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Abstract——The optimal planning and operation of multi-type 
flexible resources (FRs) are critical prerequisites for maintain‐
ing power and energy balance in regional power grids with a 
high proportion of clean energy. However, insufficient consider‐
ation of the multi-dimensional and heterogeneous features of 
FRs, such as the regulation characteristics of diversified battery 
energy storage systems (BESSs), poses a challenge in economi‐
cally relieving imbalance power and adequately sharing feature 
information between power supply and demand. In view of this 
disadvantage, an optimal planning and operation method based 
on differentiated feature matching through response capability 
characterization and difference quantification of FRs is pro‐
posed in this paper. In the planning stage, a model for the opti‐
mal planning of diversified energy storages (ESs) including 
Lithium-ion battery (Li-B), supercapacitor energy storage (SC‐
ES), compressed air energy storage (CAES), and pumped hy‐
droelectric storage (PHS) is established. Subsequently, in the op‐
erating stage, the potential, direction, and cost of FR response 
behaviors are refined to match with the power and energy bal‐
ance demand (PEBD) of power grid operation. An optimal oper‐
ating algorithm is then employed to quantify the feature differ‐
ences and output response sequences of multi-type FRs. The 
performance and effectiveness of the proposed method are dem‐
onstrated through comparative studies conducted on an actual 
regional power grid in northwest China. Analysis and simula‐
tion results illustrate that the proposed method can effectively 
highlight the advantages of BESSs compared with other ESs, 
and economically reduce imbalance power of the regional pow‐
er grid under practical operating conditions.

Index Terms——Regional power grid, planning and operation, 
energy storage, flexible resource, response capability, feature 
matching.

I. INTRODUCTION 

THE surging demand for flexible resources (FRs) in pow‐
er grids with a high proportion of clean energy stems 

from their inherent intermittency and variability, crucial for 
maintaining power and energy balance [1], [2]. However, the 
conventional optimization approach for multi-type FRs pri‐
marily focuses on increasing the reserve capacity of thermal 
power and hydropower units, which is challenging to adapt 
to scenarios in power grids with a high proportion of clean 
energy [3], [4]. Therefore, there is an urgent need to fully ex‐
plore the coordinated regulation capabilities of multi-type 
FRs [5]. Furthermore, by selecting the appropriate energy 
storage (ES) type to match power and energy balance de‐
mand (PEBD), the location and sizing of diversified ESs 
with varied regulation capabilities can enhance the operating 
stability and economic benefits of the power grid, facilitat‐
ing the superior performance of ES technologies such as the 
Lithium-ion battery (Li-B) [6], [7]. However, solely relying 
on qualitative analysis of FR operations or considering a sin‐
gle type of ES often leads to conservative optimization re‐
sults and generation curtailment [8], [9]. Besides, multi-type 
FRs comprising allocated battery energy storage systems 
(BESSs) exhibit significant differences in fundamental fea‐
tures including potential, direction, and cost of FR response 
behaviors. Neglecting these differences and simply combin‐
ing multi-type FRs without sequence can hinder optimal op‐
erating performance and economic benefits in regional pow‐
er grids [10], [11].

Numerous studies have concentrated on optimizing the 
planning of diversified ESs and coordinating the operation 
of multi-type FRs in power grids, especially BESSs. As a 
pivotal FR component to satisfy the PEBD of the power 
grid, the strategic placement and sizing of ESs are important 
to achieve superior operating performance and economic ben‐
efits [12]. Reference [13] proposes a formulation to deter‐
mine the sizing and siting of BESSs in a power system with 
high penetration of renewables, aiming to reduce operating 
costs, enhance clean energy utilization, and mitigate power 
curtailment. In [14], a two-step optimal planning model is 
proposed for stationary ES systems and mobile ES systems, 
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considering the mobility and supporting capabilities of the 
latter. Additionally, [15] achieves optimal planning of hybrid 
ES capacity, incorporating BESSs, through equilibrium con‐
trol and dynamic optimization algorithms, considering vari‐
ous wind and solar irradiance combinations, sampling inter‐
vals, and power station numbers. In [16], a hybrid power 
management approach is developed for electric vehicle bat‐
teries and local conventional BESSs, utilizing model predic‐
tive control for power grid frequency regulation. While the 
aforementioned optimal allocation strategies of ESs analyze 
their crucial role in suppressing power and frequency fluctua‐
tions in regional power grids, they predominantly focus on 
BESSs, thereby neglecting the diverse regulation capabilities 
of other ES types, posing a challenge in achieving economic 
power balance. Reference [17] introduces a matching index 
considering the temporal correlation, overall distribution, and 
dynamic characteristics of net load and BESSs, aiming for 
the collaborative optimal dispatch of FRs. Similarly, [18] ex‐
plores the rationality of typical FR modeling and dispatch 
schemes, investigating the reasonable arrangement of unit 
output within FR participation contexts. While these dispatch 
schemes can form relatively controllable unit combinations, 
the features of research elements involved in coordinating 
the optimal operation of multi-type FRs remain heteroge‐
neous, posing a challenge in quantifying the regulated capa‐
bility difference among them.

Diversified FRs exhibit distinct fundamental features con‐
cerning response power, energy, direction, and cost. Further‐
more, their technical and economic benefits for the power 
grid, when matching with PEBD, vary considerably. In a bi-
level wind power capacity optimization planning model [19], 
a dynamic source-load tracking coefficient is proposed at the 
operation level, which reflects the matching degree between 
the fluctuating wind power and the controllable hydroelectric 
power. Reference [20] establishes a renewable energy output 
tracking control algorithm based on a state-queuing model, 
aiming to minimize tracking errors, quantified as the sum of 
squares of differences between renewable energy output and 
load power. Reference [21] presents an interactive decision 
model for source-load matching, integrating day-ahead and 
real-time scheduling. Additionally, [22] proposes a source-
load value matching method considering numerous uncertain 
factors, calculating matching degrees to effectively align 
source and load values. Reference [23] establishes a function 
model for volatility-based smoothing coefficients and source-
load timing matching coefficients to enhance the timing 
matching degree between wind power output and grid load, 
thereby mitigating the adverse impact of wind power connec‐
tion on the power system. Moreover, [24] proposes a model 
considering the comprehensive Spearman constant and Eu‐
clidean distance matching indices to reduce energy consump‐
tion costs for each community under the guidance of match‐
ing index. While these studies aim to incorporate the match‐
ing degree into optimized FR operation to reduce power de‐
viation between source output and load power, they often 
lack a comprehensive depiction for the features of multi-type 
FRs. Additionally, they primarily focus on the matching de‐
gree between sources and loads from the perspective of par‐

tial power matching, making it challenging to fully capture 
the differentiated regulation capabilities of multi-type FRs 
for different PEBDs.

Given the aforementioned limitations in previous studies, 
which primarily focus on allocating predetermined types of 
BESSs and characterizing FR features solely from the per‐
spective of power and energy, addressing cost issues caused 
by imbalance power becomes challenging. Consequently, to 
effectively quantify feature differences among multi-type 
FRs and coordinate the operating performance and economic 
benefits of the power grid, we propose an optimal planning 
and operation method based on a differentiated feature 
matching method between FRs and PEBD. The main contri‐
butions of this study are summarized as follows.

1) The establishment of an optimized planning model for 
diversified ESs, including BESSs, to achieve optimal deploy‐
ment of ES types, node locations, rated power, and rated ca‐
pacities. This model effectively leverages BESSs to reduce 
comprehensive operating costs and alleviate imbalance pow‐
er in the power grid.

2) The development of an optimal operation algorithm for 
multi-type FRs based on a differentiated feature matching 
method. This algorithm outputs the response sequence of 
FRs, characterizing the feature matching process between 
FRs and PEBD through difference quantification and map‐
ping relationships. Moreover, this algorithm deconstructs the 
optimization and decision-making process for multi-type 
FRs, ensuring they meet PEBD requirements while economi‐
cally reducing imbalance power in the power grid.

3) The validation of the feasibility and effectiveness of the 
proposed optimal planning and operation method using actu‐
al data from FRs in northwest China.

The remainder of this paper is organized as follows. In 
Section II, detailed considerations of the optimal planning 
for diversified ESs containing BESSs are analyzed and mod‐
eled. Section III presents the framework of the optimal plan‐
ning and operation method based on differentiated feature 
matching method for multi-type FRs, outlining the main ob‐
jectives and constraints of the optimization algorithm. Sec‐
tion IV presents the results and discussion based on case 
studies. The conclusion and future work are given in Sec‐
tion V.

II. ANALYSIS AND MODELING OF OPTIMAL PLANNING FOR 
DIVERSIFIED ESS 

A. Modeling of Diversified ESs

As a key FR to satisfy PEBD, the optimal planning of ES 
types is closely tied to the operating performance of power 
grids. Diversified ESs differ in their regulation capabilities. 
Therefore, achieving a reasonable allocation of diversified 
ESs is a pivotal challenge among the diverse ES types, 
which include widely applicable BESSs. Ensuring the stable 
operation of the power grid and substantially enhancing its 
economic benefits hinge upon the reasonable planning of ESs.

Li-B is a typical representation of BESSs, known for its 
lower capital cost, stable operation, and flexible response 
range, allowing it to adapt to various demands. Compressed 
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air energy storage (CAES) offers advantages such as larger 
ES capacity and extended operational lifespan. Pumped hy‐
droelectric storage (PHS) stands out with its substantial ES 
capacity, extended operational lifespan, and shorter response 
time. Supercapacitor energy storage (SCES) is characterized 
by its higher power density, and rapid charging and discharg‐
ing capability. To highlight the different regulation capabili‐
ties of diversified ESs, a resource repository of diversified 
ESs K containing Li-B, CAES, PHS, and SCES is construct‐
ed for optimal planning, as shown in (1), and the compari‐
son of differentiated regulation capabilities of the four types 
of ESs is shown in Fig. 1 [25], [26].

K = {LiCaPsSc} (1)

where Li, Ca, Ps, and Sc represent the Li-B, CAES, PHS, 
and SCES, respectively.

The model constructed by diversified ESs is as follows:

Ek (t)=Ek (t - 1)+ τESk∫
t - 1

t

PESk (τ)dτ    kÎK (2)

where Ek(t) and Ek (t - 1) are the capacities of ES k at time t 
and t - 1, respectively; τESk is the charging and discharging 
coefficient of ES k; and PESk (τ) is the operating power of 
ES k at time τ.

The cost of ES is categorized into capital cost and operat‐
ing cost. Specifically, considering the life cycle and invest‐
ment recovery coefficient, the capital cost is equivalent to 
the initial investment cost, which is apportioned as the daily 
depreciation cost of ES, represented as follows:

Rk =
r(1 + r)Tk

(1 + r)Tk - 1
    kÎK (3)

Cinv =
1

365∑kÎK

RkcEk ENk (4)

where Rk is the annual investment recovery coefficient of ES 
k; Cinv is the daily depreciation cost of ES; Tk is the life cy‐
cle of ES k; r is the discount rate; cE,k is the unit capital cost 
of life cycle of ES k; and EN,k is the rated capacity of ES k.

The operating cost of diversified ESs Cop is as follows:

Cop =∑
kÎK

copk || PESk (5)

where cop,k is the unit operating cost of ES k; and PESk is the 
operating power of ES k.

B. Planning Model of Diversified ESs

The four types of ESs differ in regulation capabilities 
such as rated power, life cycle, operating cost, and capital 
cost, as illustrated in Fig. 1. In regional power grids, diversi‐
fied ESs are strategically allocated to attain varied technical 
and economic benefits for power grid regulation. Conse‐
quently, leveraging the differentiated regulation capabilities 
of diversified ESs, an optimal planning model of ESs from 
K is formulated. This model serves as a prerequisite for im‐
plementing the differentiated feature matching method of 
FRs to meet the PEBD within the power grid.
1)　ES Planning Constraints

The rated power of ES k satisfies a certain power range, 
as shown in Fig. 1(a). A 0-1 decision variable λk,l is intro‐
duced to depict the planning state of ES k at node l and to 
realize the planning of diversified ESs, which is shown as 
follows:

PESkmin £ λkl PESkN £PESkmax    kÎK (6)

where PESkN is the rated power of ES k; PESkmin and PESkmax 
are the minimum and maximum rated power of ES k, respec‐
tively; and λkl = 1 and λkl = 0 represent that ES k is allocated 
at node l or not, respectively.

Formula (6) is nonlinear due to the multiplication of a 0-1 
state variable with a continuous variable, which can be lin‐
earized by the big-M method as:

PNk = λkl PESkN    kÎK (7)

PNk £PESkN    kÎK (8)

PNk £PESkN -M (1 - λkl )    kÎK (9)

λkl PESkmin £PNk £ λkl PESkmax    kÎK (10)

where PN,k is the introduced intermediate variable; and M is 
an infinite number.

Meanwhile, the optimal planning of diversified ESs also 
satisfies the following constraints:∑

kÎK

λkl £ 1 (11)

∑
kÎK
∑

l

λkl £NESmax (12)

-τESk PESkN £PESk £ τESk PESkN    kÎK (13)

EESkN =ψk PESkN    kÎK (14)
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Fig. 1.　Differentiated regulation capabilities of diversified ESs. (a) Power 
range. (b) Capacity range. (c) Life cycle range. (d) Operating cost range. (e) 
Capital cost range.
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where NESmax is the maximum number of allocated ESs in 
the regional power grid; EESkN is the rated capacity of ES k; 
and ψk is the energy multiplication coefficient of ES k. Con‐
straint (11) restricts the amount of allocated ESs at any 
node. Constraint (12) limits the total amount of allocated 
ESs. Constraint (13) ensures that the operating power of ESs 
remains within their rated power limits. Constraint (14) es‐
tablishes the relationship between the rated power and rated 
capacity of ESs.
2)　Power Flow Constraints

Pij = (θ i - θj )/Xij (15)

-Pijmax £Pij £Pijmax (16)

where Pij is the active power flow from nodes i to j; θi and 
θj are the phase angles of the voltages at nodes i and j, re‐
spectively; Xij is the reactance from nodes i to j; and Pij,max is 
the maximum value of the line power flow from nodes i to j.
3)　Power Balance Constraints∑

i

PThi +PHy +PESk +PTi +PCl =Pij +Pbase +DPLd (17)

DPLd =DPtr +DPre +DPad (18)

where PThi is the output of thermal power unit i; PHy is the 
output of hydroelectric power unit; PTi is the tie-line power, 
representing the net power exchange between the power grid 
and external grid; PCl is the clean energy power of a typical 
day; Pbase is the base load power; DPLd is the power of flexi‐
ble loads, which include transferable loads (TLs), reducible 
loads (RLs), and adjustable loads (ALs); ΔPtr is the power 
of TLs, maintaining their electricity consumption constant 
during the regulated cycle; ΔPre is the power of RLs, which 
can be partially or completely reduced for loads with low re‐
liable requirements; and ΔPad is the power of ALs besides 
TLs and RLs.
4)　Thermal Power Unit Constraint

μThi PThiN £PThi £PThiN (19)

where µTh,i is the minimum technical output coefficient; and 
PTh,i,N is the rated power of thermal power unit i.
5)　Hydroelectric Power Constraint

0 £PHy £PHyN (20)

where PHyN is the rated power of hydroelectric power unit.
6)　Tie-line Constraint

| PTi | £PTimax (21)

where PTi,max is the maximum value of tie-line power.
7)　Flexible Load Constraints

αmin Ptr £DPtr £ αmax Ptr (22)

βPre £DPre £Pre (23)

γmin Pad £DPad £ γmax Pad (24)

where αmin and αmax are the lower and upper regulated coeffi‐
cients for TLs, respectively; Ptr is the planned power con‐
sumption of TLs; Pre is the planned power consumption of 
RLs; Pad is the planned power consumption of ALs; β is the 
regulated coefficient for RLs; and γmin and γmax are the lower 
and upper regulated coefficients for ALs, respectively.

8)　Objective Function
In this paper, the comprehensive cost of power grid F is 

considered as the optimal objective, including generation 
cost and carbon emission penalty cost FGen, tie-line cost FTi, 
flexible load cost FLd, and cost of diversified ESs FES. It is 
expressed as:

min F =FGen +FTi +FLd +FES (25)

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

FGen =PThi (cTh + cCa )+PHycHy

FTi = || PTi cTi

FLd = ||DPLd cLd

FES =Cinv +Cop 

(26)

where cTh and cCa are the unit generation cost and carbon 
emission penalty cost of thermal power units, respectively; 
cHy is the unit generation cost of hydroelectric power unit; cTi 
is the unit cost of tie-line power; and cLd is the unit regulat‐
ed cost of flexible loads.

III. FRAMEWORK OF OPTIMAL PLANNING AND OPERATION 
METHOD BASED ON DIFFERENTIATED FEATURE MATCHING 

FOR MULTI-TYPE FRS 

The block diagram of the proposed method for multi-type 
FRs based on differentiated feature matching is illustrated in 
Fig. 2. First, a planning model of FRs is established, as de‐
tailed in Section II, to identify the type and parameter of 
multi-type FRs including BESSs. This enables the optimized 
planning of ES types, node locations, rated power, and rated 
capacity by mixed-integer linear programming (MILP). Sub‐
sequently, the feature matrices of FRs and PEBD in the pow‐
er grid are constructed, and the feature difference including 
response potential, response direction, and response cost is 
quantified using the Euclidean distance metric. Following 
this, a matching degree is proposed to characterize matching 
priority of FRs, and a mapping relationship is proposed to 
analyze the matching process between FRs and PEBD. Final‐
ly, considering the regulated boundary of multi-type FRs and 
utilizing the aforementioned normalized feature difference as 
the objective function, the optimal operation algorithm of 
FRs iterates with feature matching framework to output the 
response sequence of FRs.

A. Differentiated Feature of FRs

1)　Feature Set of FRs
In this paper, the FRs in the power grid are considered to 

include thermal power units, hydroelectric power units, tie-
lines, TLs, RLs, ALs, and allocated ESs. A feature set of 
FRs is constructed by refining the response potential, re‐
sponse direction, and response cost of FRs. The set consist‐
ing of these FRs is:

U ={um|uThuHyuTiutrureuaduES } (27)

where uTh, uHy, uTi, utr, ure, uad, and uES represents the thermal 
power unit, hydroelectric power unit, tie-line, TL, RL, AL, 
and allocated ES, respectively; and um represents any FR in 
set U.

The main influencing factors of the response potential in‐
clude the down-regulation and up-regulation capabilities. 
The response potential of FRs can be expressed as:
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Qm = (Pm (t)-Pmmin )(Pmmax -Pm (t))    mÎU (28)

where m is the element of FR set U; Qm is the response po‐
tential of FRs; Pm(t) is the response power of FRs at time t; 
and Pmmin and Pmmax are the minimum and maximum power 
of FRs, respectively.

Since (28) is nonlinear and difficult to solve directly, this 
paper employs the segmented linearization method men‐
tioned in [27] to transform the quadratic function into a seg‐
mented linear function with b segments. Thus, (28) can re‐
written as:

Qm =∑
s = 1

b

Yms pmts +H (29)

where Yms is the slope of each function segment after seg‐
ment linearization; pmts is the segmented response power of 
FRs; and H is the response potential of the minimum re‐
sponse power.

Meanwhile, pmts and H satisfy:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

H =-P 2
min + (Pmmin +Pmmax )Pmin -Pmin Pmax

0 £ pmts £(Pmax -Pmin )/b

Pm (t)=∑
s = 1

b

pmts +Pmin

(30)

where Pmin and Pmax are the minimum and maximum seg‐
ment values of Pm(t), respectively.

The response direction of FRs Rm represents the change 
trend of response power at next moment relative to current 

moment, which can be calculated as:

Rm = (Pm (t + 1)-Pm (t))/T    mÎUt = 12...T - 1 (31)

where T is the regulated cycle.
The response costs of FRs Cm primarily consist of re‐

sponse power and unit response cost, which can be calculat‐
ed as:

Cm = cm| Pm (t) |     mÎU (32)

where cm is the unit response cost of FRs.
Based on the proposed feature of FRs, the feature set of 

FRs is:

δm ={QmCmRm } (33)

2)　Feature Set of PEBD
PEBD is the regulated demand caused by power mis‐

matching between generation and load of regional power 
grid, which can be calculated as:

PPEBD0 (t)=Pload (t)-PPV (t)-Pwind (t)-∑
i

μThi PThiN (34)

where PPEBD0 (t) is the initial PEBD at time t in the power 
grid; Pload (t) is the forecasted load power; PPV (t) is the fore‐
casted photovoltaic (PV) power; and Pwind (t) is the forecast‐
ed wind power.

The set of PEBD is as follows:

V ={v1v2...vt...vT } (35)

where vt is the PEBD at time t, and its value is equal to 
PPEBD0 (t).

Construct comprehensive cost as

 objective function

Convert to MILP for solving

Achieve optimal allocation of 

diversified ESs

Convert to MILP for solving

Optimal planning model of diversified ESs Differentiated feature matching framework Optimal operation algorithm of FRs

Y
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difference containing potential, direction,

 and cost features

Minimize comprehensive feature differences

 between PEBD and FRs based on (41)
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matching round g based on (48)-(61)

Obtain FR response sequences with 
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Obtain response sequences of FRs 
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Fig. 2.　Block diagram of proposed method for multi-type FRs.
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Corresponding to the features of FRs, the generalized fea‐
tures of PEBD are refined into power demand, direction de‐
mand, and cost demand. The feature set of PEBD can be ex‐
pressed as:

ϑt ={QtRtCt } (36)

where Qt is the power demand of PEBD; Rt is the direction 
demand of PEBD; and Ct is the cost demand of PEBD.

ì

í

î

ï
ïï
ï

ï
ïï
ï

Qt =PPEBDg (t + 1)

Rt = (PPEBDg (t + 1)-PPEBDg (t))/T

Ct = cPEBD || PPEBDg (t)-Pimg (t)

(37)

where cPEBD is the unit cost of demand assessment reduction; 
PPEBDg (t) is the PEBD at time t in matching round g; and 
Pimg (t) is the imbalance power after optimal operation, and 
the value is equal to PPEBD0 (t) when g = 0.

B. Feature Matching Between FRs and PEBD

The aforementioned three types of features characterize 
the responsiveness of multi-type FRs. Specifically, the differ‐
ence between response potential and power demand at the 
next moment portrays regulated capability fitness of FRs to 
PEBD, the difference between response direction and direc‐
tion demand depicts the tracking effect of FRs to PEBD, and 
the difference between response cost and cost demand por‐
trays PEBD cost of power grid. Accordingly, the feature dif‐
ference between FRs and PEBD can be quantified as:

dmt (Λ)= ∑
mÎU
∑
t = 1

T

(δm (Λ)- ϑt (Λ))2 (38)

Λ ={QRC} (39)

where dmt is the feature difference; Λ is generalized feature 
set of FRs and PEBD; and Q, R, and C are the generalized 
potential feature, direction feature, and cost feature of FRs 
and PEBD, respectively.

Feature difference is normalized by the range method, 
which can be expressed as:

dmtn (Λ)=
dmt (Λ)-min{dmt (Λ)}

max{dmt (Λ)}-min{dmt (Λ)} (40)

where dmtn is the normalized feature difference.
From (38), it can be inferred that a smaller difference be‐

tween FRs and PEBD results in a higher matching priority. 
Therefore, this paper defines f to characterize the matching 
priority of multi-type FRs, which is determined through lin‐
ear summation as follows:

f =∑
t = 1

T

(dmtn (Q)+ dmtn (R)+ dmtn (C)) (41)

where dmtn (Q), dmtn (R), and dmtn (C) are the normalized fea‐
ture differences of potential, direction, and cost, respectively.

Meanwhile, ρ is introduced to measure the matching de‐
gree between FRs and PEBD, which is as follows:

ρ = 1 - f x (42)

where x is the matching coefficient.
The set of FRs U and set of PEBD V form the feature 

space F. This paper defines the mapping function μ:U→V 

as the matching process between U and V in the feature 
space F. The influencing factors are manifested in the form 
of differentiated features in this paper, and the mapping func‐
tion satisfies the following condition: for any element in V, 
there always exists an element in U to match it, which is ex‐
pressed as:

"vtÎV:$μ(um )Î vtm ³ 0 (43)

where μ(um )Î vt is the matching pair composed by um and vt.
Different response sequences of FRs represent different 

regulation strategies, and different moments of PEBD are 
matched with different sequences of FRs to ensure the bal‐
ance between the supply of FRs and the PEBD in terms of 
response potential, response direction, and response cost.

 d
¥
= min

1 £m £M
(dmtn (Λ)) (44)

where d is the minimum value of feature difference.
When (43) and (44) are satisfied, FR m prioritizes to 

match with PEBD in matching round g = 1. And PEBD is 
continuously updated in the subsequent matching round 
g + 1, resulting in the response sequence of FRs being output 
under dynamic PEBD.

On this basis, a 0-1 state variable that characterizes wheth‐
er the FR constitutes a matching pair with PEBD being intro‐
duced as:

χmt =
ì
í
î

1     μ(um )Î vt

0     μ(um )Ï vt

(45)

As the matched FR reduces PEBD by a certain power af‐
ter matching round g, the PEBD will be corrected in next 
matching round:

PPEBDg + 1 (t)=PPEBDg (t)-Pmg (t)    g ³ 0 (46)

where PPEBDg (t) is the power of PEBD at moment t in 
matching round g; and Pmg (t) is the matched FR in match‐
ing round g.

Finally, until the PEBD is 0 or the FR regulation bound‐
ary is reached, the stable set of response sequences for FRs 
is output, which can be expressed as:

V1 ´ T =U1 ´m χm ´ T (47)

where V1 ´ T is the matrix of PEBD in period T; U1 ´m is the 
matrix of m types of FRs; and χm ´ T is the matching state ma‐
trix of FR and PEBD.

C. Optimal Operation Algorithm of FRs

1)　Objective Function
In this paper, the objective of power grid operation is to 

minimize the comprehensive feature differences of three as‐
pects: response potential-power demand, response direction-
direction demand, and response cost-cost demand. Accord‐
ingly, the objective function is shown in (41).
2)　Power Flow Constraints

Pijg (t)= (θ i - θj )/Xij (48)

-Pijmax £Pijg (t)£Pijmax (49)

where Pijg (t) is the active power flow of the line from node 
i to node j at time t in matching round g.
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3)　Power Balance Constraints∑
i

PThig (t)+PHyg (t)+PESkg (t)+PTig (t)=Pijg (t)+

DPtrg (t)+DPreg (t)+DPadg (t)+PPEBDg (t) (50)

where PThig (t) is the power of thermal power unit i in 
matching round g; PHyg (t) is the output of hydroelectric pow‐
er unit in matching round g; PESkg (t) is the response power 
of ES k in matching round g; PTig (t) is the tie-line power in 
matching round g; and ΔPtrg (t), ΔPreg (t), and ΔPadg (t) are 
the response power of TLs, RLs, and ALs in matching round 
g, respectively.
4)　Conventional Resource Constraints

0 £∑
g

PThig (t)£(1 - μThi )PThiN (51)

0 £∑
g

PHyg (t)£PHyN (52)

∑
g

|| PTig (t) £PTimax (53)

5)　Flexible Load Constraints
TLs are required to keep the power consumption constant 

during the regulated cycle and satisfy certain response range 
constraints, which are expressed as:

∑
t

DPtrg (t)= 0 (54)

αmin Ptr (t)£∑
g

DPtrg (t)£ αmax Ptr (t) (55)

Constraints must be satisfied to ensure that RLs adhere to 
certain response range and number of reduced regulation 
times, thus avoiding the impact of power utilization. These 
constraints are expressed as:

rt βPre (t)£∑
g

DPreg (t)£Pre (t) (56)

∑
t = 1

T

rt £Nmax (57)

where rt is number of the reduced regulation times of RLs 
during regulated cycle; and Nmax is the upper limit of the 
number of reduced regulation times.

Certain response range constraint should be satisfied by 
ALs, which is expressed as:

γmin Pad (t)£∑
g

DPadg (t)£ γmax Pad (t) (58)

6)　ES Constraints

-τESk PESkN £∑
g

PESkg (t)£ τESk PESkN (59)

∑
t = 1

T

PESkg (t)= 0 (60)

0 £EESk0 +∑
t′
∑

g

PESkg (t′ )Dt £EESkN    t′Î[0t] (61)

where EESk0 is the initial capacity of allocated ES k.
7)　Matching Constraints

The feature matching constraints are shown in (30) 
and (46).

IV. CASE STUDY 

A. Case Description

To demonstrate the feasibility and effectiveness of pro‐
posed method, case studies are conducted using an actual 25-
bus regional power grid in northwest China, as shown in 
Fig. 3. The MILP algorithm is implemented using MATLAB 
2021.

The technology parameters of the regional power grid are 
displayed in Table I, and the basic technology parameters of 
diversified ESs are provided in Table II [28], where SOC de‐
notes for state of charge. The data in a typical day are ob‐
tained by clustering one year’s power generation and load 
data in the ES planning model, and several cases are con‐
ducted as follows.

Case 1: the net load of the regional power grid is simulat‐
ed, and the results are shown in Fig. 4.

Case 2: FRs except for ESs participate in the regional 
power grid regulation without considering the proposed 
method.
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Thermal power unit;  Hydroelectric power unit

Fig. 3.　An actual 25-bus regional power grid in northwest China.

TABLE I
TECHNOLOGY PARAMETERS OF REGIONAL POWER GRID

Type

Thermal power

Hydroelectric power

Wind power

PV power

Tie-line power

Forecasting load

TL

RL

AL

Rated value (MW)

4697.0

476.0

5950.0

4410.0

800.0

16509.0

4592.0

2344.2

847.9

The minimum value (MW)

2348.5

0

-800

2188

0.7Pre(t)

0.7Pad(t)

TABLE II
TECHNOLOGY PARAMETERS OF DIVERSIFIED ESS

ES type

Li-B

CAES

PHS

SCES

PESkmin 
(MW)

300.00

100.00

0.01

200.00

PESkmax 
(MW)

100

1000

1

2000

Life cycle 
(year)

10

30

30

50

Initial 
SOC

0.5

0.5

0.5

0.5

Discount 
rate (%)

6.70

6.70

6.70

6.70

ψk

4.0

10.0

0.1

20.0
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Case 3: based on Case 2, the PHS participates in the opti‐
mal planning and the differentiated regulation capabilities of 
ESs are ignored.

Case 4: based on Case 2, diversified ESs participate in the 
optimal planning considering differentiated regulation capa‐
bilities, and the feature matching is ignored in the optimal 
operation of FRs.

Case 5: based on Case 4, multi-type FRs participate in the 
regional power grid regulation through the proposed method 
considering feature matching.

B. Power Grid Regulation Analysis Using Optimal Planning 
of Diversified ESs

Based on (32), the value of PEBD equals the net load of 
the regional power grid, which is shown in Fig. 4. Specially, 
the regional power grid experiences a power shortage during 
the period from 07: 00 to 21: 00, and power surplus occurs 
during other periods. Based on the regulation demand in 
Case 1 and the established planning model of ESs in Section 
II, specific planning results of diversified ESs in Cases 3 
and 4 are presented in Table III. In Case 3, the PHS is allo‐
cated to nodes 2 and 10 with respective rated power of 200 
MW and 695 MW. The optimal planning result in Case 4 re‐
veals that the allocated ES types are Li-B, PHS, and CAES, 
with respective rated power of 148 MW, 200 MW, and 540 
MW. Li-B is allocated to most nodes because it has more 
flexible response capacity and lower capital cost. Notably, 
the total rated power of Case 3 and Case 4 is 895 MW and 
885 MW, respectively. This variance can be attributed to the 
fact that a single ES type with limited regulation capacity in 
Case 3 faces challenges in achieving the coordinated comple‐
mentary advantages of diversified ESs. Consequently, it is 
necessary to further increase the allocated capacity to satisfy 
the PEBD.

To validate the effectiveness of proposed optimal planning 
model, the technical and economic benefits of the allocated 
ESs in Case 3 and Case 4 are compared. In both Case 3 and 
Case 4, the operating power and the SOC of the allocated 
ESs are shown in Fig. 5.

It can be observed that the charging and discharging peri‐
ods closely align with the power shortage and power surplus 
periods shown in Fig. 4. During power surplus periods, the 
allocated ESs are charged to accommodate surplus power 

within the power grid, gradually increasing their SOC. Con‐
versely, during power shortage periods, the ESs are dis‐
charged to supplement the power shortage, gradually reduc‐
ing their SOC. It is worth noting that the SOC of the ESs is 
maintained constant at the beginning and end of the regula‐
tion cycle, as indicated by (54).

From Fig. 5(a) and (b), it is evident that the operating 
power of PHSs allocated at nodes 2 and 10 in Case 3 exhib‐
its no significant differences in response frequency and direc‐
tion. This phenomenon arises because the allocated PHS 
units differ only in their ES capacities, and the PHS with 
higher rated power at node 10 primarily satisfies the PEBD. 
However, as shown in Fig. 5(c)-(f), it is apparent that the Li-
Bs allocated at nodes 4 and 24 in Case 4 undergo only 8 
charging and discharging cycles, significantly fewer than 
those of CAES and PHS. This notable discrepancy can be 
primarily attributed to the higher charging and discharging 
costs of Li-Bs, as indicated in Fig. 1. Consequently, Li-B 
has the advantage of capacity allocation compared with 
CAES and PHS, while CAES and PHS have priority for par‐
ticipation in ES operation due to their lower operating costs 
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Fig. 4.　Net load results of regional power grid.

TABLE III
OPTIMAL PLANNING RESULTS OF DIVERSIFIED ESS IN CASES 3 AND 4

Case

Case 3

Case 4

ES type

PHS

PHS

Li-B

PHS

CAES

Li-B

Node

2

10

4

11

20

24

Rated power (MW)

200

695

60

200

540

88

Rated capacity (MWh)

4000

13900

240

4000

5400

352
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Fig. 5.　Operating power and SOC of allocated ESs in Cases 3 and 4. (a) 
PHS at node 2 in Case 3. (b) PHS at node 10 in Case 3. (c) Li-B at node 4 
in Case 4. (d) PHS in Case 4. (e) CAES in Case 4. (f) Li-B at node 24 in 
Case 4.
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and higher regulation capacities.
The coordinated optimization between diversified ESs and 

other FRs plays a vital role in satisfying PEBD and enhanc‐
ing the economic benefits of the regional power grid. The 
optimal operating results of multi-type FRs in different cases 
considering allocated ESs are illustrated in Fig. 6.

The regulation mechanism for FRs participating in the reg‐
ulation of regional power grid in Case 2 is outlined as fol‐
lows. During power shortage periods, the power generation 
and tie-line supply are increased, while the power demand 
from the load is reduced, thereby the power shortage is sup‐
plemented to maintain the power balance of the regional 
power grid. Conversely, during power surplus periods, the 
power supply is reduced, and the load power as well as the 
power output from tie-line is increased, thus the power sur‐
plus of the regional power grid is effectively accommodated. 
Based on the regulation mechanism in Case 2, the regulation 

mechanism of multi-type FRs, which aims to ensure the 
power balance of power grid, is as follows: the ES is dis‐
charged during power shortage periods, and it is charged dur‐
ing power surplus periods.

To underscore the superiority of the planning model of di‐
versified ESs, a comparative technical and economic analy‐
sis of Cases 2-4 is performed. In terms of technical analysis, 
the reduction proportion in net load across each case is com‐
pared. In Case 1, 78.65% of the net load is accommodated 
through conventional regulation resources and flexible loads 
to satisfy certain PEBD. However, there remains a net load 
that cannot be accommodated at 14 regulation moments, oc‐
curring at 01:00-05:00, 09:00, 15:00-20:00, and 23:00-24:00. 
Leveraging the advantages of ESs compared with other FRs 
in terms of regulated power, capacity, and cost, 97.32% of 
the net load is accommodated in Case 3. In Case 4, 97.46% 
of the net load is accommodated through the coordinated 
complementary of diversified ESs, resulting in an undissipat‐
ed energy deficit of only 849.5 MWh.

Regarding economic analysis, the comprehensive costs 
gradually decrease from Case 2 to Case 4, as depicted in 
Fig. 7. Specifically, the costs of thermal power units and car‐
bon emission penalties also decrease across these cases, indi‐
cating that the diversified ESs with differentiated regulation 
capabilities contribute to reducing the output of thermal pow‐
er units and carbon emissions, aligning with the goal of 
achieving the “carbon peak and carbon neutrality”. The total 
cost of ESs in Case 4 (with the costs of Li-B, SCES, and 
PHS of $22300, $143600, $80400, respectively) is $16100 
less than that in Case 3 (with the cost of PHS of $262400), 
mainly due to the coordinated optimization of diversified 
ESs in Case 4, particularly BESSs.

The comparative technical and economic analysis high‐
lights the effectiveness of the optimal planning model for 
FRs in power grids. Specifically, the optimal planning model 
of diversified ESs, considering differentiated regulation capa‐
bilities, not only decreases imbalance power with less allo‐
cated capacity of ESs but also satisfies the PEBD with lower 
comprehensive costs, consequently reducing the operating 
cost of allocated ESs.
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C. Power Grid Regulation Analysis Using Differentiated 
Feature Matching Method of Multi-type FRs

To demonstrate the effectiveness of the proposed method, 
an initial feature matching matrix is established to depict the 
matching potential of FRs in satisfying PEBD before optimi‐
zation. The allocated ESs are determined based on the opti‐
mization results in Case 4 from Table III. The initial feature 
matching is defined as follows: the adjustment capacity, rat‐
ed power, and unit operating cost of FRs are considered as 
the initial response potential feature, response direction fea‐
ture, and response cost feature, respectively. By substituting 
(34) into (37), the initial matrix of PEBD is obtained. Then, 
the initial feature matching degree between FRs and PEBD 
is calculated by (38)-(41), serving as a reference for the sub‐
sequent analysis of response sequence, as shown in Fig. 8, 
where Th, Hy, and Ti represent the thermal power unit, hy‐
droelectric power unit, and tie-line, respectively.

As observed from Fig. 8(a)-(c), it is apparent that the ad‐
justable boundaries of multi-type FRs to PEBD are closer 
and their operating costs are lower, resulting in a higher ini‐
tial matching degree. The primary reason lies in the fact that 
FRs with higher regulation capacity can more precisely and 

effectively satisfy the PEBD of power grid. Moreover, FRs 
with lower operating costs contribute to enhancing the eco‐
nomic benefits of power grid. After normalizing and linearly 
weighting the technical and economic features mentioned 
above, the comprehensive initial matching degree is calculat‐
ed, as shown in Fig. 8(d). Taking 18: 00 as an example, 
which is the moment with the highest regulation capacity as 
depicted in Fig. 6, the matching degree of thermal power 
units with higher costs is higher compared with other FRs. 
This is primarily because thermal power units with higher 
regulation capacity contribute significantly to satisfying 
PEBD.

Utilizing the proposed method, the optimized operation of 
multi-type FRs in Case 5 is achieved within the power grid, 
as illustrated in Fig. 9. Figure 9(a) shows the overall optimi‐
zation and matching results of multi-type FRs throughout the 
complete regulated cycle. In particular, typical periods are se‐
lected to illustrate the function and significance of three 
types of feature matching for the optimized operation results 
in Fig. 9(a). It is worth noting that the typical optimization 
periods provide a clear illustration based on the main influ‐
encing factors.
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as an illustrative example for cost matching analysis, multi-
type FRs, including the tie-line, AL, TL, Li-B, CAES, and 
PHS, actively participate in power regulation to match 
PEBD. Notably, CAES and PHS are prioritized during this 
period due to their lower operating costs, as indicated in Fig. 
9(b). As a result, CAES and PHS operate with their rated 
power levels to ensure the power balance of the power grid. 
In contrast, the tie-line power is minimized to accommodate 
surplus power due to its highest operating cost.

Furthermore, during the power shortage period from 08:00 
to 11: 00, as an illustrative example for direction matching 
analysis, the power shortage is supplemented by increasing 
the power supply and reducing the load demand. Specially, 
the power supply is augmented by hydroelectric power, ther‐
mal power, Li-B, CAES, and PHS, as indicated by the green 
dashed arrows in Fig. 9(a). Simultaneously, the AL, RL, and 
TL reduce the power for load demand, as represented by the 
yellow dashed arrows in Fig. 9(a). The coordinated effort 
forms a new power rebalancing curve according to the pow‐
er supply and load demand, as depicted in Fig. 9(c), which 
closely follows the direction of the PEBD.

Additionally, during the power shortage period from 15:00 
to 19:00, as an illustrative example for the potential match‐
ing analysis, the FR with larger response potential is priori‐
tized to match with the higher PEBD. For instance, though 
the operating cost is higher due to the influence of genera‐
tion cost and carbon emission penalty cost, thermal power 
units with wider regulation range can quickly satisfy regula‐
tion demand and contribute to reducing the frequent regula‐
tion of other FRs with smaller response potential. Similarly, 
the allocated ESs can track accurately the variation of PEBD 
based on the great potential of upward and downward regula‐
tions. The total discharging power of diversified ESs can 
track the change trend of PEBD, as shown in Fig. 9(d), and 
the discharging power trends of Li-B, CAES, and PHS are 
basically similar with the above total discharging power. In 
particular, the discharging power of Li-B needs to be com‐
prehensively considered, which is limited by its lower rated 
power and higher operating cost.

To illustrate the feasibility and effectiveness of the pro‐
posed method, a comparative technical and economic analy‐
sis of Cases 2-5 is performed, with the results summarized 
in Table IV.

In terms of technical benefits, the imbalance power of 
Case 5 is 358.2 MWh, which is 491.3 MWh less than that 
of Case 4, leading to an increase of net load reduction pro‐

portion from 97.46% to 98.39%. Concerning economic bene‐
fits, the comprehensive cost of the power grid in Case 5 is 
$5516000, representing a $13200 increase compared with 
that of Case 4. Therefore, Case 5 reduces the imbalance 
power by 491.3 MWh at an additional economic cost of 
$13200.

To facilitate comparison of unit power regulation costs, 
the cost of unit PEBD is defined as comprehensive cost di‐
vided by total response power of FRs. This metric mainly 
concentrates on the cost of regulating unit power from the 
perspective of the power grid regulation department, in con‐
trast to the conventional comprehensive cost. The cost of 
unit PEBD in Case 5 is reduced by 1.24% compared with 
that in Case 4. This reduction illustrates that the proposed 
method can effectively reduce the imbalance power while en‐
suring economically favorable conditions for the power grid.

The technical and economic analysis comparing Case 4 
and Case 5 underscores the effectiveness of the proposed 
method in harmonizing technical and economic benefits with‐
in the power grid. It demonstrates the capability of the pro‐
posed method to reduce imbalance power and enhance the 
utilization of diversified ESs. The prioritization of FRs with 
superior response potential, response direction, and response 
cost by the power grid regulation department ensures accu‐
rate and efficient satisfaction of PEBD. Conversely, a re‐
duced participation rate in power grid regulation is observed 
for FRs with lower matching degrees. This preference is at‐
tributed to the ability of the proposed method to effectively 
share feature information between power supply and de‐
mand, thereby dynamically tracking the variation of PEBD 
by considering the multi-dimensional and heterogeneous fea‐
tures of multi-type FRs. Specifically, the iterative calculation 
of feature differences between multi-type FRs and dynamic 
PEBD ensures that PEBD consistently matches FRs with 
minimal differences, effectively decomposing regulated com‐
mands. Consequently, the feature differences of multi-type 
FRs serve as the objective of dynamic iterative optimization 
for the proposed method, reflecting the power rebalancing 
process.

V. CONCLUSION 

In this paper, we propose and analyze an optimal planning 
and operation method for multi-type FRs within a regional 
power grid characterized by a high proportion of clean ener‐
gy. Recognizing the diverse regulation capabilities of diversi‐
fied ESs and multi-type FRs in addressing PEBD, we estab‐
lish an optimal planning model for diversified ESs, includ‐
ing BESSs, and investigate an optimal operation algorithm 
for multi-type FRs.

1) The established optimal planning model considers the 
differentiated regulation capabilities of diversified ESs, facili‐
tating the optimal deployment of BESSs. Leveraging the 
flexible response range and lower capital cost of BESSs, this 
model effectively reduces imbalance power, ES cost, and 
comprehensive cost within the power grid.

2) We construct a feature set for multi-type FRs and 
PEBD, accounting for their inherent heterogeneity. Through 
difference quantification and mapping relationships, the dif‐

TABLE IV
TECHNICAL AND ECONOMIC ANALYSIS OF CASES 2-5

Case

2

3

4

5

The maximum 
imbalance 

power (MW)

1205.0

435.4

428.2

347.2

Net load 
reduction 
proportion 

(%)

78.65

97.32

97.46

98.39

Comprehensive 
cost of power 

grid ($)

5845600

5568200

5502800

5516000

ES 
cost 
($)

0

262400

246300

253800

Cost of 
unit 

PEBD 
($/MW)

222.14

171.00

168.75

166.65
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ferentiated feature matching method offers insights into the 
optimization and decision-making processes guiding the par‐
ticipation of FRs in regulating the regional power grid.

3) The optimal operation algorithm for multi-type FRs in‐
tegrates adjusted boundaries and differentiated feature match‐
ing within the power grid. This algorithm demonstrates its 
ability to economically reduce imbalance power by 1.24% 
under practical operating conditions, effectively enhancing 
grid stability and economic efficiency.

In future research, avenues are opened for matching opti‐
mal FRs to multi-level power grids by the proposed method. 
Specifically, FRs with smaller feature differences could be 
prioritized for matching with urban-level and county-level 
power grids, which typically exhibit higher regulation de‐
mands. Conversely, FRs characterized by larger feature dif‐
ferences may be more suitable for matching with park-level 
and substation-level power grids, where regulation demands 
are comparatively lower. Moreover, this study will be further 
extended towards uncertainty modeling and analysis for the 
power grid.
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