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Abstract——Energy storage (ES), as a fast response technology, 
creates an opportunity for microgrid (MG) to participate in the 
reserve market such that MG with ES can act as an indepen‐
dent reserve provider. However, the potential value of MG with 
ES in the reserve market has not been well realized. From the 
viewpoint of reserve provider, a novel day-ahead model is pro‐
posed comprehensively considering the effect of the real-time 
scheduling process, which differs from the model that MG with 
ES acts as a reserve consumer in most existing studies. Based 
on the proposed model, MG with ES can schedule its internal 
resources to give reserve service to other external systems as 
well as to realize optimal self-scheduling. Considering that the 
proposed model is just in concept and cannot be directly solved, 
a multi-stage robust optimization reserve provision method is 
proposed, which leverages the structure of model constraints. 
Next, the original model can be converted into a mixed-integer 
linear programming problem and the model is tractable with 
guaranteed solution feasibility. Numerical tests in a real-world 
context are provided to demonstrate efficient operation and eco‐
nomic performance.

Index Terms——Reserve service, energy storage, microgrid, op‐
timal self-scheduling, multi-stage robust optimization.
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I. INTRODUCTION

THE rapid development of renewable energy sources 
(RESs) has stimulated the evolution of the electric ener‐

gy sector [1], [2]. To be specific, the traditional thermal 
units are gradually replaced by RESs to confront the environ‐
mental pollution and energy crisis [3]. Nevertheless, RESs, 
especially wind and solar energy, cannot provide a constant 
power supply due to the high intermittent, strong fluctuation, 
poor controllability, and lower forecasting accuracy [4], [5]. 
Therefore, the continuous increase in the penetration rate of 
RESs may pose a significant challenge to the secure, stable, 
and economic operation and scheduling of energy systems.

Microgrid (MG) is a small-scale power system character‐
ized by high reliability and strong flexibility, which can pro‐
vide localized power supply, demand-side management, and 
energy trading functions. MG is a promising way to inte‐
grate RESs and provides a viable solution to improving pow‐
er system flexibility and long-term development [6] - [8]. A 
typical MG consists of multiple distributed generations, ener‐
gy storage (ES), and consumption devices. ES is the major 
physical component for mitigating potential RES fluctua‐
tions, dealing with tricky demand-supply imbalance issues, 
and reducing the electricity cost [9]-[11].

The economic scheduling of MG integrated with ES and 
uncertainty, as a typical and critical content, aims to mini‐
mize operation costs while satisfying device or contractual 
constraints [12]. The main difficulty in such a scheduling 
problem arises from the state of charge (SOC) character of 
ES under uncertainty, e.g., uncertain renewable energy injec‐
tion and uncertain load demand. In other words, feasible and 
economic solutions should satisfy the nonlinear coupling con‐
straints (SOC character) under any realization of the uncer‐

tain renewables during each time period. Therefore, two 
mainstream methods, including stochastic optimization (SO) 
method [13]-[15] and robust optimization (RO) method [16]-
[22], have been proposed to realize the optimal scheduling 
of MG with uncertainty injection and ES.

In SO method, uncertainty is modeled by the scenarios un‐
der suitable discrete [23]. The reliability and economy of the 
scheduling solution need to be verified in each scenario. In 
contrast, uncertainty in RO method is expressed as uncertain‐
ty sets [24]. As a representative of RO method, the two-
stage RO method can achieve optimal scheduling [16] - [18] 
based on uncertainty sets, with the “min-max” structure to 
ensure the worst-case feasibility. However, some recent 
works have reached a consensus that the scheduling solu‐
tions provided by SO method and two-stage RO method 
may be infeasible in real-time operation [25]-[28]. In recog‐
nizing this issue, multi-stage RO methods are considered to 
be the most efficient [19] - [22], with one way based on the 
the affine function assumption, while the other establishing 
auxiliary constraints based on the specific formulation struc‐
ture [29].

Regarding [13]-[22], the main grid plays an important role 
in compensating for possible power generation fluctuations 
(aroused by the integrated RES as well as power consump‐
tion uncertainty from load demand) by providing sufficient 
reserve service for MG. In this way, MG with ES is regard‐
ed as a reserve consumer. However, it is not an economical 
and reliable solution since the reserve burden of the main 
grid and the difficulty for the main grid in scheduling will 
increase, and the reserve potential of MG with ES is not ful‐
ly utilized.

Recognizing the potential of ES in providing reserve, we 
consider MG with ES as a reserve provider in this paper. It 
means that MG with ES will not only achieve optimal self-
scheduling without the reserve support from the main grid, 
but also provide reserve service to the main grid in the face 
of uncertainty, particularly uncertain reserve demands. Exist‐
ing research works on ES reserve provision are primarily es‐
tablished from the viewpoint of independent system opera‐
tors [30]-[34] and merchant operators [35]-[42].

For the former, from the viewpoint of the independent sys‐
tem operators, ES is integrated into the power system and 
acts as a reserve market participant to reduce power system 
costs. Many studies concentrate on how to establish the ES 
reserve model. Reference [30] presents an up-/down-reserve 
model that can be realized by increasing the discharging/
charging level. In addition, the down/up discharging reserve 
models and down/up charging reserve models are considered 
in [31] to explicitly model the reserve contributions, as a 
supplement to the modes in [30]. Recognizing that ES can 
switch its operation statuses to provide up-/down-reserve, 
[32] and [33] propose a model to value the reserve provision‐
ing ability of ES. Furthermore, when considering the actual 
SOC of ES, the multi-hour reserve deliverability constraint 
is considered. Reference [34] extends the formulations pre‐
sented in [32] and [33] to compressed air ES and takes de‐
mand response into account. However, the feasibility of re‐
serve capacity during each time period cannot be guaranteed 
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in the above-mentioned studies because the reserve con‐
straints do not consider SOC limits and do not guarantee the 
reserve deliverability constraints during all time periods. In 
addition, the function of ES as a reserve participant in [30]-
[34] is similar to that of thermal units, compensating for gen‐
eration deviations pertaining to the base scenario and all oth‐
er unclear scenarios.

From the viewpoint of merchant operators [35]-[42], inde‐
pendent ES [35], [36] or joint systems involved with ES and 
RES [37] participates in the reserve auxiliary market from 
the viewpoint of merchant operators, and the goal is to maxi‐
mize the profits of merchant operators. Reference [35] estab‐
lishes an up-reserve provider model of independent ES, 
which is associated with ES discharging operation. In [36], 
an optimal scheduling model is proposed for a standalone 
ES to participate in multiple markets such as the reserve 
market. In [37], a coordinated strategy is proposed for a 
joint ES and wind power system in which ES can be used 
for the wind power accommodation, and the idle capacity 
and power of ES can be used to participate in the reserve an‐
cillary market. It should be noted that in [35]-[37], a portion 
of the capacity is withheld as reserve capacity to prepare for 
future reserve demands. However, even without considering 
the feasibility of the methods themselves, the day-ahead re‐
serve capacity provided by [35]-[37] is insufficient to guaran‐
tee dispatchability and will be infeasible in real-world appli‐
cations. The reason is that reserve demand in real-time opera‐
tion is not considered in [35], [37]. Consequently, there is a 
capacity deviation between the theoretical reserve capacity 
and the real reserve capacity due to the different real-time re‐
serve deployments. The deviation will be accumulated and 
may violate the SOC boundaries. Though uncertain deploy‐
ment of the reserve is considered in [36], the conservative 
strategy may greatly limit the opportunities of ES in reserve 
capacity.

The integration of ES into MG for participating in the day-
ahead reserve market can be categorized into two groups. In 
the first group, MG with ES participates in the reserve mar‐
ket without considering the real-time scheduling constraints 
[38]-[40]. In [38], a deterministic energy and reserve sched‐
uling method is established, which determines the total re‐
serve demand of the grid before energy scheduling. Refer‐
ence [39] establishes an innovative stochastic energy and re‐
serve scheduling method for an MG. In [40], the scheduling 
problem of MGs is studied to participate in both energy and 
reserve markets with uncertainty injections, and a hybrid sto‐
chastic-information gap decision method is established. How‐
ever, due to [38]-[40], without considering the real-time oper‐
ation power balance, the discrepancy between the day-ahead 
market and real-time operation will be generated and exacer‐
bated due to the uncertainties. In the second group, MG with 
ES participates in the reserve market considering the require‐
ment of maintaining power balance in real-time operation 
[41], [42]. In [41], a two-stage SO method is provided for 
MGs taking part in joint day-ahead (energy and reserve) and 
real-time markets. The method in [41] has the capability of 
energy compensation in the real-time market. In [42], a 
multi-stage stochastic programming model is proposed to 

find the optimal offering strategy in energy and reserve mar‐
kets. However, MG does not directly participate in the real-
time energy scheduling in [41], [42]. Instead, its objective is 
to manage the power imbalance.

Accordingly, we intend to fill the gap that MG with ES is 
modeled as a reserve provider with consideration of the real-
time scheduling process. However, there exists two prob‐
lems. ① Can MG with ES realize optimal self-scheduling 
and reserve provision to other systems simultaneously with‐
out reserve service support from the main grid (the main 
grid just provides a determinized day-ahead energy curve)? 
② If possible, how much day-ahead energy should the main 
grid provide and how much up-/down-reserve capacity can 
the MG system provide during each time period while guar‐
anteeing the feasibility?

Thus, the significant contribution of this paper is to estab‐
lish a novel day-ahead multi-stage RO reserve provision 
method for MG with ES to realize optimal self-scheduling 
and reserve provision to other external systems simultaneous‐
ly. The original characteristics of this paper are summarized 
as follows.

1) From the viewpoint of the reserve provider, a day-
ahead multi-stage RO reserve provision model is proposed 
with consideration of the actual scheduling process and the 
actual availability of provided reserves. In particular, real-
time reserve demand is considered as uncertainty and is for‐
mulated as an adjustable uncertainty set. The upper bound of 
the uncertainty set (reserve capacity) is constructed as a deci‐
sion variable and determined in day ahead. This type of un‐
certainty is known as decision-dependent uncertainty (or en‐
dogenous uncertainty). The multi-stage RO problem under 
decision-dependent uncertainty has not been studied [43].

2) The contract about the power injection curve from/to 
the main grid is signed in the day-ahead process. Thus, the 
main grid just provides constant/fixed energy to MG during 
each time period in the scheduling process, rather than a 
region, e.g., [13]-[22]. The main grid does not need to pro‐
vide extra reserve service for the MG system to confront un‐
certainty.

3) The day-ahead up-/down-reserve capacity is determined 
such that there is always a feasible solution in the real-time 
scheduling for any realizations of uncertain up-/down-re‐
serve demand (within the up-/down-reserve capacity).

Numerical tests conducted on a real MG with ES system 
verify the efficacy of the proposed model.

The remainder of this paper is organized as follows. In 
Section II, the framework and feasibility of MG with ES as 
a reserve provider are analyzed. Then a day-ahead multi-
stage RO reserve provision model is established in Section 
III. Section IV provides an effective method to realize re‐
serve provision. Section V implements numerical results, and 
Section VI provides the conclusion.

II. FRAMEWORK AND FEASIBILITY OF MG WITH ES AS A 
RESERVE PROVIDER 

A. Framework of MG with ES as a Reserve Provider

We aim to establish a day-ahead multi-stage RO reserve 
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provision model for MG with ES under uncertainty, compre‐
hensively considering the actual scheduling constraints and 
actual availability of provided reserves. Considering the low 
capacity of MG with ES in comparison with power systems 
or other market players, MG with ES participates in the mar‐
ket acting as a price-taker. The framework is shown in Fig. 
1, which involves the day-ahead stage (in solid lines) and re‐
al-time stage (in dotted lines).

The uncertainties include load demand, renewable power 
output as well as reserve demand. The decision variables can 
be divided into two categories based on different stages, 
namely day-ahead decision variables and real-time decision 
variables. The day-ahead decision variables include up-/
down-reserve capacity to the main grid (in gray) and the 
power injection curve from/to the main grid (in orange). In 
addition, real-time decision variables include the up-/down-
reserve provision to the main grid (in green) as well as the 
scheduling decisions of MG (in black) such as charging/dis‐
charging power of ES and curtailment of renewables. The 
scheduling process is described as follows.

In the day-ahead stage, MG with ES, as an independent re‐
serve provider, will trade with the main grid in two aspects.

1) The first is the up-/down-reserve capacity provided to 
the main grid. Compared with other reserve provider meth‐
ods in [35] - [42], the proposed method can give the maxi‐
mum actual available up-/down-reserve capacity by consider‐
ing the real-time scheduling requirements.

2) The second is the total power injection curve of MG 
with ES from/to the main grid, which is an important re‐
source to satisfy the feasibility. Compared with the reserve-
consumer model [13]-[22], the power injection curve in this 
paper is a deterministic curve determined in the day ahead 
rather than a specific region. It means that the exchange 
power between the MG and the main grid remains constant 
in the scheduling process and the main grid does not need to 
provide extra reserve service. Consequently, the scheduling 
difficulty and the burden of the main grid will be reduced.

With the fixed day-ahead decisions, real-time scheduling 
of MG with ES can realize optimal self-scheduling against 
any realization of uncertainties and can simultaneously pro‐
vide reserve service for the main grid to meet the reserve de‐
mand within the determined reserve capacity.

B. Feasibility of MG with ES as a Reserve Provider: an Ex‐
ample

1)　Feasibility of MG with ES as a Reserve Provider
In this part, we explore the potential of MG with ES, 

which has been operated as a reserve consumer in [13]-[22], 
to function as a reserve provider. To validate the hypothesis, 
a comparison example related to two cases is given. The pa‐
rameters of MG with ES are shown in Table I.

Under the parameters in Table I, if the main grid can pro‐
vide reserve capacity in the range of [-1, 1]MW during each 
time period, there will be feasible solutions to the economic 
scheduling problem, as supported by [44].

In the first case, MG with ES is regarded as a reserve con‐
sumer, and the main grid is required to provide reserve ser‐
vice to confront uncertainty. The method in [20] is selected 
as a representative method for MG with ES as a reserve con‐
sumer. According to [20], the safe range of ES level without 
considering reserve provision is shown in the orange area of 
Fig. 2, which is a necessary and sufficient condition to guar‐
antee that the system has a feasible scheduling solution.

In the second case, our objective is to utilize the MG with 
ES to serve as a reserve provider. For the MG shown in Ta‐
ble I, if MG obtains -1 MW, 1 MW, and 1 MW energy 
from the main grid, MG can provide [2, 0, 0]MW up-reserve 
capacity and [0, 2, 0]MW down-reserve capacity to the main 
grid (or other external systems) while realizing self-schedul‐
ing. In other words, if the uncertain up-/down-reserve de‐
mands are within the up-/down-reserve capacities, MG with 
ES can also realize self-optimizing, which can be verified by 
[20]. Similarly, the safe range of ES level E calculated by 
the proposed method is shown in the blue area of Fig. 2.

From Fig. 2, it is noted that the safe ranges of ES level in 
both the first case and the second case are non-empty and 
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Renewable power
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Fig. 1.　Framework of MG with ES as a reserve provider.

TABLE I
PARAMETERS OF MG WITH ES
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Fig. 2.　Safe range under different conditions.
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smaller than the physical safe range. In other words, there 
will be feasible solutions for the given MG with ES both in 
the first case and the second case. Consequently, we can con‐
clude that MG with ES has the potential to serve as a re‐
serve provider under the suitable reserve capacity and power 
injection from the main grid.
2)　Difference Analysis Between MG with ES as a Reserve-
Provider and as a Reserve Consumer Through Example

Firstly, as shown in Fig. 2, the safe range of ES level in 
the second case is narrower compared with that in the first 
case. It is concluded that MG with ES as a reserve provider 
may reduce the feasible regions. It is reasonable because 
MG with ES as a reserve provider needs to address greater 
uncertainty, namely, uncertain up-/down-reserve demand. 
MG with ES needs to make a trade-off between economic 
feasibility and operational viability, which is also a key fo‐
cus of our research.

Secondly, MG with ES in the first case needs [-1, 1]MW 
reserve capacity from the main grid and the corresponding 
reserve service. Instead, in the second case, MG with ES 
does not need reserve from the main grid (only [-111]MW 
determined power injection). Consequently, MG with ES as 
a reserve provider can reduce the burden of the main grid.

Thirdly, in the second case, extra [2, 0, 0]MW up-reserve 
capacity and [0, 2, 0]MW down-reserve capacity can be pro‐
vided to the main grid.

Therefore, we can conclude that the given MG with ES as 
a reserve provider is feasible and meaningful.

III. DAY-AHEAD MULTI-STAGE RO RESERVE PROVISION 
MODEL 

The scheduling problem of MG as a reserve provider is al‐
so a multi-stage problem (the details refer to Section III-A). 
As discussed in Section I, the multi-stage RO method can be 
regarded as the most successful method for dealing with the 
multi-stage scheduling problem. Consequently, in this paper, 
a novel day-ahead multi-stage RO reserve provision model 
of MG with ES under uncertainty is established, which is 
different from the model in [19]-[22]. The solutions obtained 
by the model can satisfy device or contractual constraints un‐
der uncertainties without the reserve provided by the main 
grid.

A. Problem Description

According to the framework in Fig. 1, we know that the 
R+

t ( )R-
t  is determined in the day-ahead process. Then, in the 

real-time process, r+( )r-  (within [ ]0R+
t ( )R+

t ) can be dealt 

with by reasonably scheduling the equipment in the given 
MG system.

In other words, there is a coupling relationship between 
r+( )r-  and R+

t ( )R-
t . Thus, R+

t ( )R-
t  should be carefully decided 

to meet any realization of r+( )r-  while guaranteeing the fea‐

sibility of the real-time scheduling process. To this end, day-
ahead scheduling should comprehensively consider the real-
time scheduling process and requirements.

With the analysis of the framework and the operation re‐
quirements of MG with ES as a reserve provider in Fig. 1, it 

is known that the problem in this paper is a multi-stage 
scheduling problem. The sequential decision-making process 
is given in Fig. 3.

For a multi-stage scheduling problem, two important re‐
quirements are nonanticipativity and multi-stage robustness. 
These requirements have been recognized in many studies 
[19] - [22], [25] - [28]. In particular, nonanticipativity means 
that the current decision can be only made based on the real‐
ization information up to the current time period. Multi-
stage robustness necessitates that the solutions will be viable 
for any possible realization of uncertainty within the given 
uncertainty set [45].

To be specific, the uncertainty realization information of 
each period is unknown in the day-ahead stage. R+

t  and R-
t  

should be made only based on the information of uncertainty 
sets for t = 12T, referring to the nonanticipativity re‐
quirement. But at the same time, R+

t  and R-
t  should be feasi‐

ble for any realization of r +
t  and r -

t  in real-time operation, 
which is multi-stage robustness.

In the real-time stage, day-ahead solutions R+
t ( )R-

t  are 

fixed. And real-time decisions xt during time period t should 
be made only relying on xv ( )v = 12t - 1 , the observed 
uncertainty parameters such as load demand ds, wind power 
outputs ws, photovoltaic power outputs pPV

s  ( )s = 12t , and 
the reserve demand r +

u ( )r -
u  ( )u = 12t  within R+

t ( )R-
t . 

Consequently, decisions xt can be denoted as xt( )ξ[ ]t , where 

ξ[ ]t = [d[ ]t ;  w[ ]t ;  pPV
[ ]t ;  r +

[ ]t ;  r -
[ ]t ], d[ ]t = (d1d2dt ), w[ ]t =

( )w1w2wt , pPV
[ ]t = ( )pPV

1 pPV
2 pPV

t , r +
[ ]t = ( )r +

1 r
+
2 r +

t , 

and r -
[ ]t = ( )r -

1 r
-
2 r -

t  are the vectors of uncertainty up to 

time t. In addition, xt( )ξ[ ]t  should satisfy the real-time sched‐

uling constraints to guarantee that the solution is feasible.
Based on the above analysis, the day-ahead reserve provi‐

sion model should be established as a multi-stage RO mod‐
el. And the detailed description is shown below.

B. Uncertainty Description

In RO method, uncertainties are often modeled by the un‐
certainty sets. The detailed description of uncertainties is giv‐
en below.

Specifically, uncertainties in the problem involve wt, pPV
t , 

dt, r +
t , and r -

t . According to the characteristics, the uncertain‐
ties can be divided into two categories.

The first category includes wt, p
PV
t , and dt, which are simu‐

lated via uncertainty sets in (1)-(3), respectively. The bounds 
of wt, pPV

t , and dt are usually predicted parameters and can 
be obtained by the data-driven method [46] based on histori‐

0
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Uncertainty of

the t th time period
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Make decision ofDay-ahead
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1(ξ1)x t(ξ1, ξ2, …, ξt)x

…

Make decision of

1 t t+1 Time

Fig. 3.　Sequential decision-making process.
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cal data.

w = { }wt| -w t £wt £ w̄t      "t (1)

pPV = {pPV
t
|
|
||||
-
p PV

t
£ pPV

t £ p̄PV
t  }      "t (2)

d = {dt| -d t £ dt £ d̄t}      "t (3)

The second category includes r +
t  and r -

t . Different from un‐
certainty sets in the first category whose bounds are certain 
predicted constant parameters based on the real data, the 
bounds (capacities) of R+

t ( )R-
t  in the second category uncer‐

tainty set is in fact artificially given parameters in the day-
ahead. Thus, R+

t ( )R-
t  should be carefully determined to satis‐

fy real-time scheduling requirements.
To this end, in this paper, R+

t  and R-
t  have been defined as 

decision variables, and thus, the uncertainty sets of r +
t  and r -

t  
are described in (4) and (5), respectively.

r + = {r +
t |0 £ r +

t £R+
t }      "t (4)

r - = {r -
t |0 £ r -

t £R-
t }      "t  (5)

Equations (4) and (5) should be added to the day-ahead 
multi-stage RO reserve provision model in (8)-(18) as signifi‐
cant constraints. Once day-ahead R+

t  and R-
t  are decided, all 

the r +
t  and r -

t  should be confronted when r +
t  and r -

t  vary with‐
in R+

t  and R-
t .

For brevity, the uncertainty set in this paper can be uni‐
fied as Ω:

Ω = {ξÎRT| (1)-(5)} (6)

where ξ = ( )ξ1ξ2ξT .
Besides, during time period t, ξ1ξ2ξ t are known, 

therefore, the uncertainty set can be updated. Consequently, 

conditional uncertainty set Ωt( )ξ[ ]t  is introduced to provide a 

more accurate depiction of the temporal evolution of the un‐

certainty set. Ωt( )ξ[ ]t  is abbreviated as Ωt in the latter part 

for convenience.

Ωt(ξ[ ]t ) = {ξt + 1ξ t + 2ξT| ξÎΩ} (7)

C. Mathematical Formulation

We aim to realize that MG with ES can schedule its inter‐
nal resources to provide reserve service to other systems and 
maintain the security and reliability of self-scheduling under 
uncertainties. In the scheduling problem, the day-ahead deci‐
sion variables include power injection from/to the main grid 
d͂, and up-/down-reserve capacity R+ (R- ). Besides, the real-
time decision variables include charging/discharging power 
of ES psto, curtailment of wind power outputs wcur, and cur‐
tailment of photovoltaic power outputs pPVcur. Based on the 
analysis in Section III-A, decisions should be denoted as the 
functions of uncertainty up to time t (or the functions of ξ[ ]t ) 

due to the nonanticipativity requirement. Moreover, accord‐
ing to the multi-stage robustness requirement, decisions 
should satisfy the scheduling constraints to guarantee the so‐
lutions viable for any possible realization of uncertainty with‐

in the given uncertainty set.
To this end, conceptually, a new single-level day-ahead 

multi-stage RO reserve provision model is developed in (8)-
(18). The objective function (8) is to minimize the weighted 
sum of operation costs. The first and second terms in (8) cor‐
respond to the cost related to the power injection from the 
main grid and the profit related to the reserve provision to 
the main grid, respectively.

min
d͂tR

+
t R

-
t p

sto
t 

wcur
t pPVcur

t

∑
t = 1

T

τ ( )λ+t max ( )d͂t0 + λ-t min ( )d͂t0 -

∑
t = 1

T

( )μ+t R+
t + μ

-
t R-

t (8)

In addition, the constraints are cast as in (9)-(18).

psto
t (ξ[ ]t ) +wt -wcur

t (ξ[ ]t ) + pPV
t - pPVcur

t (ξ[ ]t ) +
d͂t = dt - r +

t + r -
t     "tξÎΩt (9)

-p̄ch
t £ psto

t (ξ[ ]t ) £ p̄dis
t     "tξÎΩt (10)

-E t £Et(ξ[ ]t ) £ Ēt    "tξÎΩt (11)

Et(ξ[ ]t ) -Et - 1(ξ[ ]t - 1 ) = h ( psto
t (ξ[ ]t ) )     "tξÎΩt (12)

ì

í

î

ïïïï

ïïïï

h ( )x =- ( )τ ηd max{ }x0 - τηc min{ }x0

h-1( )x =- ( )ηd τ min{ }x0 - ( )1 ( )ηcτ max{ }x0
(13)

0 £wcur
t (ξ[ ]t ) £wt    "tξÎΩt (14)

0 £ pPVcur
t (ξ[ ]t ) £ pPV

t     "tξÎΩt (15)

0 £R+
t (16)

0 £R-
t (17)

-
g

t
£ d͂t + r +

t - r -
t £ ḡt (18)

Equation (9) describes the power balance constraints. Con‐
straints (10)-(13) are related to ES, where (10) is the bounds 
on charging/discharging power, and (11) is the bound limit 
of ES level. Equation (12) is the evolution equation of ES 
level, where h ( )×  and its inverse h-1( )×  are auxiliary func‐
tions [20], denoted in (13). In addition, the characteristics of 
h ( )×  and its inverse h-1( )×  such as monotonicity and piece‐
wise linear, can provide convenience for the following re‐
search. Constraints (14) and (15) describe the curtailment 
limit of wind power outputs and photovoltaic power outputs, 
respectively. Constraints (16) and (17) restrict that up- and 
down-reserve capacities should be positive.

Constraint (18) corresponds to the power exchange limits 
between the MG and the main grid. If MG with ES purchas‐
es energy from the main grid, the power transfer value d͂t 
will be positive. Conversely, if MG with ES provides power 
to the main grid, d͂t will be negative.

Except constraints (16) and (17), it is noted that (18) is 
one of the main differences between the proposed model and 
the reserve consumer model [13]-[22]. In this paper, d͂t is de‐
termined in the day-ahead stage and remains constant during 
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time period t in the real-time stage (t = 12T) such that d͂t 
is within a curve rather than a region. In other words, the ex‐
change power between the MG and the main grid keeps in a 
determinized curve, which can reduce the scheduling difficul‐
ty of the main grid.

Differently, MG with ES is regarded as a reserve consum‐
er in [13] - [22] because power injection from/to the main 
grid in [13] - [22] is a real-time decision and is within the 
power exchange limits. Consequently, the main grid will pro‐
vide extra reserve capacity to satisfy the real-time schedul‐
ing problem, which will increase the burden of the main grid.

IV. MULTI-STAGE ROBUST OPTIMIZATION METHOD 

A. Difficulty Analysis

With the analysis in Section III-A, the day-ahead multi-
stage scheduling process of MG with ES as a reserve provid‐
er is established, comprehensively considering the feasibility 
of the real-time scheduling requirements. Real-time decision 

variables psto
t ( )ξ[ ]t , wcur

t ( )ξ[ ]t , and pPVcur
t ( )ξ[ ]t  as well as real-

time state variable Et( )ξ[ ]t  during time period t in the pro‐

posed model only depend on ξ[ ]t  (realization information of 

uncertainties up to time period t) such that real-time deci‐
sions satisfy the nonanticipativity requirement. However, the 
model in (8)-(18) is just a descriptive model and is unsolv‐
able. In fact, the model includes an infinite number of con‐
straints. To ensure that the obtained solutions are feasible for 
all uncertainty realizations, all of the constraints should be 
satisfied.

In other words, the major challenge is how to obtain feasi‐
ble reserve provision solutions during each time period that 
can satisfy the operation constraints under any realizations 
of uncertainties, which corresponds to the multi-stage robust‐
ness requirement.

B. Multi-stage Robust Feasible Regions

From the mathematical viewpoint, the concept of multi-
stage robustness means: during the current time period t, 
state variable Et and real-time decision variables xt should 
be determined by the day-ahead decisions y, Et - 1 at the end 
of time period t - 1, and the observed uncertain vector ξ t dur‐
ing time period t. The relationship can be described as 

(Etxt ) ÎΨ ( yEt - 1ξ t ). Thus, multi-stage robustness implies 

that Ψ ( yEt - 1ξ t ) is non-empty for any ξ t. The conclusion 

can be extended to the whole time. Then, based on the analy‐
sis above, we first define the multi-stage robust feasible re‐
gion for model (8)-(18).

Definition 1: the multi-stage robust feasible region F t - 1 
for state variables is illustrated in (19).

F t - 1 = { }Et - 1Î [ ]-E t - 1Ēt - 1 |"ξtÎΩtΨ ( )yEt - 1ξ t ¹Æ   (19)

Ψ ( )yEt - 1ξ t =

{ }( )yEtxt | y Et and  xt  limited by (9)-(18)EtÎF t (20)

Then, the original problem is transformed into how to ob‐
tain the feasible solution region for each time period. Then, 

an important proposition is given to describe the regions of 
the feasible solutions that can satisfy nonanticipativity and 
multi-stage robustness simultaneously.

Proposition 1: if the precondition (21) is satisfied and 
F t - 1 = [-E true

t - 1Ē
true
t - 1 ] in (22) is not empty, there is always a fea‐

sible solution to (8)-(18) if Et - 1 is within the multi-stage ro‐
bust feasible region F t - 1 = [ ]-E

true
t - 1Ē

true
t - 1 .

ì
í
î

ïï

ïïïï

-d͂t + -d t -R+
t ³-p̄ch

t

p̄dis
t ³- -w t - -

p PV

t
- d͂t + d̄t +R-

t

(21)

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

Ē true
t - 1 =min{ }Ē true

t - h ( )-d͂t + -d t -R+
t Ē true

t - h ( )p̄dis
t Ēt - 1

-E
true
t - 1 =max{-E true

t - h ( )--w t - -
p PV

t
- d͂t + d̄t +R-

t 

            }-E
true
t - h ( )-p̄ch

t -E t - 1

  (22)

The details of proof of Proposition 1 can be located in the 
Appendix A.

Based on Proposition 1, it is known that:
1) There is a nonanticipative and multi-stage robust solu‐

tion if F t - 1 = [-E true
t - 1Ē

true
t - 1 ] is non-empty during all time peri‐

ods. Consequently, (23) should be satisfied to ensure the non‐
anticipativity and multi-stage robustness of the solution.

-E
true
t £ Ē true

t  "tÎ T (23)

2) Constraint (22) reveals the coupling relationship of the 
feasible region between two adjacent periods. To ensure all-
time-period feasibility, the energy level of ES at each end of 
the time period t (t = 12T) should be within the feasible 
region. Consequently, the formulation (22) is a set of con‐
structive constraints that would be introduced into the day-
ahead multi-stage RO reserve provision model (24)-(33).

3) Auxiliary functions h ( )×  and its inverse h-1( )×  (13) as 
well as nonlinear constraint (22) can be transformed into lin‐
ear formulations by using linear techniques such as the big-
M method, and (13) and (22) will be solved by commercial 
solvers.

C. Day-ahead Optimal Scheduling Model

Proposition 1 gives the condition to obtain the feasible re‐
gions, which can make the proposed problem tractable under 
uncertainties. Based on Proposition 1, the day-ahead deci‐
sions for guaranteeing the feasibility scheduling of MG with 
ES under uncertainties can be obtained by solving the fol‐
lowing problem.

min
d͂tR

+
t R

-
t

Ē true
t -E

true
t

 ∑
t = 1

T

τ ( )λ+t max ( )d͂t0 + λ-t min ( )d͂t0 -∑
t = 1

T

( )μ+t R+
t + μ

-
t R-

t

(24)

-
g

t
£ d͂t +R+

t £ ḡt "tÎ T (25)

-
g

t
£ d͂t -R-

t £ ḡt "tÎ T (26)

0 £R+
t  "tÎ T (27)

0 £R-
t  "tÎ T (28)
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-d͂t + -d t -R+
t ³-p̄ch

t  "tÎ T (29)

p̄dis
t ³- -w t - -

p PV

t
- d͂t + d̄t +R-

t  "tÎ T (30)

-E
true
t £ Ē true

t  "tÎ T (31)

Ē true
t - 1 =min{Ēt - 1Ē

true
t - h ( )p̄dis

t  }Ē true
t - h ( )-d͂t + -d t -R+

t

 "tÎ T (32)

-E
true
t - 1 =max{-E t - 1-E

true
t - h ( )-p̄ch

t 

}-E
true
t - h ( )--w t - -

p PV

t
- d͂t + d̄t +R-

t  "tÎ T (33)

The purpose of the day-ahead multi-stage RO reserve pro‐
vision model (24) - (33) is to obtain the power injection 
curve, the up-/down-reserve capacity, and feasible/safe re‐
gions of the energy level of ES. The objective function (24) 
aims to minimize the total operation cost. Constraints (25) 
and (26) restrict that the power injection is within the limita‐
tions. Constraints (27) and (28) require that the up-capacity 
and down-capacity are positive. Constraints (29) and (30) 
are preconditions and the system has no feasible solution if 
the precondition is not satisfied. Constraints (31) - (33) de‐
scribe the feasible regions of ES for satisfying nonanticipa‐
tivity as well as multi-stage robustness.

Compared with the original stochastic programming prob‐
lem (8)-(18), formulations (24)-(33) can be converted into a 
mixed-integer linear programming (MILP) problem and thus 
will be solved directly by commercial solvers such as Gurobi.

D. Overall Schematic Diagram

With the above-mentioned analysis, the schematic diagram 
of the day-ahead multi-stage RO reserve provision method 
can be summarized in Fig. 4, and two parts are included. 
The first process is the precondition, which aims to con‐
struct the feasible region-related constraints that can satisfy 
nonanticipativity and multi-stage robustness based on Propo‐
sition 1. The input data are the upper and lower bounds of 
uncertainty sets and the output is the constraint function (21) 
and (22).

Then, based on these constraints, the day-ahead multi-
stage RO reserve provision model (24)-(33) is applied under 
the given parameters such that optimal day-ahead solutions 
can be obtained (including the exact day-ahead feasible re‐

gions for ES energy level, R+
t ( )R-

t , and power injection 

curve during each time period). In this way, there is always 
a feasible economic scheduling solution to any realizations 
of real-time up-/down-reserve demand within the reserve ca‐

pacity [ ]0R+
t ( )R-

t  and any realization of the first-category 

uncertainties.

V. NUMERICAL TESTS 

Numerical tests are implemented on an MG with ES to 
confirm the effectiveness of the proposed method. The simu‐
lations are conducted using MATLAB R2020b and Gurobi 
9.1.2 on a desktop computer.

A. Basic Information

To show the effectiveness of the proposed model, MG 
with a 2 MW wind farm, a 2.5 MW photovoltaic unit, and 
an ES is given. The load demand data (as shown in Fig. 5), 
the wind power output (as shown in Fig. 6), and the photo‐
voltaic power output (as shown in Fig. 7) of the system 
come from a real area. The parameters of ES are detailed in 
Table II.

Feasible region-

related constraints

(21) and (22)

Proposition 1

Day-ahead multi-stage

RO reserve provision

model

Precondition

Feasible regions F
-1t

Solutions to day-

ahead decision y*

Parameters

Upper and lower

bounds of

uncertainty sets

w, , pPV and d

Day-ahead scheduling process

Fig. 4.　Schematic diagram of day-ahead multi-stage RO reserve provision 
method.
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Fig. 6.　Bounds of wind power output and its corresponding expected sce‐
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ed scenario.
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B. Performance of Proposed Method

Then, the performance of the proposed method is exam‐
ined and the testing results are shown in Fig. 8. From Fig. 8, 
the power injection is determined in the day-ahead stage and 
is applied in the real-time process. In this case, it is calculat‐
ed that there is no feasible solution if the power injection is 
zero. This means that the power injection is necessary for 
the stability of the system under uncertainties. This is be‐
cause ES can only transfer the energy and cannot generate 
sufficient energy to fill the difference between the wind pow‐
er output and the load demand during the whole time period. 
In addition, from the trend of the power injection curve, we 
can notice that MG tends to purchase electricity from the 
main grid (positive power injection) when the PJM market 
electricity price is low and vice versa. It proves that the pro‐
posed method is effective.

Day-ahead up-reserve capacity and down-reserve capacity 
to the main grid are calculated and are also depicted in Fig. 
8. From Fig. 8, the reserve capacity is substantially given by 
MG with ES, which means that MG with ES has great po‐
tential in providing reserve services. For any uncertain up-/
down-reserve demand within the reserve capacity, the MG 
system can find a feasible solution to handle it through the 
proposed method.

Further, the feasible regions of ES are shown in Fig. 9, 
which is a sufficient condition to ensure the feasibility of the 
obtained solutions. The regions are included in the physical 
bounds of the ES level due to the operation constraints, espe‐
cially the coupling constraints. We can know that the feasi‐
ble regions are non-empty in this case such that there is al‐
ways a feasible solution of the MG with ES satisfying all 
the constraints and confronting any realization of uncertain‐
ties. It is convenient and safe for the operators because they 
just need to choose suitable decisions within the regions for 
each time period to cope with the complex constraints and 
uncertainties of the system.

In addition, the performance of the proposed method is ex‐
amined in real-time scheduling in various representative sce‐
narios. Additionally, an ex-post analysis is conducted to dem‐
onstrate the practicability of the proposed method. Six repre‐
sentative and complex combination scenarios are selected, in‐
cluding the selected vertex scenarios (scenario 1 and scenar‐
io 2), the base scenario (scenario 3), two kinds of extreme 
ramping scenarios (scenario 4 and scenario 5), as well as 
one scenario generated by the Monte Carlo method (scenario 
6). The real-time scheduling model is to minimize the total 
curtailment of wind power output and photovoltaic power 
output while subject to constraints (9) - (10), (12) - (15) and 

-E
true
t £Et £ Ē true

t . The real-time scheduling process is a typical 
structure of multi-stage decision process. Thus, the real-time 
scheduling model is applied via a rolling horizon framework 
with the objective of minimizing the total curtailment of 
wind power output and photovoltaic power output.

The performance in these scenarios is analyzed and the re‐
sults are shown in Fig. 10, which shows that ES levels in 
different scenarios are all within the robust feasible region 
and the physical upper and lower bounds. Consequently, the 
boundaries are always met such that feasibility is always 
achieved.

C. Profits of ES when Participating in Reserve Provision

Then, we analyze the impact on the economy of the sys‐
tem when MG with ES participates in the reserve auxiliary 
market. The parameters are referred to Section V-A. The set‐
tings for the case studies and the comparison results are 
shown in Table III. To be specific, in case 1, there is no ES 
equipped in the MG system, which means the ES will not 

TABLE II
PARAMETERS OF ES
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method.

 Upper and lower bounds of ES level;  Robust feasible region of ES

0 2 4 6 8 10 12 14 16 18 20 22 24 26

2

4

6

8

10

E
 (

M
W

h
)

t (hour)

Fig. 9.　Feasible regions for ES.

 Upper and lower bounds of ES level;  Robust feasible region of ES

 ES level in scenario 1;  ES level in scenario 2

 ES level in scenario 3;  ES level in scenario 4

 ES level in scenario 5;  ES level in scenario 6

0 2 4 6 8 10 12 14 16 18 20 22 24 26

2

4

6

8

E
 (

M
W

h
)

t (hour)

Fig. 10.　ES levels in different scenarios.
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participate in either the energy market (self-scheduling) or 
the reserve auxiliary market (reserve provision). In case 2, 
ES is added to the MG system to gain profits from the ener‐
gy market. In case 3, ES in MG is applied in both the self-
scheduling and reserve provision to the main grid based on 
the proposed method.

With the analysis of the costs under these three different 
cases, it is noted that the cost in case 1 is higher than that in 
other cases. In case 2, the cost of MG with ES will decrease 
by 20.07% than that in case 1 and will reach $668.98. The 
reason is that ES in MG can discharge and charge according 
to the electricity price to provide flexibility and improve the 
economy of the system. As for case 3, ES in MG is applied 
in both the self-scheduling and reserve provision to the main 
grid under the proposed method. The total cost is significant‐
ly reduced by 97.07% than that of case 1 and reaches 
$24.53.

The results mean that ES in MG can decrease the opera‐
tion cost by joint self-scheduling and reserve provision, espe‐
cially by reserve provision. Consequently, it is economical to 
use MG with ES as a reserve provider.

D. Comparison and Analysis

This model is compared with the reserve provision model 
in [33] from three aspects, including feasibility, optimality, 
and efficiency. To ensure comparability, the system in [33] is 
also equipped with a 2 MW wind farm, a 2.5 MW photovol‐
taic unit, and an ES, and the power injection varies within 
[1.2, 4]MW. Other parameters are also consistent with Sec‐
tion V-A. Then, the comparison results are shown in Table 
IV.

1) Feasibility analysis. The scheduling problem in this pa‐
per is solved by the day-ahead multi-stage RO reserve provi‐
sion method. Consequently, the solutions obtained by the 
proposed method can always be feasible for any realization 
of uncertainties because nonanticipativity and multi-stage ro‐

bustness requirements are satisfied. Differently, the problem 
in [33] is solved by the scenario-based method such that the 
feasibility of the finite selected scenarios can be guaranteed. 
In addition, the method in [33] can only satisfy the four-
hour running requirement for ES while the proposed method 
in this paper can satisfy the running requirement for the en‐
tire periods.

2) Optimality analysis. From Table IV, the total cost ob‐
tained by the proposed method is $-153.94, which is lower 
than that in [33]. Consequently, it is concluded that the pro‐
posed method has better economic performance than that in 
[33]. The reason is that MG with ES can not only guarantee 
the feasibility under uncertainties based on the proposed 
method but also provide reserve auxiliary service to the 
main grid such that extra income can be obtained. In addi‐
tion, the total cost of the scenario-based method is associat‐
ed with the number of scenarios and it will increase with the 
number of scenarios. Consequently, more reserve capacities 
should be given to handle the more uncertain scenarios.

3) Efficiency analysis. Table IV shows that the calculation 
time of the proposed method is less than that in [33], which 
means that the proposed method has better efficiency than 
that in [33]. This is because the uncertainty can be solved in 
this paper by the maximum and minimum limits of the un‐
certainty set according to Proposition 1, rather than the spe‐
cific scenarios like the scenario-based method.

VI. CONCLUSION

This paper investigates the feasibility and economy of 
MG with ES in reserve provision. A day-ahead multi-stage 
RO reserve provision model is established against the uncer‐
tainties comprehensively considering the real-time schedul‐
ing and reserve requirements. An effective method is given 
based on the structure of the constraint such that the original 
complex scheduling problem can be converted into an MILP 
problem and directly solved.

Numerical tests are implemented and the results show 
that: ① compared with the reserve consumer method, the 
proposed method can provide a reserve to other systems 
such that the total costs under the proposed method will be 
greatly reduced; ② compared with other provision methods, 
the proposed method has more advantages in terms of feasi‐
bility, optimality, and efficiency. Further work will analyze 
the potential of the proposed method in planning the loca‐
tion of ES from an economic viewpoint.

APPENDIX A

Proof of Proposition 1: for brevity, real-time decision vari‐
ables are abbreviated as:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

P sto
t =P sto

t ( )ξ[t]

wcur
t =wcur

t ( )ξ[t]

pPVcur
t = pPVcur

t ( )ξ[t]

(A1)

To simplify the structure of the constraints and facilitate 
the analysis, Et is selected as the main variable. Then, psto

t , 

TABLE IV
COMPARISON RESULTS

Method

Proposed method

Reserve provider method in [33] 
(3 scenarios)

Reserve provider method in [33] 
(10 scenarios)

Reserve provider method in [33] 
(50 scenarios)

Total cost ($)

-153.94

904.13

907.90

909.05

Calculation time (s)

0.33

0.91

11.79

42.28

TABLE III
SETTINGS FOR CASE STUDIES AND COMPARISON RESULTS

Case

1

2

3

Energy 
market

No

Yes

Yes

Reserve auxiliary 
market

No

No

Yes

Cost 
($)

836.99

668.98

24.53

Cost saving rate
(%)

20.07

97.07
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wcur
t , and pPVcur

t  can be substituted. The details are as follows.
First, psto

t  can be equivalent to (A2) according to (12) 
and (13).

psto
t = h-1(Et -Et - 1 ) (A2)

With (10), (A2), and h-1( )⸱  function with monotonically 
decreasing characteristics, we can obtain:

h ( p̄dis
t ) +Et - 1 £Et £ h ( - p̄ch

t ) +Et - 1 (A3)

Similarly, wcur
t  can be represented as (A4) by (9) and (A2).

wcur
t = psto

t +wt + pPV
t - pPVcur

t + d͂t - dt + r +
t - r -

t =
h-1(Et -Et - 1 ) +wt + pPV

t - pPVcur
t + d͂t - dt + r +

t - r -
t (A4)

Constraint (14) can be transferred as (A5) with (A4).

ì
í
î

ïï

ïï

0 £ h-1( )Et -Et - 1 +wt + pPV
t - pPVcur

t + d͂t - dt + r +
t - r -

t

h-1( )Et -Et - 1 + pPV
t - pPVcur

t + d͂t - dt + r +
t - r -

t £ 0
(A5)

Reorganize (A5), and we can obtain:

ì
í
î

ïï

ïï

pPVcur
t £ h-1( )Et -Et - 1 +wt + pPV

t + d͂t - dt + r +
t - r -

t

h-1( )Et -Et - 1 + pPV
t + d͂t - dt + r +

t - r -
t £ pPVcur

t

(A6)

With (15) and (A6), the constraints that guarantee the non‐
empty of pPVcur

t  are listed in (A7).

ì
í
î

ïï

ïï

0 £ h-1( )Et -Et - 1 +wt + pPV
t + d͂t - dt + r +

t - r -
t

h-1( )Et -Et - 1 + d͂t - dt + r +
t - r -

t £ 0
(A7)

Reorganize (A7) with Et -Et - 1, and there will be:

ì
í
î

ïï

ïïïï

h ( - d͂t + dt - r +
t + r -

t ) +Et - 1 £Et

Et £ h ( -wt - pPV
t - d͂t + dt - r +

t + r -
t ) +Et - 1

(A8)

Consequently, constraints related to wcur
t , pPVcur

t , and psto
t  

can be converted into the constraints related to Et -Et - 1 such 
that wcur

t , pPVcur
t , and psto

t  can be omitted.
For brevity, (A9) is introduced.

ì

í

î

ïïïï

ïïïï

f̄ t = { }Ēth ( )-p̄ch
t +Et - 1h ( )-wt - pPV

t - d͂t + dt - r +
t + r -

t +Et - 1

-
f

t
= { }-E th ( )p̄dis

t +Et - 1h ( )-d͂t + dt - r +
t + r -

t +Et - 1

(A9)

Based on (11), (A3), (A8), and (A9), (9) - (15) can be re‐
written as follows.

-
f

t
£Et £ f̄ t (A10)

If there is a feasible solution in (9) - (15), formulation 
(A10) should be non-empty. It implies that:

-
f

t
£ f̄ t (A11)

In detail, each term of 
-
f

t
 should be less than each term of 

f̄ t for any time period t. Consequently, we can obtain the 
three groups of inequalities.

ì

í

î

ï
ïï
ï

ï
ïï
ï

-E t £ Ēt

h ( )p̄dis
t £ h ( )-p̄ch

t

h ( )-d͂t + dt - r +
t + r -

t £ h ( )-wt - pPV
t - d͂t + dt - r +

t + r -
t

   (A12)

ì
í
î

ïï
ïï

-d͂t + dt - r +
t + r -

t ³-p̄ch
t

p̄dis
t ³-wt - pPV

t - d͂t + dt - r +
t + r -

t

(A13)

ì

í

î

ïïïï

ïïïï

Et - 1 £min{ }Ēt - h ( )-d͂t + dt - r +
t + r -

t Ēt - h ( )p̄dis
t

Et - 1 ³max{ }-E t - h ( )-wt - pPV
t - d͂t + dt - r +

t + r -
t -E t - h ( )-p̄ch

t

(A14)

Based on (A12)-(A14), some conclusions can be summa‐
rized.

1) Inequalities in (A12) are always satisfied according to 
(10), (11), and (14).

2) Inequalities in (A13) are independent of the state vari‐
able Et and they should be always satisfied for any realiza‐
tions of uncertainties. So (A13) can be regarded as a precon‐
dition and (A15) can be obtained for brevity.

ì
í
î

ïï

ïïïï

-d͂t + -d t - r̄ +
t + -r

-
t ³-p̄ch

t

p̄dis
t ³- -w t - -

p PV

t
- d͂t + d̄t - -r

+
t + r̄ -

t

(A15)

Reorganize (A15) and thus (21) is proved.
3) Inequalities in (A14) are associated with the regions of 

Et - 1. Note that it is a sufficient condition to ensure that there 
is a feasible solution in Et.

Inequalities in (A14) should be satisfied for any realiza‐
tion of uncertainty. There will be:

ì

í

î

ïïïï

ïïïï

Et - 1 £min{ }Ēt - h ( )-d͂t + -d t -R+
t Ēt - h ( )p̄dis

t

Et - 1 ³max{ }-E t - h ( )--w t - -
p PV

t
- d͂t + d̄t +R-

t -E t - h ( )-p̄ch
t

(A16)

Note that inequalities in (A16) are only the conditions for 
Et - 1 to guarantee the range of Et nonempty. And Et - 1 also 
needs to satisfy its physical constraint (11). Then, we can ob‐
tain:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

Ē true
t - 1 =min{ }Ēt - h ( )-d͂t + -d t -R+

t Ēt - h ( )p̄dis
t Ēt - 1

-E
true
t - 1 =max{-E t - h ( )--w t - -

p PV

t
- d͂t + d̄t +R-

t 

           }-E t - h ( )-p̄ch
t -E t - 1

(A17)

The equations in (A17) provide the feasible multi-stage ro‐
bust regions of one time period. To ensure feasibility during 
all the scheduling periods, the equations in (A17) should be 
extended to the whole time periods.

Recursively, for t = T, it is clear that Ē true
T = ĒT and -E

true
T =

-E T. For t = T - 1, we have (A18) based on (A17).

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

Ē true
T - 1 =min{ }Ē true

T - h ( )-d͂T + -d T -R+
T Ē true

T - h ( )p̄dis
T  ĒT - 1

-E
true
T - 1 =max{-E true

T - h ( )--w T - -
p PV

T
- d͂T + d̄T +R-

T 

            }-E
true
T - h ( )-p̄ch

T  -E T - 1

(A18)

For t = T - 2, it holds that:
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ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

Ē true
T - 2 =min{Ē true

T - 1 - h ( )-d͂T - 1 + -d T - 1 -R+
T - 1 

             Ē true
T - 1 - h ( )p̄dis

T - 1 ĒT - 2 }

-E
true
T - 2 =max{-E true

T - 1 - h ( )--w T - 1 - -
p PV

T - 1
- d͂T - 1 + d̄T - 1 +R-

T - 1 

            }-E
true
T - 1 - h ( )-p̄ch

T - 1 -E T - 2

(A19)

By recursion, (22) is satisfied for any time period t.
Q.E.D.
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