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Abstract——In this paper, an operation model for distribution 
systems with energy storage (ES) is proposed and solved with 
the aid of machine learning. The model considers ES applica‐
tions with uncertainty realizations. It also considers ES applica‐
tions for economy and security purposes. Considering the spe‐
cial features of ES operations under day-ahead decision mecha‐
nisms of distribution systems, an ES operation scheme is de‐
signed for transferring uncertainties to later hours through ES 
to ensure the secure operation of distribution system. As a re‐
sult, uncertainties from different time intervals are assembled 
and may counteract each other, thereby alleviating the uncer‐
tainties. As different ES applications rely on ES flexibility (in 
terms of charging and discharging) and interact with each oth‐
er, by coordinating different ES applications, the proposed oper‐
ation model achieves efficient exploit of ES flexibility. To short‐
en the computation time, a long short-term memory recurrent 
neural network is used to determine the binary variables corre‐
sponding to ES status. The proposed operation model then be‐
comes a convex optimization problem and is solved precisely. 
Thus, the solving efficiency is greatly improved while ensuring 
the satisfactory use of ES flexibility in distribution system oper‐
ation.

Index Terms——Distribution system, energy storage, machine 
learning, uncertainty.
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Set of nodes in distribution system

Sets of parent and child nodes of node i

Set of nodes with energy storage (ES)

Set of nodes with renewable energy sources 
(RESs)

Ambiguity set

Charging and discharging efficiencies of ES i

Forecasting error of uncertainty in renewable 
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Expectation of μ

Covariance of μ

Time interval (an hour)
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State of charge of ES i at beginning of day

Allowed maximum and minimum states of 
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Active and reactive load demands of node i 
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Electricity price in hour t
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viations of electricity purchase

Limits on charging and discharging power of 
ES i

Forecasted RES output at node i in hour t
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I. INTRODUCTION

IN recent years, renewable energy sources (RESs) have 
played a vital role in distribution systems because of their 

advantages in terms of environmental protection. However, 
as RESs are affected by weather [1], [2], the generated pow‐
er has nonnegligible uncertainties [3], which complicate the 
distribution system operation. Major thermal power technolo‐
gies sometimes struggle to cope with the unexpected chang‐
es in RES outputs that are widely scattered in different distri‐
bution systems [4]. Therefore, the distribution system re‐
quires flexibility to ensure its stable operation. As a major 
option of flexibility, energy storage (ES) can improve the re‐
liability and flexibility of distribution systems [5]. Some 
studies have focused on distribution system operation based 
on ES flexibility. In [6], the loads are shifted using ES flexi‐
bility to reduce the operation costs. Reference [7] proposes a 
coordinated voltage control based on ES flexibility. Various 
types of ES have also been used simultaneously [8]. Howev‐
er, these studies have established deterministic models with‐
out considering the effects of the uncertainties incurred by 
RESs, which may result in unsatisfactory outcomes.

Because of its flexibility, ES can reduce the effects of 
RES uncertainties [9]. References [10] and [11] study re‐
serve scheduling and unit commitment problems in transmis‐
sion systems involving ES and RES uncertainties, respective‐
ly. However, unlike the transmission system operations con‐
sidered in [10] and [11], day-ahead energy consumption 
plans for distribution system operation must be made typical‐
ly. This strengthens the intertemporal correlations and com‐
plicates the ES operation in distribution systems. References 
[12] and [13] use ES to ensure the operation feasibility 
against uncertainties but assume that the distribution system 
is not responsible for energy balancing and that the utility 
grid will compensate for any power mismatch caused by un‐
certainties. Consequently, in [12] and [13], ES flexibility is 
not fully exploited in terms of uncertainty alleviation. Refer‐
ence [14] considers microgrid operations with ES when the 
day-ahead market is involved, but assumes that the actual 
values of uncertainties in all hours are known simultaneous‐
ly, which is impractical and may lead to overly optimistic so‐
lutions. ES is used for peak-shaving and voltage regulation 

in [15] and uncertainty alleviation in [16]. However, [15] 
fixes the active power of ES in real-time operation, and [16] 
determines the ES operation by allocating its flexibility even‐
ly to each hour. These inflexible schemes impede the effi‐
cient use of ES flexibility. In short, although many research‐
ers have studied ES operations influenced by uncertainties, 
research gaps in terms of systematic theories remain regard‐
ing the use of ES flexibility considering the features of distri‐
bution system operations. Operations involving ES are com‐
plicated because of the intertemporal constraints derived 
from the ES state of charge (SOC), and the complexity is 
strengthened by the interaction between uncertainties from 
different time intervals caused by the day-ahead decision 
mechanism of distribution systems. Current studies generally 
do not give sufficient attention to the interaction between dif‐
ferent uncertainties and regard uncertainty alleviation in dif‐
ferent hours as a separate task, which means that ES flexibil‐
ity cannot be arranged from a holistic perspective.

Based on the aforementioned research gaps, this paper pro‐
poses an operation model to comprehensively utilize the ES 
flexibility in distribution system operation. The realized un‐
certainties differ from other known deterministic information 
since the day-ahead stage, and still act like uncertainties 
even though their actual values are known. This is because 
they still cause deviations from the day-ahead energy con‐
sumption plans of the distribution system. As a result, uncer‐
tainties travel in the time domain through the ES, which will 
be further discussed in Section II. Based on this background, 
the ES operation is accurately modeled by distinguishing the 
operations that are influenced by uncertainty realizations 
from those that are not influenced, while tracking each un‐
certainty during the entire time horizon. Special attention is 
given to the interaction between uncertainties from different 
time intervals caused by the transfer of uncertainties. The 
fact that uncertainties are able to counteract each other when 
they have positive and negative realizations is focused and 
utilized. Accordingly, a tailored ES operation scheme is pro‐
posed to assemble as many uncertainties in RES outputs as 
possible using ES flexibility, as this provides a greater possi‐
bility of counteracting different uncertainties. In addition to 
the influence of uncertainties, ES applications must also be 
considered for two distinct purposes. One type of ES applica‐
tion ensures the secure operation of distribution system, and 
is achieved using robust optimization techniques. The other 
aims to improve the economic performance of the distribu‐
tion system, and is achieved using distributionally robust op‐
timization. The ES flexibility works through the ES opera‐
tion and is restricted by the charging and discharging rates 
and ES capacity. As a result, the aforementioned ES applica‐
tions are mutually affected. To fully exploit ES flexibility, it 
is necessary to coordinate between different ES applications. 
This is achieved by the proposed operation model under un‐
certainties.

To avoid simultaneous charging and discharging of an ES, 
binary variables are required to restrict ES status. In some re‐
search works including [17] and [18], the binary variables 
can be relaxed. However, the proposed operation model in 
this paper alleviates uncertainties by using ES and considers 
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the costs incurred by uncertainties. Consequently, simultane‐
ous charging and discharging is beneficial for ES in terms of 
alleviating uncertainty, which means that binary variables for 
restricting ES status are indispensable. However, it is time-
consuming to solve the proposed operation model when us‐
ing binary variables. In addition, it is crucial to properly con‐
sider the probabilistic information, particularly the correla‐
tions of uncertainties, because the proposed operation model 
attempts to utilize the counteraction between uncertainties, 
which is enabled by using distributionally robust optimiza‐
tion, and introduces second-order conic constraints into the 
proposed operation model. As a result, the complexity of 
solving the proposed operation model derived from binary 
variables is aggravated. To improve the efficiency of deter‐
mining binary variables in optimization problems, traditional 
methods usually perform computations without accumulating 
experience [19]. With the rapid improvement in computation‐
al performance and big data techniques, neural networks 
have rapidly advanced in recent years, and have been used 
in distribution system operations. However, the performance 
of neural networks degrades when the corresponding prob‐
lem occurs on a large scale. Based on the strong intertempo‐
ral features of the proposed operation model and the interac‐
tion between uncertainties from different time intervals, a 
long short-term memory (LSTM) neural network (as op‐
posed to an ordinary neural network) is used to determine 
the binary variables corresponding to the ES status. Com‐
pared with ordinary neural networks, LSTM neural networks 
can process sequential data more effectively, and capture the 
mutual influence of decisions in different time intervals. 
However, this paper attempts to take advantage of the com‐
putation speed of the LSTM neural network while simultane‐
ously reducing the effects of its errors. Accordingly, instead 
of directly using the LSTM neural network to make all deci‐
sions about distribution system operations, this paper uses 
the LSTM to determine the binary variables that control the 
ES charging or discharging status because the binary vari‐
ables are the chief contributors to the time-consuming com‐
plexity of the proposed operation model.

The major contributions of this paper are as follows.
1) As the uncertainties travel in time domain through the 

ES in distribution system operations under day-ahead deci‐
sion mechanisms, a tailored ES operation scheme that assem‐
bles uncertainties in RES outputs from different time inter‐
vals is proposed, which utilizes the possibility of uncertain‐
ties counteracting each other to alleviate them with secure 
operation of distribution system as a prerequisite. In addi‐
tion, through elaborate modeling of ES operations, different 
ES applications are coordinated for both security and eco‐
nomic purposes, and ES flexibility is efficiently utilized.

2) To fulfill the tailored ES operation scheme that focuses 
on the interaction between uncertainties, binary variables 
that determine the ES status are treated as indispensable for 
complicated ES operations, and probabilistic information of 
uncertainties is considered using distributionally robust opti‐
mization, which amplifies the complexity derived from the 
binary variables. In view of the unique features of the pro‐
posed operation model, it is solved with the aid of neural 

networks.
3) To properly capture the strong mutual influence be‐

tween distribution system operations at different hours under 
the proposed ES operation scheme, LSTM neural networks 
are trained. To utilize the advantages of LSTM neural net‐
works and reduce the negative effects of their errors, LSTM 
neural networks are used only to determine the binary vari‐
ables that determine the ES status, and the proposed opera‐
tion model becomes convex and is solved precisely to the 
global optimal solution. Case studies show that the proper 
use of LSTM neural networks significantly reduces the com‐
putation time and only slightly affects the efficient utiliza‐
tion of ES flexibility.

II. PROPOSED OPERATION MODEL

We first discuss the distribution system operation with ES. 
The proposed operation model for distribution system is then 
presented with a tailored ES operation scheme, which will 
be described in detail in Section III.

A. Distribution System Operation with ES

This paper investigates the distribution system operation 
in which the ES offers flexibility and the RES offers uncer‐
tainty in its outputs (i.e., forecasting errors). We assume that 
the ES can be directly operated by the distribution system 
operator. The distribution system operation is conducted in 
two stages: day-ahead and real-time. In the day-ahead stage, 
the distribution system purchases electricity that is imported 
from the transmission system [20]. Due to the uncertainties 
in RES output, the actual imported power in the real-time 
stage generally deviates from the electricity purchase. As in 
[21], we assume that the distribution system must be respon‐
sible for its uncertainties and pay corresponding penalties to 
the transmission system operator for its energy deviations, as 
uncertainties from distribution systems can destabilize trans‐
mission system operation. Note that the proposed operation 
model in this paper is also applicable to other settings as 
long as uncertainties are unfavorable and the distribution sys‐
tem is programmed to alleviate its uncertainties. For exam‐
ple, the proposed operation model operates when the energy 
price is higher for purchasing than for selling in the real-
time stage. The aim of the problem is to use ES flexibility 
for ensuring distribution system security and minimizing the 
total operation costs including energy purchasing cost, ES 
operation cost as well as penalties for energy deviations. The 
proposed operation model can be extended by considering a 
case in which the distribution system sells its excess energy. 
Here, the designed ES operation scheme will remain applica‐
ble.

As an increasing number of uncertainties are involved in 
power system operations, it is necessary to design tailored 
operation schemes according to the specific operation envi‐
ronment. During the operation of a general transmission sys‐
tem with an ES, the power of the ES and other system com‐
ponents is determined by the economic dispatch conducted 
during the day. Under these circumstances, earlier uncertain‐
ties are incorporated into the deterministic parameters when 
the operation decisions are made again at the next time slot. 
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This means that earlier uncertainties are not different from 
other deterministic information after they are observed. How‐
ever, when day-ahead energy purchases or plans are made 
for the distribution system operation, the realized uncertain‐
ties differ from other known deterministic information since 
the day-ahead stage, because they still cause deviations from 
the day-ahead energy plan. In other words, due to the day-
ahead decision mechanism of the distribution system opera‐
tion, the realized uncertainties still act as uncertainties. As a 
result, the ES not only simply transfers energy in the time 
domain, but also transfers uncertainties to later hours, which 
leads to the direct interplay between uncertainties from dif‐
ferent time intervals. Note that this is usually ignored in the 
literature. Therefore, to achieve the efficient exploitation of 
ES flexibility, it is necessary to clearly track each uncertain‐
ty during operation over the entire time horizon, and the in‐
teraction between uncertainties must be properly considered. 
Based on this background, a tailored ES operation scheme 
that exploits the counteraction between uncertainties is pro‐
posed with a operation model for distribution system that ful‐
fills the ES operation scheme.

B. Formulation of Operation Model for Distribution System

The formulation of the proposed operation model is pre‐
sented through the following equations.
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Equation (1) expresses the objective of the problem. The 
operation costs presented in (1) can be divided into two 
parts. The first term ∑

t = 12...T

mt e
p
t  represents the electricity 

purchasing cost in the day-ahead stage and is not directly in‐
fluenced by uncertainties. The second part represents the 
costs within the operator max

dμÎ S ( )μ
E[ ]× , which is influenced by 

uncertainties realized in the real-time stage. More specifical‐
ly, the first and second items within the operator max

dμÎ S ( )μ
E[ ]×  

are the ES charging and discharging costs, respectively. The 
last item in the operator max

dμÎ S ( )μ
E[ ]×  is the penalty for power 

deviations, and is in the form of (2) when the deviation is 
positive and (3) when the deviation is negative, respectively. 
As discussed in Section II-A, the proposed operation model 
is also applicable to other settings in terms of costs derived 
from uncertainties. For example, the coefficient m-

t  in (3) is 
zero if the residual energy is allowed to be wasted by the 
distribution system. It is also possible for m-

t  to be a nega‐
tive number whose absolute value is less than m+

t  if the dis‐
tribution system can sell the residual energy at a lower price 

in the real-time stage. In either case, the cost or income in‐
curred from uncertainties in the real-time stage can be uni‐
formly expressed by the last item in the operator max

dμÎ S ( )μ
E[ ]×  

in (1), which is a convex piecewise-linear function.
The operation costs of the distribution system are influ‐

enced by RES uncertainties and are not deterministic. In 
some studies including [13], the worst-case cost is opti‐
mized; however, this is too conservative. Other studies such 
as [12] optimize the costs in a forecasting scenario. Howev‐
er, as uncertainties become nonnegligible, optimizing the av‐
erage operation costs is obviously more reasonable. In this 
regard, distributionally robust optimization (DRO) is advanta‐
geous and is thus adopted. With the ambiguity set in (4) es‐
tablished based on historical observations of uncertainties, 
DRO considers the probability distributions matching the sta‐
tistical expectation ω and covariance Θ of the RES uncer‐
tainty μ. This means that decisions related to distribution sys‐
tem operation can be made by knowing the degree to which 
each uncertainty fluctuates and the correlation between dif‐
ferent uncertainties. As the accurate uncertainty distribution 
cannot be known under limited information, the largest ex‐
pectation of operation costs over the ambiguity set is com‐
puted through the operator max

dμÎ S ( )μ
E[ ]×  in (1), and is regarded 

as the objective of the proposed operation model. It can be 
observed that DRO not only properly uses the probabilistic 
information of uncertainties, but also guarantees robustness 
against the inevitable ambiguity in the uncertainty distribu‐
tion. Through DRO, the objective in (1) is equivalently trans‐
formed into deterministic second-order conic forms, which 
means that the uncertainties are eliminated through mathe‐
matical transformation. Unlike the stochastic optimization, 
DRO avoids the cumbersome process of choosing representa‐
tive scenarios, and its performance can be enhanced by accu‐
mulating information about uncertainties without increasing 
computational complexity. Further details on the adopted 
DRO and its transformation are available in [22].

The constraints of the proposed operation model are given 
by (5) - (15). Equation (5) provides the electricity imported 
from the distribution system. The voltage vti at each node is 
computed in (6) and is limited to 0.95-1.05 times of the base 
voltage v0 in (7). Equations (8) and (9) calculate the active 
and reactive power flows. The binary variables θti in (10) re‐
stricts ES status to either charging or discharging. In (11) 
and (12), the ES charging power and discharging power are 
limited by their maximum values pcmax

i  and pdmax
i , respective‐

ly. An ES SOC must be at the same level E 0
i  at the begin‐

ning and end of the day according to (13), and is con‐
strained from violating its upper and lower bounds (i.e., E max

i  
and E min

i ) in (14). Finally, (15) calculates the SOC of ES Eti 
based on its operation. Similar to the objective of the pro‐
posed operation model, these constraints include uncertain‐
ties. To ensure the safe operation of distribution system, 
these constraints must be satisfied with respect to all possi‐
ble uncertainty realizations and thus are actually robust con‐
straints that are transformed using robust optimization [23].

ea
t = p line

t12Dt    "t (5)
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In the proposed operation model, variables exist in both 
the day-ahead stage (such as electricity purchased for differ‐
ent hours) and real-time stage (such as ES charging and dis‐
charging power). After ES flexibility is exploited, the ES 
SOC is changed and ES flexibility must be made available 
again. Therefore, when an ES is used to alleviate uncertain‐
ties, its operation is not simply influenced by uncertainties 
from the current hour. More specifically, an uncertainty such 
as the forecasting error of RES output in one hour can influ‐
ence the ES operation in several later hours, and the ES op‐
eration in one hour can be influenced by uncertainties from 
several earlier hours. We should also note that the ES oper‐
ates without knowing later uncertainty realizations, which 
implies that ES operation must comply with the time se‐
quence of uncertainties, and this complicates ES operation in 
the distribution system.

In terms of modeling multi-period optimization problems, 
two-stage robust and scenario-based stochastic models are of‐
ten used. However, both ignore the time sequences of uncer‐
tainties and decisions, and achieve overly optimistic solu‐
tions [11], [24]. The models using scenario trees meet the re‐
quirements incurred from time sequences, but are computa‐
tionally expensive [25]. Therefore, an effective and computa‐
tionally efficient method, specifically linear decision rule 
(LDR), is adopted in this paper to track uncertainties, em‐
body their time sequences, and set real-time variables to af‐
fine functions of earlier uncertainties [26]. Although the per‐
formance of the basic LDR degrades when the studied prob‐
lem has strong nonlinear characteristics, improved versions 
of LDR exist that can achieve more accurate modeling. For 
example, the segregated LDR splits uncertainties into seg‐
ments and assumes linear relationships based on segregated 
uncertainties [27], whereas lifted LDR projects uncertainties 
into a lifted space and assumes affine functions of the lifted 
uncertainties [28]. An example based on the discharging 
power of the ES at node i in hour t under LDR is given in 
(16). The deterministic components consdis

ti  and linear coeffi‐

cients consdis
ti  for all real-time variables under LDR are not 

fixed parameters but are in fact decision variables, which are 
determined by solving the proposed operation model. Once 
the deterministic components and linear coefficients of LDR 
are determined and the uncertainty realizations are known, 
real-time operation can be conducted. Instead of considering 
LDR as a purely mathematical method, this paper uses it to 
establish an ES operation scheme by analyzing each compo‐
nent with respect to the specific problem of distribution sys‐
tem operation. This is further discussed in Section II-C.

pd
ti = consdis

ti + ∑
t̄ = 12t

∑
 jÎNRES

β t̄j
ti μ

RES
t̄j (16)

C. ES Operation Under Uncertainties

The ES operation is embodied in charging and discharg‐
ing. Similar to the ES discharging power expressed in (16), 
the ES charging power is also in the form of an affine func‐
tion under the LDR. Instead of mixing deterministic opera‐
tions with uncertainty-responsive operations, as in many oth‐
er studies, they are separately and clearly modeled in this pa‐
per. More specifically, the basic operation plan of the distri‐
bution system in the day-ahead stage is reflected by the de‐
terministic components of the LDR, and how the distribution 
system should respond to uncertainty realizations in the use 
of ES in the real-time stage is determined by linear coeffi‐
cients. As discussed in Section I, this paper adopts two per‐
spectives to classify ES operations. One considers whether 
the ES operation is influenced by uncertainty realizations. 
The other considers ES operations for economy and security 
purposes. Under the proposed operation model, three ES 
flexibility applications are selected for detailed analysis, 
which are designed to reduce the electricity purchasing 
costs, ensure safe node voltage, and alleviate uncertainties, 
respectively. Other ES applications can also be incorporated 
into the proposed operation model. However, to achieve a 
more concise and clear analysis, they are not discussed in 
this paper. Figure 1 shows the selected ES applications in 
the proposed operation model.

The ES application for reducing electricity purchasing 
costs depends on the deterministic components of ES power 
under LDR, which determines the electricity purchase of the 
distribution system for each hour. By contrast, the ES appli‐

Not influenced

 by uncertainty 

realizations

Influenced by 

uncertainty 

realizations

Depending on deterministic 

components of LDR

Depending on linear

coefficients of LDR

Security purpose

Economy purpose

ES applications

Reducing electricity

purchasing costs

Alleviating uncertainties

Ensuring safe node

 voltage

Fig. 1.　ES applications in proposed operation model.
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cation for uncertainty alleviation depends on the linear coef‐
ficients of the LDR. Finally, the ES application for ensuring 
safe node voltage is influenced by both the deterministic 
components and the linear coefficients of the LDR, which 
means that a proper day-ahead arrangement and a real-time 
adjustment are both needed.

In these three ES applications, the alleviation of uncertain‐
ty is not straightforward; its theory is further explained here. 
For example, regardless of the realization of uncertainty in 
the RES output, the ES can adjust its discharging power by 
the same magnitude but in the opposite direction. Conse‐
quently, no variation or uncertainty exists in terms of elec‐
tricity imported from the distribution system. In this case, 
the ES compensates for the variation in RES outputs, and it 
can be observed that ES absorbs the RES uncertainty. Al‐
though this application is based on the discharging status of 
ES, the situation is similar when the ES is charged. Howev‐
er, although the ES can absorb uncertainties, as previously 
discussed, its SOC changes after it absorbs uncertainties and 
must be restored, as the ES capacity is limited. In other 
words, the absorbed uncertainties must be released from the 
ES, and this can be achieved by adjusting the ES charging 
or discharging power. Figure 2 illustrates the use of an ES to 
alleviate uncertainties, where only one RES and one ES are 
assumed to exist in the distribution system, and the RES un‐
certainties are μt1

 and μt2
, respectively. The ES absorbs uncer‐

tainties through charging or discharging in t1, and thus no un‐
certainty exists in terms of the distribution system. The un‐
certainties absorbed in t1 by the ES are released in t2, and 
therefore, the uncertainties from the two hours are now col‐
lected in the same hour and can counteract each other when 
they have positive and negative realizations. As Fig. 2 
shows, the process of absorbing and releasing uncertainties 
using ES is similar to allocating the relevant uncertainties to 
later hours. Therefore, the LDR coefficients for ES operation 
in the proposed operation model actually determine how un‐
certainties are transferred in the time domain and enable the 
accurate tracking of uncertainties. The theory also works 
when more uncertainties and hours are involved and ex‐
plains why uncertainties can be alleviated in the proposed 
operation model.

Note that the case illustrated in Fig. 2 is not trivial. For 
example, this case does not hold for the general operation 
problem of distribution system. This is because μt1

 becomes 

deterministic information after it is transferred to t2, which 
means that μt1

 and μt2
 incur costs in different manners, and 

no counteraction will occur between uncertainties. Even in a 

distribution system operation, if the worst-case cost or the 
cost in the predicted scenario is minimized, as in [12] and 
[13], the interplay between uncertainties will not be given 
sufficient attention because its influence on the operation 
model will be limited. In fact, the proposed ES operation 
scheme is enabled by an in-depth analysis of ES operations 
in distribution systems and the integration of LDR into the 
problem investigated in this paper. The designed ES opera‐
tion scheme as well as the theory and interpretation of ES 
operation is original, and do not derive directly from the 
LDR. In addition to the studies based on LDR, the proper 
modeling of the problem is also crucial. The interaction be‐
tween uncertainties cannot be properly analyzed or con‐
trolled if the model does not optimize the average operation 
costs or if the correlations of uncertainties are not effectively 
considered, as discussed in Section II-B. In summary, this 
paper does not simply apply or combine LDR and other 
methods. Instead, it conducts a systematic investigation of 
the proposed operation model and the solution method, with 
the latter further discussed in Section III.

III. LSTM NEURAL NETWORK

With the help of LDR, robust optimization, and DRO, the 
proposed operation model is transformed into a deterministic 
mixed-integer second-order conic program, which can be di‐
rectly solved by commercial solvers. However, it is time-con‐
suming. We then present an LSTM neural network that accel‐
erates the computation of the distribution system operation 
model.

A. Recurrent Neural Network (RNN) and LSTM Neural Net‐
work

An RNN is a type of neural network with sequential data 
used as both input and output. Unlike ordinary neural net‐
works, an RNN considers not only the current input but also 
the input and output at previous time, which means that it 
can store and utilize previous information [29]. However, a 
traditional RNN may encounter a vanishing gradient prob‐
lem during reverse propagation, and the corresponding possi‐
bility increases when the sequence is too long. If the gradi‐
ent value becomes very small, the neural network stops 
learning because of insufficient weight changes. In the pro‐
posed operation model, parameters exist for 24 hours and act 
as input information for the neural networks to determine 
the binary variables corresponding to the ES status. Given 
the long sequence involved in the proposed operation model, 
LSTM neural networks are adopted, rather than ordinary 
RNNs. The LSTM neural network is a special RNN with 
one more hidden unit that effectively solves the gradient van‐
ishing problem [30]. Because of the increased number of hid‐
den units, LSTM neural networks can easily carry informa‐
tion over a long distance and are therefore more suitable for 
the 24-hour problem considered in this paper.

B. Generation and Preprocessing of Training Data

The LSTM neural network must determine the binary vari‐
able related to the ES status for charging and discharging. 
The binary variable is also the label for the training samples. 

RES ES

Distribution

 system

μt1

μt1
μt2

(a)

RES ES

(b)

Distribution

 system

Fig. 2.　Use of ES to alleviate uncertainties. (a) t = t1. (b) t = t2.
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The evaluation of the correlations between ES status and pa‐
rameters for distribution system operation is accomplished 
by computing Pearson coefficients. Accordingly, electricity 
prices, forecasted RES outputs, and load demands are the 
major influencing factors, which are thus used as the fea‐
tures of the LSTM neural network. Simulated operation pa‐
rameters are generated based on 20% random variations in 
electricity prices and forecasted RES outputs and 10% ran‐
dom variations in load demands. Directly solving the pro‐
posed operation model is feasible although time-consuming. 
Therefore, the training samples are obtained by solving the 
proposed operation model under the simulated parameters. In 
real-world applications, training samples can be collected 
based on the actual operation parameters and the correspond‐
ing solutions provided by the proposed operation model. In 
addition, to guarantee the performance of the LSTM neural 
network and reduce the training time, different features are 
normalized prior to training. In addition, as the chosen test 
system has 32 nodes with both active and reactive loads, the 
load data in each hour are 64-dimensional, which increases 
the complexity and difficulty of training the LSTM neural 
network. Therefore, principal component analysis is adopted, 
which uses uncorrelated variables, albeit less, to obtain as 
much information as possible about the original data, as it re‐
veals the internal structure of the data by transforming the 
observation perspective [31]. Specifically, the eigenvectors 
and eigenvalues of the covariance matrix are computed. The 
eigenvalues represent the amount of information that the 
new features carry and are sorted from the largest to the 
smallest, the sum of which is set to be larger than 0.98 
times that of all eigenvalues. Through principal component 
analysis, a set of 20-dimensional data is used to represent 
the 64-dimensional load data for each hour in the LSTM 
neural network.

C. Application of LSTM Neural Network

After training is completed, the input information includ‐
ing electricity prices, load demands, and forecasted RES out‐
puts, can be provided to the trained LSTM neural network, 
whose outputs are the charging and discharging statuses for 
each EV and are used as decisions in the proposed operation 
model. After the binary variables corresponding to the ES 
status are replaced with the decisions made by the LSTM 
neural network, the proposed operation model becomes a 
convex optimization problem and is then solved precisely to 
the globally optimal solution by off-the-shelf solvers for 
making other decisions about distribution system operations.

The flexibility of the proposed operation model is not af‐
fected because ES statuses are assumed to be fixed in real-
time operations to avoid damage caused by unexpected 
changes in ES statuses. Although the optimality of the pro‐
posed operation model is influenced by LSTM errors, the 
LSTM neural network can generally achieve satisfactory out‐
comes due to the advantages previously discussed. In addi‐
tion, to address the ES task of uncertainty alleviation, we 
must know how the ES should respond to uncertainties. This 
response actually plays a more important role than its status‐
es because the ES can alleviate uncertainties regardless of 
whether it is charging or discharging. Therefore, LSTM er‐

rors have a limited influence on the optimality of the pro‐
posed operation model, and the performance of the proposed 
operation model when the LSTM neural network is applied 
is demonstrated through conducted case studies, which are 
described in Section IV-B.

Other operation decisions are made by solving the opera‐
tion model for the globally optimal solution after the binary 
variables are decided using LSTM neural network. There‐
fore, the operation constraints can be strictly met, and there 
will be no unexpected infeasibility in real-time operation. A 
small possibility exists that improper ES statuses provided 
by the LSTM neural network may cause the proposed opera‐
tion model to have no feasible solution. In this case, the pro‐
posed operation model can be solved directly without using 
the LSTM neural network to eliminate the effects of LSTM 
errors.

IV. CASES STUDIES AND DISCUSSION

This section demonstrates the ES flexibility in the pro‐
posed operation model, and then describes the performance 
of the LSTM neural networks in the proposed operation 
model. Case studies are based on the standard IEEE 33-node 
distribution network but with the ES and RES connected to 
nodes 22 and 32 and to nodes 13 and 30, respectively. Table 
I lists the parameters of the ES. The time horizon is 24 
hours unless otherwise stated.

A. ES Flexibility in Distribution System Operation

1) Uncertainty Alleviation
This part discusses the effectiveness of the proposed oper‐

ation model in uncertainty alleviation. To eliminate the ef‐
fects of other ES applications, electricity prices are set to be 
constant for each hour. Table II lists the changes in opera‐
tion costs due to exploiting ES flexibility. All uncertainty-af‐
fected costs are presented as average values based on 10000 
sets of uncertainty realizations. The deviation penalty de‐
creases significantly with ES flexibility, indicating the effec‐
tiveness of the proposed operation model in alleviating un‐
certainty. Although other costs increase, the total cost de‐
creases due to ES flexibility. Figure 3 presents the average 
deviation penalty with and without ES flexibility. With ES 
flexibility, the uncertainties from different hours can be ob‐
tained. Therefore, no deviation penalty is incurred for many 
hours, and the total deviation penalty in the day is reduced 
because of the counteraction between uncertainties. As illus‐
trated in Section II, the ES power can be split into determin‐
istic components and linear functions of uncertainties under 
LDR. Figure 4 shows the deterministic components of the 

TABLE I
PARAMETERS OF ES

Parameter

Charging/discharging efficiency

The maximum charging/discharging rate (kW)

Initial SOC (kWh)

The minimum SOC (kWh)

The maximum SOC (kWh)

Value

0.95

300.00

500.00

50.00

900.00
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ES power under ES flexibility, where positive and negative 
values correspond to the ES charging power and discharging 
power, respectively. As the electricity prices in different 
hours are set to be constant, the aim of ES operation is to al‐
leviate uncertainties. Figure 4 shows that simultaneous charg‐
ing and discharging of the two ESs occur because the ES can 
alleviate uncertainties regardless of whether it is charging or 
discharging. In addition, the ES has greater charging and dis‐
charging power in the last several hours because it tends to 
assemble uncertainties in the last several hours. This requires 
greater ES power and is consistent with the higher deviation 
penalties in the last several hours, as shown in Fig. 3.

2) Influence of Network Constraint on ES Operation
The two settings for the safe range of the node voltage 

are adopted, as shown in Table III, and the time horizon is 
assumed to contain 10 rather than 24 hours to achieve a 
clearer demonstration. Case studies are conducted by adopt‐
ing the electricity prices listed in Table IV and setting the 
load demand in the last two hours to be relatively higher. Ac‐
cording to Table IV, electricity prices are significantly lower 
during the last two hours. Therefore, the load demands are 
shifted to the last two hours through the ES to reduce the 
electricity purchasing costs, and ES charges in the last two 
hours.

The average deviation penalties under the two settings are 
shown in Fig. 5, and Table V shows the average total devia‐
tion penalties. It can be observed that the deviation penalty 
has different profiles under the two settings, and the penalty 
is lower under Setting A, the reasons for which are as fol‐
lows. As corroborated by the deviation penalty curve shown 
in Fig. 5, uncertainties are mainly assembled in the last two 
hours to counteract each other when the constraint on node 
voltage is not very strict under Setting A. However, when 
the constraint on node voltage becomes stricter under Setting 
B, the limitations on ES charging power become stronger as 
well. This means that the available ES flexibility is reduced 
in the last two hours under Setting B. With reduced ES flexi‐
bility, uncertainties cannot be assembled intensively in the 
last two hours and are allocated more dispersedly from the 
7th to the 10th hour under Setting B. This results in positive 
average deviation penalties during these hours, as shown in 
Fig. 5. Because the uncertainties are more poorly assembled, 
less opportunity exists for them to counteract, and the aver‐
age total deviation penalty listed in Table V is higher under 
Setting B.

TABLE II
CHANGES IN OPERATION COSTS WITH USE OF ES FLEXIBILITY

Cost

Electricity purchasing cost

Average deviation penalty

Average ES operation cost

Average total cost

Value (cent)

611.3

-3747.1

1277.6

-1858.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (hour)

Without ES flexibility

With ES flexibility
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Fig. 3.　Average deviation penalty with and without ES flexibility.
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Fig. 4.　Deterministic components of ES power under ES flexibility.
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Fig. 5.　Average deviation penalties under two settings.

TABLE V
AVERAGE TOTAL DEVIATION PENALTIES UNDER TWO SETTINGS

Setting

A

B

Average total deviation penalty (cent)

1021.1

1174.8

TABLE III
TWO SETTINGS FOR SAFE RANGE OF NODE VOLTAGE

Setting

A

B

Safe range of node voltage (p.u.)

0.95-1.05

0.96-1.04

TABLE IV
ELECTRICITY PRICES ADOPTED IN SECTION IV-A-2)

Time
(hour)

1

2

3

4

5

Electricity price
 (cent/kWh)

6.6

6.7

6.8

6.9

6.7

Time
(hour)

6

7

8

9

10

Electricity price
 (cent/kWh)

6.5

6.3

6.2

4.6

4.4
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3) Different Applications of ES Flexibility in Different Time In‐
tervals

The electricity prices listed in Table VI are next adopted, 
and the load demands are set relatively higher in the last 
two hours. The penalty coefficient for the electricity devia‐
tions is set to be zero to exclude the influence of uncertainty 
alleviation. This case study is conducted based on three set‐
tings, i. e., Settings A and B as presented in Table III, and 
Setting B with constant electricity prices. The deterministic 
components of the ES power under the three settings are pre‐
sented in Fig. 6, where positive and negative values corre‐
spond to the ES charging power and discharging power, re‐
spectively. Figure 6 shows that ES discharges in the 3rd and 
4th hours and charges in the 5th and 6th hours under Setting 
A. These occur because the ES shifts loads to reduce the 
electricity purchasing costs and thus to make use of the elec‐
tricity prices listed in Table VI. When the electricity prices 
in different hours are set to be constant, the ES will not oper‐
ate and this reduces electricity purchasing costs. However, 
Fig. 6 shows that the ES still discharges in the last two 
hours under Setting B but with constant electricity prices. 
This is because the stricter network constraint in Setting B 
requires ES discharge to decrease the power flow on certain 
feeders. Finally, when the electricity price given in Table VI 
and the stricter network constraint in Setting B are adopted, 
the ES first discharges, then charges, and finally discharges 
again, as shown in Fig. 6. This occurs because the ES first 
shifts loads to reduce electricity purchasing costs and later 
discharges to ensure a safe node voltage. This case shows 
that the proposed operation model can properly allocate ES 
flexibility to different applications in different time intervals 
to fully exploit the ES.

4) Comparison with an Existing Operation Model
To illustrate the superiority of the proposed operation mod‐

el, we compare it with the existing operation model in [16]. 

Instead of a designed scheme that clearly tracks uncertainties 
during the entire ES operation while optimizing ES flexibili‐
ty in terms of all-day operation (as with the proposed meth‐
od), the existing operation model allocates the corresponding 
ES flexibility equally to all hours while using the ES to alle‐
viate uncertainties. This is unreasonable because the levels 
of uncertainties in different hours are not the same. Thus, 
the existing operation model regards uncertainty alleviation 
in each hour as a separate task and thus does not consider 
the interplay between uncertainties from different hours. 
This means it is short-sighted and cannot achieve the global‐
ly optimal arrangement of ES flexibility. Figure 7 shows that 
the deviation penalty curve under the existing operation mod‐
el is similar to that without uncertainty alleviation. This is 
because under the existing method, ES flexibility is improp‐
erly restricted and cannot be fully used to alleviate uncertain‐
ties. Therefore, the proposed operation model achieves great‐
er savings in the use of ES flexibility as compared with ex‐
isting operation models, as shown in Table VII. Figure 8 
shows that when the ES is not used to alleviate uncertainty, 
it operates only during certain hours to exploit the differenc‐
es between electricity prices in different hours by shifting 
loads. The two curves shown in Fig. 8 reveal that under the 
proposed and existing operation models, a larger charging or 
discharging power generally exists under the proposed opera‐
tion model. This is because ES flexibility can be used to a 
greater extent to alleviate uncertainties. However, this is dif‐
ferent for the 6th and 10th hours. As the use of ES flexibility 
in uncertainty alleviation is restricted under the existing opera‐
tion model, the ES allocates more of its flexibility to load shift‐
ing by charging during the 6th hour, and thus has higher deter‐
ministic components in charging power under the existing op‐
eration model than under the proposed operation model. In the 
10th hour, the deterministic ES discharging power is higher un‐
der the existing operation model than under the proposed oper‐
ation model. This is because the ES has a greater need to re‐
store its flexibility from load shifting to alleviate uncertainties 
under the rigid scheme of the existing operation model.
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Fig. 6.　Deterministic components of ES power under different settings.

TABLE VI
ELECTRICITY PRICES

Time
(hour)

1

2

3

4

5

Electricity price 
(cent/kWh)

6.6

6.7

6.8

6.9

4.6

Time
(hour)

6

7

8

9

10

Electricity price 
(cent/kWh)

4.4

5.4

5.6

5.8

6.0
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Time (hour)
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Without uncertainty alleviation
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Fig. 7.　Average deviation penalties under different models when ES flexi‐
bility is exploited.

TABLE VII
CHANGES IN OPERATION COSTS WITH USE OF ES FLEXIBILITY UNDER 

DIFFERENT OPERATION MODELS

Operation 
model

Proposed

Existing

Electricity 
purchasing 
cost (cent)

-1122.7

-1128.9

Average 
deviation 

penalty (cent)

-1637.8

-797.0

Average ES 
operation cost 

(cent)

1107.9

822.4

Average 
total cost 

(cent)

-1652.5

-1103.3

1613



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 12, NO. 5, September 2024

B. Performance of LSTM Neural Networks in Solving Pro‐
posed Operation Model

The LSTM neural networks are used to accelerate the 
computation speed of the proposed operation model, and its 
relevant performance will be demonstrated in the first part 
of this subsection. The solution method using the LSTM neu‐
ral network is then compared with the precise solution in the 
second part and with the solution method using an ordinary 
RNN in the third part. All of this enables us to assess the 
outcomes of the proposed operation model.
1) Reduction in Computation Time Derived from LSTM Neu‐
ral Network

Based on 100 sets of randomly generated parameters, the 
proposed operation model is solved in two scenarios, i. e., 
with and without the LSTM neural network. The computa‐
tion time is listed in Table VIII. The table shows that com‐
pared with the scenario in which the proposed operation 
model is directly solved, the computation time is significant‐
ly reduced and is practically negligible when the LSTM neu‐
ral network is used. This occurs because, after the ES status 
of charging and discharging is fixed by the LSTM neural 
network, the proposed operation model is transformed from 
a mixed-integer optimization problem into a typical second-
order conic programming problem, and the solving difficulty 
is greatly reduced. The training time of the LSTM neural net‐
work is approximately 1700 s, which is sufficient because 
the training is conducted offline, and the model can be re‐
peatedly used once it is trained. In addition, the training 
time is derived from using a PC with Core i7 processor and 
can be further shortened if high-performance workstations 
are used.

2) Influence on ES Flexibility Derived from LSTM Neural 
Network

With ES flexibility, the electricity purchasing costs and 
penalties for electricity deviations can be reduced. When an 
LSTM neural network is used, its error may impede the ES 
flexibility from being effectively used and may result in few‐
er cost reductions for the distribution system. To study the 
effects of the LSTM neural network on the proposed opera‐
tion model, 50 sets of parameters are generated. The pro‐
posed operation model is then solved using these parameters 
along with the LSTM neural network, and it is also solved 
precisely without using the LSTM. Figure 9 shows the ratio 
of cost reductions when LSTM is used to cost reductions 
when LSTM is not used, both under 50 sets of parameters. 
As some operation costs of the distribution system are influ‐
enced by the realization of RES uncertainty, the uncertainty-
influenced costs are the average values calculated based on 
10000 randomly generated uncertainty realizations.

Figure 9 shows that the effect of the LSTM neural net‐
work on the proper use of ES flexibility is acceptable, partic‐
ularly when considering the significant reduction in computa‐
tion time. The ratio should be less than or equal to 1. How‐
ever, according to Fig. 9, it is shown to be greater than 1 in 
some datasets because the presented results are based on fi‐
nite uncertainty realizations and may show minor deviations 
from the actual situation. Table IX presents further compari‐
sons. It can be observed that the reductions in deviation pen‐
alties are nearly the same under the two solution methods be‐
cause the ES statuses are determined by the difference be‐
tween the two solution methods, and the ES can allevi‐
ate uncertainties regardless of whether it is charging or 
discharging.
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Fig. 8.　 Deterministic components of ES power under different models 
when ES flexibility is exploited.

TABLE VIII
COMPUTATION TIME USING AND WITHOUT USING LSTM NEURAL 

NETWORK BASED ON 100 SETS OF RAMDOMLY GENERATED 
PARAMETERS

Scenario

Using LSTM neural 
network

Without using LSTM 
neural network

The maximum 
computation 

time (s)

18.0

13428.5

The minimum 
computation 

time (s)

9.6

1574.0

Average 
computation 

time (s)

11.9

3524.5

0.95

0.96

0.97

0.98

0.99

1.00
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Fig. 9.　Ratio of cost reductions when LSTM is used to cost reductions 
when LSTM is not used.

TABLE IX
COST REDUCTION COMPARISONS UNDER PRECISE SOLUTION METHOD AND 

SOLUTION METHOD USING LSTM NEURAL NETWORK

Solution 
method

Precise

Using 
LSTM neu‐
ral network

Reduction in 
electricity pur‐
chasing cost 

brought by ES 
flexibility (cent)

2815.2

2750.6

Average reduc‐
tion in devia‐
tion penalty 

brought by ES 
flexibility (cent)

3943.3

3945.0

Average 
ES oper‐

ation 
cost 
(cent)

1805.8

1785.8

Average 
cost reduc‐

tion brought 
by ES flexi‐
bility (cent)

4952.8

4909.9
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3) Comparison of LSTM Neural Network and RNN
The binary variables in the proposed operation model are 

determined using LSTM neural network and RNN. Table X 
shows that the RNN performs similar to the LSTM neural 
network when the time horizon includes 10 hours. However, 
when the problem becomes more complicated as the time ho‐
rizon increases to 24 hours, the advantage of the LSTM neu‐
ral network over the RNN in considering the mutual influ‐
ence of decisions in different time intervals becomes more 
evident. As the LSTM neural network can make better deci‐
sions for binary variables in determining the ES status, ES 
flexibility achieves greater cost savings when the LSTM neu‐
ral network is used, as shown in Table XI. To further illus‐
trate the advantage of applying the LSTM neural network 
rather than the RNN in the proposed operation model, the 
average deviation penalties of the distribution system when 
integer variables are determined in different manners are 
shown in Fig. 10. It can be observed that the curve of the 
original model approximates that of the LSTM neural net‐
work compared with that of RNN, and the total deviation 
penalty over the day under the LSTM neural network is also 
lower than that under the RNN.

V. CONCLUSION

An operation model is proposed in this paper for distribu‐
tion systems to use ES flexibility in alleviating uncertainties, 
reducing electricity purchasing costs, and ensuring a secure 
node voltage. Based on the complexity of the proposed oper‐
ation model, an LSTM neural network is used to determine 
the ES charging and discharging statuses and is combined 
with off-the-shelf optimization solvers in the proposed opera‐
tion model. It is shown that the proposed operation model 
could achieve a significant reduction in computation time 
while simultaneously maintaining satisfactory outcomes 
through case studies. The effectiveness of the proposed oper‐
ation model in utilizing ES flexibility in different manners is 
also verified, and the operation costs are reduced to ensure 
the safe operation of distribution system. Because of their ag‐
gregation through the ES, uncertainties from the RES are sig‐
nificantly alleviated. In addition, we demonstrate that with 
the proposed operation model, different applications of ES 
flexibility can be conducted simultaneously and can directly 
influence each other. They can also operate in different time 
intervals. Overall, ES flexibility is properly allocated among 
the different applications using the proposed operation model.
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