, and other categories, 
each suitable for specific applications [9]. However, due to 
the non-linearity of the power flow equation and diverse se‐
curity constraints, the steady-state security region boundary 
(SSRB) is non-convex and non-linear. Accurately obtaining 
the SSRB has become a bottleneck in its application [4].

The theoretical derivation of the SSR is achieved by com‐
bining the decoupled power flow equation with the Leray-
Schauder fixed point [10]. In [11], a scalable optimization 
framework based on Brouwer’s fixed point is proposed to 
estimate the convex inner approximation of the SSR. Addi‐
tionally, [12] constructs convex constraints on algebraic sets 
defined by equality and inequality constraints and applies 
them to power flow feasibility.

The methods mentioned above theoretically derive the 
SSR from the power flow equation and its security con‐
straints. However, these methods are often conservative and 
may fail to include some secure operating points that are of 
interest to operators. Therefore, there is a need to develop 
SSR solutions with higher accuracy. In [4], SSR is proven to 
be uniquely determined, connected, independent of the oper‐
ating state, and internally void-free under a given network to‐
pology and system component parameters.

Based on the above conclusions, some research works at‐
tempt to address the SSRB from a data-driven perspective. 
In [13] - [15], the methods for searching critical points and 
then utilizing segmented linear approximation to fit the 
boundaries are proposed. Additionally, a bootstrap-based 
method is proposed for coefficient approximation of the hy‐
perplane of the thermal security region boundary [16]. In 
[17], a fast method for generating hyperplane expressions for 
SSR is proposed and applied to voltage control. All of the 

Manuscript received: February 21, 2024; revised: April 8, 2024; accepted: 
April 29, 2024. Date of CrossCheck: April 29, 2024. Date of online publication: 
August 1, 2024. 

This work was supported by the National Key Research and Development 
Program of China (No. 2018AAA0101504) and the Science and Technology 
Project of State Grid Corporation of China “fundamental theory of human in-
the-loop hybrid-augmented intelligence for power grid dispatch and control”.

This article is distributed under the terms of the Creative Commons Attribu‐
tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
   Y. Dai, J. Zhang (corresponding author), P. Xu, and T. Gao are with the 
School of Electrical Engineering and Automation, Wuhan University, Wuhan 
430072, China (e-mail: YuxinDai@whu. edu. cn; jun. zhang. ee@whu. edu. cn; 
xupd@whu.edu.cn; tianlu.gao@whu.edu.cn)。
   D. W. Gao is with Department of Electrical and Computer Engineering, Den‐
ver, USA (e-mail: wenzhong.2001.gao@ieee.org).

DOI: 10.35833/MPCE.2024.000188

1786



DAI et al.: HIGH-DIMENSIONAL STEADY-STATE SECURITY REGION BOUNDARY APPROXIMATION IN POWER SYSTEMS...

above methods provide boundary expressions by fitting hy‐
perplane coefficients. Another idea is to model the boundary 
solving problem as a classification problem, thus indirectly 
approximating its boundary. Based on this idea, [18] pres‐
ents a data-driven method for transient stability assessment. 
In [19], a convolutional neural network (CNN) based tran‐
sient stability assessment and margin prediction method is 
proposed. In other fields, [20] defines the SSR of multi-ener‐
gy systems and provides a solving method. A method for 
constructing SSR in distribution systems with high penetra‐
tion of distributed energy resources is also proposed [21].

Nevertheless, accurately solving the SSRB remains chal‐
lenging. This is due to the non-linearity of the power flow 
equation in AC systems and the numerous complex security 
constraints, making SSRB non-convex and non-linear. With 
the increasing size of power systems and the growing num‐
ber of power electronic devices connected to the grid, these 
problems are further aggravated. As a result, the aforemen‐
tioned methods often suffer from significant errors. Mean‐
while, the methods proposed above are challenging to be ap‐
plied to solve high-dimensional SSRB.

In recent years, deep neural networks (DNNs) [22] have 
been widely utilized in various areas of power systems such 
as transient stability assessment [23], [24], fault diagnosis 
[25]-[28] and load forecasting [29]-[31] due to their power‐
ful ability to extract non-linear features. Consequently, we 
anticipate that DNNs will also be effective in capturing the 
non-linear relationships between variables and boundaries in 
the high-dimensional power injection space. However, this 
poses new challenges as DNNs are end-to-end models which 
cannot present the learned boundary information to humans. 
Besides, decision trees (DTs) and their derivative algorithms 
have gained significance in the field of power system securi‐
ty assessment [32], [33], as they offer an inherent model 
mechanism that can be easily converted into boundary ex‐
pressions for subsequent security assessment and control. 
However, DTs are essentially linear classification models 
and may not perform satisfactorily on non-linearly separable 
datasets, thereby limiting their application scope.

Based on the analysis presented above, combined with the 
SSR property proven by [4], this paper proposes a high-di‐
mensional SSRB approximation method using the feature 
non-linear converter and improved oblique DT. The contribu‐
tions of this paper can be summarized as follows.

1) For the high-dimensional, non-convex, and non-linear 
SSRB, a novel SSRB approximation framework via the fea‐
ture non-linear converter and information gain rate based 
weighted oblique DT (IGR-WODT) is proposed.

2) An improved sampling method is proposed to search 
for boundary sample pairs which are distributed near the SS‐
RB in order to facilitate the subsequent model to better learn 
the characteristics of SSRB.

3) The DNN-based model is designed to address the non-
linearly separable issue within the dataset, and IGR-WODT 
is employed to approximate SSRB.

4) The proposed sampling method successfully approxi‐
mates the high-dimensional SSRB and reduces the error be‐
tween the approximated boundary and the actual one, which 

are verified on the WECC 3-machine 9-bus system and 
IEEE 118-bus system.

The remainder of this paper is organized as follows. Sec‐
tion II first introduces the SSR model of power systems. Sec‐
tion III details high-dimensional SSRB approximation. Sec‐
tion IV presents the case study. Finally, Section V summariz‐
es the paper.

II. SSR MODEL OF POWER SYSTEMS 

The SSR model of power systems is defined as the set of 
points satisfying the power flow equation and operating secu‐
rity constraints [10]. It can be expressed as:
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where RU is the static voltage security region satisfying the 
voltage constraints; RP is the static generator active output 
security region satisfying the generator active output con‐
straints; RQ is the static generator reactive output security re‐
gion satisfying the generator reactive output constraints; RPb

 

is the branch thermal stability security region satisfying the 
system branch transmission power constraints; Rss is the 
whole SSR, which shows the intersection of RU, RP, RQ, 
and RPb

; y is the state variable vector; x is the power injec‐

tion vector; ϕ(xy)= 0 is the AC power flow equation in pow‐
er systems; N is the set of system buses; Ng is the set of sys‐
tem generators; U min

i  and U max
i  are the lower and upper volt‐

age limits of the ith bus, respectively; Pgmini and Pgmaxi are 
the lower and upper limits of active output of the ith genera‐
tor, respectively; Qgmini and Qgmaxi are the lower and upper 
limits of reactive output of the ith generator, respectively; 
and P max

bi - j and -P max
bi - j are the forward and reverse transmis‐

sion power limits of the branch connected buses i and j, re‐
spectively.

In the case of approximating local balance of reactive 
power, only the SSR under active power injection needs to 
be considered.
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(2)

where x = [ xPxQ ]; xP is the active power injection at each 

bus; xQ = c is the reactive power injection at each bus and c 
denotes a constant vector; Pgi is the active power output of 
the ith generator; and Plj is the load value of the j th bus.

The SSR in the active power injection space is studied as 
the set of operating points at which various security con‐
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straints are satisfied by the system unit combinations and 
load demands under a specific reactive power configuration.

As proven in [4], the SSR is uniquely determined, con‐
nected, and independent of the operating state, and it is inter‐
nally void-free under a given network topology and system 
component parameters. Consequently, if an operating point 
in the active power injection space is situated within the 
SSR and it slowly changes its active power injection in a 
quasi-steady state form along either direction, it will eventu‐
ally reach the security region boundaries. The region en‐
closed by these boundaries constitutes the SSR. Therefore, it 
is feasible to initiate from certain points within the SSR and 
find sufficient boundary points to approximate the boundary.

III. HIGH-DIMENSIONAL SSRB APPROXIMATION 

In large-scale power systems, SSRB is high-dimensional, 

non-convex, and non-linear,
As illustrated in Fig. 1, this paper models the boundary 

solving problem as a binary classification problem. If the 
classification model can accurately distinguish between se‐
cure and insecure samples, it can be regarded as an approxi‐
mation of the actual boundary. Subsequently, the proposed 
IGR-WODT is transformed into the form of boundary hyper‐
planes to accomplish boundary approximation. In Fig. 1, 
Conv1D(×) represents a CNN layer; x is the input data; w1 is 
the weight parameters of CNN; x1 is the output of CNN lay‐
er; x i - 1 and x i are the outputs of the (i - 1)th and ith layers, re‐
spectively; NS is the number of secure samples within Ninit 
samples; relu(×) and softmax(×) are the activation functions of 
neural network; z is the vector in the feature space; and y is 
the output of the whole neural network.

The whole work consists of two parts. ① Boundary sam‐
ple set generation: the aim of this part is to search for a 
large number of boundary sample sets that are distributed 
near the SSRB, thereby providing a suitable dataset for the 
training and testing of the subsequent classification model. 
To address the issue of unbalanced samples and uncontrolled 
distances of samples from the boundary in traditional sam‐
pling methods, firstly, the generator output and load values 
are sampled using the improved Latin hypercube sampling 
(LHS) algorithm to form the initial sample set. Then, the 
boundary sample search is performed, and a resampling 
mechanism that considers sampling gaps is proposed to ulti‐
mately form the boundary sample set. ② High-dimensional 
SSRB approximation: this part is based on the generated 
boundary sample set, training a classification model, and 
then converting the model into the form of boundary hyper‐
planes. Given the non-linear separability of the boundary 
sample set in high-dimensional SSR, firstly, the original pow‐
er injection space is converted into the feature space by the 
feature non-linear conversion using DNNs. The samples in 

the feature space are approximately linearly separable. Sec‐
ondly, in the feature space, the security region boundary is 
linearly fitted based on the proposed IGR-WODT. Then, the 
SSRB is obtained by the trained IGR-WODT and conserva‐
tively translated to ensure the security of the boundary. Final‐
ly, the fitted SSRB is evaluated and verified on a large num‐
ber of randomly generated operating points.

A. Boundary Sample Set Generation for SSR

1) Initial Sample Set Generation
In the initial sample set generation process, the generator 

output is first sampled based on the LHS algorithm. Specifi‐
cally, we set an N nodal power system containing Nl load 
nodes and Ng generators. The lower and upper limits of the 
j th generator output are shown in (3).

[ PgminjPgmaxj ]     j = 12Ng (3)

We first define the sampling number of initial sample set 
as Ninit, and then, we sample the generator output data based 
on the LHS, as denoted in (4).
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Fig. 1.　Framework of high-dimensional SSRB approximation.
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where Pgij is the j th generator output in the ith sample.

Pgminj £Pgij £Pgmaxj    "ij (5)

In this paper, samples located within the security region 
are defined as secure samples and labeled as 0. Conversely, 
samples outside the security region are defined as insecure 
samples and labeled as 1. As the proposed sampling method 
in this paper requires searching for boundary samples based 
on a significant number of secure samples, it is essential to 
increase the proportion of secure samples among Ninit sam‐
ples. To this end, this part proposes a method for sampling 
load values that considers the constraints of the generator 
output. Specifically, for the ith sample, the total generator 

output is Pgouti =∑
j = 1

Ng

Pgij, and the upper and lower limits of 

the generator output at the slacking bus are set as Psmin and 
Psmax, respectively. The total sampling value of Nl load 

nodes is set to be PLi =∑
j = 1

Nl

Plij, where the Plij is the load 

value of j th load bus in the ith sample. To meet the output 
constraints of the generator at the slacking bus without con‐
sidering the network loss, it is necessary for PLi to satis‐
fy (6).

Pgouti +Psmin £PLi £Pgouti +Psmax    "Plij ³ 0 j = 12Nl

(6)

The constraints in (6) enclose a convex hyper-polyhedron 
in the Nl-dimensional space. To achieve uniform sampling of 
load values inside the hyper-polyhedron as above, the prob‐
lem is modeled as sampling the Nl-dimensional vectors in 
the hyper-polyhedron, as shown in (7).

AP l £ b (7)

where AÎR( )Nl + 2 ´Nl is the hyperplane normal vector; 
P lÎRNl ´ 1 represent the variables to be solved; and  

bÎR( )Nl + 2 ´ 1 is a constant vector.
Step 1: construct the linear objective function as:

ì

í

î

ïïïï

ïïïï

f ( )P l =min∑
i = 1

Nl

Pli

s.t.  AP l £ b

(8)

The optimal solution P l0, which is the initial value of P l, 
is obtained using the linear programming method. P l0 is a 
vertex of the hyper-polyhedron represented by (7), as shown 
in Fig. 1.

Step 2: solve the center of the hyper-polyhedron with P l0. 
For this purpose, we construct a non-linear optimization 
problem.
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P lcen =min∏
i = 1

Nl + 2

( )A i: P l - bi

s.t.  AP l £ b

(9)

where Ai: is the ith row vector of matrix A; and bi is the ith   

feature of b.
Step 3: as shown in Fig. 1, we randomly initialize a sam‐

pling direction uÎRNl ´ 1. Let the line passing through the 
center point P lcen with a line direction vector uÎRNl ´ 1 be de‐
noted as r(t)=P lcen + tu uÏA. Then, we solve for the inter‐
section points between the line r(t) and the convex polytope 
Ax = b, i.e.:

O =P lcen +
b -AP lcen

Au
u (10)

where O represents the intersection point of the line r(t) and 
the Nl + 2 hyperplanes represented by Ax = b. In fact, among 
those Nl + 2 intersection points, only two are on the convex 
polytope, denoted as O1 and O2.
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w =
b -AP lcen

Au
wp =w[Au > 0]

wn =w[Au < 0]

(11)

where Au represents the projection of the line direction vec‐
tor u onto A; and w[Au > 0] and w[Au < 0] represent that the 
values of w correspond to the indices in Au where the fea‐
tures are less than and greater than 0, respectively. The posi‐
tive or negative value of Au indicates whether the intersec‐
tion points are located in the direction of u or -u with re‐
spect to P lcen, respectively, as shown in Fig. 1. Thus, the 
points O1 and O2 can be calculated as:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

o1 =max ( )wn

o2 =min ( )wp

O1 =P lcen + o1u
O2 =P lcen + o2u

(12)

Step 4: make uniform sampling among the points O1 and 
O2, as shown in Fig. 2, i. e., randomly generate μÎ[01], to 
obtain the sampling points as:

P lsam =P lcen + (o1 + μ (o2 - o1 ) )u (13)

Following Steps 1-4, the load values in Ninit samples are 
obtained. The secure samples within Ninit samples are select‐
ed and formed into the initial sample set, S =
( x i0) iÎ 12NS, where x i = [ PgiPLi ], and Pgi is the 

generator output vector of the ith sample, and PLi is the load 
value vector of the ith sample.

Pl,0

O1 O2

u

x

y

z

Pl,sam

o1u o2u

Pl,cen

Fig. 2.　Sampling process of initial samples.
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2) Boundary Sample Search
As shown in Fig. 3, the problem of SSRB solution is mod‐

eled as a binary classification task, which requires a labeled 
dataset for supervised learning model training. However, the 
dataset generated by traditional sampling methods such as 
Monte Carlo sampling (MCS) and LHS is usually unbal‐
anced. Moreover, the generated samples are often far away 
from SSRB, failing to accurately reflect the real characteris‐
tics of SSRB. To address these issues, this part proposes a 
boundary sample search algorithm. For each sample x i with‐
in the initial sample set S, a secure sample xsi and an inse‐
cure sample xui are searched by Algorithm 1. xsi and xui sat‐
isfy:

 xui - xsi

2
£ ξ (14)

where  × 2
 denotes the two-norm of vectors; and ξ is the 

boundary distance threshold, which represents the maximum 
Euclidean distance of boundary sample pairs. This threshold 
can be set according to engineering requirements, as shown 
in Fig. 3, where P1 and P2 represent a two-dimensional pow‐
er injection space. Finally, the boundary samples set SB is 
generated by Algorithm 1.

As mentioned in Section II, SSR is uniquely determined, 
connected, and internally void-free under a given network to‐
pology and system component parameters. Therefore, when 
starting from a secure sample and slowly increasing the in‐
jected power in a quasi-steady state, the SSRB must be en‐
countered. Thus, the convergence of the Algorithm 1 is guar‐
anteed when the λr is set appropriately.
3) Resampling Mechanism Considering Sampling Gaps

After the boundary sample set is formed, certain security 
region boundaries may still have large sampling gaps, which 
leads to the situation that subsequent models inaccurately es‐
timate the boundaries of these regions [34], as shown in Fig. 
2. To this end, this paper proposes a resampling mechanism 
that considers the sampling gap based on the boundary sam‐
ple set. Specifically, all the secure samples in the boundary 
sample set are extracted to form a matrix Xs =

[ xs1xs2xsNS
]T

ÎRNS ´Np. The distance matrix Ddist is then 

constructed by calculating the pairwise Euclidean distances 
between NS samples.

As shown in Fig. 3, for the sample xsi, we set the mini‐
mum value of the distance from the other samples as Dmini =
min (Ddisti: ) =Ddistij. We set the maximum sampling gap as 

D. When Dmini >D, it is necessary to resample Nr samples be‐
tween the sample xsi and xsj. Then, we search for the bound‐
ary sample pair according to Algorithm 1 and add them to 
SB. Typically, we perform resampling for Nre rounds.

B. Feature Non-linear Conversion and Boundary Linear Ap‐
proximation

Due to the high-dimensionality, non-convexity, and non-
linearity of the SSRB, the boundary dataset generated above 
is non-linearly separable. This poses a challenge to accurate‐
ly approximate the boundary using linear classification meth‐
ods such as DTs. Therefore, this paper proposes a method to 
convert the boundary samples from the original active power 
injection space to a 3-dimensional feature space. This is 
achieved by designing a non-linear feature converter, which 
renders the sample set linearly separable and simultaneously 
facilitates visualization. Ultimately, the security region 
boundary is linearly fitted in the feature space, and the 
boundary conservative translation is performed to enhance 
its security. This translation is crucial in achieving a more ac‐
curate and reliable SSRB.
1) Feature Non-linear Conversion Using DNNs

DNNs possess an exceptional ability for non-linear approx‐
imation. Through multi-layer non-linear transformations, 
DNNs progressively model the original data and map it onto 
a space that is nearly linearly separable. In this subsection, 
we convert the original power injection space into a 3-dimen‐
sional feature space using different types of DNNs. Depend‐
ing on the dataset, diverse DNNs can be chosen to achieve 
optimal results.

In this subsection, we introduce two types of feature non-
linear converters. ① Type 1: a converter based on fully con‐
nected neural networks (FCNs). FCN is a simple type of 
neural network that can serve as a feature non-linear convert‐
er when dealing with low-dimensional features and a small 

Algorithm 1: boundary sample search

Input: S, ξ, and initial step size λrset

1: Sample NS power growth direction vectors based on LHS. Each direc‐
tion vector is normalized to form the direction vector matrix 
U ∈RNS ´Np

2: for xi in S do
3:    λr = λrset

4:    while xi in the security region do
5:        xi = xi + λrUi

6:    end while
7:    xsi = xsi - λrUi, xui = xi

8:    while ||xui - xsi||
2 > ξ do

9:        λr = 1/2λr

10:      xui = xi - λrUi

11:      if xui is not in the security region then
12:         xsi = xsi, xui = xui
13:      else
14:         xsi = xsi + λrUi, xui = xui + λrUi

15:      end if
16:  end while
17:  Store (xsi, 0), (xui, 1) in SB

18: end for
Output: SB

Security region

xi

xs,i

xu,i

Initial secure sample 

Boundary insecure sample

Boundary secure sample

Large sampling gap

Resampled boundary secure sample
Resampled boundary insecure sample

ξ

P1

P2

Fig. 3.　Boundary sample search and resampling mechanism.
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number of samples. ② Type 2: a converter based on 1-di‐
mensional CNN (1D-CNN). CNN incorporates convolutional 
processing of features into DNNs and is more suitable for 
processing higher dimensional data. For the datasets with 
higher feature dimensions and larger volumes of data, more 
complex neural networks such as transformers [35] can also 
be used as feature non-linear converters.

As an illustration, we will use the type 2 converter to 
demonstrate the conversion of the power injection space 
XÎRNp into the feature space ZÎR3. The feature non-linear 
converter based on 1D-CNN is depicted in Fig. 4.

2) Boundary Linear Approximation Using IGR-WODT
As mentioned above, DNNs are used as a feature non-lin‐

ear converter to enhance the linear separability of the datas‐
et. In this part, the boundary linear approximation using IGR-
WODT in the feature space is performed.

IGR-WODT is improved by WODT [36], [37]. The objec‐
tive function of WODT is based on weighted information en‐
tropy, which can be influenced by the number of samples 
and may not be optimal for model training. Therefore, IGR-
WODT uses the information gain rate as its objective func‐
tion instead. For a labeled binary classification dataset Sz =

{(z1y1 ) (z2y2 ) (z2NS
y2NS )}, IGR-WODT first divides 

the training set Sz into two subsets based on a logistic regres‐
sion model, and recursively generates child nodes based on 
the divided subsets until the terminal condition is satisfied. 
Specifically, at each node, IGR-WODT calculates the proba‐
bility that the ith sample belongs to the left subset pL

i  versus 
the right subset pR

i , which is expressed as:

ì

í

î

ï
ïï
ï

ï
ïï
ï

pL
i = σ ( )-θT z i =

1

1 + eθ
T z i

pR
i = 1 - σ ( )-θT z i =

1

1 + e-θ
T z i

(15)

where z i is the ith sample of Sz; σ ( )·  is the sigmoid function; 
θÎR4 ´ 1 is the vector of model parameters (including a bi‐
as), which needs to be continuously updated during the mod‐
el training process. When pL

i ³ 0.5, the ith sample is classified 
as belonging to the left subset; when pR

i > 0.5, the ith sample 
is classified as belonging to the right subset.

The weights of each sample set are defined as:

ì
í
î

wL
i = pL

i

wR
i = pR

i

(16)

Therefore, IGR-WODT defines 2 datasets associated with 
sample weights as:

ì

í

î

ïïïï

ïïïï

SL = { }( )z iyiw
L
i | ( )z iyi Î Sz

SR = { }( )z iyiw
R
i | ( )z iyi Î Sz

(17)

IGR-WODT calculates the empirical entropy H (Sz ) of the 

dataset Sz, and the conditional empirical entropy H (Sz|θ ) of 

the dataset Sz under the division of θT z.
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H ( )Sz =-∑
k = 1

K ||Sk

||Sz

log2

||Sk

||Sz

H ( )Sz|θ =
||SL

||Sz

H ( )SL +
||SR

||Sz

H ( )SR

(18)

where |Sz | is the number of samples in the dataset Sz, which 

is equal to 2NS; and |Sk | is the number of samples in the da‐

taset |Sz | with the category k:
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||SL = ∑
( )xiyiw

L
i Î SL

wL
i

||SR = ∑
( )xiyiw

R
i Î SR

wR
i

H ( )SL =-∑
k = 1

K W k
L

||SL

log2

W k
L

||SL

H ( )SR =-∑
k = 1

K W k
R

||SR

log2

W k
R

||SR

(19)
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W k
L = ∑

( )xiyiw
L
i Î SL

I ( )yi = k wL
i

W k
R = ∑

( )xiyiw
R
i Î SR

I ( )yi = k wR
i

(20)

where I(×) is the indicator function; W k
L  represents the sum of 

wL
i  corresponding to the samples of category k in set SL; and 

W k
R represents the sum of wR

i  corresponding to the samples 
of category k in set SR.

As shown in (18) and (19), H (Sz ), H (Sz|θ ), H (SL ), and 

H (SR ) are all calculated based on the probabilities of the ith 
sample belonging to the left or right child node.

IGR-WODT defines the information gain rate as:

gR( )θ =
H ( )Sz|θ

H ( )Sz

(21)

To avoid overfitting of the model under each node, the 
regularization term L2 is introduced and the final model ob‐
jective function expressed as:

L ( )θ =
H ( )Sz|θ

H ( )Sz

+ η θ 2
(22)

where η is the coefficient of the regularization term L2.
To optimize the objective function L ( )θ , IGR-WODT em‐

ploys the improved Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) algorithm [37] to obtain the optimal parameters 
θbest = arg min L ( )θ . Thus, the dataset Sz is divided into left 

…

X�RNp Z�R3

…
Fig. 4.　Feature non-linear converter based on 1D-CNN.
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and right subsets S'L and S'R using the parameters θbest. The 
details of IGR-WODT algorithm are shown in Algorithm 
SA1 in Supplementary Material A.

Then, we extract the decision parameters, i. e., θ, from 
IGR-WODT to construct the SSRB hyperplane in the feature 
space. Algorithm SA2 in Supplementary Material A provides 
a detailed depiction. The essence of the Algorithm SA2 lies 
in identifying all decision paths within IGR-WODT that lead 
from the root node to the leaf node labeled as 0. These paths 
are then transformed into a combination of hyperplanes by 
converting θ of all the nodes along these paths.

IV. CASE STUDY 

This section validates the effectiveness and generality of 
the proposed high-dimensional SSRB approximation model 
on the WECC 3-machine 9-bus system and IEEE 118-bus 
system using PYPOWER [38]. The system component pa‐
rameters and steady-state security constraints, such as the up‐
per and lower limits of generator output, are referenced from 
[38]. The upper voltage limit is set to be 1.05, and the lower 
voltage limit is set to be 0.95. All experiments are imple‐
mented on a Linux workstation equipped with an Intel(R) Xe‐
on(R) Gold 6132 2.60 GHz CPU processor.

A. Case 1: WECC 3-machine 9-bus System

As shown in Fig. 5, the WECC 3-machine 9-bus system 
contains 3 generators (G1-G3) and 3 load nodes. Bus 1 is 
set as the slacking bus. The active power injection space in 
WECC 3-machine 9-bus system is [ Pg2Pg3Pl5Pl7Pl9 ].

1) 2-dimensional Active Power Injection SSRB Analysis
To demonstrate the non-convexity and non-linearity of SS‐

RB in power systems intuitively, we first study the SSRB in 
the power injection space [ Pl5Pl9 ], i. e., we set [ Pg2Pg3 

]Pl7  as constant values.

The boundary samples are searched according to the meth‐
od proposed in Section III and shown in Fig. 6. Figure 6(f) 
depicts the whole SSR, which is the intersection of the static 
voltage security region, the generator output security region, 
and the branch thermal stability security region. This region 
is closed, with non-convex and non-linear boundaries, mak‐
ing it challenging to directly separate the boundary dataset.

We further analyze the impact of different setting values 
of upper and lower voltage limits on the characteristics of 
the SSRB. When the voltage range is set between 0.98 p.u. 
and 1.02 p.u., the 2-dimensional SSRB samples is presented, 
as shown in Fig. 7.

Compared with Fig. 6(f), the boundary shape has changed 
significantly, with the non-convex and non-linear characteris‐
tics further highlighted. This is because the non-linear map‐
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Fig. 6.　2-dimensional SSRB samples on WECC 3-machine 9-bus system. 
(a) Upper boundary samples of node voltages. (b) Lower boundary samples 
of node voltages. (c) Upper boundary samples of generator outputs. (d) 
Lower boundary samples of generator outputs. (e) Boundary samples of 
branch thermal security. (f) Whole SSR.
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Fig. 7.　 2-dimensional SSRB samples when voltage range is set between 
0.98 p.u. and 1.02 p.u..
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Fig. 5.　WECC 3-machine 9-bus system.
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ping relationship between the static voltage security region 
and the power injection space is more complex than that of 
the security region of branch thermal stability and the gener‐
ator output security region. Therefore, the stricter the system 
requirement for the voltage range is, the more complex the 
SSRB characteristics will be.

Therefore, even if the boundary is approximated by seg‐
mented linear approximation, the error can still be signifi‐
cant, especially in high-dimensional spaces. To address this 
issue, the original power injection space needs to be convert‐
ed into a new feature space using the feature non-linear con‐
verter, and then the linear approximation of the boundary 
can be performed.
2) SSRB Approximation for WECC 3-machine 9-bus System 
Under Active Power Injection

For the WECC 3-machine 9-bus system, SSRB under ac‐
tive power injection is 5-dimensional. The power injection 

space is [ Pg2Pg3Pl5Pl7Pl9 ].
We first generate the initial samples using the proposed 

sampling method. To validate the efficiency of the proposed 
sampling method, we compare it with the LHS, MCS, impor‐
tance sampling (IS), and Markov chain Monte Carlo sam‐
pling (MCMCS). The proportion of secure samples in the ini‐
tially generated samples is used as the benchmark for the 
evaluation. The experiments are performed with five differ‐
ent random seeds, and the results are presented in Table I.

Table I demonstrates that the proposed sampling method 
yields a considerably higher proportion of secure samples in 
the sampled dataset compared with traditional LHS, MCS, 
IS, and MCMCS methods. After generating the initial datas‐
et, Algorithm 1 is used to search for boundary samples. A to‐
tal of 17437 pairs of samples are obtained. After 10 rounds 
of resampling, additional 5241 sample pairs are added to 
form the final boundary sample set.

Since the dimension of the SSRB under active power in‐
jection space for the WECC 3-machine 9-bus system is 5, an 
FCN with three hidden layers (64, 16, 3 neurons) and one 
output layer is chosen as the feature non-linear converter. 
The Adam optimization algorithm is selected for training. 
The boundary sample pairs are split into training and valida‐
tion sets according to 8:2.

After 1000 rounds of training, the optimal model is select‐
ed, and feature conversion is performed. Figure 8 shows SS‐
RB and sample distribution in 3-dimensional feature space. 

With the dataset in the feature space, the original dataset can 
be divided accurately by a finite number of hyperplanes.

Therefore, the training and validation sets are converted 
into the feature space by the trained FCN model respective‐
ly, and the boundaries are fitted using IGR-WODT. The max‐
imum depth of IGR-WODT is set between 1 and 4, and the 
L2 regularization coefficient η is set to be 10-5.

To test the validity of the boundary in a more general 
way, 20000 samples (not boundary samples) are generated as 
the test set based on the proposed sampling method. The ac‐
curacy Pacc, precision Ppre, and recall rate Prec are also intro‐
duced to evaluate the model performance, which are calculat‐
ed as (23).
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Pacc =
TP + TN

TP + TN +FN +FP

Ppre =
TP

TP +FP

Prec =
TP

TP +FN

(23)

where TP is the number of samples labeled as secure and 
judged as secure; TN is the number of samples labeled as in‐
secure and judged as insecure; FN is the number of samples 
labeled as secure and judged as insecure; FP is the number 
of samples labeled as insecure and judged as secure; Pacc is 
the proportion of correctly classified samples in the dataset 
and reflects the overall performance of the proposed sam‐
pling method; Ppre is the proportion of samples that are truly 
secure among those classified as secure by the model, re‐
flecting the security of the fitted boundary; and Prec is the 
proportion of secure samples that are correctly classified in 
the dataset, reflecting the conservativeness of the boundary 
to some extent. In this paper, it is crucial to minimize the 
number of insecure samples classified as secure samples, 
i.e., minimize Fp, thus a conservative translation of the fitted 
boundary is required.

Table II presents the model performance on WECC 3-ma‐
chine 9-bus system, presenting the performance of each mod‐
el on the training, validation, and test sets. In Table II, UDT 
represents univariate DT. UDT without FNC and IGR-

TABLE I
COMPARISON OF DIFFERENT SAMPLING METHODS IN WECC 3-MACHINE 

9-BUS SYSTEM

Method

Proposed

LHS

MCS

IS

MCMCS

Number of secure samples

17402 ± 61

 1885 ± 66

 1873 ± 26

 1986 ± 46

 1894 ± 53

Proportion of secure 
samples (%)

87.01 ± 0.31

 9.43 ± 0.33

 9.37 ± 0.13

 9.93 ± 0.23

 9.47 ± 0.26
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Fig. 8.　SSRB and sample distribution in 3-dimensional feature space.
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WODT without FNC represent that DT models split the orig‐
inal dataset directly without using feature non-linear convert‐

ers.

As shown in Table II, DT models using feature non-linear 
converters exhibit significant improvements in performance 
compared with DT models that do not use feature non-linear 
converters. The former achieves an accuracy of about 99% 
for the validation set, while the latter only achieves about 
66%. The former also shows an accuracy improvement of 
about 12% for the test set. These results confirm the superi‐
ority of the proposed sampling method in solving non-con‐
vex and non-linear SSRB. Moreover, when using feature 
non-linearity converters, the proposed IGR-WODT outper‐
forms UDT.

IGR-WODT achieves high accuracy across all indicators 
at the depth of 1, with an accuracy exceeding 99.29% in the 
training, validation, and test sets. Therefore, IGR-WODT 
with the depth of 1 is selected as the boundary approxima‐
tion model, and its security region boundary under the fea‐
ture space is shown in (24), which is constructed using Algo‐
rithm SAII of Supplementary Material A.

-0.5654z1 - 9.0060z2 + 8.7684z3 > 0.1745 (24)

To enhance the ability of the model to distinguish inse‐
cure samples more accurately, the boundary is conservatively 
translated. This means that the insecured samples, currently 
designated as security by the existing boundary, are reclassi‐
fied as outside the security region.

Specifically, the distance between insecure samples within 
the current security region of the training set and the current 
SSRB is calculated. There are 117 insecure samples within 
this region, and their distances from the current boundary 
are presented, as shown in Fig. 9. and the depth color repre‐
sents the magnitude of corresponding values.

As shown in Fig. 9, 99% of the insecure samples within 
the security region are distributed within the distance of 0.35 
from the current SSRB. Therefore, the SSRB is translated by 
0.35 towards the non-security region. The new SSRB is 
shown in (25) and visualized in Fig. 8. It is evident that the 
plane effectively distinguishes the secure samples from the 
insecure ones.

-0.5654z1 - 9.0060z2 + 8.7684z3 > 4.5775 (25)

The performance on datasets under the new boundary is 
shown in Table II. After applying the aforementioned bound‐
ary conservative translation, it is evident that the precision 
on the test set has improved significantly, reaching above 
99.99%, which indicates an increase in the reliability of the 
fitted boundary. Furthermore, the accuracy and recall rate on 
the test set also reach 98.65% and 99.26%, respectively, veri‐
fying the rationality and effectiveness of the proposed sam‐

TABLE II
MODEL PERFORMANCE ON WECC 3-MACHINE 9-BUS SYSTEM

Model

UDT

UDT without FNC

IGR-WODT

IGR-WODT without 
FNC

Translated boundary

Depth

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Training set

Pacc

0.9907

0.9924

0.9943

0.9946

0.5637

0.6049

0.6412

0.6412

0.9944

0.9944

0.9944

0.9946

0.5637

0.6049

0.6411

0.6638

0.9563

Ppre

0.9876

0.9869

0.9933

0.9947

0.5340

0.5586

0.5822

0.5822

0.9936

0.9937

0.9924

0.9943

0.5340

0.5586

0.5821

0.5980

0.9998

Prec

0.9938

0.9982

0.9953

0.9945

1.0000

1.0000

1.0000

1.0000

0.9953

0.9951

0.9964

0.9949

1.0000

1.0000

1.0000

1.0000

0.9129

Validation set

Pacc

0.9881

0.9898

0.9929

0.9922

0.5648

0.6058

0.6438

0.6438

0.9929

0.9931

0.9923

0.9926

0.5648

0.6058

0.6438

0.6642

0.9559

Ppre

0.9843

0.9830

0.9923

0.9929

0.5347

0.5592

0.5840

0.5840

0.9927

0.9927

0.9938

0.9923

0.5347

0.5592

0.5840

0.5983

0.9993

Prec

0.9921

0.9967

0.9936

0.9914

0.9998

1.0000

1.0000

1.0000

0.9932

0.9934

0.9938

0.9929

1.0000

1.0000

1.0000

1.0000

0.9124

Test set

Pacc

0.9957

0.9959

0.9959

0.9956

0.8717

0.8715

0.8715

0.8712

0.9957

0.9957

0.9957

0.9957

0.8717

0.8715

0.8713

0.8713

0.9865

Ppre

0.9967

0.9966

0.9981

0.9986

0.8719

0.8719

0.8718

0.8718

0.9985

0.9985

0.9985

0.9985

0.8719

0.8719

0.8718

0.8718

0.9999

Prec

0.9983

0.9987

0.9972

0.9963

0.9998

0.9994

0.9991
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Fig. 9.　 Distance distribution of insecure samples within security region 
from boundary for WESS 3-machine 9-bus system.
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pling method.
To further evaluate the computational efficiency of the 

proposed sampling method, we compare it with the point‐
wise method by calculating the time required for each meth‐
od to classify the state of 20000 samples in the test set. The 
results shown in Table III indicate that the proposed sam‐
pling method is nearly 2600 times faster than the pointwise 
method, taking only 0.2 s to classify 20000 samples, which 
meets the requirements for online applications.

B. Case 2: IEEE 118-bus System

In order to further verify the effectiveness and generality 
of the proposed sampling method in the high-dimensional 
SSRB approximation of large-scale power systems, the pro‐
posed sampling method is verified on the IEEE 118-bus sys‐
tem. The IEEE 118-bus system is configured with 54 genera‐
tors and 99 load nodes, with bus 69 set as the slacking bus, 
whose active power injection space is 152-dimensional.

Similar to the experiments on the WECC 3-machine 9-bus 
system, the proposed sampling method is compared with the 
LHS, MCS, IS, and MCMCS methods. The experiments are 

performed with five different random seeds. The results are 
investigated, as shown in Table IV, where the proportion of 
secure samples generated by the proposed sampling method 
is significantly increased.

After completing the search for boundary samples, 87268 
pairs of boundary sample pairs are obtained. A 1D-CNN 
based feature non-linear converter is designed for the IEEE 
118-bus system, containing one layer of 1D-CNN and three 
layers of FCN with the number of neurons being 128, 64, 
and 3, respectively. The aforementioned boundary sample 
pairs are divided into training and validation sets according 
to 8:2. Additionally, 100000 samples, which are not bound‐
ary samples, are generated as the test set.

After 1000 rounds of training, we select the optimal mod‐
el as the feature non-linear converter. The performance of 
the SSRB fitted using IGR-WODT in the feature space is 
presented in Table V.

As shown in Tables II and V, both IGR-WODT and UDT 
demonstrate outstanding performance in the feature space. 
Additionally, in terms of Pacc, the performance is comparable 
to the IGR-WODT with depth of 1 only when the UDT 
depth is 4. This trend becomes more evident in large-scale 
power systems, as presented in Table V. Thus, IGR-WODT 
achieves a balance between high accuracy and low model 
complexity.

Given the comparable performance, the model with lower 
complexity is chosen as the boundary approximation model, 
which is the IGR-WODT model with the depth of 1. Its 
boundary expression is shown in (26).

-0.0932z1 - 5.8812z2 + 7.0016z3 >-0.7624 (26)

Similar to Case 1, a conservative translation of the afore‐
mentioned boundary is performed. One thousand three hun‐
dred and ninety nine insecure samples are located within the 
current security region. The distances between these samples 
and the current SSRB are distributed. As shown in Fig. 10, 
the distance of the insecure samples in the current security 
region from the SSRB is 95% distributed within 1.0. Thus, 
the security region boundary is translated towards the non-se‐
curity region by 1.0. Here, the distance of the boundary 
translation can be selected according to the requirements in 
practical engineering applications. The new security region 
boundary is given by:

-0.0932z1 - 5.8812z2 + 7.0016z3 > 8.3819 (27)

TABLE III
COMPARISON OF COMPUTATIONAL EFFICIENCY OF DIFFERENT SAMPLING 

METHODS ON WECC 3-MACHINE 9-BUS SYSTEM

Method

Proposed sampling method

Pointwise method

Time (s)

0.20

524.77

TABLE IV
COMPARISON OF DIFFERENT SAMPLING METHODS IN IEEE 118-BUS SYSTEM

Method

Proposed sampling method

LHS

MCS

IS

MCMCS

Number of secure 
samples

87293 ± 127

22990 ± 241

23025 ± 120

23145 ± 167

22885 ± 124

Proportion of secure 
samples (%)

87.29 ± 0.13

22.99 ± 0.24

23.03 ± 0.12

23.14 ± 0.17

22.89 ± 0.12

TABLE V
MODEL PERFORMANCE ON IEEE 118-BUS SYSTEM

Model

UDT

IGR-WODT

Translated boundary

Depth

1

2

3

4

1

2

3

4

Training set

Pacc

0.9673

0.9747

0.9791

0.9803

0.9807

0.9800

0.9805

0.9807

0.9385

Ppre

0.9705

0.9776

0.9766

0.9717

0.9800

0.9755

0.9820

0.9803

0.9991

Prec

0.9639

0.9615

0.9819

0.9894

0.9815

0.9847

0.9792

0.9812

0.8771

Validation set

Pacc

0.9429

0.9469

0.9497

0.9502

0.9511

0.9512

0.9507

0.9504

0.9205

Ppre

0.9438

0.9504

0.9492

0.9426

0.9491

0.945

0.9511

0.9507

0.9846

Prec

0.9418

0.9323

0.9503

0.9589

0.9533

0.9581

0.9503

0.9500

0.8543

Test set

Pacc

0.9483

0.9483

0.9481

0.9503

0.9490

0.9495

0.9485

0.9483

0.9223

Ppre

0.9770

0.9770

0.9759

0.9702

0.9731

0.9724

0.9740

0.9742

0.9882

Prec

0.9634

0.9634

0.9643

0.9729

0.9683

0.9696

0.9667

0.9664

0.9219
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Table V displays the performance of each model on the 
training, validation, and test sets. The results show that the 
fitted boundary achieves an accuracy and a recall rate of 
92.23% and 92.19%, respectively, while maintaining a preci‐
sion of 98.82% on the test set. The results in Table V indi‐
cate that the proposed sampling method achieves similar per‐
formance in solving high-dimensional SSRB with 152 dimen‐
sions as in Case 1. This can be attributed to the incorpora‐
tion of a CNN layer into the feature non-linear converter de‐
signed for Case 2, which can better capture high-dimension‐
al feature information. These results confirm the effective‐
ness and versatility of the proposed sampling method in 
modeling high-dimensional SSRB.

We conduct a further comparison of the computational ef‐
ficiency between the proposed sampling method and the 
pointwise method in Case 2. Specifically, we analyze the 
time required to assess the states of 100000 operating points 
for both methods. As illustrated in Table VI, the proposed 
sampling method demonstrates several hundred times im‐
provement in computational efficiency compared with the 
pointwise method, requiring only approximately 10 s. This 
demonstrates that the proposed sampling method satisfactori‐
ly meets the demands for online applications in large-scale 
power systems.

Further, considering the noise interference and data miss‐
ing during data measurement and transmission process in re‐
al power systems, we conduct experiments to test the pro‐
posed sampling method. Specifically, we add Gaussian ran‐
dom noise with a range from -1 to 1 to a randomly selected 
10% of the dataset and simultaneously nullified 0.1% of the 
data to simulate the aforementioned issues. The performance 
of the proposed sampling method on the dataset is subjected 
to noise interference and data missing, as shown in Fig. 11.

As shown in Fig. 11, while maintaining Ppre essentially un‐
changed, the decline in Pacc and Prec is less than 5%, which 
indicates that the proposed sampling method exhibits good 
robustness on datasets subjected to noise interference and da‐

ta missing.

V. CONCLUSION AND FUTURE WORK 

This paper proposes a novel method to approximate the 
high-dimensional SSRB via the feature non-linear converter 
and improved oblique DT. The proposed sampling method is 
evaluated on the WECC 3-machine 9-bus system and IEEE 
118-bus system. The experimental results demonstrate that it 
outperforms previous methods by effectively approximating 
the high-dimensional boundary and reducing the error be‐
tween the approximated and real boundaries. As shown in 
Tabels II and V, the accuracy and recall rate are both above 
92% while the precision achieves 98% for the tested sys‐
tems. Also, the proposed sampling method exhibits good ro‐
bustness on datasets subjected to noise interference and data 
missing, as can be observed in Fig. 11.

Future research work will mainly focus on: ① integrating 
renewable energy and load forecasting tools to assess the 
system state in real-time within N time steps based on the 
proposed sampling method, and guiding the formulation of 
real-time dispatch and control strategies for power systems; 
and ② data-driven methods for predicting the steady-state se‐
curity margin.
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