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Abstract——The popularity of electric vehicles (EVs) has 
sparked a greater awareness of carbon emissions and climate 
impact. Urban mobility expansion and EV adoption have led to 
an increased infrastructure for electric vehicle charging stations 
(EVCSs), impacting radial distribution networks (RDNs). To re‐
duce the impact of voltage drop, the increased power loss (PL), 
lower system interruption costs, and proper allocation and posi‐
tioning of the EVCSs and capacitors are necessary. This paper 
focuses on the allocation of EVCS and capacitor installations in 
RDN by maximizing net present value (NPV), considering the 
reduction in energy losses and interruption costs. As a part of 
the analysis considering reliability, several compensation coeffi‐
cients are used to evaluate failure rates and pinpoint those that 
will improve NPV. To locate the best nodes for EVCSs and ca‐
pacitors, the hybrid of grey wolf optimization (GWO) and parti‐
cle swarm optimization (PSO) (HGWO_PSO) and the hybrid of 
PSO and Cuckoo search (CS) (HPSO_CS) algorithms are pro‐
posed, forming a combination of GWO, PSO, and CS optimiza‐
tions. The impact of EVCSs on NPV is also investigated in this 
paper. The effectiveness of the proposed optimization algo‐
rithms is validated on an IEEE 33-bus RDN.

Index Terms——Electric vehicle charging station, optimization, 
radial distribution network, vehicle-to-grid, loss reduction, reli‐
ability.

I. INTRODUCTION 

THE dependence of transportation sector on fossil fuels 
leads to hazardous CO2 emissions that impact the envi‐

ronment. For greener communities, moving to electric vehi‐
cle (EV) will expand public transportation, and encourage ac‐
tive travel [1]. EVs have many benefits, including economic 
advantages, exceptional performance, and a positive environ‐
mental effect by reducing the harmful pollutants caused by 
transportation. By 2030, India’s National Electric Mobility 
Mission Plan (NEMMP) 2020 and Faster Adoption and Man‐
ufacturing of Electric Vehicles (FAME) 2015 programme tar‐
get EV adoption. Researchers are looking at where to allo‐
cate EV charging stations (EVCSs) due to the rise of EVs. 
However, there are obstacles to deploy EVs widely, e.g., the 

demand for charging stations and the determination of charg‐
ing time. We require effective charging stations to operate ef‐
fectively [2]. Robust grids and less power loss (PL) are re‐
quired to manage EVs effectively [3]. Grid-to-vehicle (G2V) 
energy transfer is facilitated by smart grids [4]. The number 
of charging station installations increases with the adoption 
of EV [5]. Charging stations have improved voltage profiles 
with capacitors, increasing their efficiency when allocated 
properly [6], [7].

Numerous important advancements have been made in 
power system optimization and improvement over time. Ear‐
ly efforts such as [8] emphasized on the optimization to save 
costs, improve overall benefits, and reduce losses in power 
systems. Later research work dug into other facets of power 
system management. Notably, [9] carried out a thorough in‐
vestigation of reliability analysis, providing ways to improve 
the power system flexibility. Since the early 2000s, there has 
been interest in capacitor placement, which is a key strategy 
for voltage regulation. Reference [10] presented the idea of 
employing particle swarm optimization (PSO) to optimize 
voltage profiles, allocate capacitors strategically, and reduce 
PLs. After ten years, in [11], a two-phase strategy was suc‐
cessfully used to allocate EVCS in line with the increasing 
demand for effective EV infrastructure. Reference [12] fo‐
cused on the infrastructure needed for EV charging. Addi‐
tionally, [13] clarified how short-range EV charging affects 
PLs, highlighting the demand for optimized solutions.

Modern optimization methods have been incorporated into 
power system management in recent years. Reference [14] 
suggested a hybrid strategy combining weight improved par‐
ticle swarm optimization (WIPSO) and gravitational search 
algorithm (GSA), called WIPSO-GSA, for capacitor and dis‐
tributed generation (DG) unit optimization. This was a huge 
step in the direction of more thorough optimization tech‐
niques. In [15], attempts were made to boost power system 
stability by enhancing the reliability of networks utilizing 
mixed-integer nonlinear programming and AC optimization. 
In [16], a quantum-inspired capacitor design algorithm was 
presented as the result of the convergence of quantum algo‐
rithms and power system optimization. The development al‐
lowed more effective capacitor placement techniques by 
merging classical optimization with fundamental concepts. 
Based on this, [17] integrated PSO and grey wolf optimiza‐
tion (GWO) with the hybrid of GWO and PSO (HG‐
WO_PSO), presenting improved optimization results. Recent 
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developments also address the complex combination be‐
tween DG and EVCS. Considering their combined influence 
on the power system, [18] used the HGWO_PSO to opti‐
mize the choices of EVCS and DG units. Multi-objective 
framework was also established in [19] to optimize EVCS 
comprehensively while considering various objectives.

To economically arrange capacitors while accounting for 
practical factors, [20] proposed a method that combined load 
flow (LF) analysis, Shannon’s entropy, and PSO. Mean‐
while, [21] demonstrated the effectiveness of mixed-integer 
linear programming (MILP) in optimizing capacitor deploy‐
ment by streamlining the optimization procedures. As time 
progresses, state-of-the-art research work continues to ad‐
vance power system management techniques. Notably, [22] 
showcased a hybrid technology of Eurasian oystercatcher op‐
timizer (EOO) and quantum neural network (QNN), called 
EOO-QNN, which improved voltage, PL, and reliability, un‐
derscoring ongoing efforts to enhance power system optimi‐
zation and reliability. In parallel, recent research works have 
delved into the impact of intensive EV charging on power 
distribution systems and transformer longevity [23]. Refer‐
ence [24] explored concerns related to overloading and un‐
dervoltage due to the increasing adoption of EVs, employing 
software tools such as DRIVE and HotSpotter. To effectively 
manage power systems while integrating EVs, energy stor‐
age, and renewable sources, an MILP model was introduced 
in [25], which led to cost reduction and reduced carbon 
emissions. Additionally, [26] investigated using metaheuristic 
algorithms to optimize battery energy storage systems, there‐
by improving performance and cost-effectiveness in radial 
distribution network (RDN) with photovoltaics (PVs) and 
EVs. To reduce uncertainty and user discomfort by 17%, 
[27] presented an EV charging scheduling method based on 
the alternating direction method of multipliers (ADMM) al‐
gorithm. Furthermore, [28] examined the capacity of RDN 
to support EV charging within the context of demand re‐
sponse. These references addressed the complex challenge of 
integrating EVs into power distribution systems and high‐
lighted the evolving strategies and technologies in power sys‐
tem design and management.

This paper focuses on optimal simultaneous allocation of 
EVCSs and capacitors in RDN considering reliability, help‐
ing to improve voltage, reduce PL, and increase profit in 
RDN. Consequently, the primary contributions of this paper 
are as follows.

1) The backward-forward sweep (BFS) algorithm is used 
to conduct LF studies in IEEE 33-bus RDN for the base 
case after connecting EVCSs and capacitors.

2) An objective function based on the benefit of energy 
loss reduction, expected interruption cost (EIC), and interrup‐
tion cost is proposed for this optimal simultaneous allocation 
problem. Accordingly, after connecting EVCSs and capaci‐
tors, new failure rates are updated, and EIC is computed.

3) Multiple cases of various capacitance and EVCS opera‐
tion conditions are considered to find out the optimal num‐
ber of nodes, size of capacitors, and EVCSs in the RDN.

4) The optimization algorithms, i.e., HGWO_PSO and the 
hybrid of PSO and Cuckoo search (HPSO_CS), are pro‐
posed as a solution to the optimization problem.

5) The proposed optimization algorithms are validated in 
IEEE 33-bus RDN with EVCSs and capacitors.

6) Finally, a comparison of the proposed optimization al‐
gorithms for the simultaneous allocation of EVCSs and ca‐
pacitors in the RDN is carried out.

The rest of the paper is structured as follows. Section II 
presents the mathematical model formulation. In Section III, 
the solution techniques based on optimization are discussed. 
Results and discussion are presented in Section IV. Section 
V concludes this paper.

II. MATHEMATICAL MODEL FORMULATION

A. Benefit Due to PL Reduction

PL computation is crucial in any RDN, as it impacts reve‐
nue and helps the planning operators.
1)　Computation of Base Case PL

The BFS algorithm estimates the voltage and current in 
the RDN. Accordingly, the current and the network parame‐
ters (Ri, Xi) are used to compute the losses in the RDN in‐
cluding active power loss (APL) and reactive power loss 
(RPL). The APL impacts the revenue in RDN. Equation (1) 
gives the APL computed considering base case conduction 
where no EVCS and capacitor are present [29].

Plossi =∑
i = 1

Nbr

I 2
i Ri (1)

where Plossi is the total base case APL; Ri is the ohmic resis‐
tance of the ith branch; Nbr is the total number of branches; 
and Ii is the current flowing through the ith branch.
2)　Computation of PL Compensation

To compute PL compensation, both EVCSs and capacitors 
are considered. EVCS can behave as a load during charging, 
i.e., in G2V mode, and it can be operated in vehicle-to-grid 
(V2G) mode to reduce grid stress by discharging during 
peak hours. Here, the charging station load is modeled using 
the active power (AP) at unity power factor (UPF). The total 
load in the RDN Pload [30] comprises both grid power load 
and charging station load.

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

Pload =∑
bs = 1

Nbs

(P al
bs + γP

CS
bs )

γ = 1      G2V  mode

γ =-1    V2G  mode

(2)

where P al
bs is the available load of the system; P CS

bs  is the 
charging station load connected to buses; and Nbs is the total 
number of buses. The total reactive power (RP) load of the 
system is the sum of the available RP load Qal

bs of the system 
and the RP injected by the capacitor load QC

bs of the system. 
Hence, the total RP of the system is given by:

Qload =∑
bs = 1

Nbs

(Qal
bs -QC

bs ) (3)

Thus, the net benefit due to PL reduction PELRD is given by:
PELRD =Ecp (Plossbase -Plosscomp )T (4)

where Ecp is the energy price; T is the time period for the 
year in hours (T = 8760); Plossbase is the computed PL for the 
base case; and Plosscomp is the compensated PL after installing 

1585



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 12, NO. 5, September 2024

EVCSs and capacitors, using the BFS algorithm.

B. Evaluation of EVCS and Capacitor Cost

1)　Installation Cost of EVCSs and Capacitors
The total installation cost of EVCSs and capacitors con‐

sists of the location costs, equipment cost, monitoring cost, 
and miscellaneous costs. The equation for the installation 
cost of EVCSs is:

C CS
ins = φ ( )C CS

insl ×CSn +C CS
Pcost∑

i = 1

CSn

PCSinj (i) (5)

where CSn is the standard number of EVCSs; C CS
Pcost is the 

purchase cost of EVCSs; and PCSinj is the EVCS power in‐
jected to the network.

The installation cost of capacitor C C
ins is given by:

C C
ins = φ ( )C C

inslCn +C C
Pcost∑

i = 1

Cn

QCinj (i) (6)

where Cn is the standard number of capacitors; C C
Pcost is the 

purchase cost of capacitor; QCinj is the RP injected to the 
network; and φ is a depreciation factor given by:

φ =
ir ×(1 + ir)Lsp

(1 + ir)Lsp - 1
(7)

where ir is the discount rate; and Lsp is the life span of proj‐
ect.
2)　Operation Costs of EVCSs and Capacitors

The operation costs of EVCSs and capacitors include fuel 
costs and yearly inspections for electrical and mechanical 
systems, which are calculated as:

Copr =C C
oprCn +C CS

opr ×CSn (8)

where Copr is the operation cost in location per year of EVC‐
Ss C CS

opr and capacitor C C
opr.

C. Benefit Due to Interruption Cost Reduction

1)　Reliability Evaluation
Although RDN provides consumers with one-way electrici‐

ty, this one-way electricity is less efficient and resilient due 
to localized outages. Busbars, disconnects, lines, and cables 
are just some of the system components, which should be 
present to remain effective system operation. The system per‐
formance and characteristics of outages are directly assessed 
using the reliability metrics URS, λRS, and rRS as:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

URS =∑
j = 1

NFS

rj λj

λRS =∑
j = 1

NFS

λj

(9)

rRS =
URS

λRS

=
∑
j = 1

NFS

rj λj

∑
j = 1

NFS

λj

(10)

where rj and λj are the average outage length and failure 
rate, respectively; rj λj is the yearly outage of the j th feeder 
section (FS); and NFS is the number of FSs in RDNs.

The following assumptions are considered when assessing 
EIC for addressing concerns on optimal installation of EVC‐

Ss and capacitors.
1) The FS with the highest impedance has a failure rate of 

50%, and the FS with the lowest impedance has a failure 
rate of 10% annually [31]. The failure rates of the other FSs 
are determined linearly based on these two impedance val‐
ues as shown in (11). The j th FS has a Zj impedance and a λj 
failure rate. The maximum and minimum impedance values 
are Zmax and Zmin, respectively. Since the failure rate and line 
length are inversely proportional, longer lines have higher 
failure rates.

λj =
10% + (50% - 10%)

Zmax - Zmin

Zj - Zmin

(11)

2) It is assumed that the transient faults of overhead distri‐
bution line are handled with electronic sectionalizes and pri‐
mary breakers. Hence, fixing each FS takes about 0.5 hour 
[14], [31], while the repair time is 8 hours [31], [32].

When shunt capacitors of varying sizes are optimally 
placed in the distribution system, RP compensation is provid‐
ed, which is in the reactive current component of the sys‐
tem. Similarly, when EVCS is integrated into the RDN, it 
acts as active power load, which are also reflected in the ac‐
tive current component of the system. Thus, the installation 
of EVCSs and capacitors in the RDN impacts active and re‐
active current components. In the RDN, the compensation 
coefficient refers to the ratio of the new current I new

j  (ob‐
tained after the allocation of EVCSs and capacitors) and the 
base current I base

j  (before the allocation of EVCSs and capaci‐
tors). This compensation coefficient can be more or less than 
1, based on whether the new current is greater or smaller 
than the base current.

Ψj =
|

|

|
||
|
|
| I new

j

I base
j

|

|

|
||
|
|
|

(12)

where Ψj is the symbol indicating the compensation coeffi‐
cient of the branch for the j th FS, e.g., a high compensation 
coefficient after a failure will indicate an increase in current, 
which could help choose defensive devices to keep the sys‐
tem secure. Here, three compensation coefficients are consid‐
ered and denoted as Ψ Ai

j  ,Ψ Ri
j , and Ψ ARi

j . Ψ Ai
j  is used to repre‐

sent the active current compensation applicable when only 
EVCS is considered, Ψ Ri

j  represents the reactive current com‐
pensation applicable when only the capacitor is considered, 
and Ψ ARi

j  represents the reactive current compensation appli‐
cable when both EVCS and capacitor are considered. The 
equations representing the compensation coefficient of these 
three cases to compute the failure rate are as follows.

ì

í

î
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ï

Ψ Ai
j =

|

|

|
||
|
|
| I Ainew

j

I Aibase
j

|

|

|
||
|
|
|

Ψ Ri
j =

|

|

|
||
|
|
| I Rinew

j

I Ribase
j

|

|

|
||
|
|
|

(13)

Ψ ARi
j =

|

|

|
||
|
|
| I new

j

I base
j

|

|

|
||
|
|
|
=

(I Ainew
j )2 + (I Rinew

j )2

(I Aibase
j )2 + (I Ribase

j )2
(14)
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where I Ainew
j  and I Rinew

j  are the currents after the allocation of 
the EVCSs and capacitors, respectively; I Aibase

j  and I Ribase
j  are 

the initial active and reactive currents, respectively.
The absolute value of Ψj is utilized for all the above cas‐

es. To eliminate the current direction due to failure, Ψ ARi
j  

considers both I Ai
j  and I Ri

j , whereas Ψ Ai
j  and Ψ Ri

j  consider on‐
ly I Ai

j  and I Ri
j , respectively. After optimizing the EVCSs and 

capacitors, the failure rate of the j th FS, λbase
j , lowers to 80% 

[31], [33]. The allocation of EVCSs and capacitors linearly 
impacts the failure rate. The new failure rate λnew

j  is comput‐
ed as:

λnew
j =Ψj (λ

base
j - λcomp

j )+ λbase
j (15)

where λbase
j  is the failure rate before the allocation of EVCS 

and capacitor; and λcomp
j  is the failure rate after the allocation 

of EVCS and capacitor.
2)　Evaluation of EIC

The EIC [31]-[33] helps compute the customer reliability 
levels, thereby boosting maintenance by providing solutions. 
EIC is calculated for the j th FS as:

EICj =∑
j

Nbs

Laj Cj λj (16)

λj =
ì
í
î

ïï
ïï

λbase
j     without  compensated

λnew
j      fully  compensated

(17)

where Laj is the average load connected to the load point; 
and Cj is the interruption cost for the bus for the j th FS. Cj is 
calculated using the composite customer damage function 
(CCDF) and Laj, and captured by CCDF based on the length 
of interruption, as shown in Table I [34]. Also, the interrup‐
tion cost varies according to the location of the fault event 
and how long it takes to resolve. When the EVCS and capac‐
itor are not present, λj = λ

base
j ; but when they are present, λj =

λnew
j .

3)　Benefit Due to EIC Reduction
The lowered EIC benefits from capacitor installation and 

post-optimal EVCS are calculated in this paper. The benefit 
due to interruption cost reduction in EIC, DPEIC, is calculat‐
ed by:

DPEIC =Ecp (EICbase -EICcomp ) (18)

where EICbase is the EIC without EVCS and capacitor; and 
EICcomp is the EIC with EVCS and capacitor.

D. Objective Function and Constraints

1)　Economic Evaluation
The financial viability of a capacitor installation must be 

evaluated by comparing expected earnings and investment 
expenditures throughout the project, including advantages re‐
alized and investments made to reduce failure rates, and 
maintenance time and costs. For the investments to be profit‐
able, the net present value (NPV) must be positive compared 
with the costs, as shown in (19). A high NPV promotes ac‐
ceptance because it shows an increase in utility, while a low 
NPV discourages acceptance since it shows a likely decline 
in utility. NPV subtracts the initial investment cost (IC) from 
the benefit obtained from PL reduction and interruption cost 
reduction, considering discounted yearly cash flows.

NPV = (PELRD +DPEIC )- IC (19)

IC =Cins +Copr (20)

Cins =C C
ins +C CS

ins (21)

2)　Equality Constraints
The grid supply Psupply should equal the sum of APL and 

the overall load of the system and EVCS loads.

Psupply =∑
j = 1

Nbr

P j
loss (mn)+∑

b = 1

Nbs

P al
b +∑

b = 1

Nbs

P CS
b (22)

where P j
loss (mn) is the APL in line j between buses m and n.

The RP supplied from the grid and capacitor should be 
equal to the total RP load of the system.

Qsupply +∑
b = 1

Nbs

QC (b)=∑
j = 1

Nbr

Qj
loss (mn)+∑

b = 1

Nbs

Qal
b +∑

b = 1

Nbs

QCS
b    (23)

where Qsupply is the total RP supplied by the grid;and QC is 
the RP provided by all capacitors installed at the buses.
3) Inequality Constraints

1) Limit on bus voltage and current

ì
í
î

ïïV min
b £Vb £V max

b

0 £ Ir £ I max
r

(24)

where V min
b   and  V max

b  are the minimum and maximum allow‐
able voltage at bus b; Ir is the current flowing through line 
or branch r, respectively; and I max

r  is the maximum allowable 
current in line or branch r.

2) Limit on size of capacitor

Qmin
C £∑

b = 1

Nbs

QCnbs £Qmax
C (25)

where Qmin
C  and Qmax

C  are the minimum and maximum total 
RP capacities that can be provided by capacitors, respective‐
ly; and QCnbs is the RP provided by capacitors across all bus‐
es. 

3) Limit on size of EVCS

P min
CS £∑

b = 1

Nbs

PCSb £P max
CS (26)

where P min
CS  and P max

CS  are the minimum and maximum total 
active power capacities that can be handled by all EVCSs in 
the system; and PCSb is the active power demand of EVCS 
across all locations.

TABLE I
AVERAGE INTERRUPTION COST OF COMMERCIAL CUSTOMERS

Duration category (min)

Momentary (less than 0 s)

3

20

60

120

240

1440

Interruption cost ($/kW)

0.22

0.25

0.71

2.02

4.09

8.34

27.71
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4) Limit on RP compensation provided by capacitor

∑
n = 1

cn

QC (n)£∑
b = 1

Nbs

Qad
b (27)

where ∑
n = 1

cn

QC (n) is the total RP compensation provided by all 

capacitors; and ∑
b = 1

Nbs

Qad
b  is the total reactive power demand in 

the system that needs to be compensated.

III. SOLUTION TECHNIQUES BASED ON OPTIMIZATION 

In the computation of the objective function, three key 
components are evaluated: the benefit of reduction in energy 
loss cost, the benefit of EIC reduction, and the IC. The APL 
becomes an important factor in evaluating energy loss reduc‐
tion. The PL is determined using (1), and the failure rate be‐
comes a pivotal factor in evaluating the EIC reduction. The 
failure rate is determined by a compensation coefficient com‐
puted using the branch current, and the operation and instal‐
lation costs are used to evaluate the IC. The unknown deci‐
sion variables in this formulation of the objective function as 
a nonlinear mixed-integer problem include capacitor posi‐
tion, capacitor rating, and system failure rate. Classical meth‐
ods for solving this optimization are computationally com‐
plex, and hence, metaheuristic algorithms are proposed in 
the literature to ensure near-optimal solutions. Metaheuristic 
algorithms have gained popularity due to their simplicity, 
flexibility, and problem-solving efficiency in optimizing the 
integration of various electrical units like DG, EV, and pow‐
er electronics devices, e. g., capacitor, static synchronous 
compensator, voltage regulators, for better power delivery 
and compensation [35], [36].

In this paper,  HGWO_PSO and HPSO_CS are proposed. 
These hybrid algorithms offer significant advantages such as 
rapid convergence, the ability to maintain equilibrium in 
complex systems, and an increase in overall problem-solving 
effectiveness, efficiently tackling the complex problems asso‐
ciated with electrical unit integration within RDN.

A. HPSO_CS

The social behavior of fish or bird inspires the PSO. On 
the one hand, the PSO includes benefits like simple opera‐
tion, quick searching, and ease of understanding. On the oth‐
er hand, PSO gets easily caught in the local optimum while 
solving a large and complex problem. To make PSO easier 
to utilize, this problem must be overcome, which is enabled 
by using CS. The nesting behavior inspires the CS. In CS, 
the search procedure quickly switches from one location to 
another due to the outstanding randomness of Levy flight. 
As a result, the ability of the algorithm to search globally is 
highly developed. Due to the extreme randomness of the 
Levy flight, the algorithm begins a blind search process, the 
convergence speed slows down, and the searching efficiency 
is substantially reduced close to the optimal solution. Hence, 
we propose a hybrid algorithm based on PSO and CS, which 
combines the benefits of both PSO and CS. The PSO will re‐
peatedly improve the population by updating the position 
and velocity of the particles based on their best position 

across all the particles. The CS generates new solutions for 
the population based on the Cuckoo’s probabilistic egg-lay‐
ing and nest-searching processes and determines the fitness 
of those solutions. The particle is replaced with the lowest 
performance if CS works better than a PSO. Consequently, 
the PSO offers an equal amount of global and local search, 
and CS helps to improve global exploration. Thus, the HP‐
SO_CS [37] helps get better optimization results than the in‐
dividual optimization algorithm. The pseudo-code and the 
relevant equation required to define the algorithm are shown 
in Algorithm 1, where Vi is the velocity of particle i at cur‐
rent time step t; W is the inertic weight; and θ is the scaling 
factor that adjusts the step size of Levy flight.

B.　HGWO_PSO

The GWO and PSO are nature-inspired optimization algo‐
rithms inspired by the hunting behavior of grey wolves and 
the social behavior of fish or bird. The main difference be‐
tween GWO and PSO is how new individuals are formed. In 
this paper, HGWO_PSO is suggested to achieve the benefits 

Algorithm 1: pseudo-code of HPSO_CS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Input: search agent, parameters of PSO and CS

Output: best fitness function

Initialization: the parameters Lb, Ub, n, Wmax /Wmin, C1, C2, r1, r2, Pa

Randomly generate the initial position of particles within the limited 
range Xi

While t is less than the maximum generation or other stop criterion 
do

 Call for PSO

 Calculate fitness of each particle by objective function f (Xi )= fi

 Update the velocity and position of each particle by using
Vi (t + 1)=WVi (t)+C1r1 (Pbest (t)-Xi (t))+C2r2 (Gbest (t)-Xi (t))

Xi (t + 1)=Xi (t)+Vi (t + 1)

 for each particle do

   Evaluate the fitness of each particle of objective function Pbesti
 

and Gbesti 
, and select the best particle of Gbest position based 

on best fitness value

Pbesti
(t + 1)=

ì
í
î

Xi (t + 1)    f (Xi (t + 1))< f (Xi (t))

Pbesti
           otherwise

Gbesti
(t)=min{Pbesti1

(t)Pbesti2
(t)PbestiN

(t)}

 end (for loop)

 Call for Cuckoo

 for each particle do

    Find a best nest by CS

 end (for loop)

 A friction Pa of the worst-performing particle is chosen in terms of 
the fitness function. The chosen particles should be dropped 
from the search space and replaced with randomly generated 
ones.

 r1 and r2 vary with Levy flight, which is different form the HP‐
SO_CS

Vi (t + 1)=WVi (t)+[c1θLevy(β)(Pbest (t)-Xi (t))]+
[c2θLevy(β)(Gbest (t)-Xi (t))]

 Record the optimal solution of the current iteration

 t = t + 1 (iteration step increases)

 If the termination criterion is not met, go to Step 6

end (while loop)
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of both algorithms. When the hybridization operates, the 
GWO first updates the wolf position, including α, β, and δ 
wolf solutions. After that, the wolves adjust their position, 
which depends on the hierarchy of the wolf pack and how 
close they are to α, β, and δ wolves. Additionally, after each 
position is adjusted by GWO, each updated position modi‐
fies its velocity using the PSO. The previous velocity, the lo‐
cal best position of individual, and the global best position 
of the population are all considered while updating the veloc‐
ity, which improves the current solution by utilizing the 
most up-to-date information. Each wolf or particle in the 
population maintains a record of the best solution encoun‐
tered during the optimization process. The best solution 
found by any individual in the entire population is the 
shared information, representing the overall best solution 
among all individuals. HGWO_PSO leads participants to‐
ward their fitness solution positions to enable delicate exploi‐
tation and improve convergence while optimizing the loca‐
tions of EVCSs and capacitors toward the best solutions. 
The pseudo-code [38] of HGWO_PSO is shown in Algo‐
rithm 2, where X denotes the current position of the wolf be‐
ing updated; X1, X2, and X3 denote the intermediary posi‐
tions calculated using the influence of α, β, and δ, respective‐
ly; and 


(×) denotes the vector.

C. Proposed Optimization Algorithms
The proposed optimization algorithms aim to achieve the 

optimal simultaneous allocation of EVCSs and capacitors in 
a RDN while considering reliability. The algorithm follows a 
series of steps outlined in Fig. 1. The optimization process is 
conducted under different operation conditions, each repre‐
sented by a specific case involving EVCSs and capacitors. 
These cases are defined as follows:

1) Case 1: one capacitor (1C)+ two EVCSs.
2) Case 2: two capacitors (2C)+ two EVCSs.
3) Case 3: three capacitors (3C)+ two EVCSs.
4) Case 4: four capacitors (4C)+ two EVCSs.
5) Case 5: five capacitors (5C)+ two EVCSs.
6) Case 6: six capacitors (6C)+ two EVCSs.
Figure 1 illustrates the flow chart for optimal allocation of 

EVCS and capacitor using the proposed optimization algo‐
rithms. In various optimization algorithms, values for the pa‐
rameters are considered as follows. 

The maximum iteration is 1000, the search agents are 10-
30, the swarm size is 30-50, Wmin is 0.4, Wmax is 0.9, C1 is 
2.01, C2 is 2.02, Pa is within [0, 1], a is 2 to 0, and r1 and 
r2 are random numbers within [0, 1].

In this paper, five separate scenarios are examined to vali‐
date the methodology.

1) Scenario 1: base case, i.e., IEEE 33-bus RDN [39].
2) Scenario 2: EVCS1 integrated with RDN.

Algorithm 2: pseudo-code of HGWO_PSO

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Input: search agents, parameters of GWO and PSO

Output: optimal solution

Initialization: the parameters Lb, Ub, n, Wmax /Wmin, C1, C2, r1, r2, a, 
A, and C

Generate initial population randomly within the search space range

Call GWO algorithm

Calculate the fitness value of α, β, and δ

Dα = |C1Cα -X |, Dβ = |C2Cβ -X |, and Dδ = |C3Cδ -X |

Update the position of each wolf of current wolf by using

X1 =Xα -A1 (Dα ), X2 =Xβ -A2 (Dβ ), X3 =Xδ -A3 (Dδ )

While t is less than the maximum generation or other stop criterion 
do

 for each search agent do

     Update the position of current wolf search agent Xnew by using

Xt + 1 =
X1 +X2 +X3

3

 end (for loop)

 Update the best wolf that achieves the best fitness value

 Call PSO algorithm

 for each search agent do

     Update the particle velocity and position by using
Vi (t + 1)=WVi (t)+C1r1 (Pbest (t)-Xi (t))+C2r2 (Gbest (t)-Xi (t))

Xi (t + 1)=Xi (t)+Vi (t + 1)

 end (for loop)

     Compute the fitness function of each particle Pbest and Gbest

 for each search agent do

     Update a, A, and C, and calculate the fitness value for all wolves

 end (for loop)

 Update the fitness value of α, β, and δ wolf positions

 t = t + 1 (iteration step increases)

end (while loop)

Input system data: line data, bus data, base values,

and failure rate of the system

Initialize parameters of the proposed optimization

algorithms for the selected cases

Evaluate objective function and constraints

Analyze BFS LF with EVCSs and capacitors and

compute new failure rates of the system

Iteration is less than the maximum number of iterations

Is stopping criteria

satisfied?

Print results

Select optimization techniques:

HGWO_PSO, HPSO_CS, and PSO/GWO/CS

Select the cases from operation condition:

two EVCSs and multiple capacitors (case 1-case 6)

Compute BFS LF for base case

Start

t = t + 1

N

Y

End

Fig. 1.　Flow chart of optimal allocation of EVCSs and capacitors using 
proposed optimization algorithms.
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3) Scenario 3: both EVCSs (EVCS1 and EVCS2) integrat‐
ed with RDN.

4) Scenario 4: multiple installations of EVCSs and capaci‐
tors with RDN.

5) Scenario 5: impact of V2G mode of EVCSs on the 
RDN.

IV. RESULT AND DISCUSSION

Although EVs can operate in V2G mode, the initial focus 

is to consider EVs as EVCS loads. The EVCS in this paper 
is modeled and used as a constant power load in the RDN. 
The proposed optimization algorithms are tested using the 
IEEE 33-bus RDN, schematically shown in Fig. 2, which 
has 33 nodes and 32 branches with a base voltage and sys‐
tem capacity of 12.66 kV and 100 MVA, respectively. The 
IEEE 33-bus RDN is a balanced three-phase network with 
an AP load of 3715 kW and an RP load of 2300 kvar. The 
constant parameters are shown in Table II [7], [17].

A.　Scenario 1

Initially, for the base case using the BFS algorithm, the 
APL and RPL obtained for the IEEE 33-bus RDN are 
204.7920 kW and 136.9346 kvar, respectively. Figure 3 de‐
picts the base case voltage profile of IEEE 33-bus RDN, 
showing that bus 18 has the lowest voltage of 0.9162 p.u..

B.　Scenarios 2 and 3

The EVCS considered for this paper has 30 outlets, each 
with 50 kW of power, i. e., a total load of 1500 kW. When 
EVCS is added to the RDN, the APL of the system increas‐
es, and the voltage profile decreases. It is crucial to disperse 
the EVCS as efficiently as possible to reduce the potential 
increase in APL. By connecting the fixed-capacity EVCS1 
with a 1500 kW rating on bus 2, the APL obtained is 
216.7893 kW. Additional EVCS installations are necessary 
to ensure that more EV users can use the EVCS. Thus, 
EVCS2, located on bus 19, with a 1500 kW rating, is also 
considered. It is observed that after connecting EVCS2 with 
bus 19, the APL for the bus increases to 227.9568 kW. The 
voltage profile after adding EVCS1 and EVCS2 is illustrated 
in Fig. 3, where the lowest magnitude is found on bus 18 
with a voltage of 0.9116 p.u. and 0.9107 p.u., respectively. It 
may be noted that EVCSs and capacitors are not anticipated 
to be connected to bus 1, as it is a slack bus with a constant 
voltage of 1 p.u..

C.　Scenario 4

To enhance the voltage profile and reduce loss, capacitors 
are positioned closer to the EVCS and at the ends of feed‐
ers. Here, a switched-type capacitor with RP injection set be‐
tween the minimum and maximum values (150-1200 kvar) 
is utilized for compensation. The optimization model is 
solved through simulation on an Intel i9 64-bit PC running 
MATLAB-R2022b equipped with a 3.20 GHz CPU and 32 
GB of RAM (12th Gen). The capacitor configuration results 
in decreased APL and improved voltage profiles. The prima‐
ry objective of this paper is to reduce the APL due to resis‐
tive losses in the RDN.

Various scenarios considering different numbers of capaci‐
tors (1C-6C) are simulated for the IEEE 33-bus RDN utiliz‐
ing the objective function given in (19). Optimal bus loca‐
tion and sizes in kvar of these capacitors in the presence of 
EVCS are obtained as shown in Table III, using different op‐
timization algorithms such as GWO, PSO, CS, HPSO_CS, 
and HGWO_PSO. Table III shows that the APL decreases 
for the proposed optimization algorithms as the number of 
capacitors grows. 

1Source

22212019

1615 181714131211109876543

252423

2

3332313029282726

Fig. 2.　Structure of IEEE 33-bus RDN.
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Fig. 3.　Base case voltage profile of IEEE 33-bus RDN.

TABLE II
CONSTANT PARAMETERS

Parameter

C C
Pcost

C CS
Pcost

Ecp

T

C C
insl

C CS
insl

C C
opr

C CS
opr

ir

LC
sp

LCS
sp

Unit

$/kvar

$/kW

$/kWh

hour

$ per location

$ per location

$/year per location

$/year per location

%

year

year

Value

30

10

0.06

8760

1600

6500

350

8500

6

30

15
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Additionally, only 4C provides the least PL among all the 
capacitors, making it the right number to be allocated in the 
IEEE 33-bus RDN. As capacitors increase, they inject RP 
components [7] and reduce losses.

The convergence curve is plotted to check the perfor‐
mance of the proposed optimization algorithms. The conver‐
gence curve of various optimization algorithms for APL with 
simultaneous installation of EVCSs and capacitors in an 
IEEE 33-bus RDN over 1000 iterations is presented in 
Fig. 4. 

Accordingly, it is observed that the proposed optimization 
algorithms produce quick convergence as compared with in‐
dividual optimization algorithm. The total convergence time 
for various optimization algorithms with multiple installa‐
tions of capacitors is given in Table IV. It is observed that if 

there is more PL, the optimization process becomes slower, 
leading to longer convergence time. The proposed optimiza‐
tion algorithms take more time to work with reduced power. 
If there is less PL, the optimization process becomes faster 
and more efficient, reducing the time needed to reach the op‐
timal solution. The proposed optimization algorithms have 
given a quicker convergence speed than all other optimiza‐
tion algorithms.

However, once the right size and number of capacitors ex‐
ceed the optimal values, i.e., 4C, there will be back-feeding 
of the RP injected by the capacitor, thereby increasing the 
system APL. The APL of the base case, with EVCS1 and 
EVCS2 along with capacitors, is shown in Fig. 5. 

Figure 5 shows that APL increases from a base case of 
204.7920 kW to 227.9568 kW with the addition of EVCS1 
and EVCS2. Additionally, after adding capacitors, APL de‐
creases subsequently, obtaining optimal PL at 4C, and then 
increases the PL as the number of capacitors increases to 5C 
and 6C. Additionally, from Table III, among GWO, PSO, 
CS, and hybrid algorithms, HPSO_CS and HGWO_PSO re‐
sult in the largest APL reduction, i.e., 137.69 kW and 136.52 
kW, respectively, which leads to lower expenses associated 
with energy losses. Table V highlights the energy loss cost 
and percentage of energy loss cost reduction of the base 
case compared with the proposed optimization algorithms. 
As hybrid algorithms, HPSO_CS and HGWO_PSO provide 
superior loss reduction, i.e., 33.34% and 32.77%, respective‐
ly. Adding the capacitor configuration to the IEEE 33-bus 
RDN in the presence of EVCS decreases the APL and im‐
proves the voltage profile.. The comparisons of benefit of 
loss reduction curve for all optimization algorithms are 
shown in Fig. 6. 
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Fig. 4.　 Convergence curve of various optimization algorithms for APL 
with simutaneous installation of EVCSs and capacitors in IEEE 33-bus RDN.

TABLE III
COMPARISON OF LOCATION, SIZE, AND APL WITH A CAPACITOR INSTALLATION IN IEEE 33-BUS RDN FOR ALL ALGORITHMS

Num‐
ber of
capaci‐

tors

1C

2C

3C

4C

5C

6C

PSO

Loca‐
tion

30

12, 27

5, 14, 
29

14, 21,
25, 30

10, 25,
29, 31,

14

30, 14,
25, 33,
8, 31

Size
(kvar)

656

531, 
815

616, 
808,
471

182, 
270,
756, 
987

828, 
493,
306, 
689,
150

365, 
704,
428, 
300,
727, 
150

Total
(kvar)

656

1346

1895

2195

2466

2674

APL
(kW)

158.867

152.757

143.269

138.374

144.241

150.648

CS

Loca‐
tion

31

31, 23

23, 27,
33

12, 22,
23, 30

24, 12,
19, 18,

29

22, 18,
31, 11,
24, 29

Size
(kvar)

878

952, 
312

952, 
368,
729

158, 
307,
615,
1027

367, 
297,
612, 
433,
613

507, 
418,
256, 
233,
813, 
387

Total
(kvar)

878

1264

2049

2107

2322

2614

APL
(kW)

153.978

149.603

143.458

137.620

145.944

151.920

GWO

Loca‐
tion

8

8, 26

6, 20,
26

8, 20,
23, 26

24, 4,
28, 22,

13

13, 8,
23, 4,
29,10

Size
(kvar)

1058

707, 
374

342, 
523,
931

250, 
520,
380, 
1090

378, 
597,
215, 
424,
815

330,
1028,
732, 
152,
570, 
468

Total
(kvar)

1058

1081

1796

2240

2429

3280

APL
(kW)

165.53

161.90

159.97

155.85

160.65

164.56

HGWO_PSO

Loca‐
tion

29

6, 29

30, 23,
10

10, 22,
24, 29

23, 5,
18, 24,

29

20, 26,
5, 30,
17, 24

Size
(kvar)

859

793, 468

423, 
719,
672

350, 
220,
510, 
1017

286, 
615,
458, 
782,
325

456, 
374,
499, 
248,
622, 
279

Total
(kvar)

859

1261

1814

2097

2466

2478

APL
(kW)

153.00

149.02

145.22

137.69

148.64

152.51

HPSO_CS

Loca‐
tion

32

33, 
15

30, 
9,
8

12, 
20,
24, 
30

30, 
22,
10, 
17,
3

20, 
4,

33, 
12,
30, 
26

Size
(kvar)

1102

665, 
491

778, 
578,
535

320, 
350,
570, 
850

789, 
167,
767, 
229,
620

263, 
686,
451, 
655,
510, 
750

Total
(kvar)

1102

1156

1891

2090

2568

3315

APL
(kW)

154.36

147.59

140.45

136.52

143.76

150.90
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Accordingly, the maximum benefit of loss reduction corre‐
sponding to optimal number and location of capacitor corre‐
sponds to 25729 $/year for GWO, 34911 $/year for PSO, 
35306 $/year for CS, 35884 $/year for HPSO_CS, and 
35268 $/year for HGWO_PSO.

Figure 7 depicts the benefit of EIC reduction for various 
optimization algorithms. As the number of capacitors increas‐
es, the benefit of EIC reduction increases until it reaches a 
peak at the optimal operation point. Adding more capacitors 
initially reduces EIC, but there is a point where further in‐
creases do not bring as much benefit. Beyond this point, the 
EIC reduction starts decreasing. Figure 7 also highlights that 
hybrid algorithms provide the maximum EIC benefit. 

Table V illustrates the proposed optimization algorithms, 
produces significant EIC reduction ranging from 2.60% to 
16.45% compared with a baseline EIC of 374127.8 $/year at 
the optimal operation point. Furthermore, Table VI shows 
that the proposed optimization algorithms have the highest 
yearly benefit from EIC reduction. The size and IC of a ca‐
pacitor are positively correlated. As a result, when capacitor 
size increases, the cost of producing or purchasing the capac‐
itor rises linearly, as depicted in Fig. 8.

The main goal is to obtain the highest annual NPV, as de‐
scribed in (19). The maximum NPV (MNPV) amount with 
varying capacitors for various optimization algorithms is 
shown in Fig. 9. 
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TABLE V
COMPARISONS OF ENERGY LOSS REDUCTION FOR VARIOUS OPTIMIZATION 

ALGORITHMS

Optimization algorithm

Base case

PSO

CS

GWO

HGWO_PSO

HPSO_CS

Energy loss cost ($)

107638.70

72729.22

72333.18

81913.13

72370.28

71755.91

Energy loss cost 
reduction (%)

-

32.43

32.80

23.90

32.77

33.34 TABLE VI
COMPARISONS OF EIC REDUCTION AND ΔEIC FOR ALL OPTIMIZATION 

ALGORITHMS

Optimization algorithm

Base case

PSO

CS

GWO

HGWO_PSO

HPSO_CS

EIC ($)

374127.8

321860.3

315347.1

364387.6

314613.5

312597.9

EIC reduction (%)

-

13.97

15.71

2.60

15.90

16.45

ΔEIC ($)

-

9178.173

10321.890

1710.379

11105.690

11404.650
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Fig. 5.　Effect of EVCSs with capacitors on an APL curve for various algo‐
rithms.

TABLE IV
TOTAL CONVERGENCE TIME FOR VARIOUS OPTIMIZATION ALGORITHMS

Number of 
capacitors

1C

2C

3C

4C

5C

6C

Total convergence time (s)

PSO

488.458

477.575

457.989

428.432

446.101

480.763

Cuckoo

294.113

266.573

253.296

244.105

250.761

288.130

GWO

1206.499

1123.650

1059.330

968.702

1136.650

1232.730

HGWO_PSO

459.344

444.712

420.779

417.199

419.411

421.398

HPSO_CS

162.375

153.286

147.746

143.684

149.661

154.431
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As the number of capacitors increases, NPV increases to 
the maximum value, i. e., MNPV. The highest annual NPV 
represented as the MNPV curve for GWO, PSO, CS, HP‐
SO_CS, and HGWO_PSO is found to be 36282, 52813, 
54750, 57786, and 57177 $/year, respectively. HPSO_CS 
produces a higher NPV when compared with all other opti‐
mization algorithms.

D. Scenario 5

In V2G mode, EVs can feed extra energy into the grid to 
support system stability. In the given EVCS for an optimal 
number of capacitors and sizes in the IEEE 33-bus RDN, 
the impact of the V2G mode of EVs is also studied. The im‐
provement in voltage profile for all the IEEE 33-bus RDN 
for the base case, EVCS integration, and various penetration 
levels of V2G mode ranging from 5% to 30% with a step of 
5% is presented, as shown in Fig. 10. It is observed that the 
voltage profile is improved upon EV participation in V2G 
mode. Furthermore, Fig. 10 clearly shows that as the percent‐
age of EVs in V2G mode increases, there is a noticeable im‐
provement in the voltage profile. Thus, the V2G mode bene‐
fits grid operators by maintaining an improved stable voltage 
profile in the RDN.

For the optimal EVCS nodes on buses 2 and 19 in the 
RDN, the APL is computed for various penetration levels of 
V2G mode from 5% to 30%. Figure 11 shows the APL reduc‐
tion in IEEE 33-bus RDN with increased EV penetration level 
in V2G mode, compared with the base case for buses 2 and 19. 

Thus, the viability of V2G mode in the EVCS enables the 
PL reduction in the network. Figure 12 compares the APL re‐
duction in IEEE 33-bus RDN for PSO, GWO, CS, HG‐
WO_PSO, and HPSO_CS for the base case in the presence 
of EVCS and variation in penetration level of V2G mode. 
Here, the APL reduction is observed with the increase in the 
penetration level of V2G mode. Additionally, it is observed 
that HPSO_CS provides the lowest APL. The APL is found 
to be 135.2851, 134.5936, 133.94, 133.3242, 132.9347, and 
132.2061 kW, with penetration levels of 5%, 10%, 15%, 
20%, 25%, and 30%, respectively.

Considering the economic benefit of the V2G mode of op‐
eration, the APL reduction increases the revenue of the net‐
work operator. To illustrate this point, Fig. 13 shows the in‐
creased MNPV as the penetration level increases. 
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Additionally, Fig. 13 highlights that HPSO_CS indicates 
the highest MNPV values for the V2G mode of operation, 
thereby providing the best results.

V. CONCLUSION

In this paper, economically driven optimal simultaneous al‐
location of EVCSs and capacitors in RDN is studied by con‐
sidering the benefit of energy loss reduction and EIC along 
with the cost of EVCSs and capacitors. The proposed optimi‐
zaiton algorithms are validated in the IEEE 33-bus RDN. It 
is noticed that when EVCS is added to the RDN, the APL of 
the system increases, and the voltage profile decreases. It is 
observed that the proposed HGWO_PSO and HPSO_CS al‐
low us to determine the appropriate location of capacitors 
and sizes. In the IEEE 33-bus RDN with EVCS, adding the 
capacitor configuration reduces the APL and EIC cost and 
enhances the voltage profile. Additionally, HPSO_CS con‐
verges quickly and achieves a higher profit when compared 
with individual optimization algorithms. Furthermore, for 
V2G mode, the proposed optimization algorithms with the 
given objective function present superior performance, there‐

by allowing the operator to plan and conduct a cost-benefit 
analysis properly.
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