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Abstract—The popularity of electric vehicles (EVs) has
sparked a greater awareness of carbon emissions and climate
impact. Urban mobility expansion and EV adoption have led to
an increased infrastructure for electric vehicle charging stations
(EVCSs), impacting radial distribution networks (RDNs). To re-
duce the impact of voltage drop, the increased power loss (PL),
lower system interruption costs, and proper allocation and posi-
tioning of the EVCSs and capacitors are necessary. This paper
focuses on the allocation of EVCS and capacitor installations in
RDN by maximizing net present value (NPV), considering the
reduction in energy losses and interruption costs. As a part of
the analysis considering reliability, several compensation coeffi-
cients are used to evaluate failure rates and pinpoint those that
will improve NPV. To locate the best nodes for EVCSs and ca-
pacitors, the hybrid of grey wolf optimization (GWO) and parti-
cle swarm optimization (PSO) (HGWO_PSO) and the hybrid of
PSO and Cuckoo search (CS) (HPSO_CS) algorithms are pro-
posed, forming a combination of GWQO, PSO, and CS optimiza-
tions. The impact of EVCSs on NPV is also investigated in this
paper. The effectiveness of the proposed optimization algo-
rithms is validated on an IEEE 33-bus RDN.

Index Terms—Electric vehicle charging station, optimization,
radial distribution network, vehicle-to-grid, loss reduction, reli-
ability.

[. INTRODUCTION

HE dependence of transportation sector on fossil fuels

leads to hazardous CO, emissions that impact the envi-
ronment. For greener communities, moving to electric vehi-
cle (EV) will expand public transportation, and encourage ac-
tive travel [1]. EVs have many benefits, including economic
advantages, exceptional performance, and a positive environ-
mental effect by reducing the harmful pollutants caused by
transportation. By 2030, India’s National Electric Mobility
Mission Plan (NEMMP) 2020 and Faster Adoption and Man-
ufacturing of Electric Vehicles (FAME) 2015 programme tar-
get EV adoption. Researchers are looking at where to allo-
cate EV charging stations (EVCSs) due to the rise of EVs.
However, there are obstacles to deploy EVs widely, e.g., the
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demand for charging stations and the determination of charg-
ing time. We require effective charging stations to operate ef-
fectively [2]. Robust grids and less power loss (PL) are re-
quired to manage EVs effectively [3]. Grid-to-vehicle (G2V)
energy transfer is facilitated by smart grids [4]. The number
of charging station installations increases with the adoption
of EV [5]. Charging stations have improved voltage profiles
with capacitors, increasing their efficiency when allocated
properly [6], [7].

Numerous important advancements have been made in
power system optimization and improvement over time. Ear-
ly efforts such as [8] emphasized on the optimization to save
costs, improve overall benefits, and reduce losses in power
systems. Later research work dug into other facets of power
system management. Notably, [9] carried out a thorough in-
vestigation of reliability analysis, providing ways to improve
the power system flexibility. Since the early 2000s, there has
been interest in capacitor placement, which is a key strategy
for voltage regulation. Reference [10] presented the idea of
employing particle swarm optimization (PSO) to optimize
voltage profiles, allocate capacitors strategically, and reduce
PLs. After ten years, in [11], a two-phase strategy was suc-
cessfully used to allocate EVCS in line with the increasing
demand for effective EV infrastructure. Reference [12] fo-
cused on the infrastructure needed for EV charging. Addi-
tionally, [13] clarified how short-range EV charging affects
PLs, highlighting the demand for optimized solutions.

Modern optimization methods have been incorporated into
power system management in recent years. Reference [14]
suggested a hybrid strategy combining weight improved par-
ticle swarm optimization (WIPSO) and gravitational search
algorithm (GSA), called WIPSO-GSA, for capacitor and dis-
tributed generation (DG) unit optimization. This was a huge
step in the direction of more thorough optimization tech-
niques. In [15], attempts were made to boost power system
stability by enhancing the reliability of networks utilizing
mixed-integer nonlinear programming and AC optimization.
In [16], a quantum-inspired capacitor design algorithm was
presented as the result of the convergence of quantum algo-
rithms and power system optimization. The development al-
lowed more effective capacitor placement techniques by
merging classical optimization with fundamental concepts.
Based on this, [17] integrated PSO and grey wolf optimiza-
tion (GWO) with the hybrid of GWO and PSO (HG-
WO _PSO), presenting improved optimization results. Recent
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developments also address the complex combination be-
tween DG and EVCS. Considering their combined influence
on the power system, [18] used the HGWO_PSO to opti-
mize the choices of EVCS and DG units. Multi-objective
framework was also established in [19] to optimize EVCS
comprehensively while considering various objectives.

To economically arrange capacitors while accounting for
practical factors, [20] proposed a method that combined load
flow (LF) analysis, Shannon’s entropy, and PSO. Mean-
while, [21] demonstrated the effectiveness of mixed-integer
linear programming (MILP) in optimizing capacitor deploy-
ment by streamlining the optimization procedures. As time
progresses, state-of-the-art research work continues to ad-
vance power system management techniques. Notably, [22]
showcased a hybrid technology of Eurasian oystercatcher op-
timizer (EOO) and quantum neural network (QNN), called
EOO-QNN, which improved voltage, PL, and reliability, un-
derscoring ongoing efforts to enhance power system optimi-
zation and reliability. In parallel, recent research works have
delved into the impact of intensive EV charging on power
distribution systems and transformer longevity [23]. Refer-
ence [24] explored concerns related to overloading and un-
dervoltage due to the increasing adoption of EVs, employing
software tools such as DRIVE and HotSpotter. To effectively
manage power systems while integrating EVs, energy stor-
age, and renewable sources, an MILP model was introduced
in [25], which led to cost reduction and reduced carbon
emissions. Additionally, [26] investigated using metaheuristic
algorithms to optimize battery energy storage systems, there-
by improving performance and cost-effectiveness in radial
distribution network (RDN) with photovoltaics (PVs) and
EVs. To reduce uncertainty and user discomfort by 17%,
[27] presented an EV charging scheduling method based on
the alternating direction method of multipliers (ADMM) al-
gorithm. Furthermore, [28] examined the capacity of RDN
to support EV charging within the context of demand re-
sponse. These references addressed the complex challenge of
integrating EVs into power distribution systems and high-
lighted the evolving strategies and technologies in power sys-
tem design and management.

This paper focuses on optimal simultaneous allocation of
EVCSs and capacitors in RDN considering reliability, help-
ing to improve voltage, reduce PL, and increase profit in
RDN. Consequently, the primary contributions of this paper
are as follows.

1) The backward-forward sweep (BFS) algorithm is used
to conduct LF studies in IEEE 33-bus RDN for the base
case after connecting EVCSs and capacitors.

2) An objective function based on the benefit of energy
loss reduction, expected interruption cost (EIC), and interrup-
tion cost is proposed for this optimal simultaneous allocation
problem. Accordingly, after connecting EVCSs and capaci-
tors, new failure rates are updated, and EIC is computed.

3) Multiple cases of various capacitance and EVCS opera-
tion conditions are considered to find out the optimal num-
ber of nodes, size of capacitors, and EVCSs in the RDN.

4) The optimization algorithms, i.e., HGWO_PSO and the
hybrid of PSO and Cuckoo search (HPSO CS), are pro-
posed as a solution to the optimization problem.
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5) The proposed optimization algorithms are validated in
IEEE 33-bus RDN with EVCSs and capacitors.

6) Finally, a comparison of the proposed optimization al-
gorithms for the simultaneous allocation of EVCSs and ca-
pacitors in the RDN is carried out.

The rest of the paper is structured as follows. Section II
presents the mathematical model formulation. In Section III,
the solution techniques based on optimization are discussed.
Results and discussion are presented in Section IV. Section
V concludes this paper.

II. MATHEMATICAL MODEL FORMULATION

A. Benefit Due to PL Reduction

PL computation is crucial in any RDN, as it impacts reve-
nue and helps the planning operators.
1) Computation of Base Case PL

The BFS algorithm estimates the voltage and current in
the RDN. Accordingly, the current and the network parame-
ters (R, X,) are used to compute the losses in the RDN in-
cluding active power loss (APL) and reactive power loss
(RPL). The APL impacts the revenue in RDN. Equation (1)
gives the APL computed considering base case conduction
where no EVCS and capacitor are present [29].

Ny,
_ 2
Ploss.i_ zll Ri
i=1

where P, ; is the total base case APL; R, is the ohmic resis-
tance of the i™ branch; N,, is the total number of branches;
and /, is the current flowing through the i™ branch.
2) Computation of PL Compensation

To compute PL compensation, both EVCSs and capacitors
are considered. EVCS can behave as a load during charging,
i.e., in G2V mode, and it can be operated in vehicle-to-grid
(V2G) mode to reduce grid stress by discharging during
peak hours. Here, the charging station load is modeled using
the active power (AP) at unity power factor (UPF). The total
load in the RDN P, [30] comprises both grid power load
and charging station load.

()

Nh\
Plom/: z (Plé:sl + yPIS;S
bs=1
y=1 G2V mode
y=—1 V2G mode

2

where P! is the available load of the system; P;° is the
charging station load connected to buses; and N,, is the total
number of buses. The total reactive power (RP) load of the
system is the sum of the available RP load Q¢ of the system
and the RP injected by the capacitor load Qf, of the system.
Hence, the total RP of the system is given by:

Opum Y (@3- 05)

Thus, the net benefit due to PL reduction PE,,, is given by:
P ELRD=E (P ln.vx‘haxe_P loss, comp )T (4)
where E_, is the energy price; T is the time period for the

year in hours (I'=8760); P, ;.. is the computed PL for the
base case; and P is the compensated PL after installing

3)

cp

loss, comp
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EVCSs and capacitors, using the BFS algorithm.

B. Evaluation of EVCS and Capacitor Cost

1) Installation Cost of EVCSs and Capacitors

The total installation cost of EVCSs and capacitors con-
sists of the location costs, equipment cost, monitoring cost,
and miscellaneous costs. The equation for the installation
cost of EVCSs is:

ins (5)

CCS_(p(Clml CS +C£§mtzpcs inj (l )
where CS, is the standard number of EVCSs; C5°  is the
purchase cost of EVCSs; and Py, is the EVCS power in-
jected to the network.

The installation cost of capacitor CS, is given by:

ins

Ct(r/:v (CISVIC + C[(;::‘()?tz QC.inj (l)) (6)
where C, is the standard number of capacitors; C§,,,, is the
purchase cost of capacitor; O, is the RP injected to the
network; and ¢ is a depreciation factor given by:

ir-(1+ ir)L"’
RPN (7
(A +iryr—
where ir is the discount rate; and L, is the life span of proj-

ect.
2) Operation Costs of EVCSs and Capacitors

The operation costs of EVCSs and capacitors include fuel
costs and yearly inspections for electrical and mechanical

systems, which are calculated as:
C (&)
c,,=¢C,C,+C,.-CS, ®)
where C,, is the operation cost in location per year of EVC-
Ss Cy and capacitor C,,.

C. Benefit Due to Interruption Cost Reduction

1) Reliability Evaluation

Although RDN provides consumers with one-way electrici-
ty, this one-way electricity is less efficient and resilient due
to localized outages. Busbars, disconnects, lines, and cables
are just some of the system components, which should be
present to remain effective system operation. The system per-
formance and characteristics of outages are directly assessed
using the reliability metrics Upgg, Az, and ryg as:

Nps
Ugs= 2”./ 4
=1
Ny ©)

Ags= ij
J=

(10)

where 7, and 4; are the average outage length and failure
rate, respectlvely, r;4; is the yearly outage of the j™ feeder
section (FS); and N s 1s the number of FSs in RDNS.

The following assumptions are considered when assessing
EIC for addressing concerns on optimal installation of EVC-
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Ss and capacitors.

1) The FS with the highest impedance has a failure rate of
50%, and the FS with the lowest impedance has a failure
rate of 10% annually [31]. The failure rates of the other FSs
are determined linearly based on these two impedance val-
ues as shown in (11). The j® FS has a Z, impedance and a 4,
failure rate. The maximum and minimum impedance values
are Z., and Z_, . respectively. Since the failure rate and line
length are inversely proportional, longer lines have higher
failure rates.

5 10%+(50%~10%)
T Zmax_Zmin

Zj_Zmin

(11)

2) It is assumed that the transient faults of overhead distri-
bution line are handled with electronic sectionalizes and pri-
mary breakers. Hence, fixing each FS takes about 0.5 hour
[14], [31], while the repair time is 8 hours [31], [32].

When shunt capacitors of varying sizes are optimally
placed in the distribution system, RP compensation is provid-
ed, which is in the reactive current component of the sys-
tem. Similarly, when EVCS is integrated into the RDN, it
acts as active power load, which are also reflected in the ac-
tive current component of the system. Thus, the installation
of EVCSs and capacitors in the RDN impacts active and re-
active current components. In the RDN, the compensation
coefficient refers to the ratio of the new current /" (ob-
tained after the allocation of EVCSs and capacitors) and the
base current Ijb‘”e (before the allocation of EVCSs and capaci-
tors). This compensation coefficient can be more or less than
1, based on whether the new current is greater or smaller
than the base current.

new
[j

T =
base
]j

J

(12)

where ¥, is the symbol indicating the compensation coeffi-
cient of the branch for the j™ FS, e.g., a high compensation
coefficient after a failure will indicate an increase in current,
which could help choose defensive devices to keep the sys-
tem secure. Here, three compensation coefficients are consid-
ered and denoted as ¥/ ¥, and ¥/ ¥/ is used to repre-
sent the active current compensatlon appllcable when only
EVCS is considered, ‘PR’ represents the reactive current com-
pensation applicable when only the capacitor is considered,
and 5”].’“?’ represents the reactive current compensation appli-
cable when both EVCS and capacitor are considered. The
equations representing the compensation coefficient of these
three cases to compute the failure rate are as follows.

[Ai, new

YI,A[Z

J

[Ai, base
[Rl new (13)

y/.Ri —

J

I Ri, base

I new

J
1 base

~ \/(Iin.,new )2 +(1jRi,new )2
\/(Iin, base )2 +(1jRi.baSe )2

Y/ARI (14)
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where /" and are the currents after the allocation of
the EVCSs and capacitors, respectively; /,*"** and 1" are
the initial active and reactive currents, respectively.

The absolute value of ¥, is utilized for all the above cas-
es. To eliminate the current direction due to failure, ‘Pj"R'
considers both 7/ and 1, whereas ¥;" and ¥ consider on-
ly 7' and I, respectively. After optimizing the EVCSs and
capacitors, the failure rate of the j FS, 27, lowers to 80%
[31], [33]. The allocation of EVCSs and capacitors linearly
impacts the failure rate. The new failure rate 4/ is comput-
ed as:

Ri, new
;

A= W e = A )+ A (15)
where ij'."”" is the failure rate before the allocation of EVCS
and capacitor; and 4;*" is the failure rate after the allocation
of EVCS and capacitor.

2) Evaluation of EIC

The EIC [31]-[33] helps compute the customer reliability
levels, thereby boosting maintenance by providing solutions.
EIC is calculated for the j™ FS as:

Nh\
EIC;= Z_LH_J. C.A, (16)
J

Ay without compensated
A

J

N 4} fully compensated (a7
where L, ; is the average load connected to the load point;
and C,; is the interruption cost for the bus for the j™ FS. C; is
calculated using the composite customer damage function
(CCDF) and L, and captured by CCDF based on the length
of interruption, as shown in Table I [34]. Also, the interrup-
tion cost varies according to the location of the fault event
and how long it takes to resolve. When the EVCS and capac-
itor are not present, /1].:/1]1.’““’; but when they are present, 4,=
A
TABLE I
AVERAGE INTERRUPTION COST OF COMMERCIAL CUSTOMERS

Duration category (min) Interruption cost ($/kW)

Momentary (less than 0 s) 0.22
3 0.25

20 0.71

60 2.02

120 4.09

240 8.34

1440 27.71

3) Benefit Due to EIC Reduction
The lowered EIC benefits from capacitor installation and
post-optimal EVCS are calculated in this paper. The benefit
due to interruption cost reduction in EIC, AP, is calculat-
ed by:
APg=E,, (EIC,,, —EIC (18)

»ase 15 the EIC without EVCS and capacitor; and
is the EIC with EVCS and capacitor.

base comp )

where EIC
EIC

comp
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D. Objective Function and Constraints

1) Economic Evaluation

The financial viability of a capacitor installation must be
evaluated by comparing expected earnings and investment
expenditures throughout the project, including advantages re-
alized and investments made to reduce failure rates, and
maintenance time and costs. For the investments to be profit-
able, the net present value (NPV) must be positive compared
with the costs, as shown in (19). A high NPV promotes ac-
ceptance because it shows an increase in utility, while a low
NPV discourages acceptance since it shows a likely decline
in utility. NPV subtracts the initial investment cost (IC) from
the benefit obtained from PL reduction and interruption cost
reduction, considering discounted yearly cash flows.

NPV =(PE gp+APpc)—-1C (19)
[C: Cins + Copr (20)
Cins = Ciix + Clgf (2 1)

2) Equality Constraints
The grid supply P™”" should equal the sum of APL and
the overall load of the system and EVCS loads.

N,

Nl)\ N’I\
Pt = P (e Y P S P
, b=1 b=1

j=1

(22)
where P}, (m,n) is the APL in line j between buses m and n.

The RP supplied from the grid and capacitor should be
equal to the total RP load of the system.

N bs N br N bs N bs
0"+ 0c(B)= D Ol (mn)+ > 05 + > 05 (23)
b=1 j=1 b=1 b=1

where Q™" is the total RP supplied by the grid;and Q. is
the RP provided by all capacitors installed at the buses.
3) Inequality Constraints

1) Limit on bus voltage and current

min max
V<Y, <V

24
0<r<I™ (24)

where V™ and V™ are the minimum and maximum allow-
able voltage at bus b; I, is the current flowing through line
or branch 7, respectively; and /™ is the maximum allowable
current in line or branch r.
2) Limit on size of capacitor
Nh\
02" > Oy <0 (25)

b=1
where QF" and QF* are the minimum and maximum total
RP capacities that can be provided by capacitors, respective-
ly; and O, is the RP provided by capacitors across all bus-
es.

3) Limit on size of EVCS
NI)\
PE'< > Pesy <P (26)

b=1
where PR and P2 are the minimum and maximum total
active power capacities that can be handled by all EVCSs in
the system; and P, is the active power demand of EVCS
across all locations.
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4) Limit on RP compensation provided by capacitor

bs

>0cm< >0

b=

27

where ch (n) is the total RP compensation provided by all
n=1

Nh\
capacitors; and EQZ”’ is the total reactive power demand in
b=1

the system that needs to be compensated.

III. SOLUTION TECHNIQUES BASED ON OPTIMIZATION

In the computation of the objective function, three key
components are evaluated: the benefit of reduction in energy
loss cost, the benefit of EIC reduction, and the IC. The APL
becomes an important factor in evaluating energy loss reduc-
tion. The PL is determined using (1), and the failure rate be-
comes a pivotal factor in evaluating the EIC reduction. The
failure rate is determined by a compensation coefficient com-
puted using the branch current, and the operation and instal-
lation costs are used to evaluate the IC. The unknown deci-
sion variables in this formulation of the objective function as
a nonlinear mixed-integer problem include capacitor posi-
tion, capacitor rating, and system failure rate. Classical meth-
ods for solving this optimization are computationally com-
plex, and hence, metaheuristic algorithms are proposed in
the literature to ensure near-optimal solutions. Metaheuristic
algorithms have gained popularity due to their simplicity,
flexibility, and problem-solving efficiency in optimizing the
integration of various electrical units like DG, EV, and pow-
er electronics devices, e. g., capacitor, static synchronous
compensator, voltage regulators, for better power delivery
and compensation [35], [36].

In this paper, HGWO PSO and HPSO CS are proposed.
These hybrid algorithms offer significant advantages such as
rapid convergence, the ability to maintain equilibrium in
complex systems, and an increase in overall problem-solving
effectiveness, efficiently tackling the complex problems asso-
ciated with electrical unit integration within RDN.

A. HPSO CS

The social behavior of fish or bird inspires the PSO. On
the one hand, the PSO includes benefits like simple opera-
tion, quick searching, and ease of understanding. On the oth-
er hand, PSO gets easily caught in the local optimum while
solving a large and complex problem. To make PSO easier
to utilize, this problem must be overcome, which is enabled
by using CS. The nesting behavior inspires the CS. In CS,
the search procedure quickly switches from one location to
another due to the outstanding randomness of Levy flight.
As a result, the ability of the algorithm to search globally is
highly developed. Due to the extreme randomness of the
Levy flight, the algorithm begins a blind search process, the
convergence speed slows down, and the searching efficiency
is substantially reduced close to the optimal solution. Hence,
we propose a hybrid algorithm based on PSO and CS, which
combines the benefits of both PSO and CS. The PSO will re-
peatedly improve the population by updating the position
and velocity of the particles based on their best position
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across all the particles. The CS generates new solutions for
the population based on the Cuckoo’s probabilistic egg-lay-
ing and nest-searching processes and determines the fitness
of those solutions. The particle is replaced with the lowest
performance if CS works better than a PSO. Consequently,
the PSO offers an equal amount of global and local search,
and CS helps to improve global exploration. Thus, the HP-
SO _CS [37] helps get better optimization results than the in-
dividual optimization algorithm. The pseudo-code and the
relevant equation required to define the algorithm are shown
in Algorithm 1, where V; is the velocity of particle i at cur-
rent time step # W is the inertic weight; and 6 is the scaling
factor that adjusts the step size of Levy flight.

Algorithm 1: pseudo-code of HPSO_CS
1 Imput: search agent, parameters of PSO and CS

Output: best fitness function
MW i C1s Coy 1y, 13, P,

Randomly generate the initial position of particles within the limited
range X;

max

2
3 Initialization: the parameters L,, U,, n, W,
4

5 While ¢ is less than the maximum generation or other stop criterion
do

6 Call for PSO
7 Calculate fitness of each particle by objective function f(X;)=f;

8 Update the velocity and position of each particle by using
Vit+ D=WV,0)+ Cir (P ()= X; () + Cy15 (G () — X (1))
X.t+D=X,)+V,(t+])

9 for cach particle do
10 Evaluate the fitness of each particle of objective function P,,,
and G, , and select the best particle of Gbest position based

on best fitness value

X(t+1) X @+ D)<f(X; @)

Pbesr (t+1)= .
i Py otherwise

Ghesz, ()=min {Phest,, () Phesz,2 .- Phe.vfm 0}
11 end (for loop)
12 Call for Cuckoo
13 for each particle do
14 Find a best nest by CS
15 end (for loop)

16 A friction P, of the worst-performing particle is chosen in terms of
the fitness function. The chosen particles should be dropped
from the search space and replaced with randomly generated
ones.

17 r, and r, vary with Levy flight, which is different form the HP-
SO_CS
18 Vit+ D=WV,(0)+[c, 0Levy(BYP ey ()= X, D]+
[6;0Levy(B)G o ()= X; ()]
19 Record the optimal solution of the current iteration

20 t=t+1 (iteration step increases)
21 If the termination criterion is not met, go to Step 6
22 end (while loop)

B. HGWO PSO

The GWO and PSO are nature-inspired optimization algo-
rithms inspired by the hunting behavior of grey wolves and
the social behavior of fish or bird. The main difference be-
tween GWO and PSO is how new individuals are formed. In
this paper, HGWO_PSO is suggested to achieve the benefits
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of both algorithms. When the hybridization operates, the
GWO first updates the wolf position, including «, f, and o
wolf solutions. After that, the wolves adjust their position,
which depends on the hierarchy of the wolf pack and how
close they are to a, 5, and 0 wolves. Additionally, after each
position is adjusted by GWO, each updated position modi-
fies its velocity using the PSO. The previous velocity, the lo-
cal best position of individual, and the global best position
of the population are all considered while updating the veloc-
ity, which improves the current solution by utilizing the
most up-to-date information. Each wolf or particle in the
population maintains a record of the best solution encoun-
tered during the optimization process. The best solution
found by any individual in the entire population is the
shared information, representing the overall best solution
among all individuals. HGWO PSO leads participants to-
ward their fitness solution positions to enable delicate exploi-
tation and improve convergence while optimizing the loca-
tions of EVCSs and capacitors toward the best solutions.
The pseudo-code [38] of HGWO_PSO is shown in Algo-
rithm 2, where X denotes the current position of the wolf be-
ing updated; X s )?2, and )?3 denote the intermediary posi-
tions calculated using the influence of a, f, and o, respective-
ly; and (_3 denotes the vector.

Algorithm 2: pseudo-code of HGWO_PSO
1 Input: search agents, parameters of GWO and PSO

2 Output: optimal solution

3 Initialization: the parameters L,, U,, n, W, /W ..
A, and C

4 Generate initial population randomly within the search space range
5 Call GWO algorithm
6  Calculate the fitness value of @, f, and 0

D,=|C,C,~X|, Dy=|C,C;~X|, and D,;=|C,C;~X |

C,, Cy, 1y, 1y, @,

7  Update the position of each wolf of current wolf by using
X\ =X,-4, (Du ), Xz:XﬂfAz (D/; ), Xy=X;—4; (Do‘)

8  While ¢ is less than the maximum generation or other stop criterion

do
9 for each search agent do
10 Update the position of current wolf search agent )?w by using
2 X +X,+X;
+17 3

11 end (for loop)
12 Update the best wolf that achieves the best fitness value
13 Call PSO algorithm
14 for each search agent do
15 Update the particle velocity and position by using
Vit+ =WV, (0)+ Ciry (P () =X, (0)+ Cy15 (G ()= X, (1))
X,(t+)=X,(0)+V,(t+1)
16 end (for loop)
17 Compute the fitness function of each particle P,,, and G,,,,
18 for each search agent do
19 Update a, 4, and C, and calculate the fitness value for all wolves
20 end (for loop)
21 Update the fitness value of a, f#, and ¢ wolf positions
22 t=t+1 (iteration step increases)
23 end (while loop)
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C. Proposed Optimization Algorithms

The proposed optimization algorithms aim to achieve the
optimal simultaneous allocation of EVCSs and capacitors in
a RDN while considering reliability. The algorithm follows a
series of steps outlined in Fig. 1. The optimization process is
conducted under different operation conditions, each repre-
sented by a specific case involving EVCSs and capacitors.
These cases are defined as follows:

1) Case 1: one capacitor (1C)+two EVCSs.

2) Case 2: two capacitors (2C)+two EVCSs.

3) Case 3: three capacitors (3C)+two EVCSs.

4) Case 4: four capacitors (4C)+two EVCSs.

5) Case 5: five capacitors (5C)+two EVCSs.

6) Case 6: six capacitors (6C)+two EVCSs.

Figure 1 illustrates the flow chart for optimal allocation of
EVCS and capacitor using the proposed optimization algo-
rithms. In various optimization algorithms, values for the pa-
rameters are considered as follows.

Input system data: line data, bus data, base values,
and failure rate of the system
v
Compute BFS LF for base case
v
Select the cases from operation condition:
two EVCSs and multiple capacitors (case 1-case 6)
v
Initialize parameters of the proposed optimization
algorithms for the selected cases

!

Iteration is less than the maximum number of iterations
|

v
Select optimization techniques:
HGWO_PSO, HPSO_CS, and PSO/GWO/CS
v

Evaluate objective function and constraints

!
Analyze BFS LF with EVCSs and capacitors and
compute new failure rates of the system

Is stopping criteria
satisfied?

Print results

Fig. 1. Flow chart of optimal allocation of EVCSs and capacitors using
proposed optimization algorithms.

The maximum iteration is 1000, the search agents are 10-
30, the swarm size is 30-50, W, is 0.4, W . is 0.9, C, is
2.01, C, is 2.02, P, is within [0, 1], @ is 2 to 0, and r, and
r, are random numbers within [0, 1].

In this paper, five separate scenarios are examined to vali-
date the methodology.

1) Scenario 1: base case, i.e., IEEE 33-bus RDN [39].

2) Scenario 2: EVCS] integrated with RDN.
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3) Scenario 3: both EVCSs (EVCS1 and EVCS2) integrat-
ed with RDN.

4) Scenario 4: multiple installations of EVCSs and capaci-
tors with RDN.

5) Scenario 5: impact of V2G mode of EVCSs on the
RDN.

IV. RESULT AND DISCUSSION

Although EVs can operate in V2G mode, the initial focus
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is to consider EVs as EVCS loads. The EVCS in this paper
is modeled and used as a constant power load in the RDN.
The proposed optimization algorithms are tested using the
IEEE 33-bus RDN, schematically shown in Fig. 2, which
has 33 nodes and 32 branches with a base voltage and sys-
tem capacity of 12.66 kV and 100 MVA, respectively. The
IEEE 33-bus RDN is a balanced three-phase network with
an AP load of 3715 kW and an RP load of 2300 kvar. The
constant parameters are shown in Table II [7], [17].

Fig. 2. Structure of IEEE 33-bus RDN.
TABLE 11
CONSTANT PARAMETERS
Parameter Unit Value
Chou $/kvar 30
Chen $/kW 10
E, $/kWh 0.06
T hour 8760
ce, $ per location 1600
ces $ per location 6500
¢ .
opr $/year per location 350
(&) .
Copr $/year per location 8500
ir % 6
C
L, year 30
LS year 15

A. Scenario 1

Initially, for the base case using the BFS algorithm, the
APL and RPL obtained for the IEEE 33-bus RDN are
204.7920 kW and 136.9346 kvar, respectively. Figure 3 de-
picts the base case voltage profile of IEEE 33-bus RDN,
showing that bus 18 has the lowest voltage of 0.9162 p.u..

B. Scenarios 2 and 3

The EVCS considered for this paper has 30 outlets, each
with 50 kW of power, i.e., a total load of 1500 kW. When
EVCS is added to the RDN, the APL of the system increas-
es, and the voltage profile decreases. It is crucial to disperse
the EVCS as efficiently as possible to reduce the potential
increase in APL. By connecting the fixed-capacity EVCSI
with a 1500 kW rating on bus 2, the APL obtained is
216.7893 kW. Additional EVCS installations are necessary
to ensure that more EV users can use the EVCS. Thus,
EVCS2, located on bus 19, with a 1500 kW rating, is also
considered. It is observed that after connecting EVCS2 with
bus 19, the APL for the bus increases to 227.9568 kW. The
voltage profile after adding EVCS1 and EVCS2 is illustrated
in Fig. 3, where the lowest magnitude is found on bus 18
with a voltage of 0.9116 p.u. and 0.9107 p.u., respectively. It
may be noted that EVCSs and capacitors are not anticipated
to be connected to bus 1, as it is a slack bus with a constant
voltage of 1 p.u..

1 0.910
! 17.80 17.90 18.00

17.85 17.95 18.05:

1.00 —— Base case
— EVCSI
098] — EVCS2
3
RS
Q
E 0.96 f
‘g
)
&
5 094
&
S
>~ 092}
0.90 . . . . )
5 10 15 20 25 30

Bus No.
Base case voltage profile of IEEE 33-bus RDN.

Fig. 3.

C. Scenario 4

To enhance the voltage profile and reduce loss, capacitors
are positioned closer to the EVCS and at the ends of feed-
ers. Here, a switched-type capacitor with RP injection set be-
tween the minimum and maximum values (150-1200 kvar)
is utilized for compensation. The optimization model is
solved through simulation on an Intel 19 64-bit PC running
MATLAB-R2022b equipped with a 3.20 GHz CPU and 32
GB of RAM (12" Gen). The capacitor configuration results
in decreased APL and improved voltage profiles. The prima-
ry objective of this paper is to reduce the APL due to resis-
tive losses in the RDN.

Various scenarios considering different numbers of capaci-
tors (1C-6C) are simulated for the IEEE 33-bus RDN utiliz-
ing the objective function given in (19). Optimal bus loca-
tion and sizes in kvar of these capacitors in the presence of
EVCS are obtained as shown in Table III, using different op-
timization algorithms such as GWO, PSO, CS, HPSO CS,
and HGWO_PSO. Table III shows that the APL decreases
for the proposed optimization algorithms as the number of
capacitors grows.
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TABLE III
COMPARISON OF LOCATION, SIZE, AND APL WITH A CAPACITOR INSTALLATION IN IEEE 33-BUS RDN FOR ALL ALGORITHMS
Num- PSO CS GWO HGWO_PSO HPSO CS
ber of
capaci- Loca- Size Total APL  Loca- Size Total APL Loca- Size Total APL Loca- Size Total APL Loca- Size Total APL
tors tion (kvar) (kvar) (kW) tion (kvar) (kvar) (kW) tion (kvar) (kvar) (kW) tion (kvar) (kvar) (kW) tion (kvar) (kvar) (kW)
1C 30 656 656 158.867 31 878 878 153978 8 1058 1058 165.53 29 859 859 153.00 32 1102 1102 154.36
531, 952, 707, 33, 665,
2C 12,27 315 1346 152757 31,23 312 1264 149.603 8, 26 374 1081 161.90 6,29 793,468 1261 149.02 5 491 1156 147.59
616, 952, 342, 423, 30, 778,
3C 5’2194’ 808, 1895 143.269 23§327’ 368, 2049 143.458 6’220’ 523, 1796 159.97 301023’ 719, 1814 14522 9, 578, 1891 140.45
471 729 931 672 8 535
182, 158, 250, 350, 12, 320,
14, 21, 270, 12,22, 307, 8,20, 520, 10, 22, 220, 20, 350,
4C 2530 756, 2195 138.374 23,30 615, 2107 137.620 23.26 380, 2240 155.85 24,29 510, 2097 137.69 2. 570, 2090 136.52
987 1027 1090 1017 30 850
828, 367, 378, 286, 30, 789,
10, 25, 493, 24,12, 297, 24,4, 597, 23,5, 615, 22, 167,
5C 29,31, 306, 2466 144241 19,18, 612, 2322 145944 28,22, 215, 2429 160.65 18,24, 458, 2466 148.64 10, 767, 2568 143.76
14 689, 29 433, 13 424, 29 782, 17, 229,
150 613 815 325 3 620
365, 507, 330, 456, 20, 263,
014 208 g B8 2026 gy 5 as
6C 25,33, ° 2674 150.648 31,11, > 2614 151.920 23,4, > 3280 164.56 5, 30, > 2478 15251 ’ ’ 3315 150.90
831 300, 24 29 233, 2910 152, 1724 248, 12, 655,
’ 727, ’ 813, ’ 570, ’ 622, 30, 510,
150 387 468 279 26 750

Additionally, only 4C provides the least PL among all the
capacitors, making it the right number to be allocated in the
IEEE 33-bus RDN. As capacitors increase, they inject RP
components [7] and reduce losses.

The convergence curve is plotted to check the perfor-
mance of the proposed optimization algorithms. The conver-
gence curve of various optimization algorithms for APL with
simultaneous installation of EVCSs and capacitors in an
IEEE 33-bus RDN over 1000 iterations is presented in
Fig. 4.

190,
— PSO
—CS
180 — GWO
— HGWO_PSO
—— HPSO_CS
170
z
X 160
—
Ay
150
140 ‘ \
130 s s s s ‘
0 200 400 600 800 1000

No. of iterations

Fig. 4. Convergence curve of various optimization algorithms for APL
with simutaneous installation of EVCSs and capacitors in IEEE 33-bus RDN.

Accordingly, it is observed that the proposed optimization
algorithms produce quick convergence as compared with in-
dividual optimization algorithm. The total convergence time
for various optimization algorithms with multiple installa-
tions of capacitors is given in Table IV. It is observed that if

there is more PL, the optimization process becomes slower,
leading to longer convergence time. The proposed optimiza-
tion algorithms take more time to work with reduced power.
If there is less PL, the optimization process becomes faster
and more efficient, reducing the time needed to reach the op-
timal solution. The proposed optimization algorithms have
given a quicker convergence speed than all other optimiza-
tion algorithms.

However, once the right size and number of capacitors ex-
ceed the optimal values, i.e., 4C, there will be back-feeding
of the RP injected by the capacitor, thereby increasing the
system APL. The APL of the base case, with EVCS1 and
EVCS2 along with capacitors, is shown in Fig. 5.

Figure 5 shows that APL increases from a base case of
204.7920 kW to 227.9568 kW with the addition of EVCSI
and EVCS2. Additionally, after adding capacitors, APL de-
creases subsequently, obtaining optimal PL at 4C, and then
increases the PL as the number of capacitors increases to 5C
and 6C. Additionally, from Table III, among GWO, PSO,
CS, and hybrid algorithms, HPSO CS and HGWO PSO re-
sult in the largest APL reduction, i.e., 137.69 kW and 136.52
kW, respectively, which leads to lower expenses associated
with energy losses. Table V highlights the energy loss cost
and percentage of energy loss cost reduction of the base
case compared with the proposed optimization algorithms.
As hybrid algorithms, HPSO CS and HGWO_PSO provide
superior loss reduction, i.e., 33.34% and 32.77%, respective-
ly. Adding the capacitor configuration to the IEEE 33-bus
RDN in the presence of EVCS decreases the APL and im-
proves the voltage profile.. The comparisons of benefit of
loss reduction curve for all optimization algorithms are
shown in Fig. 6.
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Fig. 5. Effect of EVCSs with capacitors on an APL curve for various algo-
rithms.

TABLE IV
TOTAL CONVERGENCE TIME FOR VARIOUS OPTIMIZATION ALGORITHMS

Number of Total convergence time (s)

capacitors PSO Cuckoo GWO  HGWO_PSO HPSO_CS
1C 488.458  294.113  1206.499 459.344 162.375
2C 477.575  266.573  1123.650 444712 153.286
3C 457.989 253296  1059.330 420.779 147.746
4C 428432 244.105 968.702 417.199 143.684
5C 446.101  250.761  1136.650 419.411 149.661
6C 480.763  288.130  1232.730 421.398 154.431

TABLE V
COMPARISONS OF ENERGY LOSS REDUCTION FOR VARIOUS OPTIMIZATION
ALGORITHMS

Energy loss cost

Energy loss cost ($) reduction (%)

Optimization algorithm

Base case 107638.70 -
PSO 72729.22 32.43
CS 72333.18 32.80
GWO 81913.13 23.90
HGWO_PSO 72370.28 32.77
HPSO _CS 71755.91 33.34

Accordingly, the maximum benefit of loss reduction corre-
sponding to optimal number and location of capacitor corre-
sponds to 25729 $/year for GWO, 34911 $/year for PSO,
35306 $/year for CS, 35884 $/year for HPSO_ CS, and
35268 $/year for HGWO_PSO.

Figure 7 depicts the benefit of EIC reduction for various
optimization algorithms. As the number of capacitors increas-
es, the benefit of EIC reduction increases until it reaches a
peak at the optimal operation point. Adding more capacitors
initially reduces EIC, but there is a point where further in-
creases do not bring as much benefit. Beyond this point, the
EIC reduction starts decreasing. Figure 7 also highlights that
hybrid algorithms provide the maximum EIC benefit.
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Fig. 6. Comparisons of benefit of loss reduction curve for various optimi-
zation algorithms.
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Fig. 7. Benefit of EIC reduction curve for various optimization algorithms.

Table V illustrates the proposed optimization algorithms,
produces significant EIC reduction ranging from 2.60% to
16.45% compared with a baseline EIC of 374127.8 $/year at
the optimal operation point. Furthermore, Table VI shows
that the proposed optimization algorithms have the highest
yearly benefit from EIC reduction. The size and IC of a ca-
pacitor are positively correlated. As a result, when capacitor
size increases, the cost of producing or purchasing the capac-
itor rises linearly, as depicted in Fig. 8.

TABLE VI
COMPARISONS OF EIC REDUCTION AND AEJC FOR ALL OPTIMIZATION
ALGORITHMS
Optimization algorithm  EIC ($) EIC reduction (%) AEIC ($)
Base case 374127.8 - -
PSO 321860.3 13.97 9178.173
CS 315347.1 15.71 10321.890
GWO 364387.6 2.60 1710.379
HGWO_PSO 314613.5 15.90 11105.690
HPSO_CS 312597.9 16.45 11404.650

The main goal is to obtain the highest annual NPV, as de-
scribed in (19). The maximum NPV (MNPV) amount with
varying capacitors for various optimization algorithms is
shown in Fig. 9.
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Fig. 9. MNPV for various optimization algorithms.

As the number of capacitors increases, NPV increases to
the maximum value, i.e., MNPV. The highest annual NPV
represented as the MNPV curve for GWO, PSO, CS, HP-
SO _CS, and HGWO PSO is found to be 36282, 52813,
54750, 57786, and 57177 S$/year, respectively. HPSO CS
produces a higher NPV when compared with all other opti-
mization algorithms.

D. Scenario 5

In V2G mode, EVs can feed extra energy into the grid to
support system stability. In the given EVCS for an optimal
number of capacitors and sizes in the IEEE 33-bus RDN,
the impact of the V2G mode of EVs is also studied. The im-
provement in voltage profile for all the IEEE 33-bus RDN
for the base case, EVCS integration, and various penetration
levels of V2G mode ranging from 5% to 30% with a step of
5% is presented, as shown in Fig. 10. It is observed that the
voltage profile is improved upon EV participation in V2G
mode. Furthermore, Fig. 10 clearly shows that as the percent-
age of EVs in V2G mode increases, there is a noticeable im-
provement in the voltage profile. Thus, the V2G mode bene-
fits grid operators by maintaining an improved stable voltage
profile in the RDN.

For the optimal EVCS nodes on buses 2 and 19 in the
RDN, the APL is computed for various penetration levels of
V2G mode from 5% to 30%. Figure 11 shows the APL reduc-
tion in IEEE 33-bus RDN with increased EV penetration level
in V2G mode, compared with the base case for buses 2 and 19.
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Fig. 10. Improvement in voltage profile in V2G mode.

Thus, the viability of V2G mode in the EVCS enables the
PL reduction in the network. Figure 12 compares the APL re-
duction in IEEE 33-bus RDN for PSO, GWO, CS, HG-
WO _PSO, and HPSO CS for the base case in the presence
of EVCS and variation in penetration level of V2G mode.
Here, the APL reduction is observed with the increase in the
penetration level of V2G mode. Additionally, it is observed
that HPSO_CS provides the lowest APL. The APL is found
to be 135.2851, 134.5936, 133.94, 133.3242, 132.9347, and
132.2061 kW, with penetration levels of 5%, 10%, 15%,
20%, 25%, and 30%, respectively.

207 M Bus 2
2281 us
6l :. ® Bus 19
241

%\222» 1

= orsl

< |
26t ¥ @ o °
17| AR A A I B
22 L I ! - | !
210 i j i i | o

Base 5 10 15 20 25 30

case
Penetration level in V2G mode (%)

Fig. 11. APL reduction for IEEE 33-bus RDN with increased EV penetra-
tion level in V2G mode.

Considering the economic benefit of the V2G mode of op-
eration, the APL reduction increases the revenue of the net-
work operator. To illustrate this point, Fig. 13 shows the in-
creased MNPV as the penetration level increases.
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Fig. 13. MNPV for various optimization algorithms in V2G mode.

Additionally, Fig. 13 highlights that HPSO_CS indicates
the highest MNPV values for the V2G mode of operation,
thereby providing the best results.

V. CONCLUSION

In this paper, economically driven optimal simultaneous al-
location of EVCSs and capacitors in RDN is studied by con-
sidering the benefit of energy loss reduction and EIC along
with the cost of EVCSs and capacitors. The proposed optimi-
zaiton algorithms are validated in the IEEE 33-bus RDN. It
is noticed that when EVCS is added to the RDN, the APL of
the system increases, and the voltage profile decreases. It is
observed that the proposed HGWO_PSO and HPSO CS al-
low us to determine the appropriate location of capacitors
and sizes. In the IEEE 33-bus RDN with EVCS, adding the
capacitor configuration reduces the APL and EIC cost and
enhances the voltage profile. Additionally, HPSO CS con-
verges quickly and achieves a higher profit when compared
with individual optimization algorithms. Furthermore, for
V2G mode, the proposed optimization algorithms with the
given objective function present superior performance, there-
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by allowing the operator to plan and conduct a cost-benefit
analysis properly.
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