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Abstract—The optimal planning and operation of multi-type
flexible resources (FRs) are critical prerequisites for maintain-
ing power and energy balance in regional power grids with a
high proportion of clean energy. However, insufficient consider-
ation of the multi-dimensional and heterogeneous features of
FRs, such as the regulation characteristics of diversified battery
energy storage systems (BESSs), poses a challenge in economi-
cally relieving imbalance power and adequately sharing feature
information between power supply and demand. In view of this
disadvantage, an optimal planning and operation method based
on differentiated feature matching through response capability
characterization and difference quantification of FRs is pro-
posed in this paper. In the planning stage, a model for the opti-
mal planning of diversified energy storages (ESs) including
Lithium-ion battery (Li-B), supercapacitor energy storage (SC-
ES), compressed air energy storage (CAES), and pumped hy-
droelectric storage (PHS) is established. Subsequently, in the op-
erating stage, the potential, direction, and cost of FR response
behaviors are refined to match with the power and energy bal-
ance demand (PEBD) of power grid operation. An optimal oper-
ating algorithm is then employed to quantify the feature differ-
ences and output response sequences of multi-type FRs. The
performance and effectiveness of the proposed method are dem-
onstrated through comparative studies conducted on an actual
regional power grid in northwest China. Analysis and simula-
tion results illustrate that the proposed method can effectively
highlight the advantages of BESSs compared with other ESs,
and economically reduce imbalance power of the regional pow-
er grid under practical operating conditions.

Index Terms—Regional power grid, planning and operation,
energy storage, flexible resource, response capability, feature
matching.
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1. INTRODUCTION

HE surging demand for flexible resources (FRs) in pow-

er grids with a high proportion of clean energy stems
from their inherent intermittency and variability, crucial for
maintaining power and energy balance [1], [2]. However, the
conventional optimization approach for multi-type FRs pri-
marily focuses on increasing the reserve capacity of thermal
power and hydropower units, which is challenging to adapt
to scenarios in power grids with a high proportion of clean
energy [3], [4]. Therefore, there is an urgent need to fully ex-
plore the coordinated regulation capabilities of multi-type
FRs [5]. Furthermore, by selecting the appropriate energy
storage (ES) type to match power and energy balance de-
mand (PEBD), the location and sizing of diversified ESs
with varied regulation capabilities can enhance the operating
stability and economic benefits of the power grid, facilitat-
ing the superior performance of ES technologies such as the
Lithium-ion battery (Li-B) [6], [7]. However, solely relying
on qualitative analysis of FR operations or considering a sin-
gle type of ES often leads to conservative optimization re-
sults and generation curtailment [8], [9]. Besides, multi-type
FRs comprising allocated battery energy storage systems
(BESSs) exhibit significant differences in fundamental fea-
tures including potential, direction, and cost of FR response
behaviors. Neglecting these differences and simply combin-
ing multi-type FRs without sequence can hinder optimal op-
erating performance and economic benefits in regional pow-
er grids [10], [11].

Numerous studies have concentrated on optimizing the
planning of diversified ESs and coordinating the operation
of multi-type FRs in power grids, especially BESSs. As a
pivotal FR component to satisfy the PEBD of the power
grid, the strategic placement and sizing of ESs are important
to achieve superior operating performance and economic ben-
efits [12]. Reference [13] proposes a formulation to deter-
mine the sizing and siting of BESSs in a power system with
high penetration of renewables, aiming to reduce operating
costs, enhance clean energy utilization, and mitigate power
curtailment. In [14], a two-step optimal planning model is
proposed for stationary ES systems and mobile ES systems,
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considering the mobility and supporting capabilities of the
latter. Additionally, [15] achieves optimal planning of hybrid
ES capacity, incorporating BESSs, through equilibrium con-
trol and dynamic optimization algorithms, considering vari-
ous wind and solar irradiance combinations, sampling inter-
vals, and power station numbers. In [16], a hybrid power
management approach is developed for electric vehicle bat-
teries and local conventional BESSs, utilizing model predic-
tive control for power grid frequency regulation. While the
aforementioned optimal allocation strategies of ESs analyze
their crucial role in suppressing power and frequency fluctua-
tions in regional power grids, they predominantly focus on
BESSs, thereby neglecting the diverse regulation capabilities
of other ES types, posing a challenge in achieving economic
power balance. Reference [17] introduces a matching index
considering the temporal correlation, overall distribution, and
dynamic characteristics of net load and BESSs, aiming for
the collaborative optimal dispatch of FRs. Similarly, [18] ex-
plores the rationality of typical FR modeling and dispatch
schemes, investigating the reasonable arrangement of unit
output within FR participation contexts. While these dispatch
schemes can form relatively controllable unit combinations,
the features of research elements involved in coordinating
the optimal operation of multi-type FRs remain heteroge-
neous, posing a challenge in quantifying the regulated capa-
bility difference among them.

Diversified FRs exhibit distinct fundamental features con-
cerning response power, energy, direction, and cost. Further-
more, their technical and economic benefits for the power
grid, when matching with PEBD, vary considerably. In a bi-
level wind power capacity optimization planning model [19],
a dynamic source-load tracking coefficient is proposed at the
operation level, which reflects the matching degree between
the fluctuating wind power and the controllable hydroelectric
power. Reference [20] establishes a renewable energy output
tracking control algorithm based on a state-queuing model,
aiming to minimize tracking errors, quantified as the sum of
squares of differences between renewable energy output and
load power. Reference [21] presents an interactive decision
model for source-load matching, integrating day-ahead and
real-time scheduling. Additionally, [22] proposes a source-
load value matching method considering numerous uncertain
factors, calculating matching degrees to effectively align
source and load values. Reference [23] establishes a function
model for volatility-based smoothing coefficients and source-
load timing matching coefficients to enhance the timing
matching degree between wind power output and grid load,
thereby mitigating the adverse impact of wind power connec-
tion on the power system. Moreover, [24] proposes a model
considering the comprehensive Spearman constant and Eu-
clidean distance matching indices to reduce energy consump-
tion costs for each community under the guidance of match-
ing index. While these studies aim to incorporate the match-
ing degree into optimized FR operation to reduce power de-
viation between source output and load power, they often
lack a comprehensive depiction for the features of multi-type
FRs. Additionally, they primarily focus on the matching de-
gree between sources and loads from the perspective of par-
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tial power matching, making it challenging to fully capture
the differentiated regulation capabilities of multi-type FRs
for different PEBDs.

Given the aforementioned limitations in previous studies,
which primarily focus on allocating predetermined types of
BESSs and characterizing FR features solely from the per-
spective of power and energy, addressing cost issues caused
by imbalance power becomes challenging. Consequently, to
effectively quantify feature differences among multi-type
FRs and coordinate the operating performance and economic
benefits of the power grid, we propose an optimal planning
and operation method based on a differentiated feature
matching method between FRs and PEBD. The main contri-
butions of this study are summarized as follows.

1) The establishment of an optimized planning model for
diversified ESs, including BESSs, to achieve optimal deploy-
ment of ES types, node locations, rated power, and rated ca-
pacities. This model effectively leverages BESSs to reduce
comprehensive operating costs and alleviate imbalance pow-
er in the power grid.

2) The development of an optimal operation algorithm for
multi-type FRs based on a differentiated feature matching
method. This algorithm outputs the response sequence of
FRs, characterizing the feature matching process between
FRs and PEBD through difference quantification and map-
ping relationships. Moreover, this algorithm deconstructs the
optimization and decision-making process for multi-type
FRs, ensuring they meet PEBD requirements while economi-
cally reducing imbalance power in the power grid.

3) The validation of the feasibility and effectiveness of the
proposed optimal planning and operation method using actu-
al data from FRs in northwest China.

The remainder of this paper is organized as follows. In
Section II, detailed considerations of the optimal planning
for diversified ESs containing BESSs are analyzed and mod-
eled. Section III presents the framework of the optimal plan-
ning and operation method based on differentiated feature
matching method for multi-type FRs, outlining the main ob-
jectives and constraints of the optimization algorithm. Sec-
tion IV presents the results and discussion based on case
studies. The conclusion and future work are given in Sec-
tion V.

II. ANALYSIS AND MODELING OF OPTIMAL PLANNING FOR
DIVERSIFIED ESs

A. Modeling of Diversified ESs

As a key FR to satisfy PEBD, the optimal planning of ES
types is closely tied to the operating performance of power
grids. Diversified ESs differ in their regulation capabilities.
Therefore, achieving a reasonable allocation of diversified
ESs is a pivotal challenge among the diverse ES types,
which include widely applicable BESSs. Ensuring the stable
operation of the power grid and substantially enhancing its
economic benefits hinge upon the reasonable planning of ESs.

Li-B is a typical representation of BESSs, known for its
lower capital cost, stable operation, and flexible response
range, allowing it to adapt to various demands. Compressed
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air energy storage (CAES) offers advantages such as larger
ES capacity and extended operational lifespan. Pumped hy-
droelectric storage (PHS) stands out with its substantial ES
capacity, extended operational lifespan, and shorter response
time. Supercapacitor energy storage (SCES) is characterized
by its higher power density, and rapid charging and discharg-
ing capability. To highlight the different regulation capabili-
ties of diversified ESs, a resource repository of diversified
ESs K containing Li-B, CAES, PHS, and SCES is construct-
ed for optimal planning, as shown in (1), and the compari-
son of differentiated regulation capabilities of the four types
of ESs is shown in Fig. 1 [25], [26].

K= {Li,Ca,Ps,Sc} (1)

where Li, Ca, Ps, and Sc represent the Li-B, CAES, PHS,
and SCES, respectively.

Power 300 5000 Capacity 2000 20000
(MW) e (MWh)
100 v 1000
50 400 600
5. 30 60 50 4015120 ‘
SCES Li-B CAES PHS SCES Li-B CAES PHS
ES type ES type
(a) (b)
Life cycle 60  Operating| 504
(year) cost
40 /kW 1000
30 140 AW 1100 800 (o
30 4
15 550 600 500
15 10
SCES Li-B CAES PHS SCES Li-B CAES PHS
ES type ES type
() (d)
Capital cost 4600
($/kWh) 1800
800
515 =50
SCES Li-B CAES PHS
ES type
(e)
Fig. 1. Differentiated regulation capabilities of diversified ESs. (a) Power

range. (b) Capacity range. (c) Life cycle range. (d) Operating cost range. (e)
Capital cost range.

The model constructed by diversified ESs is as follows:
2)

where E,(f) and E,(t—1) are the capacities of ES k at time ¢
and -1, respectively; 7., is the charging and discharging
coefficient of ES k; and P, (7) is the operating power of
ES k at time 7.

The cost of ES is categorized into capital cost and operat-
ing cost. Specifically, considering the life cycle and invest-
ment recovery coefficient, the capital cost is equivalent to
the initial investment cost, which is apportioned as the daily
depreciation cost of ES, represented as follows:

E(0=E (=Dt Py kek
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r(L+7)"
R=——"— kek
-1 3)
1
Ci= %kzI‘(RkC&kEN,k 4)

where R, is the annual investment recovery coefficient of ES
k; C,, is the daily depreciation cost of ES; 7, is the life cy-
cle of ES k; r is the discount rate; ¢, is the unit capital cost
of life cycle of ES k; and E,, is the rated capacity of ES £.

The operating cost of diversified ESs C,, is as follows:
C,= kz;(cvpvk‘ PESW,(‘ (5)

where ¢, is the unit operating cost of ES k; and P, is the
operating power of ES £.

B. Planning Model of Diversified ESs

The four types of ESs differ in regulation capabilities
such as rated power, life cycle, operating cost, and capital
cost, as illustrated in Fig. 1. In regional power grids, diversi-
fied ESs are strategically allocated to attain varied technical
and economic benefits for power grid regulation. Conse-
quently, leveraging the differentiated regulation capabilities
of diversified ESs, an optimal planning model of ESs from
K is formulated. This model serves as a prerequisite for im-
plementing the differentiated feature matching method of
FRs to meet the PEBD within the power grid.

1) ES Planning Constraints

The rated power of ES k satisfies a certain power range,
as shown in Fig. 1(a). A 0-1 decision variable 4, is intro-
duced to depict the planning state of ES k at node / and to
realize the planning of diversified ESs, which is shown as
follows:

PES,k,ming;{k,lPES.k,NSPES,k,max k € K (6)

where P,  is the rated power of ES k; P, i and Pprg o
are the minimum and maximum rated power of ES £, respec-
tively; and 4,,=1 and 4,,=0 represent that ES £ is allocated
at node / or not, respectively.

Formula (6) is nonlinear due to the multiplication of a 0-1
state variable with a continuous variable, which can be lin-
earized by the big-M method as:

Pyi=di Prsiy kek (7

Py SPriny kek (®)

Py SPpgin—M(Q1-4,,) kekK )
AitPskmin S Prx S A Prsimn K€K (10)

where P, is the introduced intermediate variable; and M is
an infinite number.

Meanwhile, the optimal planning of diversified ESs also
satisfies the following constraints:

>l

keK (11)

j’ SN max
“Tps i Prsin S Prsk S Tps i Prs iy ke K (13)
Epsinv=¥iPrsin k€K (14)
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where N ... is the maximum number of allocated ESs in
the regional power grid; £,  is the rated capacity of ES £;
and y, is the energy multiplication coefficient of ES k. Con-
straint (11) restricts the amount of allocated ESs at any
node. Constraint (12) limits the total amount of allocated
ESs. Constraint (13) ensures that the operating power of ESs
remains within their rated power limits. Constraint (14) es-
tablishes the relationship between the rated power and rated
capacity of ESs.

2) Power Flow Constraints

Py=(0,-0,)X,; (15)
(16)
where P, is the active power flow from nodes i to j; 6, and
6, are the phase angles of the voltages at nodes i and j, re-
spectively; X is the reactance from nodes i to j; and P, is
the maximum value of the line power flow from nodes i to ;.
3) Power Balance Constraints

D Ppi+ P+ Prg+Pr+ Po=P,+P

P, SP,<P,

ij =+ ij,max

base + AP Ld

an

AP ,=AP,+AP, + AP, (18)
where P, ; is the output of thermal power unit ; P, is the
output of hydroelectric power unit; P, is the tie-line power,
representing the net power exchange between the power grid
and external grid; P, is the clean energy power of a typical
day; P, ., is the base load power; AP,, is the power of flexi-
ble loads, which include transferable loads (TLs), reducible
loads (RLs), and adjustable loads (ALs); AP, is the power
of TLs, maintaining their electricity consumption constant
during the regulated cycle; AP, is the power of RLs, which
can be partially or completely reduced for loads with low re-
liable requirements; and AP, is the power of ALs besides
TLs and RLs.

4) Thermal Power Unit Constraint

Ui Py inS Py <Py (19)

where up, . is the minimum technical output coefficient; and
P,y is the rated power of thermal power unit i.
5) Hydroelectric Power Constraint

0<P, <Py (20)

where P is the rated power of hydroelectric power unit.
6) Tie-line Constraint

| Pri| <P 1)
where P, .. is the maximum value of tie-line power.
7) Flexible Load Constraints
Opin P SAP, <0, P, (22)
pP,.<AP,<P, (23)
Vinin Lt S AP 0y < Vax P aa (24)

where «a,,, and a,,,, are the lower and upper regulated coeffi-
cients for TLs, respectively; P, is the planned power con-
sumption of TLs; P, is the planned power consumption of
RLs; P, is the planned power consumption of ALs; f is the
regulated coefficient for RLs; and y,,, and y,,. are the lower
and upper regulated coefficients for ALs, respectively.
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8) Objective Function

In this paper, the comprehensive cost of power grid F is
considered as the optimal objective, including generation
cost and carbon emission penalty cost F,, tie-line cost F'

Gen> Ti>
flexible load cost F,, and cost of diversified ESs F,, It is
expressed as:

min F=Fg,, +F,+F ,+Fg (25)
Fo=Pp i (Cptce,)+ Py,
Fr=|Pylcy

Ti | T| Ti 26)
Fr= |APLd|CLd
FES=Cinv+Cop

where ¢, and c., are the unit generation cost and carbon
emission penalty cost of thermal power units, respectively;
¢y, 1s the unit generation cost of hydroelectric power unit; ¢,
is the unit cost of tie-line power; and c,, is the unit regulat-
ed cost of flexible loads.

III. FRAMEWORK OF OPTIMAL PLANNING AND OPERATION
METHOD BASED ON DIFFERENTIATED FEATURE MATCHING
FOR MULTI-TYPE FRS

The block diagram of the proposed method for multi-type
FRs based on differentiated feature matching is illustrated in
Fig. 2. First, a planning model of FRs is established, as de-
tailed in Section II, to identify the type and parameter of
multi-type FRs including BESSs. This enables the optimized
planning of ES types, node locations, rated power, and rated
capacity by mixed-integer linear programming (MILP). Sub-
sequently, the feature matrices of FRs and PEBD in the pow-
er grid are constructed, and the feature difference including
response potential, response direction, and response cost is
quantified using the Euclidean distance metric. Following
this, a matching degree is proposed to characterize matching
priority of FRs, and a mapping relationship is proposed to
analyze the matching process between FRs and PEBD. Final-
ly, considering the regulated boundary of multi-type FRs and
utilizing the aforementioned normalized feature difference as
the objective function, the optimal operation algorithm of
FRs iterates with feature matching framework to output the
response sequence of FRs.

A. Differentiated Feature of FRs

1) Feature Set of FRs

In this paper, the FRs in the power grid are considered to
include thermal power units, hydroelectric power units, tie-
lines, TLs, RLs, ALs, and allocated ESs. A feature set of
FRs is constructed by refining the response potential, re-
sponse direction, and response cost of FRs. The set consist-
ing of these FRs is:

U={u,|uz, Upgyo Uiy Uy U oo U g5 Ups )

27
where up,, u,, ug, U, U, U,, and ug represents the thermal
power unit, hydroelectric power unit, tie-line, TL, RL, AL,
and allocated ES, respectively; and u, represents any FR in
set U.

The main influencing factors of the response potential in-
clude the down-regulation and up-regulation capabilities.
The response potential of FRs can be expressed as:
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Optimal operation algorithm of FRs
I

Construct diversified ES pool

Obtain FR set U based on (27)

Sum linearly for three types of feature

based on (1)-(5) [

v

difference containing potential, direction,
and cost features

Establish feature set of FRs based
on (28)-(33)

Establish optimal planning model of
diversified ESs based on (7)-(10)

|

Obtain feature set of PEBD based
on (34)-(37)

Minimize comprehensive feature differences
between PEBD and FRs based on (41)

|

Construct power balance and power

flow based on (15)-(18)

Quantify feature difference based
on (38)-(41)

Establish regulated boundary of FRs in
matching round g based on (48)-(61)

!

Establish regulated boundary of
other FRs based on (19)-(24)

Construct matching mapping
relationship based on (43)-(45)

[

Construct comprehensive cost as
objective function

Does imbalance
power equal 0 or reach the regulation
boundary of FRs?

‘ Convert to MILP for solving ‘

Obtain FR response sequences with

Convert to MILP for solving

boundary of FRs with matching

satisfying PEBD at different moments

Update the PEBD and regulated 1

round g+1
Achieve optimal allocation of ] Match FR with the minimum feature
diversified ESs ) difference in matching round g based on (44)
Obtain response sequences of FRs
based on (47)
Fig. 2. Block diagram of proposed method for multi-type FRs.
0,=P,O—P, i NP — P, @) meU (28) moment, which can be calculated as:

where m is the element of FR set U; Q, is the response po-
tential of FRs; P (f) is the response power of FRs at time #;
and P, . and P, . are the minimum and maximum power
of FRs, respectively.

Since (28) is nonlinear and difficult to solve directly, this
paper employs the segmented linearization method men-
tioned in [27] to transform the quadratic function into a seg-
mented linear function with » segments. Thus, (28) can re-
written as:

b
0,= >V, P+ H (29)
s=1

where Y,  is the slope of each function segment after seg-
ment linearization; p,, ,, is the segmented response power of
FRs; and H is the response potential of the minimum re-
sponse power.

Meanwhile, p,,,, and H satisfy:

H=_Pr%1in +(Pm¢min + Pm, max )Pmin - Pmianax
0<p . <(P. —P. )b
pm, ts ( ) (30)

b
Pm (t): 2pm,t,s+Pmin
s=1
where P, and P, , are the minimum and maximum seg-
ment values of P (), respectively.
The response direction of FRs R represents the change
trend of response power at next moment relative to current

R,=(P,(t+)—-P, ()T meUt=1,2..T-1

where T is the regulated cycle.

The response costs of FRs C, primarily consist of re-
sponse power and unit response cost, which can be calculat-
ed as:

(€2

C,=c,|P, ()| meU (32)

where ¢, is the unit response cost of FRs.
Based on the proposed feature of FRs, the feature set of
FRs is:

5m Z{Qm’ Cm’Rm }
2) Feature Set of PEBD
PEBD is the regulated demand caused by power mis-
matching between generation and load of regional power
grid, which can be calculated as:

PPEBD,O(t):Pload(t)_PPV(t)_Pwind(t)_ zluTh.iPTh,i,N (34)

(33)

where P, (f) is the initial PEBD at time ¢ in the power
grid; P, (¢) is the forecasted load power; P, (¢) is the fore-
casted photovoltaic (PV) power; and P,,,,(¢) is the forecast-
ed wind power.

The set of PEBD is as follows:

V={v,,vy,..Vp .V} (35)
where v, is the PEBD at time ¢, and its value is equal to

P PEBD,0 (t)
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Corresponding to the features of FRs, the generalized fea-
tures of PEBD are refined into power demand, direction de-
mand, and cost demand. The feature set of PEBD can be ex-
pressed as:

8,=10,R,,C} (36)

where Q, is the power demand of PEBD; R, is the direction
demand of PEBD; and C, is the cost demand of PEBD.

O.=Pprpp, (t+1
Rt:(PPEBD,g(t+ 1)_PPEBD_g(t))/T

C= CPEBD‘ PPEBD,g 0)- Pi"’-g 0] ‘

where ¢, is the unit cost of demand assessment reduction;
Prpgp o (0) is the PEBD at time ¢ in matching round g; and
P, .(?) is the imbalance power after optimal operation, and
the value is equal to Ppgg, (1) when g=0.

37

B. Feature Matching Between FRs and PEBD

The aforementioned three types of features characterize
the responsiveness of multi-type FRs. Specifically, the differ-
ence between response potential and power demand at the
next moment portrays regulated capability fitness of FRs to
PEBD, the difference between response direction and direc-
tion demand depicts the tracking effect of FRs to PEBD, and
the difference between response cost and cost demand por-
trays PEBD cost of power grid. Accordingly, the feature dif-
ference between FRs and PEBD can be quantified as:

d, (D= | > Z(ém (D)= 8,(A)y’ (38)
A={0.R,C} (39)

where d,,, is the feature difference; 4 is generalized feature
set of FRs and PEBD; and O, R, and C are the generalized
potential feature, direction feature, and cost feature of FRs
and PEBD, respectively.

Feature difference is normalized by the range method,
which can be expressed as:

d, ,(4)—-min{d, (1)}
max {d,, (A)}-min{d, (1}

where d,,,, is the normalized feature difference.

From (38), it can be inferred that a smaller difference be-
tween FRs and PEBD results in a higher matching priority.
Therefore, this paper defines f to characterize the matching
priority of multi-type FRs, which is determined through lin-
ear summation as follows:

J= Z(dm,,,n(Q)+dm,f.n(R)+dm,,,,, ©) (41)

where d,,,,(0), d,,,,(R), and d,,,,, (C) are the normalized fea-
ture differences of potential, direction, and cost, respectively.

Meanwhile, p is introduced to measure the matching de-
gree between FRs and PEBD, which is as follows:

p=~N1=-f
where x is the matching coefficient.

The set of FRs U and set of PEBD V' form the feature
space F. This paper defines the mapping function p:U—V

d, (A= (40)

m,t,n

(42)
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as the matching process between U and V' in the feature
space F. The influencing factors are manifested in the form
of differentiated features in this paper, and the mapping func-
tion satisfies the following condition: for any element in V]
there always exists an element in U to match it, which is ex-
pressed as:

Vv, e V:3uwu,, )ev,,m=0 (43)

where u(u,, )€ v, is the matching pair composed by u,, and v,
Different response sequences of FRs represent different
regulation strategies, and different moments of PEBD are
matched with different sequences of FRs to ensure the bal-
ance between the supply of FRs and the PEBD in terms of
response potential, response direction, and response cost.

[dl,= min (d,,,()

where d is the minimum value of feature difference.

When (43) and (44) are satisfied, FR m prioritizes to
match with PEBD in matching round g=1. And PEBD is
continuously updated in the subsequent matching round
g+ 1, resulting in the response sequence of FRs being output
under dynamic PEBD.

On this basis, a 0-1 state variable that characterizes wheth-
er the FR constitutes a matching pair with PEBD being intro-
duced as:

(44)

1 Iu(um )E vt

0 e, @

As the matched FR reduces PEBD by a certain power af-
ter matching round g, the PEBD will be corrected in next
matching round:

Ppepp gt O=Ppgpp (€)= P, (1) 20 (46)
where Ppg,  (¢) is the power of PEBD at moment 7 in
matching round g; and P, ,(¢) is the matched FR in match-
ing round g.

Finally, until the PEBD is 0 or the FR regulation bound-

ary is reached, the stable set of response sequences for FRs
is output, which can be expressed as:

leT: lemlmxT (47)
where V), ; is the matrix of PEBD in period T; U,,,, is the

matrix of m types of FRs; and y,,, r is the matching state ma-
trix of FR and PEBD.

C. Optimal Operation Algorithm of FRs

1) Objective Function

In this paper, the objective of power grid operation is to
minimize the comprehensive feature differences of three as-
pects: response potential-power demand, response direction—
direction demand, and response cost—cost demand. Accord-
ingly, the objective function is shown in (41).
2) Power Flow Constraints

Py, (0=0,-0)X, (48)
_Pij.max SP (I)SP (49)
where P,

4. (@) 1s the active power flow of the line from node
i to node j at time ¢ in matching round g.

ij.g ij, max
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3) Power Balance Constraints
D PrigOF Py (04 P (04 P (=P, (0+
APtr,g(t)+APre,g(t)+APad,g(t)+PPEBD‘g(Z) (50)

where Py, .. (¢) is the power of thermal power unit i in
matching round g; P, . (?) is the output of hydroelectric pow-
er unit in matching round g; P, () is the response power
of ES k in matching round g; Py, (?) is the tie-line power in
matching round g; and AP, ,(#), AP, (), and AP, (¢) are
the response power of TLs, RLs, and ALs in matching round
g, respectively.

4) Conventional Resource Constraints

ad,g

0< zPTh,Lg(t)S(l _#Th.[)Prh,[,N (51)
g
0< D Py (O<Py (52)
g
2’ Pﬂ,g(t)‘ SPTi,max (53)
g

5) Flexible Load Constraints

TLs are required to keep the power consumption constant
during the regulated cycle and satisfy certain response range
constraints, which are expressed as:

2AP,, (=0 (54)

aminPtr(t)S EAPtr,g(t)Samathr(t) (55)
g

Constraints must be satisfied to ensure that RLs adhere to

certain response range and number of reduced regulation

times, thus avoiding the impact of power utilization. These
constraints are expressed as:

rBP,. ()< D AP, (O<P, (1) (56)

T
D F SN (57)
t=1
where r, is number of the reduced regulation times of RLs
during regulated cycle; and N, is the upper limit of the
number of reduced regulation times.

Certain response range constraint should be satisfied by
ALs, which is expressed as:

ymin})ad(t)S EAPad.g(t)SymaxPad(t) (58)
g
6) ES Constraints
~TesiPrsins EPES,k,g(t)S TesiPrsin (59)
g
T
EPEs.k,g =0 (60)
t=1
0SEpgpot DD Prose (DA SEpgyy £'el0.6] (g1
g
where E ., is the initial capacity of allocated ES 4.
7) Matching Constraints
The feature matching constraints are shown in (30)

and (40).
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IV. CASE STUDY

A. Case Description

To demonstrate the feasibility and effectiveness of pro-
posed method, case studies are conducted using an actual 25-
bus regional power grid in northwest China, as shown in
Fig. 3. The MILP algorithm is implemented using MATLAB
2021.

= Transmission line; @ Grid bus; EX Wind power; =] PV
[ Thermal power unit; [\ Hydroelectric power unit

Fig. 3. An actual 25-bus regional power grid in northwest China.

The technology parameters of the regional power grid are
displayed in Table I, and the basic technology parameters of
diversified ESs are provided in Table II [28], where SOC de-
notes for state of charge. The data in a typical day are ob-
tained by clustering one year’s power generation and load
data in the ES planning model, and several cases are con-
ducted as follows.

TABLE I
TECHNOLOGY PARAMETERS OF REGIONAL POWER GRID

Type Rated value (MW)  The minimum value (MW)
Thermal power 4697.0 2348.5
Hydroelectric power 476.0 0
Wind power 5950.0
PV power 4410.0
Tie-line power 800.0 -800
Forecasting load 16509.0
TL 4592.0 2188
RL 23442 0.7P (1)
AL 847.9 0.7P (1)
TABLE II

TECHNOLOGY PARAMETERS OF DIVERSIFIED ESS

o TS G oen e ety
Li-B 300.00 100 10 0.5 6.70 4.0
CAES 100.00 1000 30 0.5 6.70 10.0
PHS 0.01 1 30 0.5 6.70 0.1
SCES 200.00 2000 50 0.5 6.70 20.0

Case 1: the net load of the regional power grid is simulat-
ed, and the results are shown in Fig. 4.

Case 2: FRs except for ESs participate in the regional
power grid regulation without considering the proposed
method.
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Case 3: based on Case 2, the PHS participates in the opti-
mal planning and the differentiated regulation capabilities of
ESs are ignored.

Case 4: based on Case 2, diversified ESs participate in the
optimal planning considering differentiated regulation capa-
bilities, and the feature matching is ignored in the optimal
operation of FRs.

Case 5: based on Case 4, multi-type FRs participate in the
regional power grid regulation through the proposed method
considering feature matching.

12000

10000

8000

Power (MW)

6000 . E
4000 ¢ :
Power | |
2000+ surplus | Power shortage ]
_________ il S
1 1
01:00 06:00 12:00 18:00 24:00
Time
Wind power; s Thermal power; = PV power
— Forecasted load; Net load

Fig. 4. Net load results of regional power grid.

B. Power Grid Regulation Analysis Using Optimal Planning
of Diversified ESs

Based on (32), the value of PEBD equals the net load of
the regional power grid, which is shown in Fig. 4. Specially,
the regional power grid experiences a power shortage during
the period from 07:00 to 21:00, and power surplus occurs
during other periods. Based on the regulation demand in
Case 1 and the established planning model of ESs in Section
II, specific planning results of diversified ESs in Cases 3
and 4 are presented in Table III. In Case 3, the PHS is allo-
cated to nodes 2 and 10 with respective rated power of 200
MW and 695 MW. The optimal planning result in Case 4 re-
veals that the allocated ES types are Li-B, PHS, and CAES,
with respective rated power of 148 MW, 200 MW, and 540
MW. Li-B is allocated to most nodes because it has more
flexible response capacity and lower capital cost. Notably,
the total rated power of Case 3 and Case 4 is 895 MW and
885 MW, respectively. This variance can be attributed to the
fact that a single ES type with limited regulation capacity in
Case 3 faces challenges in achieving the coordinated comple-
mentary advantages of diversified ESs. Consequently, it is
necessary to further increase the allocated capacity to satisfy
the PEBD.

To validate the effectiveness of proposed optimal planning
model, the technical and economic benefits of the allocated
ESs in Case 3 and Case 4 are compared. In both Case 3 and
Case 4, the operating power and the SOC of the allocated
ESs are shown in Fig. 5.

It can be observed that the charging and discharging peri-
ods closely align with the power shortage and power surplus
periods shown in Fig. 4. During power surplus periods, the
allocated ESs are charged to accommodate surplus power
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within the power grid, gradually increasing their SOC. Con-
versely, during power shortage periods, the ESs are dis-
charged to supplement the power shortage, gradually reduc-
ing their SOC. It is worth noting that the SOC of the ESs is
maintained constant at the beginning and end of the regula-
tion cycle, as indicated by (54).

TABLE III
OPTIMAL PLANNING RESULTS OF DIVERSIFIED ESS IN CASES 3 AND 4

Case ES type  Node Rated power (MW) Rated capacity (MWh)
PHS 2 200 4000
Case 3
PHS 10 695 13900
Li-B 4 60 240
PHS 11 200 4000
Case 4
CAES 20 540 5400
Li-B 24 88 352
~ 220 1.0 ~720r 1.0
Tvam (R |
T 0 058 = 0 all 0.50
[ [75) 5]
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~220 s : : 0 ~.720 : : 0
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Fig. 5. Operating power and SOC of allocated ESs in Cases 3 and 4. (a)
PHS at node 2 in Case 3. (b) PHS at node 10 in Case 3. (c¢) Li-B at node 4
in Case 4. (d) PHS in Case 4. (¢) CAES in Case 4. (f) Li-B at node 24 in
Case 4.

From Fig. 5(a) and (b), it is evident that the operating
power of PHSs allocated at nodes 2 and 10 in Case 3 exhib-
its no significant differences in response frequency and direc-
tion. This phenomenon arises because the allocated PHS
units differ only in their ES capacities, and the PHS with
higher rated power at node 10 primarily satisfies the PEBD.
However, as shown in Fig. 5(c)-(f), it is apparent that the Li-
Bs allocated at nodes 4 and 24 in Case 4 undergo only 8
charging and discharging cycles, significantly fewer than
those of CAES and PHS. This notable discrepancy can be
primarily attributed to the higher charging and discharging
costs of Li-Bs, as indicated in Fig. 1. Consequently, Li-B
has the advantage of capacity allocation compared with
CAES and PHS, while CAES and PHS have priority for par-
ticipation in ES operation due to their lower operating costs
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and higher regulation capacities.

The coordinated optimization between diversified ESs and
other FRs plays a vital role in satisfying PEBD and enhanc-
ing the economic benefits of the regional power grid. The
optimal operating results of multi-type FRs in different cases
considering allocated ESs are illustrated in Fig. 6.
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< 2000+
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| R 0=
-1000 E
==
-2000 . . . :
00:00 06:00 12:00 18:00 24:00
Time
(©)
— PEBD;«— Imbalance power; C3 Thermal power; &3 Tie-line
CJHydropower; EBAL; EMRL; E@ TL; cLi-B; @ CAES; COPHS
Fig. 6. Optimal operating results of multi-type FRs in different cases con-

sidering allocated ESs. (a) Case 2. (b) Case 3. (c) Case 4.

The regulation mechanism for FRs participating in the reg-
ulation of regional power grid in Case 2 is outlined as fol-
lows. During power shortage periods, the power generation
and tie-line supply are increased, while the power demand
from the load is reduced, thereby the power shortage is sup-
plemented to maintain the power balance of the regional
power grid. Conversely, during power surplus periods, the
power supply is reduced, and the load power as well as the
power output from tie-line is increased, thus the power sur-
plus of the regional power grid is effectively accommodated.
Based on the regulation mechanism in Case 2, the regulation
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mechanism of multi-type FRs, which aims to ensure the
power balance of power grid, is as follows: the ES is dis-
charged during power shortage periods, and it is charged dur-
ing power surplus periods.

To underscore the superiority of the planning model of di-
versified ESs, a comparative technical and economic analy-
sis of Cases 2-4 is performed. In terms of technical analysis,
the reduction proportion in net load across each case is com-
pared. In Case 1, 78.65% of the net load is accommodated
through conventional regulation resources and flexible loads
to satisfy certain PEBD. However, there remains a net load
that cannot be accommodated at 14 regulation moments, oc-
curring at 01:00-05:00, 09:00, 15:00-20:00, and 23:00-24:00.
Leveraging the advantages of ESs compared with other FRs
in terms of regulated power, capacity, and cost, 97.32% of
the net load is accommodated in Case 3. In Case 4, 97.46%
of the net load is accommodated through the coordinated
complementary of diversified ESs, resulting in an undissipat-
ed energy deficit of only 849.5 MWh.

Regarding economic analysis, the comprehensive costs
gradually decrease from Case 2 to Case 4, as depicted in
Fig. 7. Specifically, the costs of thermal power units and car-
bon emission penalties also decrease across these cases, indi-
cating that the diversified ESs with differentiated regulation
capabilities contribute to reducing the output of thermal pow-
er units and carbon emissions, aligning with the goal of
achieving the “carbon peak and carbon neutrality”. The total
cost of ESs in Case 4 (with the costs of Li-B, SCES, and
PHS of $22300, $143600, $80400, respectively) is $16100
less than that in Case 3 (with the cost of PHS of $262400),
mainly due to the coordinated optimization of diversified
ESs in Case 4, particularly BESSs.
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Fig. 7. Comparative costs of FRs in Cases 2-4.

The comparative technical and economic analysis high-
lights the effectiveness of the optimal planning model for
FRs in power grids. Specifically, the optimal planning model
of diversified ESs, considering differentiated regulation capa-
bilities, not only decreases imbalance power with less allo-
cated capacity of ESs but also satisfies the PEBD with lower
comprehensive costs, consequently reducing the operating
cost of allocated ESs.
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C. Power Grid Regulation Analysis Using Differentiated
Feature Matching Method of Multi-type FRs

To demonstrate the effectiveness of the proposed method,
an initial feature matching matrix is established to depict the
matching potential of FRs in satisfying PEBD before optimi-
zation. The allocated ESs are determined based on the opti-
mization results in Case 4 from Table III. The initial feature
matching is defined as follows: the adjustment capacity, rat-
ed power, and unit operating cost of FRs are considered as
the initial response potential feature, response direction fea-
ture, and response cost feature, respectively. By substituting
(34) into (37), the initial matrix of PEBD is obtained. Then,
the initial feature matching degree between FRs and PEBD
is calculated by (38)-(41), serving as a reference for the sub-
sequent analysis of response sequence, as shown in Fig. 8,
where Th, Hy, and Ti represent the thermal power unit, hy-
droelectric power unit, and tie-line, respectively.

p
Th 1.0
q; 0.8
g T 0.6
gi RL )
& AL 0.4
i-B
SCES 0.2
PHS o
01:00 06:00 12:00 18:00 24:00
Time
(a)
Th P
iy 1.0
o Ti 0.8
s 0.6
& 0.4
0.2
06:00 12:00 18:00 24:00
Time
(b)

0
24:00

06:00 12:00

Time

(d)
Fig. 8. [Initial matching degree between FRs and PEBD. (a) Initial match-
ing degree of response potential. (b) Initial matching degree of response di-
rection. (c) Initial matching degree of response cost. (d) Comprehensive ini-
tial matching degree between FRs and PEBD.

18:00

As observed from Fig. 8(a)-(c), it is apparent that the ad-
justable boundaries of multi-type FRs to PEBD are closer
and their operating costs are lower, resulting in a higher ini-
tial matching degree. The primary reason lies in the fact that
FRs with higher regulation capacity can more precisely and

1733

effectively satisfy the PEBD of power grid. Moreover, FRs
with lower operating costs contribute to enhancing the eco-
nomic benefits of power grid. After normalizing and linearly
weighting the technical and economic features mentioned
above, the comprehensive initial matching degree is calculat-
ed, as shown in Fig. 8(d). Taking 18:00 as an example,
which is the moment with the highest regulation capacity as
depicted in Fig. 6, the matching degree of thermal power
units with higher costs is higher compared with other FRs.
This is primarily because thermal power units with higher
regulation capacity contribute significantly to satisfying
PEBD.

Utilizing the proposed method, the optimized operation of
multi-type FRs in Case 5 is achieved within the power grid,
as illustrated in Fig. 9. Figure 9(a) shows the overall optimi-
zation and matching results of multi-type FRs throughout the
complete regulated cycle. In particular, typical periods are se-
lected to illustrate the function and significance of three
types of feature matching for the optimized operation results
in Fig. 9(a). It is worth noting that the typical optimization
periods provide a clear illustration based on the main influ-
encing factors.
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Fig. 9. Optimal operation results of multi-type FRs in Case 5 with pro-
posed method. (a) Matching sequence of multi-type FRs. (b) Cost matching.
(c) Direction matching. (d) Potential matching.

First, during the power surplus period from 01:00 to 05:00,
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as an illustrative example for cost matching analysis, multi-
type FRs, including the tie-line, AL, TL, Li-B, CAES, and
PHS, actively participate in power regulation to match
PEBD. Notably, CAES and PHS are prioritized during this
period due to their lower operating costs, as indicated in Fig.
9(b). As a result, CAES and PHS operate with their rated
power levels to ensure the power balance of the power grid.
In contrast, the tie-line power is minimized to accommodate
surplus power due to its highest operating cost.

Furthermore, during the power shortage period from 08:00
to 11:00, as an illustrative example for direction matching
analysis, the power shortage is supplemented by increasing
the power supply and reducing the load demand. Specially,
the power supply is augmented by hydroelectric power, ther-
mal power, Li-B, CAES, and PHS, as indicated by the green
dashed arrows in Fig. 9(a). Simultaneously, the AL, RL, and
TL reduce the power for load demand, as represented by the
yellow dashed arrows in Fig. 9(a). The coordinated effort
forms a new power rebalancing curve according to the pow-
er supply and load demand, as depicted in Fig. 9(c), which
closely follows the direction of the PEBD.

Additionally, during the power shortage period from 15:00
to 19:00, as an illustrative example for the potential match-
ing analysis, the FR with larger response potential is priori-
tized to match with the higher PEBD. For instance, though
the operating cost is higher due to the influence of genera-
tion cost and carbon emission penalty cost, thermal power
units with wider regulation range can quickly satisfy regula-
tion demand and contribute to reducing the frequent regula-
tion of other FRs with smaller response potential. Similarly,
the allocated ESs can track accurately the variation of PEBD
based on the great potential of upward and downward regula-
tions. The total discharging power of diversified ESs can
track the change trend of PEBD, as shown in Fig. 9(d), and
the discharging power trends of Li-B, CAES, and PHS are
basically similar with the above total discharging power. In
particular, the discharging power of Li-B needs to be com-
prehensively considered, which is limited by its lower rated
power and higher operating cost.

To illustrate the feasibility and effectiveness of the pro-
posed method, a comparative technical and economic analy-
sis of Cases 2-5 is performed, with the results summarized
in Table IV.

TABLE IV
TECHNICAL AND ECONOMIC ANALYSIS OF CASES 2-5

The maximum Net lo_ad Comprehensive ES COSt. of
. reduction unit
Case  imbalance proportion cost qf power cost PEBD

power (MW) %) grid ($) ($) (S/MW)

2 1205.0 78.65 5845600 0 222.14
3 4354 97.32 5568200 262400 171.00
4 428.2 97.46 5502800 246300 168.75
5 347.2 98.39 5516000 253800 166.65

In terms of technical benefits, the imbalance power of
Case 5 is 358.2 MWh, which is 491.3 MWh less than that
of Case 4, leading to an increase of net load reduction pro-
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portion from 97.46% to 98.39%. Concerning economic bene-
fits, the comprehensive cost of the power grid in Case 5 is
$5516000, representing a $13200 increase compared with
that of Case 4. Therefore, Case 5 reduces the imbalance
power by 491.3 MWh at an additional economic cost of
$13200.

To facilitate comparison of unit power regulation costs,
the cost of unit PEBD is defined as comprehensive cost di-
vided by total response power of FRs. This metric mainly
concentrates on the cost of regulating unit power from the
perspective of the power grid regulation department, in con-
trast to the conventional comprehensive cost. The cost of
unit PEBD in Case 5 is reduced by 1.24% compared with
that in Case 4. This reduction illustrates that the proposed
method can effectively reduce the imbalance power while en-
suring economically favorable conditions for the power grid.

The technical and economic analysis comparing Case 4
and Case 5 underscores the effectiveness of the proposed
method in harmonizing technical and economic benefits with-
in the power grid. It demonstrates the capability of the pro-
posed method to reduce imbalance power and enhance the
utilization of diversified ESs. The prioritization of FRs with
superior response potential, response direction, and response
cost by the power grid regulation department ensures accu-
rate and efficient satisfaction of PEBD. Conversely, a re-
duced participation rate in power grid regulation is observed
for FRs with lower matching degrees. This preference is at-
tributed to the ability of the proposed method to effectively
share feature information between power supply and de-
mand, thereby dynamically tracking the variation of PEBD
by considering the multi-dimensional and heterogeneous fea-
tures of multi-type FRs. Specifically, the iterative calculation
of feature differences between multi-type FRs and dynamic
PEBD ensures that PEBD consistently matches FRs with
minimal differences, effectively decomposing regulated com-
mands. Consequently, the feature differences of multi-type
FRs serve as the objective of dynamic iterative optimization
for the proposed method, reflecting the power rebalancing
process.

V. CONCLUSION

In this paper, we propose and analyze an optimal planning
and operation method for multi-type FRs within a regional
power grid characterized by a high proportion of clean ener-
gy. Recognizing the diverse regulation capabilities of diversi-
fied ESs and multi-type FRs in addressing PEBD, we estab-
lish an optimal planning model for diversified ESs, includ-
ing BESSs, and investigate an optimal operation algorithm
for multi-type FRs.

1) The established optimal planning model considers the
differentiated regulation capabilities of diversified ESs, facili-
tating the optimal deployment of BESSs. Leveraging the
flexible response range and lower capital cost of BESSs, this
model effectively reduces imbalance power, ES cost, and
comprehensive cost within the power grid.

2) We construct a feature set for multi-type FRs and
PEBD, accounting for their inherent heterogeneity. Through
difference quantification and mapping relationships, the dif-
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ferentiated feature matching method offers insights into the
optimization and decision-making processes guiding the par-
ticipation of FRs in regulating the regional power grid.

3) The optimal operation algorithm for multi-type FRs in-
tegrates adjusted boundaries and differentiated feature match-
ing within the power grid. This algorithm demonstrates its
ability to economically reduce imbalance power by 1.24%
under practical operating conditions, effectively enhancing
grid stability and economic efficiency.

In future research, avenues are opened for matching opti-
mal FRs to multi-level power grids by the proposed method.
Specifically, FRs with smaller feature differences could be
prioritized for matching with urban-level and county-level
power grids, which typically exhibit higher regulation de-
mands. Conversely, FRs characterized by larger feature dif-
ferences may be more suitable for matching with park-level
and substation-level power grids, where regulation demands
are comparatively lower. Moreover, this study will be further
extended towards uncertainty modeling and analysis for the
power grid.
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